JP6366016B2 - Power receiving apparatus, power receiving method, and power transmission system - Google Patents

Power receiving apparatus, power receiving method, and power transmission system Download PDF

Info

Publication number
JP6366016B2
JP6366016B2 JP2014176198A JP2014176198A JP6366016B2 JP 6366016 B2 JP6366016 B2 JP 6366016B2 JP 2014176198 A JP2014176198 A JP 2014176198A JP 2014176198 A JP2014176198 A JP 2014176198A JP 6366016 B2 JP6366016 B2 JP 6366016B2
Authority
JP
Japan
Prior art keywords
power
power transmission
predetermined
power receiving
predetermined time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014176198A
Other languages
Japanese (ja)
Other versions
JP2016052187A (en
Inventor
亮祐 枷場
亮祐 枷場
貞夫 大河
貞夫 大河
江口 和弘
和弘 江口
壮一 川田
壮一 川田
太志 出口
太志 出口
信司 森本
信司 森本
克也 岡本
克也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014176198A priority Critical patent/JP6366016B2/en
Publication of JP2016052187A publication Critical patent/JP2016052187A/en
Application granted granted Critical
Publication of JP6366016B2 publication Critical patent/JP6366016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、送電装置から伝送された電力を非接触で受電する受電装置、受電方法及び電力伝送システムに関する。   The present invention relates to a power receiving device, a power receiving method, and a power transmission system that receive power transmitted from a power transmitting device in a contactless manner.

従来、1次側の送電装置から2次側の受電装置に非接触で電力を伝送することにより、受電装置を充電する非接触充電(給電)システムが知られている。例えば、送電装置には送電用の1次コイル、受電装置には受電用の2次コイルがそれぞれ設けられ、受電装置が送電装置の所定の載置面上に載置されたことが検知されると、1次コイルから2次コイルに電力が非接触で伝送され、2次コイルに電力が誘起される。この電力によって受電装置に内蔵される充電池が充電される。   2. Description of the Related Art Conventionally, a contactless charging (power feeding) system that charges a power receiving device by transmitting power from a primary power transmitting device to a secondary power receiving device in a contactless manner is known. For example, the power transmission device is provided with a primary coil for power transmission, and the power reception device is provided with a secondary coil for power reception, and it is detected that the power reception device is placed on a predetermined placement surface of the power transmission device. Then, power is transmitted from the primary coil to the secondary coil in a non-contact manner, and power is induced in the secondary coil. A rechargeable battery built in the power receiving apparatus is charged by this power.

ここで、上述した非接触充電に関連し、電子キーシステムの通信に対する影響を抑制しつつも充電時間を確保する先行技術として、例えば特許文献1に示す非接触充電装置が知られている。   Here, for example, a non-contact charging apparatus disclosed in Patent Document 1 is known as a prior art that secures a charging time while suppressing an influence on communication of an electronic key system in relation to the above-described non-contact charging.

特許文献1では、車両には非接触充電装置と車載装置とが備えられ、車載装置は、ユーザにより所持される電子キーとの相互通信を通じてエンジンの始動を許可する。非接触充電装置は、ユーザにより所持される携帯端末を非接触で充電させる。車載装置は、電子キーの車外への持ち出しの有無を検知するためのウェイク信号を生成し、このウェイク信号を変調した信号を車内に送信する。例えば電子キーが車内にない(言い換えると電子キーが車外に持ち出されている)場合には、変調されたウェイク信号に対するアック信号が応答されないので、車載装置は、一定時間経過後に、ウェイク信号を生成し、ウェイク信号の変調信号を再度送信する。このようなウェイク信号の変調信号の再送信は複数回にわたって行われる。   In Patent Document 1, a vehicle is provided with a non-contact charging device and an in-vehicle device, and the in-vehicle device permits engine start through mutual communication with an electronic key possessed by a user. A non-contact charging device charges a portable terminal carried by a user in a non-contact manner. The in-vehicle device generates a wake signal for detecting whether or not the electronic key is taken out of the vehicle, and transmits a signal obtained by modulating the wake signal into the vehicle. For example, when the electronic key is not in the vehicle (in other words, the electronic key is taken out of the vehicle), the ACK signal is not responded to the modulated wake signal, so the in-vehicle device generates the wake signal after a certain period of time. Then, the modulation signal of the wake signal is transmitted again. Such retransmission of the modulated signal of the wake signal is performed a plurality of times.

特開2013−172473号公報JP 2013-172473 A

上述した特許文献1を含む従来の非接触充電の際に、1次側の送電装置における送電コイルと2次側の受電装置における受電コイルとの間の距離が近い場合(例えば数[mm]程度)には、1次側の送電装置におけるインピーダンスの変化が大きいので、1次側の送電装置は、2次側の受電装置が送電装置の載置面に載置されたことを検知することができる。   In the case of conventional non-contact charging including Patent Document 1 described above, when the distance between the power transmission coil in the primary side power transmission device and the power reception coil in the secondary side power reception device is short (for example, about several [mm]) ), Since the impedance change in the primary power transmission device is large, the primary power transmission device may detect that the secondary power reception device is placed on the placement surface of the power transmission device. it can.

しかし、1次側の送電装置における送電コイルと2次側の受電装置における受電コイルとの間の距離が遠い場合(例えば数十[mm]程度)には、1次側の送電装置におけるインピーダンスの変化が小さいので、1次側の送電装置は、2次側の受電装置が送電装置の載置面に載置されたことを検知することができないという課題がある。   However, when the distance between the power transmission coil in the primary power transmission apparatus and the power reception coil in the secondary power reception apparatus is long (for example, about several tens [mm]), the impedance of the primary power transmission apparatus Since the change is small, there is a problem that the primary-side power transmission device cannot detect that the secondary-side power reception device is placed on the placement surface of the power transmission device.

本発明は、上述した従来の課題を解決するために、送電装置に接近した場合に、一定時間にわたって定電流を流すことで送電装置におけるインピーダンスの変化を大きくさせ、送電装置の載置面に載置されたことを認識させる受電装置、受電方法及び電力伝送システムを提供することを目的とする。   In order to solve the above-described conventional problems, the present invention increases a change in impedance in a power transmission device by causing a constant current to flow for a certain period of time when the power transmission device is approached, and is mounted on a mounting surface of the power transmission device. It is an object of the present invention to provide a power receiving device, a power receiving method, and a power transmission system for recognizing the installation.

本発明は、電力を送電装置から非接触で受電する受電コイルと、前記送電装置における間欠的な送電電流に応じて前記受電コイルで受電される間欠送電電力に応じた誘起電圧が所定値を超えた場合に、第1所定時間を計時する第1タイマー回路と、前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、前記送電装置のインピーダンスが小さくなるように所定の定電流が流れ、前記第1所定時間が経過すると前記送電装置のインピーダンスが大きくなるよう定電流動作を停止する定電流回路と、を備える、受電装置である。
The present invention includes a power receiving coil for receiving a non-contact power from the power transmission device, intermittent induced voltage corresponding to the intermittent power transmission power received by the power receiving coil according to the transmission current in the power transmitting device to a predetermined value A first timer circuit that counts a first predetermined time when the time is exceeded, and the power transmission according to an operation control signal from the first timer circuit while the first timer circuit counts the first predetermined time. impedance of the device is predetermined constant current to flow so as to decrease, and a constant current circuit that stops the constant current operation so that the impedance of the power transmission device and the first predetermined time has elapsed increases, at the receiving device is there.

また、本発明は、受電装置における受電方法であって、間欠的な送電電流に応じた間欠送電電力を送電装置から非接触で受電コイルにおいて受電するステップと、前記受電コイルにより受電された前記間欠送電電力に応じた誘起電圧が所定値を超えた場合に、第1タイマー回路において第1所定時間を計時するステップと、前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、前記送電装置のインピーダンスが小さくなるように定電流回路において所定の定電流が流れるステップと、前記第1所定時間が経過すると前記送電装置のインピーダンスが大きくなるよう前記定電流回路の動作を停止するステップと、を有する、受電方法である。
Further, the present invention provides a power receiving method in the power receiving device, step a, the intermittent, which is powered by said power receiving coil for receiving the power receiving coil in a non-contact intermittent transmission power according to the intermittent power transmission current from the power transmission apparatus When the induced voltage corresponding to the transmitted power exceeds a predetermined value, the first timer circuit counts the first predetermined time, and the first timer circuit counts the first predetermined time while the first timer circuit counts the first predetermined time. In accordance with an operation control signal from the timer circuit, a step in which a predetermined constant current flows in the constant current circuit so that the impedance of the power transmission device decreases, and the impedance of the power transmission device increases after the first predetermined time has elapsed. And stopping the operation of the constant current circuit .

また、本発明は、送電装置と受電装置とを含む電力伝送システムであって、前記送電装置は、間欠的な送電電流に応じた電力を非接触で送電する送電コイルと、前記受電装置が所定の載置面上に載置されたことを検知する載置検知部と、を備え、前記受電装置は、前記送電コイルから送電された電力を受電する受電コイルと、前記受電コイルにより受電された電力に応じた誘起電圧が所定値を超えた場合に、第1所定時間を計時する第1タイマー回路と、前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、所定の定電流が流れる定電流回路と、を備え、前記載置検知部は、前記所定の定電流に基づく前記送電装置におけるインピーダンスの変化に応じて、前記受電装置が前記所定の載置面上に載置されたことを検知する、電力伝送システムである。   In addition, the present invention is a power transmission system including a power transmission device and a power reception device, wherein the power transmission device transmits power corresponding to an intermittent power transmission current in a contactless manner, and the power reception device is a predetermined power transmission system. And a power receiving coil that receives power transmitted from the power transmitting coil, and the power receiving coil receives power from the power receiving coil. A first timer circuit for measuring a first predetermined time when an induced voltage corresponding to electric power exceeds a predetermined value; and while the first timer circuit measures the first predetermined time, from the first timer circuit A constant current circuit through which a predetermined constant current flows according to the operation control signal, wherein the position detection unit is configured to change the impedance of the power transmission device based on the predetermined constant current. Is the predetermined It detects that it has been placed on the surface, a power transmission system.

本発明によれば、送電装置に接近した場合に、一定時間にわたって定電流を流すことで送電装置におけるインピーダンスの変化を大きくさせ、送電装置の載置面に載置されたことを認識させることができる。   According to the present invention, when approaching the power transmission device, a constant current is allowed to flow for a certain period of time to increase the impedance change in the power transmission device and to recognize that the power transmission device is placed on the placement surface of the power transmission device. it can.

