JP6366562B2 - Manufacturing method of multilayer wiring board - Google Patents

Manufacturing method of multilayer wiring board Download PDF

Info

Publication number
JP6366562B2
JP6366562B2 JP2015220003A JP2015220003A JP6366562B2 JP 6366562 B2 JP6366562 B2 JP 6366562B2 JP 2015220003 A JP2015220003 A JP 2015220003A JP 2015220003 A JP2015220003 A JP 2015220003A JP 6366562 B2 JP6366562 B2 JP 6366562B2
Authority
JP
Japan
Prior art keywords
layer
jig
ceramic substrate
wiring board
multilayer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015220003A
Other languages
Japanese (ja)
Other versions
JP2017092223A (en
Inventor
善明 長屋
善明 長屋
卓 宮本
卓 宮本
豊 今西
豊 今西
宗之 岩田
宗之 岩田
奈緒子 森
奈緒子 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2015220003A priority Critical patent/JP6366562B2/en
Publication of JP2017092223A publication Critical patent/JP2017092223A/en
Application granted granted Critical
Publication of JP6366562B2 publication Critical patent/JP6366562B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、例えば、半導体素子などの電子部品を搭載し、且つセラミック基板の上面に複数の樹脂絶縁層を載置した多層配線基板の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer wiring board in which an electronic component such as a semiconductor element is mounted and a plurality of resin insulating layers are mounted on an upper surface of a ceramic substrate.

例えば、片面に導体パターンが形成された熱可塑性樹脂からなる複数の樹脂フィルムを積層して積層体を形成し、該積層体を一対の熱プレス板の間で加熱加圧するに際し、該熱プレス板と上記積層体との間にガラス繊維不織布を介在させ、且つ該ガラス繊維不織布と上記積層体との間に樹脂シートを介在させることで、上記ガラス繊維不織布中のガラス繊維を粉砕しつつ、上記積層体を加熱加圧する多層回路基板の製造方法が提案されている(例えば、特許文献1参照)。
更に、片面に導体パターンが形成された複数の樹脂フィルムを、これらを貫通する位置決めピンにより積層して積層体を形成し、該積層体を一対の熱プレス板の間で加熱加圧するに際し、当該積層体と一方の熱プレス板との間に、緩衝材を介在させると共に、上記積層体と他方の熱プレス板との間に、上記位置決めピンが貫通する位置決め穴を有する平滑板を介在させて、加熱しつつ加圧する多層回路基板の製造方法も提案されている(例えば、特許文献2参照)。
For example, a laminate is formed by laminating a plurality of resin films made of a thermoplastic resin having a conductor pattern formed on one side, and the laminate is heated and pressed between a pair of hot press plates. While the glass fiber nonwoven fabric is interposed between the laminated body and the resin sheet is interposed between the glass fiber nonwoven fabric and the laminated body, the glass fiber in the glass fiber nonwoven fabric is pulverized, and the laminated body. A method of manufacturing a multilayer circuit board that heats and presses is proposed (see, for example, Patent Document 1).
Furthermore, when a plurality of resin films having a conductor pattern formed on one side are laminated with positioning pins passing through them to form a laminate, the laminate is heated and pressed between a pair of hot press plates. A cushioning material is interposed between the heat press plate and one of the heat press plates, and a smooth plate having a positioning hole through which the positioning pin passes is interposed between the laminate and the other heat press plate. However, a method of manufacturing a multilayer circuit board that pressurizes while pressing has also been proposed (see, for example, Patent Document 2).

しかし、前記特許文献1に記載の多層回路基板の製造方法では、前記積層体と熱プレス板との間に介在させたガラス繊維不織布が、前記導体パターンの真上の位置と該導体パターンのない位置とでは、ガラス繊維の密度が異なるため、上記積層体を形成する樹脂フィルムごとの全面において圧力がバラ付き易い。その結果、前記樹脂フィルムごとの導体パターンやビア導体が前記加圧に伴う圧力と直交する方向に沿って位置ズレを生じことにより、導体パターン同士間における不用意な短絡や、導体パターンとビア導体との不用意な接触による短絡や、離間によるオープン不良などの不具合を生じる場合があった。かかる不具合は、前記特許文献2に記載の多層回路基板の製造方法においても、解決することが不十分であった。   However, in the method of manufacturing a multilayer circuit board described in Patent Document 1, the glass fiber nonwoven fabric interposed between the laminate and the hot press plate is not directly above the conductor pattern and the conductor pattern. Since the density of the glass fibers differs depending on the position, the pressure tends to vary on the entire surface of each resin film forming the laminate. As a result, the conductor pattern and via conductor for each resin film cause a positional shift along the direction orthogonal to the pressure accompanying the pressurization, thereby causing an inadvertent short circuit between the conductor patterns and the conductor pattern and the via conductor. In some cases, such as short circuit due to inadvertent contact with the device, or open failure due to separation. Such a problem has not been sufficiently solved even in the method of manufacturing a multilayer circuit board described in Patent Document 2.

特開2010−147419号公報(第1〜12頁、図1〜5)JP 2010-147419 A (pages 1 to 12, FIGS. 1 to 5) 特開2007−201371号公報(第1〜14頁、図1〜7)JP 2007-20371 A (pages 1 to 14 and FIGS. 1 to 7)

本発明は、背景技術で説明した問題点を解決し、セラミック基板の上に配線層を片面に有する複数の単位樹脂絶縁層を積層して載置するに際し、位置ズレを確実に抑制ないし低減して、不用意な短絡やオープン不良を可及的に生じにくくした多層配線基板の製造方法を提供する、ことを課題とする。   The present invention solves the problems described in the background art and reliably suppresses or reduces misalignment when a plurality of unit resin insulating layers having wiring layers on one side are stacked and placed on a ceramic substrate. Thus, it is an object of the present invention to provide a method for manufacturing a multilayer wiring board in which an inadvertent short circuit and an open defect are hardly generated as much as possible.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、複数の単位樹脂絶縁層のうち、上側圧着治具とこれに隣接する最上層の単位樹脂絶縁層との間に、熱硬化性樹脂層および金属箔からなる複数の単位樹脂緩衝層とこれらの間に挟まれた熱可塑性樹脂層とからなるクッション材を介在させる、ことに着想して成されたものである。
即ち、本発明よる多層配線基板の製造方法(請求項1)は、配線層と熱融着層との間に熱硬化性樹脂層を有し且つ該熱硬化性樹脂層の厚み方向に沿ったビア導体を備える複数の単位樹脂絶縁層を、セラミック基板上に載置した多層配線基板の製造方法であって、下側圧着治具の上に拘束した上記セラミック基板の上面に、上記複数の単位樹脂絶縁層、上記同様の熱硬化性樹脂層および金属箔からなる複数の単位樹脂緩衝層とこれらの間に挟まれた熱可塑性樹脂層とからなるクッション材、および、上側圧着治具を、垂直方向にのみ移動可能に順次積層して、複合積層体を形成する工程と、かかる複合積層体を下側加熱治具と上側加熱治具との間に挟み、該上側加熱治具を下側加熱治具側に押圧しつつ真空熱圧着する工程と、含む、ことを特徴とする。
In order to solve the above problems, the present invention provides a thermosetting resin layer and a metal foil between the upper pressure bonding jig and the uppermost unit resin insulating layer adjacent to the upper one among the plurality of unit resin insulating layers. It was conceived that a cushion material composed of a plurality of unit resin buffer layers and a thermoplastic resin layer sandwiched between them is interposed.
That is, the method for manufacturing a multilayer wiring board according to the present invention (Claim 1) has a thermosetting resin layer between the wiring layer and the heat-sealing layer, and is along the thickness direction of the thermosetting resin layer. A method of manufacturing a multilayer wiring board in which a plurality of unit resin insulation layers including via conductors are placed on a ceramic substrate, wherein the plurality of units are formed on the upper surface of the ceramic substrate constrained on a lower crimping jig. A cushioning material comprising a resin insulating layer, a plurality of unit resin buffer layers made of the same thermosetting resin layer and metal foil as described above, and a thermoplastic resin layer sandwiched between them, and an upper crimping jig A step of forming a composite laminate by sequentially laminating it so as to be movable only in the direction, sandwiching the composite laminate between a lower heating jig and an upper heating jig, and heating the upper heating jig to the lower side Including vacuum thermocompression bonding while pressing to the jig side. To.