本実施形態の電力伝送システムのシステム構成の一例を示すブロック図The block diagram which shows an example of the system configuration | structure of the electric power transmission system of this embodiment (A)受電装置の2つのタイマー回路TM1,TM2、定電流回路、DC/DCの接続関係の一例を示す図、(B)送電装置における搭載検知区間及び異物検知区間の説明図(A) The figure which shows an example of the connection relation of two timer circuits TM1 and TM2, a constant current circuit, and DC / DC of a power receiving apparatus, (B) Explanatory drawing of the mounting detection area and foreign material detection area in a power transmission apparatus (A)タイマー回路TM1が第1所定時間Td1を計時する間の動作例を示す説明図、(B)タイマー回路TM1が第1所定時間Td1を計時し終えた後であってタイマー回路TM2が第2所定時間Td2を計時する間の動作例を示す説明図(A) An explanatory view showing an example of operation while the timer circuit TM1 measures the first predetermined time Td1, (B) after the timer circuit TM1 finishes counting the first predetermined time Td1, and the timer circuit TM2 2 is an explanatory diagram showing an example of the operation while measuring the predetermined time Td2. タイマー回路TM1が第1所定時間Td1を計時し終えた後であって、タイマー回路TM2が第2所定時間Td2を計時し終えた後の動作例を示す説明図Explanatory drawing which shows the operation example after the timer circuit TM1 has finished counting the first predetermined time Td1, and after the timer circuit TM2 has finished counting the second predetermined time Td2. 定電流回路の構成例を示す図Diagram showing a configuration example of a constant current circuit 受電装置が送電装置の載置面上に載置される通常動作時の送電装置における送電電流の監視、搭載検知、認証完了の各動作の一例を示すタイムチャートTime chart showing an example of each operation of monitoring of power transmission current, mounting detection, and authentication completion in a power transmission device during normal operation in which the power receiving device is placed on the placement surface of the power transmission device 金属異物が単独で送電装置の載置面上に載置される場合の送電装置における送電電流の監視、搭載検知、認証完了、異物検知の各動作の一例を示すタイムチャートTime chart showing an example of each operation of power transmission current monitoring, mounting detection, authentication completion, and foreign object detection in a power transmission device when a metal foreign object is placed alone on the mounting surface of the power transmission device 金属異物と受電装置とがともに送電装置の載置面上に載置される場合の送電装置における送電電流の監視、搭載検知、認証完了、異物検知の各動作の一例を示すタイムチャートTime chart showing an example of each operation of monitoring of power transmission current, mounting detection, authentication completion, and foreign object detection in the power transmission apparatus when both the metal foreign object and the power receiving apparatus are mounted on the mounting surface of the power transmission apparatus (A),(B)搭載検知回路の回路構成の一例を示す図(A), (B) The figure which shows an example of a circuit structure of a mounted detection circuit

以下、本発明に係る受電装置、受電方法及び電力伝送システムの実施形態(以下、「本実施形態」という)について、図面を参照して説明する。本実施形態の電力伝送システム50は、1次側としての送電装置10と2次側としての受電装置20とを含む構成である(図1参照)。   Hereinafter, embodiments of a power receiving device, a power receiving method, and a power transmission system according to the present invention (hereinafter referred to as “this embodiment”) will be described with reference to the drawings. The power transmission system 50 of the present embodiment includes a power transmission device 10 as a primary side and a power reception device 20 as a secondary side (see FIG. 1).

本実施形態の送電装置10は、送電装置10に設けられた所定の載置面(不図示)上に物体(例えば受電装置20又は金属異物MTB)が載置(搭載)されたことを検知し、この物体との間の認証処理が成功し、更に、載置された物体が金属異物MTBではないことを検知した場合に、受電装置20に対して非接触で電力を送電(伝送)する。受電装置20は、送電装置10から送電(伝送)された電力を用いて充電池の一例としてのバッテリに充電する。   The power transmission device 10 of the present embodiment detects that an object (for example, the power receiving device 20 or the metal foreign object MTB) is placed (mounted) on a predetermined placement surface (not shown) provided in the power transmission device 10. When the authentication process with the object is successful and it is detected that the placed object is not the metal foreign object MTB, power is transmitted (transmitted) to the power receiving device 20 in a non-contact manner. The power receiving device 20 charges a battery as an example of a rechargeable battery using the power transmitted (transmitted) from the power transmitting device 10.

なお、以下の説明において、非接触充電では、1次側とは電力を送電する側を示し、2次側とは電力を受電して充電する側を示す。また、電力を供給する処理を「給電」と記載し、電力を充電池(バッテリ)にためる処理を「充電」と記載し、特段の説明が無い限り、両者を使い分けて説明する。   In the following description, in non-contact charging, the primary side indicates the side that transmits power, and the secondary side indicates the side that receives power and charges. In addition, a process for supplying electric power is described as “power supply”, a process for storing electric power in a rechargeable battery (battery) is described as “charging”, and both are described separately unless otherwise specified.

図1は、本実施形態の電力伝送システム50のシステム構成の一例を示すブロック図である。送電装置10は、例えばクレードル等の充電台であり、具体的には、コントロールCPU(Central Processing Unit)11と、給電IC(Integrated Circuit)12と、ドライブ回路13と、インバータ回路14と、LPF(Low Pass Fileter)15と、搭載検知回路16と、共振用コンデンサ17と、異物検知回路18と、送電コイルTxCとを含む構成である。   FIG. 1 is a block diagram illustrating an example of a system configuration of a power transmission system 50 according to the present embodiment. The power transmission device 10 is, for example, a charging stand such as a cradle, and specifically includes a control CPU (Central Processing Unit) 11, a power feeding IC (Integrated Circuit) 12, a drive circuit 13, an inverter circuit 14, and an LPF (LPF). Low Pass Filer) 15, mounting detection circuit 16, resonance capacitor 17, foreign object detection circuit 18, and power transmission coil TxC.

また、受電装置20は、例えば携帯電話機、スマートフォン、タブレット端末等のデータ通信機器であり、具体的には、受電コイルRxCと、共振用コンデンサ21と、整流平滑回路22と、DC(Direct Current)/DC23と、チャージャ24と、給電IC25と、定電流回路26と、2つのタイマー回路TM1,TM2とを含む構成である。   The power receiving device 20 is a data communication device such as a mobile phone, a smartphone, or a tablet terminal. Specifically, the power receiving device 20 is a power receiving coil RxC, a resonance capacitor 21, a rectifying / smoothing circuit 22, and a DC (Direct Current). / DC 23, charger 24, power supply IC 25, constant current circuit 26, and two timer circuits TM1 and TM2.

(送電装置の構成)
コントロールCPU11は、送電装置10を構成する各部の動作を全体的に統括するための制御処理、送電装置10を構成する各部との間の信号処理、その信号処理結果を用いた判断処理(例えば、搭載検知、認証完了の判断、給電の停止、給電の停止時におけるリセット処理、異物検知)、又は各部への指示処理を行う。また、コントロールCPU11は、送電装置10におけるインピーダンスを監視している。
(Configuration of power transmission device)
The control CPU 11 performs control processing for overall control of operations of each unit constituting the power transmission device 10, signal processing with each unit configuring the power transmission device 10, and determination processing using the signal processing result (for example, Installation detection, authentication completion determination, power supply stop, reset process when power supply is stopped, foreign object detection), or instruction processing to each unit. Further, the control CPU 11 monitors the impedance in the power transmission device 10.

給電IC12は、コントロールCPU11からの指示に応じて、送電装置10から受電装置20への電力の送電(給電)処理と、送電装置10と受電装置20との間の認証処理とを主に制御し、例えばドライブ回路13の動作に必要な電圧をドライブ回路13に供給する。また、送電電流制御部の一例としての給電IC12は、送電装置10の載置面に金属異物MTBが載置されたことがコントロールCPU11により判断された場合には、所定期間(具体的には、図7に示す時刻t1〜t5)にわたって間欠的な送電電流の出力周期を増加させ、例えば5[ミリ秒]から100[ミリ秒]に切り替える(図7参照)。   The power supply IC 12 mainly controls power transmission (power supply) processing from the power transmission device 10 to the power reception device 20 and authentication processing between the power transmission device 10 and the power reception device 20 in accordance with an instruction from the control CPU 11. For example, a voltage necessary for the operation of the drive circuit 13 is supplied to the drive circuit 13. In addition, when the control CPU 11 determines that the metal foreign object MTB is placed on the placement surface of the power transmission device 10, the power feeding IC 12 as an example of the power transmission current control unit is a predetermined period (specifically, The output period of the intermittent transmission current is increased over time t1 to t5) shown in FIG. 7 and switched from, for example, 5 [milliseconds] to 100 [milliseconds] (see FIG. 7).

なお、以下の説明において、送電装置10の所定の載置面の近くには、送電コイルTxCが配設され、受電装置20が載置面に接近すると、送電コイルTxCと受電コイルRxCとの間で電力の送電が開始される前に、送電装置10と受電装置20との間で認証処理が行われる。   In the following description, a power transmission coil TxC is disposed near a predetermined placement surface of the power transmission device 10, and when the power reception device 20 approaches the placement surface, between the power transmission coil TxC and the power reception coil RxC. Then, before power transmission starts, authentication processing is performed between the power transmission device 10 and the power reception device 20.

また、給電IC12は、包絡線検波部12aを有し(図9(A)参照)、後述する搭載検知回路16からの出力(即ち包絡線検波部12aの出力を示す検波電圧V)を搭載検知回路16に供給する。搭載検知回路16の詳細な回路構成例については、図9(A)及び(B)を参照して後述する。なお、後述するように、異物検知回路18への動作指示はコントロールCPU11から与えられるが、給電IC12から与えられても良い。 The power feeding IC 12 includes an envelope detection unit 12a (see FIG. 9A), and an output from the mounting detection circuit 16 described later (that is, a detection voltage V 3 indicating the output of the envelope detection unit 12a) is mounted. This is supplied to the detection circuit 16. A detailed circuit configuration example of the mounting detection circuit 16 will be described later with reference to FIGS. As will be described later, an operation instruction to the foreign object detection circuit 18 is given from the control CPU 11, but may be given from the power supply IC 12.

なお、本実施形態では、コントロールCPU11と給電IC12とは別々に構成されているが、どちらか一方が他方に含まれた構成としても良い。言い換えると、給電IC12はコントロールCPU11の内部に含まれるように構成されても良いし、コントロールCPU11は給電IC12の内部に含まれるように構成されても良い。   In the present embodiment, the control CPU 11 and the power supply IC 12 are configured separately, but one of them may be included in the other. In other words, the power supply IC 12 may be configured to be included in the control CPU 11, or the control CPU 11 may be configured to be included in the power supply IC 12.

また、受電装置20が送電装置10の所定の載置面上に載置されたことが搭載検知回路16により判断された後、受電装置20の定電流回路26が動作する期間(具体的には、図6に示す時刻t1〜t3)に流れる定電流に基づいて、電流値が連続的に一定となる送電電流Iが送電装置10において流れる。このため、給電IC12は、この連続的な送電電流Iに所定の認証信号を重畳させた伝送信号を送電コイルTxCから送電させる。給電IC12は、認証信号としては、例えば所定の信号をASK(Amplitude Shift Keying )又はFSK(Frequency Shift Keying)を施して生成する。なお、給電IC12は、所定の信号にASKやFSKを施して認証信号を生成する以外に、送電装置10であることを識別させるための所定のIDを認証信号として用いても良い。これにより、給電IC12は、簡易に認証信号を生成することができる。   In addition, after the mounting detection circuit 16 determines that the power receiving device 20 is placed on a predetermined placement surface of the power transmitting device 10, the period during which the constant current circuit 26 of the power receiving device 20 operates (specifically, Based on the constant current flowing at times t1 to t3) shown in FIG. 6, a power transmission current I whose current value is continuously constant flows in the power transmission device 10. For this reason, the power feeding IC 12 transmits a transmission signal in which a predetermined authentication signal is superimposed on the continuous power transmission current I from the power transmission coil TxC. The power supply IC 12 generates, for example, a predetermined signal by performing ASK (Amplitude Shift Keying) or FSK (Frequency Shift Keying) as the authentication signal. The power feeding IC 12 may use a predetermined ID for identifying the power transmission device 10 as an authentication signal, in addition to generating an authentication signal by applying ASK or FSK to the predetermined signal. Thereby, the power feeding IC 12 can easily generate an authentication signal.

ドライブ回路13は、直流電源又は商用の交流電源からの電流(送電電流I)に応じて、インバータ回路14を動作させるためのクロック信号(言い換えると、インバータ回路14がDC信号をAC(Alternative Current)信号に変換する際に用いるDC信号(矩形波)の周波数を決定するための信号)を生成してインバータ回路14に出力する。なお、ドライブ回路13は、インバータ回路14の内部に含まれるように構成されても良い。   The drive circuit 13 is a clock signal for operating the inverter circuit 14 according to a current (transmission current I) from a DC power supply or a commercial AC power supply (in other words, the inverter circuit 14 converts the DC signal into an AC (Alternative Current)). A signal for determining the frequency of a DC signal (rectangular wave) used for conversion into a signal is generated and output to the inverter circuit 14. The drive circuit 13 may be configured to be included in the inverter circuit 14.

インバータ回路14は、送電電流IのDC信号をAC信号に変換してLPF15に出力する。   The inverter circuit 14 converts the DC signal of the transmission current I into an AC signal and outputs it to the LPF 15.