これによれば、以下の効果(1)〜(3)を奏することが可能となる。
(1)前記クッション材の厚みが均一なことにより、前記複数の単位樹脂絶縁層における厚み方向の全体において均一に加圧できるので、前記厚み方向と直交する方向に沿った分力(滑り力)を抑制することができる。
(2)上記効果(1)に起因して、複数の単位樹脂絶縁層における配線層やビア導体の位置ズレを可及的に低減できる。
(3)上記効果(2)によって、複数の単位樹脂絶縁層における配線層同士の不用意な短絡や、該配線層とビア導体との不用意な短絡やオープン不良を低減できるので、信頼性の高い多層配線基板を提供することができる。
According to this, the following effects (1) to (3) can be achieved.
(1) Since the thickness of the cushion material is uniform, uniform pressure can be applied in the whole thickness direction of the plurality of unit resin insulation layers, so that the component force (sliding force) along the direction orthogonal to the thickness direction Can be suppressed.
(2) Due to the effect (1), it is possible to reduce the positional deviation of the wiring layers and via conductors in the plurality of unit resin insulation layers as much as possible.
(3) The above effect (2) can reduce the inadvertent short circuit between the wiring layers in the plurality of unit resin insulation layers, the inadvertent short circuit between the wiring layer and the via conductor, and the open defect. A high multilayer wiring board can be provided.

尚、前記単位樹脂絶縁層を構成する熱硬化性樹脂層は、ポリイミドからなる。
また、前記単位樹脂絶縁層に形成された熱融着層は、熱可塑性のポリイミドからなる。尚、かかる熱融着層は、予め上記熱硬化性樹脂層の両面に被覆され、その片方の表面に前記配線層が形成されていても良い。
更に、前記配線層は、例えば、銅箔をパターニングして形成されたものである。
また、前記単位樹脂絶縁層では、前記ビア導体の一端と上記配線層とが接続されている。
更に、前記クッション材を構成する熱可塑性樹脂層も熱可塑性のポリイミドからなる。
また、上記クッション材を構成する前記金属箔は、例えば、銅箔である。
更に、前記複数の単位樹脂絶縁層の周辺部、前記クッション材の周辺部、および前記上側圧着治具(蓋板)の周辺部には、下側圧着治具の上面から立設した複数のガイドピンが個別に貫通する積層時の位置決め用の貫通孔が形成されている。
The thermosetting resin layer constituting the unit resin insulating layer is made of polyimide.
The heat sealing layer formed on the unit resin insulating layer is made of thermoplastic polyimide. In addition, this heat-fusion layer may be previously coated on both surfaces of the thermosetting resin layer, and the wiring layer may be formed on one surface thereof.
Further, the wiring layer is formed by patterning a copper foil, for example.
In the unit resin insulating layer, one end of the via conductor and the wiring layer are connected.
Furthermore, the thermoplastic resin layer constituting the cushion material is also made of thermoplastic polyimide.
Moreover, the said metal foil which comprises the said cushion material is a copper foil, for example.
Further, a plurality of guides erected from the upper surface of the lower pressure bonding jig on the periphery of the plurality of unit resin insulation layers, the periphery of the cushion material, and the periphery of the upper pressure bonding jig (lid plate). A through-hole for positioning at the time of stacking through which the pins individually penetrate is formed.

また、前記セラミック基板は、少なくとも1層のセラミック層と、その両面に個別に形成した複数のパッドあるいは複数の接続端子と、これらの間を導通するビア導体とを備えている。
更に、前記セラミック基板は、複数のセラミック層を積層したセラミック基板本体と、前記セラミック層間に配設した配線層と、セラミック基板本体の両面に個別に形成したパッドあるいは接続端子と、該パッドまたは接続端子と上記配線層との間および配線層同士の間を接続するビア導体とを有する形態であっても良い。上記セラミック層は、例えば、アルミナからなり、上記配線層、パッド、接続端子、およびビア導体は、例えば、WまたはMoからなる。
加えて、前記真空熱圧着する工程は、前記クッション材を構成する熱可塑性樹脂層のガラス転移温度(ガラス転移点)以上の温度域(約300〜380℃)に加熱し、且つ0.095MPa以下の真空度にした状態で、約0.5〜1時間にわたり保持することで行われる。
The ceramic substrate includes at least one ceramic layer, a plurality of pads or a plurality of connection terminals individually formed on both surfaces thereof, and a via conductor that conducts between them.
Furthermore, the ceramic substrate includes a ceramic substrate body in which a plurality of ceramic layers are laminated, a wiring layer disposed between the ceramic layers, pads or connection terminals individually formed on both surfaces of the ceramic substrate body, and the pads or connection. It may have a form having via conductors connecting between the terminals and the wiring layers and between the wiring layers. The ceramic layer is made of alumina, for example, and the wiring layer, pads, connection terminals, and via conductors are made of W or Mo, for example.
In addition, the vacuum thermocompression bonding step is performed by heating to a temperature range (about 300 to 380 ° C.) equal to or higher than the glass transition temperature (glass transition point) of the thermoplastic resin layer constituting the cushion material, and 0.095 MPa or less. The vacuum is maintained for about 0.5 to 1 hour.

また、本発明には、前記下側圧着治具の上面には、前記セラミック基板の上面付近を除いた大部分を収納する凹部が形成され、該凹部内に上記セラミック基板を水平方向に沿って拘束しつつ収納している、多層配線基板の製造方法(請求項2)も含まれる。
これによれば、前記効果(1)、(2)を一層確実に奏することができる。
尚、上記セラミック基板を上記凹部内に水平方向に沿って拘束して収納するため、例えば、平面視が矩形状の上記凹部における四辺の側壁から当該凹部内に進退する複数のスライドピンを、ボールネジで移動可能とした構造が挙げられる。
Further, in the present invention, a recess is formed on the upper surface of the lower crimping jig to accommodate most of the ceramic substrate except for the vicinity of the upper surface of the ceramic substrate, and the ceramic substrate is placed in the recess along the horizontal direction. A method for manufacturing a multilayer wiring board that is housed while being restrained (claim 2) is also included.
According to this, the effects (1) and (2) can be achieved more reliably.
In order to constrain and store the ceramic substrate in the recess in the horizontal direction, for example, a plurality of slide pins that advance and retract into the recess from the side walls of the four sides of the recess having a rectangular shape in plan view are provided with a ball screw. A structure that can be moved with is mentioned.

更に、本発明には、前記真空熱圧着工程に用いる上側加熱治具は、その加熱面が傾斜可能とされている、多層配線基板の製造方法(請求項3)も含まれる。
これによれば、前記複合積層体が若干傾いていても、常に均一な圧力を加えられ、且つ該圧力の方向と直交する方向の滑りを一層抑制できるので、前記効果(1)〜(3)をより顕著に奏することができる。
尚、上側加熱治具の加熱面を傾斜可能とする機構には、例えば、かかる上側加熱治具の前記加熱面と反対側に加圧方向に沿って凹んだ凹曲面と、該凹曲面に点接触する半球形状の凸曲面を有するプレス軸との組み合わせが例示される。
Furthermore, the present invention includes a method for manufacturing a multilayer wiring board (Claim 3) in which the heating surface of the upper heating jig used in the vacuum thermocompression bonding step can be inclined.
According to this, even if the composite laminate is slightly inclined, a uniform pressure can always be applied, and slipping in a direction perpendicular to the direction of the pressure can be further suppressed, so the effects (1) to (3) Can be achieved more remarkably.
In addition, the mechanism that can tilt the heating surface of the upper heating jig includes, for example, a concave curved surface that is recessed along the pressing direction on the opposite side of the heating surface of the upper heating jig, and a point on the concave curved surface. The combination with the press axis | shaft which has a hemispherical convex curved surface which contacts is illustrated.