LPF15は、インバータ回路14の出力(送電電流IのAC信号)の低周波成分(例えばDC成分)を遮断して共振用コンデンサ17に出力する。なお、LPF15の出力は、電圧に変換されて、入力電圧Vとして搭載検知回路16に供給される。 The LPF 15 cuts off a low frequency component (for example, DC component) of the output of the inverter circuit 14 (AC signal of the transmission current I) and outputs it to the resonance capacitor 17. The output of the LPF15 is converted to a voltage, it is supplied to the mounting detection circuit 16 as the input voltage V 7.

載置検知部の一例としての搭載検知回路16は、図2(B)に示す搭載検知区間に対応する第1所定時間Td1の間では、受電装置20又は金属異物MTB(図7参照)が所定の載置面上に載置されたか否かを判断し、所定の条件(即ち、後述する出力電圧Vの値の条件)が成立した場合に、受電装置20又は金属異物MTB(図7参照)が所定の載置面上に載置されたことを検知する。ここで、搭載検知回路16の詳細な回路構成例について、図9(A)及び(B)を参照して説明する。 In the mounting detection circuit 16 as an example of the mounting detection unit, the power receiving device 20 or the metal foreign object MTB (see FIG. 7) is predetermined during the first predetermined time Td1 corresponding to the mounting detection section shown in FIG. and it determines whether it is placed on the mounting surface of a predetermined condition (i.e., condition of the value of the output voltage V 6 to be described later) when is satisfied, the power receiving device 20 or the foreign metal substance MTB (see FIG. 7 ) Is detected to be placed on a predetermined placement surface. Here, a detailed circuit configuration example of the mounting detection circuit 16 will be described with reference to FIGS.

図9(A),(B)は、搭載検知回路16の回路構成の一例を示す図である。搭載検知回路16は、図9(A)に示す第1搭載検知回路部16aと図9(B)に示す第2搭載検知回路部16bとを含む構成である。図9(A)に示す第1搭載検知回路部16aは、増幅器と2つの抵抗(例えば抵抗値R1=49.9[kΩ]の抵抗と抵抗値R2=7.5[kΩ]の抵抗)とが直列に接続された構成である。   FIGS. 9A and 9B are diagrams illustrating an example of the circuit configuration of the mounting detection circuit 16. The mounting detection circuit 16 includes a first mounting detection circuit unit 16a illustrated in FIG. 9A and a second mounting detection circuit unit 16b illustrated in FIG. 9B. 9A includes an amplifier and two resistors (for example, a resistor having a resistance value R1 = 49.9 [kΩ] and a resistor having a resistance value R2 = 7.5 [kΩ]). Are connected in series.

図9(A)において、LPF15の出力としての入力電圧Vは、2つの抵抗の抵抗値R1,R2の分圧比によって、電圧V_DETINとして給電IC12の包絡線検波部12aに入力される。包絡線検波部12aでは、電圧V_DETINの包絡線が検波され、検波出力としての電圧V_DETOUTが検波電圧Vとして第2搭載検知回路部16bに入力される。検波電圧Vと入力電圧Vとの関係は、例えば数式(1)により示される。 In FIG. 9 (A), the input voltage V 7 as the output of the LPF15 is the division ratio of the resistance values R1, R2 of the two resistors is inputted to the envelope detector 12a of the feed IC12 as voltage V_DETIN. In the envelope detection unit 12a, the detection is an envelope of the voltage V_DETIN, voltage V_DETOUT as detection output is input to the second mounting detection circuit section 16b as detection voltage V 3. The relationship between the detected voltage V 3 and the input voltage V 7, for example represented by formula (1).

Figure 0006366016
Figure 0006366016

図9(B)において、検波電圧Vは、抵抗(例えば抵抗値R3=7.5[kΩ])を介してコンパレータCMPの反転入力端子に入力され、電源電圧が降圧された基準電圧Vが2つの抵抗の抵抗値R6,R5との分圧比によって、基準分圧電圧VがコンパレータCMPの非反転入力端子に入力される。コンパレータCMPと抵抗(例えば抵抗R4=7.5[kΩ])とによって、第2搭載検知回路部16bは、出力電圧Vに関する情報を給電IC12に出力する。 In FIG. 9 (B), the detected voltage V 3, the resistance (e.g., resistance value R3 = 7.5 [kΩ]) is input to the inverting input terminal of the comparator CMP via a reference voltage V 4 the power supply voltage is stepped down There the division ratio between the resistance value R6, R5 of two resistors, the reference divided voltage V 5 is input to the non-inverting input terminal of the comparator CMP. By a comparator CMP resistance (e.g. resistance R4 = 7.5 [kΩ]), the second mounting detection circuit unit 16b outputs the information about the output voltage V 6 to the power supply IC 12.

ここで、図9(B)において、基準分圧電圧Vと基準電圧Vとの関係は、例えば数式(2)により示されるが、抵抗値R6,R5との分圧比をk1とすると(数式(3)参照)、数式(4)により示される。また、基準分圧電圧Vと出力電圧Vとの関係は、例えば数式(5)により示される。数式(5)において、kは抵抗値R4,R3の比率を示す(数式(6)参照)。 Here, in FIG. 9 (B), the relationship between the reference divided voltage V 5 and the reference voltage V 4, for example when it is indicated by Equation (2), the partial pressure ratio between the resistance value R6, R5 and k1 ( It is shown by the mathematical formula (4). The relationship between the reference divided voltage V 5 and the output voltage V 6, for example represented by formula (5). In Equation (5), k 2 denotes the ratio of the resistance value R4, R3 (see Equation (6)).

Figure 0006366016
Figure 0006366016

Figure 0006366016
Figure 0006366016

Figure 0006366016
Figure 0006366016

Figure 0006366016
Figure 0006366016

Figure 0006366016
Figure 0006366016

また、図9(A)において、抵抗値R1,R2との分圧比をkとすると(数式(7)参照)、数式(1)は数式(8)により示されるので、出力電圧Vと入力電圧Vとの関係は数式(9)により示される。 Further, in FIG. 9A, when the voltage division ratio between the resistance values R1 and R2 is k 1 (see Expression (7)), Expression (1) is expressed by Expression (8), so that the output voltage V 6 and relationship between the input voltage V 7 is represented by equation (9).

Figure 0006366016
Figure 0006366016

Figure 0006366016
Figure 0006366016

Figure 0006366016
Figure 0006366016

このように、搭載検知回路16は、数式(9)により算出された出力電圧Vに関する情報を給電IC12に出力する。給電IC12は、出力電圧Vが例えば1.1を超える場合には(V>1.1)、スタンバイ状態(即ち、送電装置10の載置面には何も載置されていない状態)であると判定し、一方、出力電圧Vが例えば1.0未満である場合には(V≦1.0)、搭載検知状態(即ち、送電装置10の載置面には受電装置20又は受電装置20以外の物体の一例としての金属異物が載置された状態)であると判定する。 Thus, the mounting detection circuit 16 outputs the information about the output voltage V 6 calculated by Equation (9) to the feed IC 12. Feeding IC12 is, if more than the output voltage V 6, for example, 1.1 (V 6> 1.1), the standby state (i.e., state the mounting surface not placed any power transmitting device 10) On the other hand, when the output voltage V 6 is less than 1.0 (V 6 ≦ 1.0), for example, the power receiving device 20 is mounted on the mounting detection state (that is, the mounting surface of the power transmitting device 10 is Alternatively, it is determined that a metal foreign object as an example of an object other than the power receiving device 20 is placed.

なお、以下の説明では、搭載検知状態には、厳密には搭載されていなくても載置面に接近している状態が含まれても良いとする。   In the following description, it is assumed that the mounting detection state may include a state in which the mounting surface is close to the mounting surface even if it is not mounted.

なお、載置検知部の一例としての搭載検知回路16は、受電装置20が送電装置10の載置面に載置された場合には、後述する受電装置20の定電流回路26が動作する期間(具体的には、図6に示す時刻t1〜t3)に流れる定電流に基づいて送電装置10のインピーダンスが小さくなるように変化するので、例えばコントロールCPU11から得られるインピーダンスの監視値に応じて、搭載検知状態(即ち、送電装置10の載置面には受電装置20又は受電装置20以外の物体の一例としての金属異物が載置された状態)であると判定しても良い。   Note that the mounting detection circuit 16 as an example of the mounting detection unit is a period in which the constant current circuit 26 of the power receiving device 20 described later operates when the power receiving device 20 is mounted on the mounting surface of the power transmitting device 10. (Specifically, since the impedance of the power transmission device 10 changes so as to decrease based on the constant current flowing at time t1 to t3 shown in FIG. 6, for example, according to the impedance monitoring value obtained from the control CPU 11, You may determine with it being a mounting detection state (namely, the state in which the metal foreign material as an example of objects other than the power receiving apparatus 20 or the power receiving apparatus 20 was mounted in the mounting surface of the power transmission apparatus 10).

また、搭載検知回路16は、LPF15の出力に相当する入力電圧Vを用いて、スタンバイ状態又は搭載検知状態のいずれであるかを判定しても良い。但し、入力電圧Vは包絡線検波部12aにより包絡線検波が施されていない電圧であるため、搭載検知回路16は、LPF15の出力に相当する入力電圧Vを用いて、スタンバイ状態又は搭載検知状態のいずれであるかを判定するよりも、出力電圧Vを用いることで、スタンバイ状態又は搭載検知状態のいずれであるかを高精度に判定することができる。 Further, the mounting detection circuit 16 may determine whether it is in the standby state or the mounting detection state by using the input voltage V 7 corresponding to the output of the LPF 15. However, since the input voltage V 7 is a voltage that is not the envelope detection is performed by the envelope detection section 12a, mounted detection circuit 16 uses the input voltage V 7 corresponding to the output of the LPF 15, the standby state or mounted than to determine whether it is a detection state, by using the output voltage V 6, it can be determined whether it is in the standby state or the mounting detection state with high accuracy.

共振用コンデンサ17は、例えば2つのコンデンサが並列接続された構成であり、送電コイルTxCとの間で共振作用を起こす。共振用コンデンサ17のコンデンサの容量値は、送電コイルTxCのインダクタンス値とで共振周波数が定められるように設定されている。   The resonance capacitor 17 has, for example, a configuration in which two capacitors are connected in parallel, and causes a resonance action with the power transmission coil TxC. The capacitance value of the resonance capacitor 17 is set such that the resonance frequency is determined by the inductance value of the power transmission coil TxC.

異物検知回路18は、直流電源からの直流電流又は商用の交流電源(不図示)からの交流電流が整流された直流電流を示す送電電流Iを監視しており、コントロールCPU11又は給電IC12からの指示に応じて、例えば図2(B)に示す異物検知区間に対応する第2所定時間Td2の間では、後述する受電装置20のタイマー回路TM2が第2所定時間Td2を計時する間(具体的には図6に示す時刻t3〜t4)の送電電流Iの監視結果をコントロールCPU11に出力する。   The foreign object detection circuit 18 monitors a transmission current I indicating a direct current from a direct current power supply or a direct current obtained by rectifying an alternating current from a commercial alternating current power supply (not shown), and an instruction from the control CPU 11 or the power supply IC 12 Accordingly, for example, during the second predetermined time Td2 corresponding to the foreign object detection section shown in FIG. 2B, the timer circuit TM2 of the power receiving device 20 described later measures the second predetermined time Td2 (specifically, Outputs to the control CPU 11 the monitoring result of the transmission current I at times t3 to t4) shown in FIG.

コントロールCPU11は、異物検知回路18における送電電流Iの監視結果と、コントロールCPU11自身で判断する送電装置10と受電装置20との間の認証完了の有無(言い換えると認証処理の成否)とを基に、送電装置10の載置面に受電装置20以外の金属異物が載置されたか否かを判定する。なお、コントロールCPU11と異物検知回路18とにより、異物載置判断部が構成される。   The control CPU 11 is based on the monitoring result of the power transmission current I in the foreign object detection circuit 18 and the presence / absence of authentication completion between the power transmission device 10 and the power receiving device 20 determined by the control CPU 11 itself (in other words, the success or failure of the authentication process). Then, it is determined whether or not a metal foreign object other than the power receiving device 20 is placed on the placement surface of the power transmission device 10. The control CPU 11 and the foreign object detection circuit 18 constitute a foreign object placement determination unit.

また、異物検知回路18は、送電電流Iを監視する場合に限らず、他のパラメータ(例えば温度)を監視し、温度の監視結果をコントロールCPU11に出力しても良い。この場合、コントロールCPU11は、異物検知回路18における温度の監視結果と所定の温度閾値との比較結果を基に、送電装置10の載置面に受電装置20以外の金属異物が載置されたか否かを判定する。   The foreign object detection circuit 18 is not limited to monitoring the transmission current I, but may monitor other parameters (for example, temperature) and output the temperature monitoring result to the control CPU 11. In this case, the control CPU 11 determines whether or not a metal foreign object other than the power receiving device 20 is placed on the placement surface of the power transmission device 10 based on a comparison result between the temperature monitoring result in the foreign matter detection circuit 18 and a predetermined temperature threshold value. Determine whether.

送電コイルTxCは、LPF15の出力に応じた間欠的な送電電流I若しくは連続的な送電電流Iに応じた電力(送電電力)、又はLPF15の出力に応じた間欠的な送電電流I若しくは連続的な送電電流Iに応じた電力(送電電力)に所定の認証信号が重畳された伝送信号を非接触で送電する。   The power transmission coil TxC has an intermittent power transmission current I according to the output of the LPF 15 or a power (transmission power) according to the continuous power transmission current I, or an intermittent power transmission current I according to the output of the LPF 15 or a continuous power. A transmission signal in which a predetermined authentication signal is superimposed on power (transmission power) corresponding to the transmission current I is transmitted in a contactless manner.

(受電装置の構成)
受電コイルRxCは、受電装置20が送電装置10の載置面に接近した場合又は載置面に載置された場合に、送電コイルTxCから送電された電力の信号又は伝送信号を非接触で受電する。送電コイルTxCからの非接触な電力の送電によって受電コイルRxCに誘起された電圧(誘起電圧)が共振用コンデンサ21を介して整流平滑回路22に入力される。
(Configuration of power receiving device)
The power receiving coil RxC receives the power signal or the transmission signal transmitted from the power transmitting coil TxC in a non-contact manner when the power receiving device 20 approaches or is placed on the mounting surface of the power transmitting device 10. To do. A voltage (induced voltage) induced in the power receiving coil RxC by non-contact power transmission from the power transmitting coil TxC is input to the rectifying and smoothing circuit 22 via the resonance capacitor 21.

共振用コンデンサ21は、例えば2つのコンデンサが並列接続された構成であり、受電コイルRxCとの間で共振作用を起こす。共振用コンデンサ21のコンデンサの容量値は、受電コイルRxCのインダクタンス値とで共振周波数が定められるように設定されている。   The resonance capacitor 21 has, for example, a configuration in which two capacitors are connected in parallel, and causes a resonance action with the power receiving coil RxC. The capacitance value of the resonance capacitor 21 is set such that the resonance frequency is determined by the inductance value of the power receiving coil RxC.

整流平滑回路22は、整流回路と平滑回路とを含む構成であり、受電コイルRxCにおいて受電された電力の信号又は伝送信号に対して整流処理及び平滑処理を行う。図2(B)に示すように、受電装置20が送電装置10の載置面に接近すると、送電装置10における送電電流Iは増加するので、整流平滑回路22の出力(例えば整流平滑出力電圧V)が増加する。 The rectifying / smoothing circuit 22 includes a rectifying circuit and a smoothing circuit, and performs a rectifying process and a smoothing process on a power signal or a transmission signal received by the power receiving coil RxC. As shown in FIG. 2B, when the power receiving device 20 approaches the placement surface of the power transmission device 10, the power transmission current I in the power transmission device 10 increases. 2 ) increases.

DC/DC23は、不図示のスイッチング素子を有し、給電IC25からの動作制御信号に応じて、オン又はオフを切り替える。例えば、DC/DC23は、オン状態である場合には、整流平滑回路22の出力を基に、送電装置10から送電された電力を充電池の一例としてのバッテリに充電するために必要な所定の直流電圧、又は受電装置20のシステム(コンピュータシステム)の動作に必要な所定の直流電圧に変圧(降圧)する。一方、DC/DC23は、オフ状態である場合には、整流平滑回路22の出力が入力されない。   The DC / DC 23 has a switching element (not shown) and switches on or off according to an operation control signal from the power supply IC 25. For example, when the DC / DC 23 is in an on state, the DC / DC 23 is a predetermined unit required to charge a battery as an example of a rechargeable battery with the power transmitted from the power transmission device 10 based on the output of the rectifying and smoothing circuit 22. The voltage is transformed (stepped down) to a DC voltage or a predetermined DC voltage necessary for the operation of the system (computer system) of the power receiving device 20. On the other hand, when the DC / DC 23 is in the OFF state, the output of the rectifying and smoothing circuit 22 is not input.

チャージャ24は、DC/DC23により変圧(降圧)された直流電圧に従って、バッテリを充電したり、受電装置20のシステムを動作させたりする。   The charger 24 charges the battery or operates the system of the power receiving device 20 according to the DC voltage transformed (stepped down) by the DC / DC 23.

給電IC25は、タイマー回路TM1が第1所定時間Td1の計時を開始した後、送電装置10から送電された伝送信号に含まれる電力の信号と認証信号とに分離する。また、認証部の一例としての給電IC25は、認証信号を用いて、送電装置10と受電装置20との間の認証処理を行う。   The power feeding IC 25 separates the power signal included in the transmission signal transmitted from the power transmission device 10 and the authentication signal after the timer circuit TM1 starts measuring the first predetermined time Td1. The power supply IC 25 as an example of an authentication unit performs an authentication process between the power transmission device 10 and the power reception device 20 using an authentication signal.

また、給電IC25は、タイマー回路TM1が第1所定時間Td1を計時した後(言い換えると、第1所定時間Td1の計時を終了した後)であって、タイマー回路TM2に対して第2所定時間Td2の計時を指示し、更に、タイマー回路TM2が第2所定時間Td2の計時を開始した後、DC/DC23をオフ状態に切り替えることで、受電コイルRxCとDC/DC23との間を非導通状態(オフ状態)に切り替える。   In addition, the power feeding IC 25 receives the second predetermined time Td2 from the timer circuit TM2 after the timer circuit TM1 has timed the first predetermined time Td1 (in other words, after the time measurement of the first predetermined time Td1 has ended). In addition, after the timer circuit TM2 starts measuring the second predetermined time Td2, the DC / DC 23 is switched to the OFF state, whereby the power receiving coil RxC and the DC / DC 23 are in a non-conductive state ( Switch to the off state.

一方、給電IC25は、タイマー回路TM2が第2所定時間Td2を計時した後(言い換えると、第2所定時間Td2の計時を終了した後)、DC/DC23をオン状態に切り替えることで(図2(B)参照)、送電装置10から送電された電力を用いて、受電コイルRxCとの間が導通状態(オン状態)となったDC/DC23を介して、チャージャ24に対しバッテリへの充電を行わせる。   On the other hand, the power supply IC 25 switches the DC / DC 23 to the ON state after the timer circuit TM2 has timed the second predetermined time Td2 (in other words, after the time measurement of the second predetermined time Td2 has been completed) (FIG. 2 ( B)), using the power transmitted from the power transmission device 10, the battery is charged to the charger 24 via the DC / DC 23 that is in a conductive state (on state) with the power receiving coil RxC. Make it.

定電流回路26は、タイマー回路TM1が第1所定時間Td1を計時する間、タイマー回路TM1からの動作制御信号を受けることで、所定の定電流が流れる(図5参照)。ここで、定電流回路26の回路構成例について、図5を参照して説明する。   The constant current circuit 26 receives an operation control signal from the timer circuit TM1 while the timer circuit TM1 measures the first predetermined time Td1, so that a predetermined constant current flows (see FIG. 5). Here, a circuit configuration example of the constant current circuit 26 will be described with reference to FIG.

図5は、定電流回路26の構成例を示す図である。図5に示す定電流回路26は、例えば第1トランジスタ素子FT1と定電流素子CT1と第2トランジスタ素子FT2と270[Ω]の抵抗値を有する抵抗とが直列接続された回路と、第3トランジスタ素子FT3と10[Ω]の抵抗値を有する抵抗とが直列接続された回路とが並列接続された構成である。第2トランジスタ素子FT2と第3トランジスタ素子FT3とは、各々のゲート端子が接続されたカレントミラー回路を構成する。   FIG. 5 is a diagram illustrating a configuration example of the constant current circuit 26. The constant current circuit 26 shown in FIG. 5 includes, for example, a circuit in which a first transistor element FT1, a constant current element CT1, a second transistor element FT2, and a resistor having a resistance value of 270 [Ω] are connected in series; In this configuration, the element FT3 and a circuit in which a resistor having a resistance value of 10 [Ω] is connected in series are connected in parallel. The second transistor element FT2 and the third transistor element FT3 constitute a current mirror circuit to which the respective gate terminals are connected.

タイマー回路TM1は、送電装置10と受電装置20との間の認証処理のために、一定期間(例えば第1所定時間Td1)において、定電流回路26を動作させる。定電流回路26が動作すると受電装置20には定電流が流れるので、定電流が流れることによって、受電装置20が接近した又は載置面に載置された送電装置10のインピーダンスが小さくなるように変化し、送電装置10における送電電流Iが大きくなる。これにより、認証信号と電力の波形(例えば矩形波)との相違が鮮明になり、受電装置20の給電IC25は、電力の信号と認証信号とを高精度に分離することができ、認証処理を簡易に行うことができる。   The timer circuit TM1 operates the constant current circuit 26 for a certain period (for example, the first predetermined time Td1) for the authentication process between the power transmitting apparatus 10 and the power receiving apparatus 20. When the constant current circuit 26 operates, a constant current flows through the power receiving device 20, so that the constant current flows so that the impedance of the power transmitting device 10 that the power receiving device 20 approaches or is placed on the placement surface is reduced. The power transmission current I in the power transmission device 10 is increased. As a result, the difference between the authentication signal and the power waveform (for example, a rectangular wave) becomes clear, and the power feeding IC 25 of the power receiving device 20 can separate the power signal and the authentication signal with high accuracy, and the authentication process can be performed. It can be done easily.

図5において、整流平滑出力電圧Vが一定値を超えると、タイマー回路TM1は動作を開始することができる。このため、タイマー回路TM1は、第1所定時間Td1の計時を開始し、定電流回路26をオンさせるための動作制御信号を第1トランジスタ素子FT1のゲート端子に入力させる。 5, when the rectified and smoothed output voltage V 2 exceeds a certain value, the timer circuit TM1 can start the operation. Therefore, the timer circuit TM1 starts measuring the first predetermined time Td1, and inputs an operation control signal for turning on the constant current circuit 26 to the gate terminal of the first transistor element FT1.

第1トランジスタ素子FT1は、タイマー回路TM1からの動作制御信号がHi(ハイ)又はLo(ロー)のいずれかであるかに応じて、定電流回路26の動作のオン又はオフを切り替えるためのスイッチング素子である。   The first transistor element FT1 is a switching for switching on or off the operation of the constant current circuit 26 depending on whether the operation control signal from the timer circuit TM1 is Hi (high) or Lo (low). It is an element.

タイマー回路TM1が第1所定時間Td1の計時を開始してから、第1所定時間Td1の計時が終了するまでの期間、又は送電装置10と受電装置20との間の認証処理が成功するまでの期間では、タイマー回路TM1からの動作制御信号はHi状態となるので、定電流回路26は動作し、270[ミリA]の定電流が流れる。一方、第1所定時間Td1の計時が終了した後、又は送電装置10と受電装置20との間の認証処理が成功した後では、タイマー回路TM1からの動作制御信号はLo状態となるので、定電流回路26は動作を停止し、定電流は流れない。   A period from when the timer circuit TM1 starts measuring the first predetermined time Td1 until the time measurement of the first predetermined time Td1 ends, or until the authentication process between the power transmitting apparatus 10 and the power receiving apparatus 20 is successful. In the period, since the operation control signal from the timer circuit TM1 is in the Hi state, the constant current circuit 26 operates and a constant current of 270 [milliA] flows. On the other hand, after the timing of the first predetermined time Td1 is completed or after the authentication process between the power transmission device 10 and the power reception device 20 is successful, the operation control signal from the timer circuit TM1 is in the Lo state. The current circuit 26 stops its operation and no constant current flows.