加えて、本発明には、前記下側加熱治具と下側圧着治具との間、該下側圧着治具と前記セラミック基板との間、および、前記上側加熱治具と上側圧着治具との間には、耐熱性の緩衝板が挟持されている、多層配線基板の製造方法(請求項4)も含まれる。
これによれば、前記上側加熱治具と下側加熱治具とから圧力と共に加熱に伴う熱が伝達されても、かかる熱を過度に前記複数の単位樹脂絶縁層に伝熱する事態を抑制できるので、前記効果(1)〜(3)を一層確実に奏することができる。
尚、上記耐熱性の緩衝板には、例えば、全芳香族ポリアミドからなる耐熱ボードが例示される。
In addition, the present invention includes the lower heating jig and the lower pressure bonding jig, the lower pressure bonding jig and the ceramic substrate, and the upper heating jig and the upper pressure bonding jig. In addition, a method for manufacturing a multilayer wiring board in which a heat-resistant buffer plate is interposed is also included.
According to this, even if heat accompanying heat is transmitted together with pressure from the upper heating jig and the lower heating jig, it is possible to suppress a situation where the heat is excessively transferred to the plurality of unit resin insulating layers. Therefore, the effects (1) to (3) can be more reliably achieved.
Examples of the heat-resistant buffer plate include a heat-resistant board made of wholly aromatic polyamide.

(A)は単位樹脂絶縁層を形成するための銅箔張り樹脂シートの断面図、(B),(C)は単位樹脂絶縁層を形成する工程を示す断面図、(D)は複合積層体を形成する工程を示す垂直断面図。(A) is sectional drawing of the copper foil tension resin sheet for forming a unit resin insulation layer, (B), (C) is sectional drawing which shows the process of forming a unit resin insulation layer, (D) is a composite laminated body The vertical sectional view showing the process of forming. (A),(B)は図1(D)に続く複合積層体を形成する工程を示す垂直断面。(A), (B) is the vertical cross section which shows the process of forming the composite laminated body following FIG.1 (D). 真空圧着工程の直前の状態を示す垂直断面図。The vertical sectional view showing the state just before the vacuum pressure bonding process. 真空圧着工程を行った直後の状態を示す垂直断面図。The vertical cross section which shows the state immediately after performing a vacuum press-bonding process. 真空圧着して得られた複合積層体を示す垂直断面図。The vertical cross section which shows the composite laminated body obtained by vacuum-compression bonding. 本発明により得られた多層配線基板を示す垂直断面図。1 is a vertical sectional view showing a multilayer wiring board obtained by the present invention. 比較例の製造方法を示す垂直断面図。The vertical sectional view which shows the manufacturing method of a comparative example. 異なる比較例の製造方法を示す垂直断面図。The vertical sectional view which shows the manufacturing method of a different comparative example.

以下において、本発明を実施するための形態について説明する。
予め、図1(A)に示す銅箔張り樹脂シートJ0を複数用意した。かかる銅箔張り樹脂シートJ0は、図示のように、ポリイミド(以下、PIと称する)からなる熱硬化性樹脂層1と、その両面に形成され熱可塑性PIからなる熱融着層2と、一方の熱融着層2に貼着された銅箔(金属箔)3とを備え、全体の厚みが約30μmの複合積層体である。かかる銅箔張り樹脂シートJ0を3枚用意した。
先ず、図1(B)に示すように、上記銅箔張り樹脂シートJ0の中央側に複数のビアホール5aと、該樹脂シートJ0の周辺部に複数(例えば、4つ)の貫通孔6を穿設した。上記ビアホール5a内ごとには、銅粉末を含む導電性ペーストを充填して、一端(上端)側が銅箔3を貫通するビア導体5を形成した。
次いで、上記銅箔3に対し、フォトリゾグラフィーなどのパターニング技術を施して、図1(C)に示すように、所要パターンの配線層4を形成した。その結果、複数の単位樹脂絶縁層Jn(例えば、n=1〜3)が得られた。
Hereinafter, modes for carrying out the present invention will be described.
A plurality of copper foil-clad resin sheets J0 shown in FIG. As shown in the drawing, the copper foil-clad resin sheet J0 includes a thermosetting resin layer 1 made of polyimide (hereinafter referred to as PI), and a heat-sealing layer 2 made of thermoplastic PI formed on both surfaces thereof. And a copper foil (metal foil) 3 adhered to the heat-sealing layer 2, and a composite laminate having a total thickness of about 30 μm. Three such copper foil-clad resin sheets J0 were prepared.
First, as shown in FIG. 1B, a plurality of via holes 5a are formed in the center side of the copper foil-clad resin sheet J0, and a plurality of (for example, four) through holes 6 are formed in the periphery of the resin sheet J0. Set up. Each via hole 5a was filled with a conductive paste containing copper powder to form a via conductor 5 having one end (upper end) passing through the copper foil 3.
Next, a patterning technique such as photolithography was applied to the copper foil 3 to form a wiring layer 4 having a required pattern as shown in FIG. As a result, a plurality of unit resin insulating layers Jn (for example, n = 1 to 3) were obtained.

次に、図1(D)に示すように、下側圧着治具7の上面に開口する凹部8内に耐熱性の緩衝板11を介して、上面付近を除くセラミック基板12の大部分を収納した。尚、上記緩衝板11には、例えば、全芳香族ポリアミドからなる耐熱ボードが用いられる。
更に、上記セラミック基板12の側面ごとに対し、前記凹部8の内壁面ごとから図示しないボールネジにより水平方向に沿って且つ該凹部8の中央側に向かって進退する複数のスライドピン9を個別に当接することによって、上記セラミック基板12を水平方向において位置決めした状態で拘束した。
Next, as shown in FIG. 1D, most of the ceramic substrate 12 except for the vicinity of the upper surface is accommodated in the recess 8 opened on the upper surface of the lower crimping jig 7 via the heat-resistant buffer plate 11. did. For the buffer plate 11, for example, a heat resistant board made of wholly aromatic polyamide is used.
Further, a plurality of slide pins 9 that advance and retreat in the horizontal direction from the inner wall surface of the recess 8 along the horizontal direction and toward the center side of the recess 8 are individually applied to each side surface of the ceramic substrate 12. By contacting, the ceramic substrate 12 was restrained in a state of being positioned in the horizontal direction.

上記セラミック基板12は、図1(D)に示すように、例えば、アルミナを主成分とするセラミック層c1〜c3と、上面(表面)に形成した複数のパッド13と、底面(裏面)に形成した複数の接続端子14と、上記セラミック層c1〜c3間に形成された所要パターンの配線層15と、上記パッド13、配線層15、接続端子14の間を個別に導通し且つ上記セラミック層c1〜c3を個別に貫通する複数のビア導体16とを備えている。尚、上記パッド13、接続端子14、配線層15、およびビア導体16は、例えば、WあるいはMoからなる。   As shown in FIG. 1D, the ceramic substrate 12 is formed on, for example, ceramic layers c1 to c3 mainly composed of alumina, a plurality of pads 13 formed on the upper surface (front surface), and the bottom surface (rear surface). The plurality of connection terminals 14, the wiring layer 15 having a required pattern formed between the ceramic layers c1 to c3, and the pad 13, the wiring layer 15, and the connection terminals 14 are individually conducted and the ceramic layer c1. To via conductors 16 penetrating through c3 individually. The pad 13, the connection terminal 14, the wiring layer 15, and the via conductor 16 are made of, for example, W or Mo.

図1(D)に示すように、下側圧着治具7における凹部8の開口部を囲む上面には、予め、複数(例えば、4本)の位置決め用のガイドピン10が垂直に立設されている。かかる複数のガイドピン10は、図示のように、前記複数の貫通孔6に個別に挿通することにより、複数(3層)の前記単位樹脂絶縁層J1〜J3を前記セラミック基板12の上方に順時積層した。この際、セラミック基板12側のバッド13と最下層の単位樹脂絶縁層J1の底面に露出するビア導体5とが電気的に接続された。尚、上記下側圧着治具7、スライドピン9、およびガイドピン10は、例えば、鋼や鋳鉄などの金属からなる。   As shown in FIG. 1D, a plurality of (for example, four) positioning guide pins 10 are vertically erected in advance on the upper surface surrounding the opening of the recess 8 in the lower crimping jig 7. ing. As shown in the figure, the plurality of guide pins 10 are individually inserted into the plurality of through holes 6 so that the plurality (three layers) of the unit resin insulation layers J1 to J3 are sequentially disposed above the ceramic substrate 12. When laminated. At this time, the pad 13 on the ceramic substrate 12 side and the via conductor 5 exposed on the bottom surface of the lowermost unit resin insulating layer J1 were electrically connected. In addition, the said lower side crimping jig 7, the slide pin 9, and the guide pin 10 consist of metals, such as steel and cast iron, for example.