図2(A)は、受電装置20の2つのタイマー回路TM1,TM2、定電流回路26、DC/DC23の接続関係の一例を示す図である。図2(B)は、送電装置10における搭載検知区間及び異物検知区間の説明図である。図2(B)の横軸は時間を示し、図2(B)の縦軸は送電装置10における送電電流Iの大きさを示す。図2(B)に示す点線は、搭載検知閾値Ith1を示す。搭載検知閾値Ith1は、送電装置10の載置面に何かしらの物体(例えば受電装置20又は金属異物MTB)が載置されたか否かを判定するために設けられた閾値である。   FIG. 2A is a diagram illustrating an example of a connection relationship between the two timer circuits TM <b> 1 and TM <b> 2, the constant current circuit 26, and the DC / DC 23 of the power receiving device 20. FIG. 2B is an explanatory diagram of a mounting detection section and a foreign object detection section in the power transmission device 10. The horizontal axis in FIG. 2B represents time, and the vertical axis in FIG. 2B represents the magnitude of the transmission current I in the power transmission device 10. A dotted line shown in FIG. 2B indicates the mounting detection threshold value Ith1. The mounting detection threshold value Ith1 is a threshold value provided for determining whether any object (for example, the power receiving device 20 or the metal foreign object MTB) is placed on the placement surface of the power transmission device 10.

タイマー回路TM1が第1所定時間Td1を計時する前(言い換えると、受電コイルRxCが送電コイルTxCに接近する前)では、送電装置10における送電電流は間欠的な電流であり、この送電電流の大きさは、送電装置10から受電装置20に電力が送電された場合にタイマー回路TM1を動作させる(言い換えると、整流平滑出力電圧Vが一定値を超える)程度の大きさである。 Before the timer circuit TM1 measures the first predetermined time Td1 (in other words, before the power reception coil RxC approaches the power transmission coil TxC), the power transmission current in the power transmission device 10 is an intermittent current, and the magnitude of this power transmission current is large. is is is allowed (in other words, the rectified smoothed output voltage V 2 exceeds a certain value) operating the timer circuit TM1 when the power to the power receiving device 20 from the power transmission device 10 is transmission of the order of magnitude.

タイマー回路TM1は、整流平滑出力電圧Vが一定値を超えると、第1所定時間Td1の計時を開始して第1所定時間Td1を計時する。上述したように、タイマー回路TM1は、第1所定時間Td1を計時する間、定電流回路26の動作をオンさせるための動作制御信号を定電流回路26に出力する。本実施形態では、第1所定時間Td1は、例えば1[秒]であり、送電装置10の載置面に受電装置20又は金属異物が搭載されたか否かが判定される搭載検知区間としての役割を有する。 The timer circuit TM1, when rectified smoothed output voltage V 2 exceeds a certain value, for counting a first predetermined time period Td1 starts counting the first predetermined time Td1. As described above, the timer circuit TM1 outputs an operation control signal for turning on the operation of the constant current circuit 26 to the constant current circuit 26 while measuring the first predetermined time Td1. In the present embodiment, the first predetermined time Td1 is, for example, 1 [second], and serves as a mounting detection section in which it is determined whether or not the power receiving device 20 or the metal foreign object is mounted on the mounting surface of the power transmission device 10. Have

なお、第1所定時間Td1の開始タイミングは、送電装置10の送電コイルTxCに受電装置20の受電コイルRxCが接近した時(図2(A)に示す時刻t0参照)、又は送電装置10の載置面に受電装置20が載置された時である(図6に示す時刻t1参照)。   The start timing of the first predetermined time Td1 is set when the power receiving coil RxC of the power receiving device 20 approaches the power transmitting coil TxC of the power transmitting device 10 (see time t0 shown in FIG. 2A) or when the power transmitting device 10 is mounted. This is the time when the power receiving device 20 is placed on the mounting surface (see time t1 shown in FIG. 6).

タイマー回路TM2は、タイマー回路TM1が第1所定時間Td1の計時を終了した時(図2(A)又は図6に示す時刻t3参照)、又は送電装置10と受電装置20との間の認証処理が成功した時(図6に示す時刻t2参照)、第2所定時間Td2の計時を開始して第2所定時間Td2を計時する。本実施形態では、第2所定時間Td2は、例えば0.5[秒]であり、送電装置10の載置面に搭載された物体が異物であるか否かが判定される異物検知区間としての役割を有する。   The timer circuit TM2 performs authentication processing when the timer circuit TM1 finishes counting the first predetermined time Td1 (see time t3 shown in FIG. 2A or FIG. 6) or between the power transmission device 10 and the power reception device 20. Is successful (see time t2 shown in FIG. 6), the measurement of the second predetermined time Td2 is started to measure the second predetermined time Td2. In the present embodiment, the second predetermined time Td2 is, for example, 0.5 [second], and is a foreign object detection section in which it is determined whether or not the object mounted on the placement surface of the power transmission device 10 is a foreign object. Have a role.

次に、受電装置20の2つのタイマー回路TM1,TM2、定電流回路26及びDC/DC23の第1所定時間Td1、第2所定時間Td2が計時される間又はその前後の動作について、図3(A)、図3(B)及び図4を参照して説明する。   Next, the operation during or before and after the first predetermined time Td1 and the second predetermined time Td2 of the two timer circuits TM1 and TM2, the constant current circuit 26 and the DC / DC 23 of the power receiving device 20 are shown in FIG. A), FIG. 3B and FIG. 4 will be described.

図3(A)は、タイマー回路TM1が第1所定時間Td1を計時する間の動作例を示す説明図である。図3(B)は、タイマー回路TM1が第1所定時間Td1を計時し終えた後であってタイマー回路TM2が第2所定時間Td2を計時する間の動作例を示す説明図である。図4は、タイマー回路TM1が第1所定時間Td1を計時し終えた後であって、タイマー回路TM2が第2所定時間Td2を計時し終えた後の動作例を示す説明図である。   FIG. 3A is an explanatory diagram illustrating an operation example during which the timer circuit TM1 measures the first predetermined time Td1. FIG. 3B is an explanatory diagram illustrating an operation example after the timer circuit TM1 finishes measuring the first predetermined time Td1 and while the timer circuit TM2 measures the second predetermined time Td2. FIG. 4 is an explanatory diagram showing an operation example after the timer circuit TM1 finishes counting the first predetermined time Td1 and after the timer circuit TM2 finishes counting the second predetermined time Td2.

図3(A)において、整流平滑出力電圧Vが一定値を超えると、タイマー回路TM1は動作を開始する。タイマー回路TM1が第1所定時間Td1を計時する間では、タイマー回路TM1から定電流回路26の動作をオンさせるための動作制御信号が定電流回路26に入力されるので、定電流回路26に定電流が流れる(図5参照)。 In FIG. 3 (A), the rectifying and smoothing the output voltage V 2 exceeds a certain value, the timer circuit TM1 starts operating. While the timer circuit TM1 measures the first predetermined time Td1, an operation control signal for turning on the operation of the constant current circuit 26 is input from the timer circuit TM1 to the constant current circuit 26. A current flows (see FIG. 5).

図3(B)において、タイマー回路TM1が第1所定時間Td1の計時を終えた後であって、タイマー回路TM2が第2所定時間Td2を計時する間では、定電流回路26の動作がオフ状態であるため、整流平滑出力側から見れば定電流回路26側の(入力)インピーダンスが高くなり、整流平滑出力の電流(整流平滑出力電流)はDC/DC23に入力される。しかし、給電IC25は、タイマー回路TM2が第2所定時間Td2を計時する間では、DC/DC23をオフ状態に切り替える。このため、受電装置20ではバッテリが充電されない。   In FIG. 3B, the operation of the constant current circuit 26 is in an OFF state after the timer circuit TM1 finishes measuring the first predetermined time Td1 and while the timer circuit TM2 measures the second predetermined time Td2. Therefore, when viewed from the rectified and smoothed output side, the (input) impedance on the constant current circuit 26 side becomes high, and the current of the rectified and smoothed output (rectified and smoothed output current) is input to the DC / DC 23. However, the power feeding IC 25 switches the DC / DC 23 to the OFF state while the timer circuit TM2 measures the second predetermined time Td2. For this reason, the battery is not charged in the power receiving device 20.

図4では、タイマー回路TM2が第2所定時間Td2の計時を終えた後、給電IC25はDC/DC23をオン状態に切り替える。このため、整流平滑出力電流は、DC/DC23を介してチャージャ24側に流れるので、受電装置20ではバッテリが充電される。   In FIG. 4, after the timer circuit TM2 finishes counting the second predetermined time Td2, the power feeding IC 25 switches the DC / DC 23 to the on state. For this reason, the rectified and smoothed output current flows to the charger 24 via the DC / DC 23, so that the battery is charged in the power receiving device 20.

(受電装置が送電装置の載置面上に載置される場合の電力伝送システムの動作)
次に、受電装置20が送電装置10の載置面上に載置される通常動作時の送電装置10の時系列的な動作手順について、図6を参照して説明する。図6は、受電装置が送電装置の載置面上に載置される通常動作時の送電装置における送電電流の監視、搭載検知、認証完了の各動作の一例を示すタイムチャートである。
(Operation of the power transmission system when the power receiving device is mounted on the mounting surface of the power transmitting device)
Next, a time-series operation procedure of the power transmission device 10 during normal operation in which the power reception device 20 is placed on the placement surface of the power transmission device 10 will be described with reference to FIG. FIG. 6 is a time chart illustrating an example of each operation of power transmission current monitoring, mounting detection, and authentication completion in a power transmission device during normal operation in which the power reception device is placed on the placement surface of the power transmission device.

図6では、時刻t1(言い換えると、受電装置20が送電装置10の載置面上に載置されたことが検知された時刻)までは、送電装置10には、搭載検知閾値Ith1に満たない間欠的な送電電流Iが流れる(間欠送電)。間欠送電時の間欠的な送電電流Iの電流値は、受電装置20のタイマー回路TM1を起動させて送電装置10と受電装置20との間の認証処理を実行させるために必要な電流値であるという第1の役割と、受電装置20が送電装置10の載置面上に載置されたか否かの検知を開始させるための電流値であるという第2の役割とを有する。   In FIG. 6, until the time t1 (in other words, the time when it is detected that the power receiving device 20 is placed on the placement surface of the power transmitting device 10), the power transmitting device 10 does not satisfy the mounting detection threshold Ith1. An intermittent power transmission current I flows (intermittent power transmission). The current value of the intermittent power transmission current I at the time of intermittent power transmission is a current value necessary for starting the timer circuit TM1 of the power receiving device 20 and executing the authentication process between the power transmitting device 10 and the power receiving device 20. The first role and the second role of having a current value for starting detection of whether or not the power receiving device 20 is placed on the placement surface of the power transmission device 10 are provided.

また、ユーザによって受電装置20はいつのタイミングで送電装置10の載置面上に載置されるかが送電装置10は予測することができないので、送電装置10は、受電装置20が載置面上に載置されたことを検知する前では、連続的な送電電流Iを流す場合に比べて、間欠的な送電電流Iを流すことで送電装置10における消費電力の増大を抑制することができる。   In addition, since the power transmission device 10 cannot predict when the power reception device 20 is placed on the placement surface of the power transmission device 10 by the user, the power reception device 20 is placed on the placement surface. Compared to the case where the continuous power transmission current I is supplied, the increase in the power consumption in the power transmission device 10 can be suppressed by flowing the intermittent power transmission current I before the detection that the power transmission device 10 is placed.