次いで、図2(A)に示すように、前記銅箔張り樹脂シートJ0からなり、銅箔3を外側に露出させた上下2層の単位樹脂緩衝層J0と、これらの間に挟持された熱可塑性樹脂層18とからなるクッション材Cnを、これらに対して前記同様に穿設した貫通孔6,17に前記ガイドピン10を挿通して載置した。尚、熱可塑性樹脂層18は、厚みが約25μmの熱可塑性PIのフィルムからなる。
その結果、前記セラミック基板12と、前記単位樹脂絶縁層J1〜J3と、上記クッション材Cnとからなる複合積層体HSが得られた。
次に、図2(B)に示すように、上層側の単位樹脂緩衝層J0の銅箔3の上に、前記ガイドピン10の上端側が進入する複数の貫通孔19を周辺側に有する上側圧着治具20を載置することにより、該上側圧着治具20と前記下側圧着治具7との間に、前記複合積層体HSを挟み込んだ。尚、上側圧着治具20も、前記同様の金属からなる。
Next, as shown in FIG. 2A, the upper and lower unit resin buffer layers J0 made of the copper foil-clad resin sheet J0 with the copper foil 3 exposed to the outside, and the heat sandwiched between them. The cushion material Cn composed of the plastic resin layer 18 was placed through the guide pins 10 through the through holes 6 and 17 formed in the same manner as described above. The thermoplastic resin layer 18 is made of a thermoplastic PI film having a thickness of about 25 μm.
As a result, a composite laminate HS composed of the ceramic substrate 12, the unit resin insulation layers J1 to J3, and the cushion material Cn was obtained.
Next, as shown in FIG. 2 (B), an upper pressure bonding having a plurality of through-holes 19 into which the upper end side of the guide pin 10 enters on the peripheral side on the copper foil 3 of the unit resin buffer layer J0 on the upper layer side. By placing the jig 20, the composite laminate HS was sandwiched between the upper crimping jig 20 and the lower crimping jig 7. The upper crimping jig 20 is also made of the same metal as described above.

更に、図3に示すように、熱圧着プレスを構成する下側加熱治具22と上側加熱治具23との間に、それぞれ前記同様の耐熱ボードからなる緩衝板21を介して、前記複合積層体HSと、これを間に挟んだ前記下側圧着治具7および上側圧着治具20とを配設した。上記下側加熱治具22は、上面が平坦な前記同様の金属からなるベース盤である。一方、上側加熱治具23は、その上面の中央部に上向きに凹の凹曲面24を有する凸部25が立設し、前記凹曲面24には、下向きに凸の凸曲面26を下端に有するプレス軸27が点接触により当接している。上記凹曲面24と凸曲面26とは、上側加熱治具23の加熱面(底面)を傾斜可能とする機構(傾斜機構)を構成している。   Further, as shown in FIG. 3, the composite laminate is interposed between the lower heating jig 22 and the upper heating jig 23 constituting the thermocompression press through buffer plates 21 each made of the same heat-resistant board. The body HS and the lower crimping jig 7 and the upper crimping jig 20 sandwiching the body HS were disposed. The lower heating jig 22 is a base board made of the same metal having a flat upper surface. On the other hand, the upper heating jig 23 has a convex portion 25 having an upward concave concave curved surface 24 at the center of the upper surface, and the concave curved surface 24 has a downward convex convex curved surface 26 at the lower end. The press shaft 27 is in contact by point contact. The concave curved surface 24 and the convex curved surface 26 constitute a mechanism (tilting mechanism) that can tilt the heating surface (bottom surface) of the upper heating jig 23.

図3に示す状態で、前記下側加熱治具22、複数のガイドピン10を含む下側圧着治具7、緩衝板11、複合積層体HS(セラミック基板12、単位樹脂絶縁層J1〜J3、クッション材Cn)、上側圧着治具20、緩衝板21、およびプレス軸27を含む上側加熱治具23を、真空室(図示せず)内に挿入し、0.095MPa以下の真空度にした。
上記真空状態で、下側加熱治具7および上側加熱治具23に埋設した図示しないヒータに通電して、前記クッション材Cnを構成する熱可塑性樹脂層18のガラス転移温度(ガラス転移点)以上の温度域(約300〜380℃)に加熱すると共に、図3中の白抜き矢印で示すように、傾斜機構24,26を介して上側加熱治具23に圧力Pを加え、該上側加熱治具23を下側加熱治具7側に押し下げ、且つ約0.5〜1時間にわたり保持する真空熱圧着工程を行った。
尚、上記圧力Pは、セラミック基板12のサイズにより異なる。該圧力Pは、セラミック基板12に約10〜80kgf/cm2(約0.98〜7.84MPa)の圧力が加わるように設定する(例えば、セラミック基板12のサイズが4cm角で、且つ50kgf/cm2の圧力を加える場合、前記装置の設定値は、4cm×4cm×50kgf/cm2=800kgf/cm2となる)。
In the state shown in FIG. 3, the lower heating jig 22, the lower pressure bonding jig 7 including a plurality of guide pins 10, the buffer plate 11, the composite laminate HS (ceramic substrate 12, unit resin insulating layers J1 to J3, The upper heating jig 23 including the cushion material Cn), the upper crimping jig 20, the buffer plate 21, and the press shaft 27 was inserted into a vacuum chamber (not shown), and the degree of vacuum was 0.095 MPa or less.
In the vacuum state, a heater (not shown) embedded in the lower heating jig 7 and the upper heating jig 23 is energized, and the temperature is equal to or higher than the glass transition temperature (glass transition point) of the thermoplastic resin layer 18 constituting the cushion material Cn. And a pressure P is applied to the upper heating jig 23 via the tilt mechanisms 24 and 26 as shown by the white arrows in FIG. A vacuum thermocompression bonding step was performed in which the tool 23 was pushed down to the lower heating jig 7 side and held for about 0.5 to 1 hour.
The pressure P varies depending on the size of the ceramic substrate 12. The pressure P is set so that a pressure of about 10 to 80 kgf / cm 2 (about 0.98 to 7.84 MPa) is applied to the ceramic substrate 12 (for example, the size of the ceramic substrate 12 is 4 cm square and 50 kgf / cm 2 ). When a pressure of cm 2 is applied, the set value of the device is 4 cm × 4 cm × 50 kgf / cm 2 = 800 kgf / cm 2 ).