給電IC12は、搭載検知回路16の出力電圧Vを基にして受電装置20又は金属異物MTBが送電装置10の載置面上に載置されたことを判定した場合(時刻t1参照)、給電IC12から所定の搭載検知割込み信号が出力される。搭載検知割込み信号の出力と同期するように、受電装置20では整流平滑出力電圧Vが一定値を超えるので、タイマー回路TM1が第1所定時間Td1(例えば1[秒])の計時を開始する。 Feeding IC12, when it is determined that the mounting detecting circuit 16 outputs the power reception device by the voltage V 6 based on 20 or metal foreign substance of MTB is placed on the mounting surface of the power transmitting device 10 (see time t1), power supply A predetermined mounting detection interrupt signal is output from the IC 12. To synchronize with the output of the mounting detection interrupt signal, the rectified and smoothed output voltage V 2 in the power receiving apparatus 20 exceeds a certain value, the timer circuit TM1 starts counting the first predetermined time Td1 (e.g. 1 [sec]) .

タイマー回路TM1が第1所定時間Td1を計時する間、送電装置10と受電装置20との間では認証処理が行われ、更に、受電装置20では定電流回路26が動作することで定電流が流れるので、送電装置10のインピーダンスが小さくなるように変化し、送電装置10における送電電流Iの電流値は間欠送電時の電流値よりも大きくなる。   While the timer circuit TM1 counts the first predetermined time Td1, authentication processing is performed between the power transmitting device 10 and the power receiving device 20, and a constant current flows as the constant current circuit 26 operates in the power receiving device 20. Therefore, it changes so that the impedance of the power transmission apparatus 10 may become small, and the current value of the transmission current I in the power transmission apparatus 10 becomes larger than the current value at the time of intermittent power transmission.

送電装置10と受電装置20との間の認証処理が成功した場合(時刻t2参照)には、給電IC12から所定の認証完了割込み信号が出力される。認証完了割込み信号の出力と同期するように、受電装置20では給電IC25の指示により第2タイマー回路TM2が第2所定時間Td2(例えば0.5[秒])の計時を開始する。なお、給電IC25は、タイマー回路TM1が第1所定時間Td1の計時を終了した場合に(時刻t3参照)、タイマー回路TM2の第2所定時間Td2(例えば0.5[秒])の計時を開始させても良い。   When the authentication process between the power transmitting apparatus 10 and the power receiving apparatus 20 is successful (see time t2), a predetermined authentication completion interrupt signal is output from the power feeding IC 12. In order to synchronize with the output of the authentication completion interrupt signal, in the power receiving device 20, the second timer circuit TM2 starts measuring a second predetermined time Td2 (for example, 0.5 [seconds]) according to an instruction from the power supply IC 25. When the timer circuit TM1 finishes counting the first predetermined time Td1 (see time t3), the power feeding IC 25 starts measuring the second predetermined time Td2 (for example, 0.5 [second]) of the timer circuit TM2. You may let them.

図6では、受電装置20が送電装置10の載置面上に載置される例が示されるため、送電装置10と受電装置20との間の認証処理が成功し、更に、第2タイマー回路TM2が第2所定時間Td2を計時する間では、定電流回路26は動作しないので、送電装置10における送電電流Iは搭載検知閾値Ith1を下回る。なお本実施形態では、タイマー回路TM2が第2所定時間Td2を計時する間(異物検知区間)では、搭載検知閾値Ith1は、異物が送電装置10の載置面上に載置されたか否かを判定するための異物検知閾値としての役割を有する。   In FIG. 6, an example in which the power receiving device 20 is placed on the placement surface of the power transmission device 10 is shown. Therefore, the authentication process between the power transmission device 10 and the power receiving device 20 is successful, and the second timer circuit Since the constant current circuit 26 does not operate while TM2 measures the second predetermined time Td2, the power transmission current I in the power transmission device 10 falls below the mounting detection threshold value Ith1. In the present embodiment, while the timer circuit TM2 measures the second predetermined time Td2 (foreign matter detection section), the mounting detection threshold value Ith1 indicates whether or not the foreign matter has been placed on the placement surface of the power transmission device 10. It has a role as a foreign object detection threshold for determination.

タイマー回路TM2が第2所定時間Td2を計時する間では(時刻t3〜t4参照)、定電流回路26の動作はオフ状態であり、定電流回路26の動作がオン状態のときに比べて送電装置10のインピーダンスは大きくなるように変化するので、送電装置10における送電電流Iは搭載検知閾値Ith1未満となる。   While the timer circuit TM2 measures the second predetermined time Td2 (see times t3 to t4), the operation of the constant current circuit 26 is in the off state, and the power transmission device is compared with the case where the operation of the constant current circuit 26 is in the on state. Since the impedance of 10 changes so as to increase, the power transmission current I in the power transmission device 10 is less than the mounting detection threshold Ith1.

このため、送電装置10は、金属異物MTBではなく受電装置20が載置面上に載置されたことを判定することができるので、タイマー回路TM2が第2所定時間Td2の計時を終えた後、送電装置10では、一定の電流値を有する連続的な送電電流Iが流れる(時刻t4以降、連続送電)。   For this reason, since the power transmission device 10 can determine that the power receiving device 20 is placed on the placement surface instead of the metal foreign object MTB, the timer circuit TM2 finishes counting the second predetermined time Td2. In the power transmission device 10, a continuous power transmission current I having a constant current value flows (continuous power transmission after time t4).

なお、図6において、送電装置10と受電装置20との間の認証処理は時刻t1〜t2の間に限定されず、時刻t4以降の連続的な送電電流Iが流れる場合に行われても良い。   In FIG. 6, the authentication process between the power transmission device 10 and the power reception device 20 is not limited to the time t1 to t2, and may be performed when a continuous power transmission current I after the time t4 flows. .

(金属異物が単独で送電装置の載置面上に載置される場合の電力伝送システムの動作)
次に、金属異物MTBが単独で送電装置10の載置面上に載置される場合の送電装置10の時系列的な動作手順について、図7を参照して説明する。図7は、金属異物MTBが単独で送電装置10の載置面上に載置される場合の送電装置10における送電電流の監視、搭載検知、認証完了、異物検知の各動作の一例を示すタイムチャートである。図7の説明では、図6の説明と重複する内容の説明は簡略化又は省略し、異なる内容について説明する。
(Operation of the power transmission system when a metallic foreign object is placed alone on the placement surface of the power transmission device)
Next, a time-series operation procedure of the power transmission device 10 when the metal foreign object MTB is mounted on the mounting surface of the power transmission device 10 alone will be described with reference to FIG. FIG. 7 is a time showing an example of each operation of power transmission current monitoring, mounting detection, authentication completion, and foreign material detection in the power transmission device 10 when the metal foreign material MTB is placed on the placement surface of the power transmission device 10 alone. It is a chart. In the description of FIG. 7, description of contents overlapping with the description of FIG. 6 is simplified or omitted, and different contents are described.

図7では、時刻t1において給電IC12は、搭載検知回路16の出力電圧Vを基にして受電装置20又は金属異物MTBが送電装置10の載置面上に載置されたことを判定することができるので、図6と同様に、送電装置10における送電電流Iの大きさは間欠送電時の送電電流Iの大きさより大きくなる。しかし、図7では金属異物MTBが送電装置10の載置面上に載置される場合の動作例が示されているので、送電装置10から認証信号が受電装置20に伝送されず、送電装置10と受電装置20との間の認証処理は失敗する。即ち、図7の時刻t1の時点では、認証完了割込み信号は給電IC12から出力されない。 In FIG. 7, the power supply IC 12 determines that the power receiving device 20 or the metal foreign object MTB is placed on the placement surface of the power transmission device 10 based on the output voltage V 6 of the mounting detection circuit 16 at time t1. Therefore, similarly to FIG. 6, the magnitude of the power transmission current I in the power transmission device 10 is larger than the magnitude of the power transmission current I during intermittent power transmission. However, since FIG. 7 shows an operation example when the metal foreign object MTB is placed on the placement surface of the power transmission device 10, the authentication signal is not transmitted from the power transmission device 10 to the power reception device 20, and the power transmission device 10 and the power receiving apparatus 20 fail. That is, the authentication completion interrupt signal is not output from the power feeding IC 12 at time t1 in FIG.

そこで、送電装置10の給電IC12は、時刻t1から所定の期間(例えば時刻t1〜t5までの5[秒]の間)では、受電装置20が載置面に載置された場合に認証処理を成功し易くするために、時刻t1までの間欠送電時(間欠送電(5ms))の送電電流Iの出力周期(例えば5[ミリ秒])を増加させるように送電電流Iの出力周期(例えば100[ミリ秒])に切り替える(間欠送電(100ms))。   Therefore, the power feeding IC 12 of the power transmission device 10 performs authentication processing when the power receiving device 20 is placed on the placement surface during a predetermined period (for example, 5 [seconds] from time t1 to t5) from time t1. In order to facilitate the success, the output cycle (for example, 100) of the transmission current I is increased so as to increase the output cycle (for example, 5 [milliseconds]) of the transmission current I during intermittent power transmission (intermittent power transmission (5 ms)) until time t1. [Milliseconds]) (intermittent power transmission (100 ms)).

但し図7では、送電装置10のコントロールCPU11又は給電IC12は、時刻t1の時点では、送電装置10と受電装置20との間の認証処理が失敗しても、間欠送電(100ms)の期間(時刻t1〜t5)が終了するまでは、金属異物MTBが検知されたと判定しない。   However, in FIG. 7, the control CPU 11 or the power supply IC 12 of the power transmission device 10 has a period (time) of intermittent power transmission (100 ms) even if the authentication process between the power transmission device 10 and the power reception device 20 fails at the time t1. Until t1 to t5) is finished, it is not determined that the metal foreign matter MTB has been detected.

時刻t1から所定の期間が経過して時刻t5になっても、送電装置10と受電装置20との間の認証処理が成功しない場合には、送電装置10のコントロールCPU11は、異物検知回路18からの出力を基に、時刻t1の時点で載置面に載置された物体は受電装置20ではなく金属異物MTBであると検知する。この場合には、給電IC12から所定の異物検知割込み信号が出力される。   If the authentication process between the power transmitting device 10 and the power receiving device 20 is not successful even after a predetermined period of time has elapsed from time t1, the control CPU 11 of the power transmitting device 10 starts from the foreign object detection circuit 18. Based on the output of, it is detected that the object placed on the placement surface at time t1 is not the power receiving device 20 but the metal foreign object MTB. In this case, a predetermined foreign object detection interrupt signal is output from the power feeding IC 12.

時刻t5以降では、送電装置10のコントロールCPU11又は給電IC12は、出力周期100[ミリ秒]の間欠的な送電電流Iの出力を停止し、時刻t1以前のように出力周期5[ミリ秒]の間欠的な送電電流Iの出力に戻すように切り替える。但し、金属異物MTBが送電装置10の載置面上に載置されているために、送電装置10のインピーダンスが低下してしまい、時刻t5以降の送電電流Iは、時刻t1以前の送電電流Iに比べて大きくなる。   After the time t5, the control CPU 11 or the power feeding IC 12 of the power transmission device 10 stops the output of the intermittent transmission current I with an output cycle of 100 [milliseconds], and has an output cycle of 5 [milliseconds] before the time t1. It switches so that it may return to the output of intermittent transmission current I. However, since the metallic foreign object MTB is placed on the placement surface of the power transmission device 10, the impedance of the power transmission device 10 decreases, and the power transmission current I after time t5 is the power transmission current I before time t1. Larger than

なお、図7に示す送電装置10の動作は、金属異物MTBが単独で送電装置10の載置面に載置される場合又は接近する場合の動作に限らず、受電装置20と非常に大きな金属異物MTBとがともに載置面に載置される場合又は接近する場合の動作に適用しても良い。受電装置20の受電コイルRxCに対して大きな金属異物MTBが受電装置20とともに載置されたり接近したりすると、認証信号が受電装置20に伝送されずに認証処理が失敗する可能性が高いためである。   Note that the operation of the power transmission device 10 illustrated in FIG. 7 is not limited to the operation when the metal foreign object MTB is placed on or close to the placement surface of the power transmission device 10, and the power receiving device 20 and a very large metal You may apply to the operation | movement when the foreign material MTB is mounted on a mounting surface together, or when approaching. If a large foreign metal MTB is placed or approaches the power receiving coil 20 of the power receiving device 20 together with the power receiving device 20, there is a high possibility that the authentication process will fail without being transmitted to the power receiving device 20. is there.