その結果、図4に示すように、単位樹脂絶縁層J1〜J3は、それらの隣接する熱融着層2同士により接着され、最下層の単位樹脂絶縁層J1における底面側の熱融着層2に隣接するセラミック基板12の上面が接着され且つ該上面のパッド13が食い込んでいた。同時に、クッション材Cnと上側圧着治具20とが、最上層の単位樹脂絶縁層J3側に下降した。
上記真空熱圧着工程において、図4中の白抜きの矢印で示すように、前記プレス軸27に加えられた圧力Pは、クッション材Cnにおける上層側の単位樹脂緩衝層J0で平面視の全面に均一に分散され、隣接する熱可塑性樹脂層18で外周側向きの水平方向に沿った比較的大きな分力(滑り力)となる。しかし、下層側の単位樹脂緩衝層J0の銅箔3と最上層の単位樹脂緩衝層J3の配線層4とが密着し且つ水平方向に沿った滑りが生じないので、下層側の単位樹脂緩衝層J0および単位樹脂絶縁層J1〜J3では、外周側向きの水平方向に沿った比較的小さく且つ均一な分力(滑り力)に抑制されていた。この際、最下層(1層目)の単位樹脂絶縁層J1は、自己に生じる滑り力のみを受けるため、比較的少ない位置ズレしか生じなかったが、中層(2層目)の単位樹脂絶縁層J2、更に最上層(3層目)の単位樹脂絶縁層J3の上層側になる程、下層側の滑り力の影響も含む結果、位置ズレが順次大きくなる傾向があった。
As a result, as shown in FIG. 4, the unit resin insulation layers J1 to J3 are bonded by the adjacent heat fusion layers 2 and the bottom side heat fusion layer 2 in the lowermost unit resin insulation layer J1. The upper surface of the ceramic substrate 12 adjacent to the upper surface of the ceramic substrate 12 was adhered, and the pad 13 on the upper surface was bitten. At the same time, the cushion material Cn and the upper crimping jig 20 were lowered to the uppermost unit resin insulating layer J3 side.
In the vacuum thermocompression bonding step, as indicated by the white arrow in FIG. 4, the pressure P applied to the press shaft 27 is applied to the entire surface of the cushion resin Cn in the unit resin buffer layer J0 on the upper layer side in a plan view. Evenly dispersed, the adjacent thermoplastic resin layer 18 becomes a relatively large component force (sliding force) along the horizontal direction toward the outer peripheral side. However, since the copper foil 3 of the lower unit resin buffer layer J0 and the wiring layer 4 of the uppermost unit resin buffer layer J3 are in close contact with each other and no sliding occurs in the horizontal direction, the lower unit resin buffer layer In J0 and the unit resin insulating layers J1 to J3, a relatively small and uniform component force (sliding force) along the horizontal direction toward the outer peripheral side was suppressed. At this time, the lowermost (first layer) unit resin insulating layer J1 receives only a sliding force generated by itself, and therefore, there was relatively little positional displacement. However, the middle (second layer) unit resin insulating layer As the result of including the influence of the sliding force on the lower layer side as J2 and further on the upper layer side of the unit resin insulating layer J3 of the uppermost layer (third layer), the positional deviation tended to increase gradually.

しかも、最上層の単位樹脂絶縁層J3の配線層4によってクッション材Cnが傾斜していても、前記凹曲面24と凸曲面26とによる傾斜機構によって、上側加熱治具23の加熱面(底面)も、上記傾斜に追従することができる。そのため、前記と同様に、下層側の単位樹脂緩衝層J0と単位樹脂絶縁層J1〜J3では、外周側向きの水平方向に沿った比較的小さく且つ均一な分力に抑制されていた。
その結果、単位樹脂絶縁層J1〜J3の熱硬化性樹脂1は、水平方向に沿った延びが極めて抑制されるので、配線層4同士間の不用意な短絡や、配線層4とビア導体5との間における不用意な短絡やオープン不良を皆無にすることができた。
Moreover, even if the cushion material Cn is inclined by the wiring layer 4 of the uppermost unit resin insulating layer J3, the heating surface (bottom surface) of the upper heating jig 23 is provided by the inclination mechanism formed by the concave curved surface 24 and the convex curved surface 26. Can follow the above inclination. Therefore, in the same manner as described above, the lower unit resin buffer layer J0 and the unit resin insulating layers J1 to J3 are suppressed to a relatively small and uniform component force along the horizontal direction toward the outer peripheral side.
As a result, since the thermosetting resin 1 of the unit resin insulating layers J1 to J3 is extremely prevented from extending along the horizontal direction, an inadvertent short circuit between the wiring layers 4 or the wiring layer 4 and the via conductor 5 Inadvertent short-circuits and open defects were eliminated.

図5は、前記真空熱圧着工程の後で、前記プレス軸27を含む上側加熱治具23とクッション材Cnとを取り除き、複数の前記ガイドピン10から抜き出した後の複合配線基板HPを示す垂直断面図である。
図5中の破線で示す切断予定面29に沿って、図示しない高速で回転する切断用カッターを挿入し且つ水平方向に沿って移動させることで、前記貫通孔6を含む外周側の耳部(捨て代)28を切除した。
更に、複合配線基板HPで外部に露出する最上層の配線層(パッド)4の表面と、セラミック基板12の底面に位置する複数の接続端子14の表面と対し、ニッケルや、金などの電解メッキ、若しくは無電解メッキを施した。
FIG. 5 is a vertical view showing the composite wiring board HP after the upper heating jig 23 including the press shaft 27 and the cushion material Cn are removed and extracted from the plurality of guide pins 10 after the vacuum thermocompression bonding step. It is sectional drawing.
By inserting a cutting cutter rotating at a high speed (not shown) along the planned cutting surface 29 indicated by a broken line in FIG. 5 and moving it along the horizontal direction, the outer ear portion including the through-hole 6 ( (Discarding allowance) 28 was excised.
Further, electrolytic plating such as nickel or gold is applied to the surface of the uppermost wiring layer (pad) 4 exposed to the outside on the composite wiring board HP and the surface of the plurality of connection terminals 14 located on the bottom surface of the ceramic substrate 12. Or electroless plating was performed.

その結果、図6に示すように、前記セラミック基板12の上側に、平面視で該セラミック基板12のサイズと同じか、あるいは相似形とされた単位樹脂絶縁層J1〜J3を一体に接着した多層配線基板30を得ることができた。
以上のような多層配線基板30の製造方法によれば、前記効果(1)〜(3)を確実に奏することができた。
尚、前記真空熱圧着工程では、前記凹曲面24と凸曲面26とによる傾斜機構を省略し、上側加熱治具23を、その上面の中央部に、前記プレス軸27が直に接続された形態としても、前記同様の作用および効果を得ることが可能である。
As a result, as shown in FIG. 6, on the upper side of the ceramic substrate 12, unit resin insulating layers J1 to J3 having the same size as or similar to the size of the ceramic substrate 12 in plan view are integrally bonded. The wiring board 30 could be obtained.
According to the manufacturing method of the multilayer wiring board 30 as described above, the effects (1) to (3) can be reliably achieved.
In the vacuum thermocompression bonding step, the tilt mechanism by the concave curved surface 24 and the convex curved surface 26 is omitted, and the upper heating jig 23 is directly connected to the center portion of the upper surface of the press shaft 27. However, it is possible to obtain the same operation and effect as described above.

以下において、本発明の製造方法の具体的な実施例を比較例と併せて説明する。
予め、同じ形状および構造のセラミック基板12(縦横80mm角)と、同じ形状および構造である5層の単位樹脂絶縁層J1〜J5とを、4組で且つ各組10個ずつの合計40個ずつを用意した。
尚、上記単位樹脂絶縁層J1〜J5は、厚さが30μmで縦横160mmずつのサイズを有し、熱硬化性樹脂層1の両面に熱融着層2と、片方の熱融着層2の全面に銅箔3を貼着した銅箔張り樹脂シート(宇部興産(株)製の商品名:ユビセルN)J0を用い、更に前述した各工程によって前記配線層4とビア導体5とを形成したものである。
Hereinafter, specific examples of the production method of the present invention will be described together with comparative examples.
A total of 40 ceramic substrates 12 (80 mm square in length and width) having the same shape and structure and five unit resin insulating layers J1 to J5 having the same shape and structure in advance, each consisting of 4 groups and 10 groups each. Prepared.
The unit resin insulation layers J1 to J5 have a thickness of 30 μm and a size of 160 mm in length and breadth, and are formed of a heat seal layer 2 on both sides of the thermosetting resin layer 1 and one heat seal layer 2. Using the copper foil-clad resin sheet (trade name: Ubicell N manufactured by Ube Industries, Ltd.) J0 with the copper foil 3 attached to the entire surface, the wiring layer 4 and the via conductor 5 were formed by the above-described steps. Is.