(金属異物と受電装置とが送電装置の載置面上に載置される場合の電力伝送システムの動作)
次に、金属異物MTBと受電装置20とがともに送電装置10の載置面上に載置される場合の送電装置10の時系列な動作手順について、図8を参照して説明する。図8は、金属異物MTBと受電装置20とがともに送電装置10の載置面上に載置される場合の送電装置10における送電電流の監視、搭載検知、認証完了、異物検知の各動作の一例を示すタイムチャートである。図8の説明では、図6の説明と重複する内容の説明は簡略化又は省略し、異なる内容について説明する。
(Operation of the power transmission system when the metal foreign object and the power receiving device are mounted on the mounting surface of the power transmitting device)
Next, a time-series operation procedure of the power transmission device 10 when both the metal foreign object MTB and the power receiving device 20 are placed on the placement surface of the power transmission device 10 will be described with reference to FIG. FIG. 8 shows each of the operations of power transmission current monitoring, mounting detection, authentication completion, and foreign object detection in the power transmission apparatus 10 when both the metal foreign object MTB and the power receiving apparatus 20 are mounted on the mounting surface of the power transmission apparatus 10. It is a time chart which shows an example. In the description of FIG. 8, description of contents overlapping with the description of FIG. 6 is simplified or omitted, and different contents will be described.

図8では、図7とは異なり、受電装置20の受電コイルRxCに対して小さい金属異物MTBが受電装置20とともに載置された場合又は接近した場合であるため、認証信号が受電装置20に伝送されて認証処理が成功する例が示されている。   In FIG. 8, unlike FIG. 7, an authentication signal is transmitted to the power receiving device 20 because a small metal foreign matter MTB is placed with or close to the power receiving coil RxC of the power receiving device 20. In this example, the authentication process is successful.

更に図8の異物検知区間(時刻t3〜t4参照)では、受電装置20の定電流回路26の動作はオフ状態であるが、送電装置10の近くに金属異物MTBがあるため、送電装置10のインピーダンスは図6に示す異物検知区間(時刻t3〜t4参照)におけるインピーダンスよりも小さくなるように変化する。このため、図8の異物検知区間(時刻t3〜t4参照)における送電電流Iは、異物検知閾値としての役割を有する搭載検知閾値Ith1よりも大きい。   Further, in the foreign object detection section (see times t3 to t4) in FIG. 8, the operation of the constant current circuit 26 of the power receiving device 20 is in an off state, but since there is a metal foreign object MTB near the power transmitting device 10, The impedance changes so as to be smaller than the impedance in the foreign object detection section (see times t3 to t4) shown in FIG. For this reason, the power transmission current I in the foreign object detection section (see times t3 to t4) in FIG. 8 is larger than the mounting detection threshold value Ith1 that serves as a foreign object detection threshold value.

ただ図8では、送電装置10と受電装置20との間の認証処理が成功するので、受電装置20とともに金属異物MTBが送電装置10に載置されたり接近したりすると、送電装置10から連続送電によって大きな電力が送電されてしまい、金属異物MTBが発熱してしまい、実運用を考慮すると好ましくない。   However, in FIG. 8, since the authentication process between the power transmission device 10 and the power receiving device 20 is successful, when the metal foreign matter MTB is placed on or approaches the power transmission device 10 together with the power receiving device 20, continuous power transmission from the power transmission device 10. As a result, a large amount of electric power is transmitted and the metal foreign matter MTB generates heat, which is not preferable in consideration of actual operation.

そこで図8では、図6とは異なり、送電装置10の連続送電による金属異物MTBの発熱を抑制するために、給電IC12は、所定の認証割込み信号を出力してから所定の期間(例えば2.5[秒](=時刻t2〜t6までの0.5[秒]+時刻t6〜t7までの2.0[秒]))が経過すると、連続的な送電電流Iに応じた電力の送電(連続送電)を停止する(時刻t7参照)。時刻t2〜t6までの0.5[秒]は、例えばタイマー回路TM2が計時する第2所定時間Td2に対応する。時刻t6〜t7までの2.0[秒]は、送電装置10が一時的に連続送電を行うための所定猶予期間である。   Therefore, in FIG. 8, unlike FIG. 6, the power supply IC 12 outputs a predetermined authentication interrupt signal for a predetermined period (for example, 2.. When 5 [seconds] (= 0.5 [second] from time t2 to t6 + 2.0 [second] from time t6 to t7)) has elapsed, power transmission according to continuous transmission current I ( (Continuous power transmission) is stopped (see time t7). 0.5 [seconds] from time t2 to time t6 corresponds to, for example, the second predetermined time Td2 measured by the timer circuit TM2. 2.0 [seconds] from time t6 to time t7 is a predetermined grace period for the power transmission apparatus 10 to temporarily continuously transmit power.

つまり、給電IC12は、上述した2.5[秒]のうち前半の0.5[秒]では、金属異物MTBが載置されたか否かの一次的な判定を行い、後半の2.0[秒]では、金属異物MTBが載置されたか否かの二次的な判定を行う。時刻t7以降では、送電装置10のコントロールCPU11は、異物検知回路18からの出力を基に、時刻t1の時点で載置面に載置された物体は受電装置20と金属異物MTBとであると検知する。この場合には、給電IC12から所定の異物検知割込み信号が出力される。   That is, the power feeding IC 12 makes a primary determination as to whether or not the metal foreign matter MTB is placed in the first half of 0.5 [second] out of the above 2.5 [second], and the second half of 2.0 [second]. Second], a secondary determination is made as to whether or not the metal foreign object MTB has been placed. After time t7, the control CPU 11 of the power transmission device 10 determines that the objects placed on the placement surface at the time t1 are the power receiving device 20 and the metal foreign matter MTB based on the output from the foreign matter detection circuit 18. Detect. In this case, a predetermined foreign object detection interrupt signal is output from the power feeding IC 12.

時刻t7以降では、送電装置10のコントロールCPU11又は給電IC12は、時刻t4〜t7における連続的な送電電流Iの出力を停止し、時刻t1以前のように間欠的な送電電流Iの出力に戻すように切り替える。但し、金属異物MTBが送電装置10の載置面上に載置されているために、送電装置10のインピーダンスが低下してしまい、時刻t7以降の送電電流Iは、時刻t1以前の送電電流Iに比べて大きくなる。   After time t7, the control CPU 11 or the power feeding IC 12 of the power transmission device 10 stops the output of the continuous power transmission current I from time t4 to t7, and returns it to the output of the intermittent power transmission current I as before time t1. Switch to. However, since the metal foreign object MTB is placed on the placement surface of the power transmission device 10, the impedance of the power transmission device 10 decreases, and the power transmission current I after time t7 is the power transmission current I before time t1. Larger than

以上により、本実施形態の電力伝送システム50では、送電装置10は、受電装置20のタイマー回路TM1の動作に必要最小限の間欠的な送電電流に応じた電力を非接触で送電し、受電装置20が所定の載置面上に載置されたことを検知する。受電装置20は、間欠的な送電電流に応じた電力を送電装置10から非接触で受電し、受電される電力に応じた誘起電圧(整流平滑出力電圧V)が一定値を超えた場合に、タイマー回路TM1が第1所定時間Td1を計時する間、タイマー回路TM1からの動作制御信号に応じて、定電流回路26において所定の定電流が流れる。また、送電装置10は、受電装置20において所定の定電流が流れたことで送電装置10のインピーダンスの変化に応じて、受電装置20が所定の載置面上に載置されたことを検知する。 As described above, in the power transmission system 50 according to the present embodiment, the power transmission device 10 transmits the power corresponding to the minimum intermittent power transmission necessary for the operation of the timer circuit TM1 of the power reception device 20 in a contactless manner. It is detected that 20 is placed on a predetermined placement surface. The power receiving device 20 receives power corresponding to the intermittent power transmission current from the power transmitting device 10 in a non-contact manner, and an induced voltage (rectified smoothed output voltage V 2 ) corresponding to the received power exceeds a certain value. While the timer circuit TM1 measures the first predetermined time Td1, a predetermined constant current flows in the constant current circuit 26 in accordance with the operation control signal from the timer circuit TM1. Further, the power transmission device 10 detects that the power reception device 20 is placed on a predetermined placement surface according to a change in impedance of the power transmission device 10 due to a predetermined constant current flowing in the power reception device 20. .

これにより、電力伝送システム50では、送電装置10は、受電装置20のタイマー回路TM1の動作に必要最小限の間欠的な送電電流に応じた電力を非接触で送電するので消費電力の増大を抑制することができる。また、受電装置20は、送電装置10に接近した場合に、間欠的な送電電流に応じた電力を基にしてタイマー回路TM1が第1所定時間Td1を計時する間は定電流が流れるので、受電装置20に定電流が流れることによって送電装置10におけるインピーダンスの変化が大きくなることで、受電装置20が送電装置10の載置面に載置されたことを送電装置10に対して認識させることができる。   As a result, in the power transmission system 50, the power transmission device 10 transmits the power corresponding to the minimum intermittent transmission current necessary for the operation of the timer circuit TM1 of the power reception device 20 in a non-contact manner, thereby suppressing an increase in power consumption. can do. Further, when the power receiving device 20 approaches the power transmitting device 10, a constant current flows while the timer circuit TM1 counts the first predetermined time Td1 based on the power corresponding to the intermittent power transmitting current. By causing a constant current to flow through the device 20, a change in impedance in the power transmission device 10 becomes large, thereby causing the power transmission device 10 to recognize that the power reception device 20 is placed on the placement surface of the power transmission device 10. it can.

また、電力伝送システム50では、送電装置10は、受電装置20が所定の載置面上に載置されたことを検知した後、受電装置20において生じる所定の定電流に基づいて連続的な送電電流に応じた電力の信号に所定の認証信号を重畳した伝送信号を送電コイルTxCから送電する。また、受電装置20は、タイマー回路TM1が第1所定時間Td1の計時を開始した後、送電装置10から送電された伝送信号を基に、送電装置10との間で認証処理を行うので、受電装置20における認証信号の分離精度を向上することができ、送電装置10との間で高精度な認証処理を行うことができる。   In the power transmission system 50, the power transmission device 10 detects that the power receiving device 20 is placed on a predetermined placement surface, and then continuously transmits power based on a predetermined constant current generated in the power receiving device 20. A transmission signal in which a predetermined authentication signal is superimposed on a power signal corresponding to the current is transmitted from the power transmission coil TxC. In addition, since the power receiving device 20 performs an authentication process with the power transmission device 10 based on the transmission signal transmitted from the power transmission device 10 after the timer circuit TM1 starts measuring the first predetermined time Td1, The separation accuracy of the authentication signal in the device 20 can be improved, and highly accurate authentication processing can be performed with the power transmission device 10.

また、電力伝送システム50では、受電装置20は、第1所定時間Td1の計時後又は送電装置10との間の認証が成功した後で、更に、タイマー回路TM2が第2所定時間Td2を計時し終えた後、第2所定時間Td2の間に送電装置10への載置物が受電装置20であることが送電装置10において判断されると送電コイルTxCから連続的な送電電流に応じた電力が送電されるので、受電コイルRxCとDC/DC23との間を導通させることで、DC/DC23を介したバッテリへの充電を安全に行うことができる。   In the power transmission system 50, the power receiving device 20 further counts the second predetermined time Td2 after the first predetermined time Td1 is timed or after the authentication with the power transmission device 10 is successful. After the completion, if the power transmission device 10 determines that the object placed on the power transmission device 10 is the power reception device 20 during the second predetermined time Td2, the power corresponding to the continuous transmission current is transmitted from the power transmission coil TxC. Therefore, the battery can be safely charged via the DC / DC 23 by conducting between the power receiving coil RxC and the DC / DC 23.