1つ目の組は、前記図3で示したように、下側圧着治具7のガイドピン10に単位樹脂絶縁層J1〜J5をそれらの貫通孔6を挿通することにより、前記緩衝板11上に固定したセラミック基板12の上方に積層し、更に、最上層の単位樹脂絶縁層Jの上方に一対の単位樹脂緩衝層J0と、これらの間に厚みが25μmで縦横100mmずつの熱可塑性樹脂層(クラボウ(株)製の商品名:ミドフィル)18を挟んだクッション材Cnを前記同様に載置した。そして、上記クッション材Cnの上方に上側圧着治具20と耐熱性の緩衝板21とを前記同様に載置した後、前記傾斜機構(24,26)を有しない上側加熱治具23を配置し、前述した真空熱圧着工程を行った。該方法により得られた10個の多層配線基板30を実施例1とした。
尚、上記真空熱圧着工程の条件は、0.090MPaの真空度、350℃の加熱温度、セラミック基板12に加える圧力は1cm2当たり6.86MPa(70kgf/cm2)、および60分の保持時間であった。
As shown in FIG. 3, the first set includes the buffer plate 11 by inserting the unit resin insulating layers J1 to J5 through the through-holes 6 into the guide pins 10 of the lower crimping jig 7. Laminated above the ceramic substrate 12 fixed above, and further, a pair of unit resin buffer layers J0 above the uppermost unit resin insulation layer J, and a thermoplastic resin having a thickness of 25 μm between them and a length and width of 100 mm each. A cushion material Cn sandwiching a layer (Kurabo Co., Ltd., trade name: midfil) 18 was placed in the same manner as described above. Then, after placing the upper crimping jig 20 and the heat-resistant buffer plate 21 in the same manner as described above above the cushion material Cn, the upper heating jig 23 not having the tilt mechanism (24, 26) is arranged. The vacuum thermocompression bonding process described above was performed. Ten multilayer wiring boards 30 obtained by this method were taken as Example 1.
The conditions of the vacuum thermocompression bonding step are: a degree of vacuum of 0.090 MPa, a heating temperature of 350 ° C., a pressure applied to the ceramic substrate 12 of 6.86 MPa per 1 cm 2 (70 kgf / cm 2 ), and a holding time of 60 minutes. Met.

また、2つ目の組は、前記同様のセラミック基板12と、前記と同じ単位樹脂絶縁層J1〜J5と、クッション材Cnと、下側圧着治具7および上側圧着治具20と、緩衝板11,21とを用いると共に、これら全体を前記下側加熱板22と傾斜機構24,26を有する上側加熱板23との間に挟み込んだ後、前記と同じ条件の真空熱圧着工程を行った。かかる方法により得られた10個の多層配線基板30を実施例2とした。
更に、3つ目の組は、図7に示すように、前記同様のセラミック基板12と、前記と同じ単位樹脂絶縁層J1〜J5と、厚さが2mmのガラス繊維板33の両面にPIからなる厚さ25μmの樹脂フイルム34を貼着したものとを、緩衝板11を介して、下側および上側圧着時具7,20の間に挟み込み、これら全体を上下一対の緩衝板21を介して、下側加熱治具22と、傾斜機構24,26のない上側加熱治具23との間に挟み込んで、前記と同じ条件の真空熱圧着工程を行った。かかる方法により得られた10個の多層配線基板30を比較例1とした。
The second set includes the same ceramic substrate 12, the same unit resin insulating layers J1 to J5 as described above, the cushion material Cn, the lower crimping jig 7 and the upper crimping jig 20, and the buffer plate. 11 and 21, and the whole was sandwiched between the lower heating plate 22 and the upper heating plate 23 having the tilting mechanisms 24 and 26, and then a vacuum thermocompression bonding process under the same conditions as described above was performed. Ten multilayer wiring boards 30 obtained by such a method were taken as Example 2.
Further, as shown in FIG. 7, the third set is made of PI on both surfaces of the same ceramic substrate 12, the same unit resin insulating layers J1 to J5 as those described above, and the glass fiber plate 33 having a thickness of 2 mm. The resin film 34 having a thickness of 25 μm is attached between the lower and upper crimping tools 7 and 20 via the buffer plate 11, and the whole is interposed between a pair of upper and lower buffer plates 21. A vacuum thermocompression bonding process under the same conditions as described above was performed by sandwiching between the lower heating jig 22 and the upper heating jig 23 without the tilt mechanisms 24 and 26. Ten multilayer wiring boards 30 obtained by this method were used as Comparative Example 1.

加えて、4つ目の組は、図8に示すように、前記同様のセラミック基板12と、前記と同じ単位樹脂絶縁層J1〜J5と、前記上下2層の単位樹脂緩衝層J0とを、緩衝板11を介して、下側および上側圧着時具7,20の間に挟み込み、これら全体を上下一対の緩衝板21を介して、下側加熱治具22と、傾斜機構24,26のない上側加熱治具23との間に挟み込んで前記と同じ条件の真空熱圧着工程を行った。かかる方法により得られた10個の多層配線基板30を比較例2とした。即ち、かかる比較例2は、前記クッション材Cnから熱可塑性樹脂層18を取り除いたものである。尚、図8では、作図上の都合により、単位樹脂絶縁層J4,J5を省略して表示している。   In addition, as shown in FIG. 8, the fourth group includes the same ceramic substrate 12, the same unit resin insulating layers J1 to J5 as those described above, and the upper and lower unit resin buffer layers J0. The lower and upper crimping tools 7 and 20 are sandwiched via the buffer plate 11, and the whole is not provided with the lower heating jig 22 and the tilting mechanisms 24 and 26 through the pair of upper and lower buffer plates 21. A vacuum thermocompression bonding process was performed under the same conditions as described above by being sandwiched between the upper heating jig 23. Ten multilayer wiring boards 30 obtained by this method were used as Comparative Example 2. That is, in Comparative Example 2, the thermoplastic resin layer 18 is removed from the cushion material Cn. In FIG. 8, the unit resin insulation layers J4 and J5 are omitted for convenience of drawing.

前記各例において、位置ズレが最小となる最下層(1層目)の単位樹脂絶縁層J1と、位置ズレが最大となる最上層(5層目)の単位樹脂絶縁層J5との上面には、予め、かかる上面の中心を中心とし且つ平面視で一辺が50mmずつの正方形の各コーナ部に位置ズレ確認用の銅パターンが付与されており、前記真空熱圧着工程の前後における上記銅パターンの位置座標を個別に測定した。
そして、前記図3,7,8において、最上層(5層目)の単位樹脂絶縁層J5の上面における左右方向(X方向)に沿った一辺の長さの伸び量と、図示で奥行き方向(Y方向)に沿った一辺の長さの伸び量とを測定し、各例の平均値を算出した。尚、同じX方向およびY方向に沿った一対の辺では、大きい方の伸び量を採用した。上記伸び量の平均値の結果を、表1中の左側に示した。
更に、各例の最下層(1層目)の単位樹脂絶縁層J1についても、前記同様にX・Y方向に沿った一辺の長さの伸び量を測定し、且つそれぞれの平均値を算出した上、各例において、最下層(1層目)の単位樹脂絶縁層J1と最上層(5層目)の単位樹脂絶縁層J5とのX方向およびY方向における伸び量の差、即ち、ズレ量を個別に算出し、各例の平均値を算出した。それらの結果を、表1中の右側に示した。
In each of the above examples, the upper surfaces of the lowermost (first layer) unit resin insulating layer J1 with the smallest positional deviation and the uppermost layer (fifth layer) unit resin insulating layer J5 with the largest positional deviation are In addition, a copper pattern for confirming misalignment is provided in advance in each square corner portion centered on the center of the upper surface and having a side of 50 mm in a plan view, and before and after the vacuum thermocompression bonding step, The position coordinates were measured individually.
3, 7, and 8, the length of one side along the horizontal direction (X direction) on the upper surface of the unit resin insulating layer J <b> 5 of the uppermost layer (fifth layer) and the depth direction ( The elongation amount of the length of one side along (Y direction) was measured, and the average value of each example was calculated. It should be noted that the larger extension amount was adopted for a pair of sides along the same X direction and Y direction. The result of the average value of the elongation is shown on the left side in Table 1.
Further, for the unit resin insulation layer J1 of the lowermost layer (first layer) in each example, the amount of elongation of one side along the X and Y directions was measured and the average value was calculated for each. In each of the above examples, the difference in elongation between the lowermost (first) unit resin insulation layer J1 and the uppermost (fifth) unit resin insulation layer J5 in the X and Y directions, that is, the amount of deviation. Were calculated individually, and the average value of each example was calculated. The results are shown on the right side of Table 1.

Figure 0006366562
Figure 0006366562

表1によれば、前記傾斜機構(24,26)を有しない上側加熱治具23を用いた実施例1の多層配線基板30では、5層目の単位樹脂絶縁層J5におけるX・Y方向に沿った一辺ごとの伸び量が16μm、21μmと比較的小さく、且つ1層目と5層目の単位樹脂絶縁層J1,J5間のズレ量も14μm、17μmと比較的小さかった。かかる結果は、実施例1では、1層目〜5層目の単位樹脂絶縁層J1〜J5の全てにおいて前記伸び量が小さく、且つ該単位樹脂絶縁層J1〜J5にかけて伸び量が少しずつ増加したことによるものと推定される。
更に、前記傾斜機構(24,26)を有する上側加熱治具23を用いた実施例2の多層配線基板30では、5層目の単位樹脂絶縁層J5におけるX・Y方向に沿った一辺ごとの伸び量が何れも9μmと最も小さくなり、且つ1層目と5層目の単位樹脂絶縁層J1,J5間のズレ量も8μm、10μmと最も小さくなった。かかる結果は、実施例2では、1層目から5層目の単位樹脂絶縁層J1〜J5の全ての前記伸び量が僅であり、且つ該単位樹脂絶縁層J1〜J5にかけて伸び量が僅かずつしか増加しなかったことによるものと推定される。
According to Table 1, in the multilayer wiring board 30 of Example 1 using the upper heating jig 23 that does not have the tilt mechanism (24, 26), the fifth unit resin insulation layer J5 has X and Y directions. The amount of elongation along each side along the lines was relatively small at 16 μm and 21 μm, and the amount of deviation between the first and fifth unit resin insulation layers J1 and J5 was also relatively small at 14 μm and 17 μm. As a result, in Example 1, the elongation amount was small in all of the first to fifth unit resin insulation layers J1 to J5, and the elongation amount was gradually increased toward the unit resin insulation layers J1 to J5. It is estimated that
Furthermore, in the multilayer wiring board 30 of the second embodiment using the upper heating jig 23 having the tilt mechanism (24, 26), each side along the X and Y directions in the fifth unit resin insulating layer J5. The amount of elongation was the smallest at 9 μm, and the amount of deviation between the first and fifth unit resin insulating layers J1 and J5 was the smallest at 8 μm and 10 μm. As a result, in Example 2, the elongation amounts of all the unit resin insulation layers J1 to J5 of the first layer to the fifth layer are small, and the elongation amounts slightly from the unit resin insulation layers J1 to J5. This is presumably due to the increase.

一方、比較例1の多層配線基板30では、5層目の単位樹脂絶縁層J5におけるX・Y方向に沿った一辺ごとの伸び量が39μm、43μmと比較的大きく、且つ1層目と5層目の単位樹脂絶縁層J1,J5間のズレ量も28μm、34mと比較的大きくなっていた。かかる結果は、比較例1では、1層目から5層目の単位樹脂絶縁層J1〜J5の全てにおいて伸び量が大きく、且つ該単位樹脂絶縁層J1〜J5にかけても、前記伸び量が順次増大したことによるものと推定される。
また、比較例2の多層配線基板30では、5層目の単位樹脂絶縁層J5におけるX・Y方向に沿った一辺ごとの伸び量が53μm、59μmと最も大きくなり、且つ1層目と5層目の単位樹脂絶縁層J1,J5間のズレ量が9μm、14mと比較的小さくなっていた。かかる結果は、比較例2では、1層目から5層目の単位樹脂絶縁層J1〜J5の全てにおいて前記伸び量が最も大きくなったことによるものと推定される。
以上のような結果によれば、実施例1,2に例示された本願発明による多層配線基板の製造方法は、前記効果(1)〜(3)を奏し得るものである、ことが裏付けられた。
On the other hand, in the multilayer wiring board 30 of Comparative Example 1, the extension amount of each side along the X and Y directions in the fifth unit resin insulating layer J5 is relatively large as 39 μm and 43 μm, and the first layer and the fifth layer The amount of misalignment between the unit resin insulation layers J1 and J5 of the eyes was also relatively large at 28 μm and 34 m. As a result, in Comparative Example 1, all the unit resin insulation layers J1 to J5 from the first layer to the fifth layer have a large elongation amount, and the elongation amounts increase sequentially even in the unit resin insulation layers J1 to J5. It is estimated that
Further, in the multilayer wiring board 30 of Comparative Example 2, the extension amount of each side along the X and Y directions in the fifth unit resin insulating layer J5 is the largest, 53 μm and 59 μm, and the first and fifth layers The amount of deviation between the eye unit resin insulation layers J1 and J5 was relatively small, 9 μm and 14 m. Such a result is presumed that in Comparative Example 2, the elongation amount was the largest in all of the first to fifth unit resin insulating layers J1 to J5.
According to the above results, it was confirmed that the method for manufacturing a multilayer wiring board according to the present invention exemplified in Examples 1 and 2 can achieve the effects (1) to (3). .

本発明は、以上において説明した実施の形態と実施例とに限定されない。
例えば、前記セラミック基板12は、ムライトや窒化アルミニウムなどの高温焼成セラミック、あるいはガラス−セラミックなどの低温焼成セラミックからなるセラミック層により形成しても良く、該セラミック層の層数も任意である。上記低温焼成セラミックのセラミック層からなる場合、前記パッド13、接続端子14、配線層15、およびビア導体16には、CuまたはAgが適用される。
また、前記単位樹脂絶縁層Jnおよび他印樹脂緩衝層J0の厚みは、任意であると共に、平面視において長方形状を呈するものであっても良い。
更に、前記クッション材Cnに用いる熱可塑性樹脂層18の厚みも、任意であると共に、平面視において長方形状を呈するものであっても良い。
The present invention is not limited to the embodiments and examples described above.
For example, the ceramic substrate 12 may be formed of a ceramic layer made of a high-temperature fired ceramic such as mullite or aluminum nitride, or a low-temperature fired ceramic such as glass-ceramic, and the number of ceramic layers is also arbitrary. In the case of the ceramic layer of the low-temperature fired ceramic, Cu or Ag is applied to the pad 13, connection terminal 14, wiring layer 15, and via conductor 16.
The unit resin insulation layer Jn and the other marking resin buffer layer J0 may have any thickness and may have a rectangular shape in plan view.
Furthermore, the thickness of the thermoplastic resin layer 18 used for the cushion material Cn is arbitrary, and may be a rectangular shape in plan view.

また、前記ガイドピン10は、前記下側圧着治具7の上面の周辺側に、6本、8本、または10本以上を垂直に立設しても良い。
更に、前記複数のガイドピン10は、それらの下側に刻設した雄ネジを、前記下側圧着治具7に形成した複数の雌ネジ孔に個別にネジ込むことで、昇降および回転可能に立設しても良い。
また、前記上側圧着治具20は、その周辺側に設けた複数の雌ネジ孔ごとに、上記ガイドピン10ごとの上側に刻設した雄ネジを、個別にネジ結合させつつ昇降可能とした形態としても良い。
加えて、本発明により得られる多層配線基板には、複数の電子部品を同時に検査するための電子部品検査装置用配線基板も含まれる。
Further, six, eight, or ten or more guide pins 10 may be provided vertically on the peripheral side of the upper surface of the lower crimping jig 7.
Further, the plurality of guide pins 10 can be moved up and down and rotated by individually screwing male threads engraved below them into a plurality of female screw holes formed in the lower crimping jig 7. You may stand upright.
Further, the upper crimping jig 20 can be moved up and down while individually screwing male screws engraved on the upper side of each guide pin 10 for each of a plurality of female screw holes provided on the peripheral side thereof. It is also good.
In addition, the multilayer wiring board obtained by the present invention includes a wiring board for an electronic component inspection apparatus for simultaneously inspecting a plurality of electronic components.