また、電力伝送システム50では、送電装置10は、送電コイルTxCへの送電電流の大きさと、受電装置20との間の認証の成否との両方を基に、所定の載置面に受電装置20以外の金属異物MTBが載置されたことを検知することができ、更に、金属異物MTBが所定の載置面上に載置されたことを判断した後、所定期間にわたって間欠的な送電電流の出力周期を増加させるので、受電装置20との間の認証において伝送信号に含まれる認証信号の検知精度を向上させることができ、認証を効率的に行うことができる。   Further, in the power transmission system 50, the power transmission device 10 has a power receiving device 20 on a predetermined placement surface based on both the magnitude of the power transmission current to the power transmission coil TxC and the success or failure of authentication with the power receiving device 20. It is possible to detect that a metal foreign matter MTB other than that is placed, and after determining that the metal foreign matter MTB has been placed on a predetermined placement surface, an intermittent transmission current Since the output cycle is increased, it is possible to improve the detection accuracy of the authentication signal included in the transmission signal in the authentication with the power receiving device 20, and the authentication can be performed efficiently.

また、電力伝送システム50は、送電装置10は、受電装置20との間の認証が所定期間において失敗した場合には、間欠的な送電電流の出力周期を減少させるので、受電装置20又は金属異物MTBが載置面に載置されることを検知するまでの間に出力する送電電流の消費電力の増大を抑制することができる。   Moreover, since the power transmission system 50 reduces the output cycle of intermittent power transmission current when authentication with the power receiving device 20 fails during a predetermined period, the power transmitting device 10 or the metal foreign object It is possible to suppress an increase in power consumption of a transmission current output until it is detected that the MTB is placed on the placement surface.

また、電力伝送システム50では、送電装置10は、出力周期が増加した後の送電電流が所定の異物検知閾値未満となった場合には、載置面に対して受電装置20が載置された可能性が高いために、間欠的な送電電流の出力周期を減少させることで消費電力の増大を抑制することができる。   Further, in the power transmission system 50, the power transmission device 10 has the power receiving device 20 mounted on the mounting surface when the power transmission current after the output cycle increases becomes less than a predetermined foreign object detection threshold. Since the possibility is high, an increase in power consumption can be suppressed by reducing the output cycle of intermittent transmission current.

また、電力伝送システム50では、送電装置10は、タイマー回路TM2が第2所定時間Td2を計時する間に送電コイルTxCへの送電電流の大きさが所定の搭載検知閾値Ith1(異物検知閾値)を超える場合には、送電装置10におけるインピーダンスが低下したと考えられるので、載置面に受電装置20以外の金属異物MTBが載置されたことを検知することができる。   In the power transmission system 50, the power transmission device 10 determines that the magnitude of the transmission current to the power transmission coil TxC is equal to the predetermined mounting detection threshold Ith1 (foreign object detection threshold) while the timer circuit TM2 measures the second predetermined time Td2. When exceeding, since it is thought that the impedance in the power transmission device 10 has decreased, it is possible to detect that the metal foreign matter MTB other than the power receiving device 20 is placed on the placement surface.

また、電力伝送システム50では、送電装置10は、タイマー回路TM2が第2所定時間Td2を計時してから所定猶予期間(例えば2秒)が経過するまでの間の送電コイルTxCへの送電電流が搭載検知閾値Ith1(異物検知閾値)を超える場合には、送電装置10におけるインピーダンスが低下したままの状態が継続していると考えられるので、載置面に受電装置20以外の金属異物MTBが載置されたことを高い確度で検知することができる。また、送電装置10は、金属異物MTBが所定の載置面上に載置されたことを判断した場合に、タイマー回路TM2が第2所定時間Td2を計時してからの連続的な送電電流から間欠的な送電電流に切り替えるので、消費電力の増大を抑制することができる。   Further, in the power transmission system 50, the power transmission device 10 is configured such that the transmission current to the power transmission coil TxC from the time when the timer circuit TM2 measures the second predetermined time Td2 until a predetermined grace period (for example, 2 seconds) elapses. When the mounting detection threshold value Ith1 (foreign matter detection threshold value) is exceeded, it is considered that the state where the impedance of the power transmission device 10 is reduced continues, so that the metal foreign matter MTB other than the power receiving device 20 is placed on the placement surface. It can be detected with high accuracy. Further, when the power transmission device 10 determines that the metal foreign object MTB has been placed on the predetermined placement surface, the power transmission device 10 starts from the continuous power transmission current after the timer circuit TM2 measures the second predetermined time Td2. Since it switches to intermittent power transmission current, the increase in power consumption can be suppressed.

最後に、本発明に係る受電装置、受電方法及び電力伝送システムの構成、作用、効果について説明する。   Finally, the configuration, operation, and effect of the power reception device, power reception method, and power transmission system according to the present invention will be described.

本発明の一実施形態は、間欠的な送電電流に応じた電力を送電装置から非接触で受電する受電コイルと、前記受電コイルで受電される電力に応じた誘起電圧が所定値を超えた場合に、第1所定時間を計時する第1タイマー回路と、前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、所定の定電流が流れる定電流回路と、を備える、受電装置である。   In one embodiment of the present invention, a power receiving coil that receives power corresponding to an intermittent power transmission current from a power transmitting device in a contactless manner, and an induced voltage corresponding to the power received by the power receiving coil exceeds a predetermined value. A first timer circuit that counts a first predetermined time; and while the first timer circuit counts the first predetermined time, a predetermined constant current is generated according to an operation control signal from the first timer circuit. And a constant current circuit that flows.

この構成によれば、受電装置は、間欠的な送電電流に応じた電力を送電装置から非接触で受電し、受電される電力に応じた誘起電圧が所定値を超えた場合に、第1タイマー回路が第1所定時間を計時する間、第1タイマー回路からの動作制御信号に応じて、定電流回路において所定の定電流が流れる。   According to this configuration, the power receiving device receives the power corresponding to the intermittent power transmission current from the power transmission device in a contactless manner, and when the induced voltage corresponding to the received power exceeds a predetermined value, the first timer While the circuit measures the first predetermined time, a predetermined constant current flows in the constant current circuit in accordance with the operation control signal from the first timer circuit.

これにより、受電装置は、送電装置に接近した場合に、受電装置の第1タイマー回路の動作に必要最小限の間欠的な送電電流に応じた電力を基にして第1タイマー回路が第1所定時間を計時する間は定電流が流れるので、受電装置に定電流が流れることによって送電装置におけるインピーダンスの変化を大きくなり、受電装置が送電装置の載置面に載置されたことを送電装置に対して認識させることができる。   Accordingly, when the power receiving device approaches the power transmitting device, the first timer circuit is set to the first predetermined value based on the power corresponding to the minimum intermittent power transmission current necessary for the operation of the first timer circuit of the power receiving device. Since a constant current flows while timing the time, the constant current flows through the power receiving device, which increases the impedance change in the power transmitting device, and informs the power transmitting device that the power receiving device is mounted on the mounting surface of the power transmitting device. Can be recognized.

また、本発明の一実施形態は、前記第1タイマー回路が前記第1所定時間の計時を開始した後、前記所定の定電流に基づく連続的な送電電流に応じた電力の信号に所定の認証信号が重畳された伝送信号を基に、前記送電装置との間で認証する認証部、を更に備える、受電装置である。   In one embodiment of the present invention, after the first timer circuit starts counting the first predetermined time, a predetermined authentication is performed on a power signal corresponding to a continuous transmission current based on the predetermined constant current. The power receiving device further includes an authentication unit that authenticates with the power transmission device based on a transmission signal on which the signal is superimposed.

この構成によれば、受電装置は、第1タイマー回路が第1所定時間の計時を開始した後、所定の定電流に基づいて送電装置からの連続的な送電電流に応じた電力の信号に所定の認証信号が重畳された伝送信号を基に、送電装置との間で認証するので、受電装置における認証信号の分離精度を向上することができ、送電装置との間で高精度な認証処理を行うことができる。   According to this configuration, after the first timer circuit starts measuring the first predetermined time, the power receiving device generates a predetermined power signal corresponding to the continuous power transmission current from the power transmission device based on the predetermined constant current. Authentication is performed with the power transmission device based on the transmission signal on which the authentication signal is superimposed, so that the accuracy of separation of the authentication signal in the power receiving device can be improved, and highly accurate authentication processing is performed with the power transmission device. It can be carried out.

また、本発明の一実施形態は、前記誘起電圧を所定の直流電圧に変圧する直流変圧部と、前記第1所定時間の計時後又は前記送電装置との間の認証が成功した後、第2所定時間を計時する第2タイマー回路と、を更に備え、前記第2タイマー回路が前記第2所定時間を計時する間、前記受電コイルと前記直流変圧部との間は非導通である、受電装置である。   In addition, according to an embodiment of the present invention, the DC transformer unit that transforms the induced voltage into a predetermined DC voltage and the second predetermined time, or after the authentication between the power transmission device succeeds, the second A power receiving device, further comprising a second timer circuit for measuring a predetermined time, wherein the power receiving coil and the DC transformer unit are non-conductive while the second timer circuit measures the second predetermined time. It is.

この構成によれば、受電装置は、第1所定時間の計時後又は送電装置との間の認証が成功した後、第2タイマー回路が第2所定時間を計時する間を、送電装置への載置物が金属異物か受電装置かを送電装置に判断させる異物検知区間として、この異物検知区間では受電コイルと直流変圧部との間を非導通にさせることで、受電装置における充電の開始を保留させることができる。   According to this configuration, the power receiving apparatus loads the power on the power transmission apparatus after the first predetermined time is measured or after the second timer circuit measures the second predetermined time after the authentication with the power transmission apparatus is successful. As a foreign object detection section that makes the power transmission apparatus determine whether the figurine is a metal foreign object or a power receiving device, in this foreign object detection section, the start of charging in the power receiving device is deferred by making the receiving coil and the DC transformer non-conductive. be able to.

また、本発明の一実施形態は、前記誘起電圧を所定の直流電圧に変圧する直流変圧部と、前記第1所定時間の計時後又は前記送電装置との間の認証が成功した後、第2所定時間を計時する第2タイマー回路と、前記受電コイルにより受電された電力を基に、充電池を充電する充電制御部と、を更に備え、前記充電制御部は、前記第2タイマー回路が前記第2所定時間を計時した後、前記送電コイルから連続的に送電される電力を基に、前記受電コイルとの間が導通となった前記直流変圧部を介して、前記充電池に充電させる、受電装置である。   In addition, according to an embodiment of the present invention, the DC transformer unit that transforms the induced voltage into a predetermined DC voltage and the second predetermined time, or after the authentication between the power transmission device succeeds, the second A second timer circuit that counts a predetermined time; and a charge control unit that charges a rechargeable battery based on the power received by the power receiving coil, wherein the second timer circuit includes the second timer circuit. After counting the second predetermined time, based on the power continuously transmitted from the power transmission coil, the rechargeable battery is charged via the DC transformer unit that is electrically connected to the power receiving coil. It is a power receiving device.

この構成によれば、受電装置は、第1所定時間の計時後又は送電装置との間の認証が成功した後で、更に、第2タイマー回路が第2所定時間を計時し終えた後、第2所定時間の間に送電装置への載置物が受電装置であることが判断されると送電コイルから連続的な送電電流に応じた電力が送電されるので、受電コイルと直流変圧部との間を導通させることで、直流変圧部を介した充電池への充電を安全に行うことができる。   According to this configuration, the power receiving device can count the first predetermined time or after the authentication with the power transmitting device has succeeded, and further after the second timer circuit finishes counting the second predetermined time, 2 When it is determined that the object placed on the power transmission device is a power reception device during a predetermined time, power corresponding to a continuous transmission current is transmitted from the power transmission coil. Can be safely charged via the DC transformer.

また、本発明の一実施形態は、受電装置における受電方法であって、間欠的な送電電流に応じた電力を送電装置から非接触で受電コイルにおいて受電するステップと、前記受電コイルにより受電された電力に応じた誘起電圧が所定値を超えた場合に、第1タイマー回路において第1所定時間を計時するステップと、前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、定電流回路において所定の定電流が流れるステップと、を有する、受電方法である。