本発明によれば、セラミック基板の上に配線層を有する複数の樹脂絶縁層を積層して載置するに際し、位置ズレを確実に抑制ないし低減して、不用意な短絡やオープン不良を可及的に生じにくくした多層配線基板の製造方法を提供することができる。   According to the present invention, when a plurality of resin insulation layers having a wiring layer are stacked and placed on a ceramic substrate, misalignment is reliably suppressed or reduced, and inadvertent short circuits and open defects are possible. It is possible to provide a method for manufacturing a multilayer wiring board that is less likely to occur.

1……………熱硬化性樹脂層、 2……………熱融着層、
3……………金属箔(銅箔)、 4……………配線層、
5……………ビア導体、 7……………下側圧着治具、
8……………凹部、 10…………ガイドピン、
11,21…緩衝板、 12…………セラミック基板、
18…………熱可塑性樹脂層、 20…………上側圧着治具、
22…………下側加熱治具、 23…………上側加熱治具、
30…………多層配線基板、 J0…………単位樹脂緩衝層、
J1〜J5…単位樹脂絶縁層、 Cn…………クッション材、
HS…………複合積層体
1 …………… Thermosetting resin layer, 2 …………… Thermal fusion layer,
3 ……… Metal foil (copper foil) 4 …………… Wiring layer,
5 ......... Via conductor, 7 ......... Lower crimping jig,
8 ......... concave, 10 ......... guide pin,
11, 21 ... buffer plate, 12 ... ceramic substrate,
18 ………… Thermoplastic resin layer, 20 ………… Upper crimping jig,
22 ………… Lower heating jig 23 ………… Upper heating jig
30 ………… Multilayer wiring board J0 ………… Unit resin buffer layer,
J1 to J5: Unit resin insulation layer, Cn ......... Cushion material,
HS ………… Composite laminate

Claims (4)

配線層と熱融着層との間に熱硬化性樹脂層を有し且つ該熱硬化性樹脂層の厚み方向に沿ったビア導体を備える複数の単位樹脂絶縁層を、セラミック基板上に載置した多層配線基板の製造方法であって、
下側圧着治具の上に拘束した上記セラミック基板の上面に、上記複数の単位樹脂絶縁層、上記同様の熱硬化性樹脂層および金属箔からなる複数の単位樹脂緩衝層とこれらの間に挟まれた熱可塑性樹脂層とからなるクッション材、および、上側圧着治具を、垂直方向にのみ移動可能に順次積層して、複合積層体を形成する工程と、
上記複合積層体を下側加熱治具と上側加熱治具との間に挟み、該上側加熱治具を下側加熱治具側に押圧しつつ真空熱圧着する工程と、含む、
ことを特徴とする多層配線基板の製造方法。
A plurality of unit resin insulation layers having a thermosetting resin layer between the wiring layer and the heat sealing layer and having via conductors along the thickness direction of the thermosetting resin layer are placed on the ceramic substrate. A method for manufacturing a multilayer wiring board, comprising:
A plurality of unit resin insulation layers, a plurality of unit thermosetting resin layers, and a plurality of unit resin buffer layers made of metal foil are sandwiched between the ceramic substrate constrained on the lower crimping jig. A step of forming a composite laminate by sequentially laminating a cushion material composed of a thermoplastic resin layer and an upper crimping jig so as to be movable only in the vertical direction;
Sandwiching the composite laminate between a lower heating jig and an upper heating jig, and vacuum thermocompression bonding while pressing the upper heating jig toward the lower heating jig,
A method for manufacturing a multilayer wiring board.
前記下側圧着治具の上面には、前記セラミック基板の上面付近を除いた大部分を収納する凹部が形成され、該凹部内に上記セラミック基板を水平方向に沿って拘束しつつ収納している、
ことを特徴とする請求項1に記載の多層配線基板の製造方法。
A recess is formed on the upper surface of the lower crimping jig to store most of the ceramic substrate except for the vicinity of the upper surface thereof, and the ceramic substrate is stored in the recess while being restrained in the horizontal direction. ,
The method for producing a multilayer wiring board according to claim 1.
前記真空熱圧着工程に用いる上側加熱治具は、その加熱面が傾斜可能とされている、
ことを特徴とする請求項1または2に記載の多層配線基板の製造方法。
The upper heating jig used in the vacuum thermocompression bonding step has an inclined heating surface.
The method for producing a multilayer wiring board according to claim 1, wherein
前記下側加熱治具と下側圧着治具との間、該下側圧着治具と前記セラミック基板との間、および、前記上側加熱治具と上側圧着治具との間には、耐熱性の緩衝板が挟持されている、
ことを特徴とする請求項1乃至3の何れか一項に記載の多層配線基板の製造方法。
Between the lower heating jig and the lower crimping jig, between the lower crimping jig and the ceramic substrate, and between the upper heating jig and the upper crimping jig, heat resistance Of the buffer plate,
The method for manufacturing a multilayer wiring board according to any one of claims 1 to 3, wherein:
JP2015220003A 2015-11-10 2015-11-10 Manufacturing method of multilayer wiring board Expired - Fee Related JP6366562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220003A JP6366562B2 (en) 2015-11-10 2015-11-10 Manufacturing method of multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220003A JP6366562B2 (en) 2015-11-10 2015-11-10 Manufacturing method of multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2017092223A JP2017092223A (en) 2017-05-25
JP6366562B2 true JP6366562B2 (en) 2018-08-01

Family

ID=58768430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220003A Expired - Fee Related JP6366562B2 (en) 2015-11-10 2015-11-10 Manufacturing method of multilayer wiring board

Country Status (1)

Country Link
JP (1) JP6366562B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025579A (en) * 2021-11-16 2022-02-08 北京卫星制造厂有限公司 Compressing heat dissipation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013024A (en) * 1998-06-23 2000-01-14 Matsushita Electric Works Ltd Manufacture of multilayer board and plate for multilayer board manufacture
JP2004111702A (en) * 2002-09-19 2004-04-08 Denso Corp Wiring board and manufacturing method therefor
JP2006203114A (en) * 2005-01-24 2006-08-03 Mitsubishi Plastics Ind Ltd Multilayer printed wiring board
JP2006278688A (en) * 2005-03-29 2006-10-12 Sumitomo Bakelite Co Ltd Cushioning material, and method for manufacturing wiring plate

Also Published As

Publication number Publication date
JP2017092223A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
US7290326B2 (en) Method and apparatus for forming multi-layered circuits using liquid crystalline polymers
JP4840132B2 (en) Multilayer substrate manufacturing method
US20130062101A1 (en) Multilayer wiring substrate, and manufacturing method for multilayer substrate
JP5698377B2 (en) Method for manufacturing component-embedded substrate and component-embedded substrate manufactured using this method
KR102346222B1 (en) Method for manufacturing a multilayer wiring board
JP2012134203A (en) Hot-press device and method for pressing multilayer printed board
CN110678013A (en) Processing method of embedded copper block printed board and printed board
JP6366562B2 (en) Manufacturing method of multilayer wiring board
TWI777958B (en) Manufacturing method of multilayer circuit board
EP3478037B1 (en) Method of manufacturing multilayer substrate
JP2011119616A (en) Method for manufacturing printed wiring board, printed wiring board, and electronic device
JP5820915B2 (en) Manufacturing method of multilayer wiring board
JP4277827B2 (en) Manufacturing method of laminate
JP2009246146A (en) Method of manufacturing for circuit board
JP4462057B2 (en) Inner layer circuit member, multilayer wiring circuit board using the same, and manufacturing method thereof
US20190053386A1 (en) Resin multilayer substrate manufacturing method
JP2007329244A (en) Method of manufacturing laminated circuit wiring board
JP4882880B2 (en) Printed circuit board manufacturing method and printed circuit board
CN115621243B (en) Substrate capable of reducing warping stress, packaging structure, electronic product and preparation method
JP6078910B2 (en) Printed wiring board manufacturing method, board combination, and printed wiring board
JP2003188493A (en) Method of manufacturing circuit board
JP3069605B2 (en) Lay-up method of printed wiring board
JP2016162956A (en) Jig for pin lamination and method of manufacturing multilayer wiring board
JP2004186244A (en) Manufacturing method of multilayer wiring board
JP2006032494A (en) Method of manufacturing multilayered circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180703

R150 Certificate of patent or registration of utility model

Ref document number: 6366562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees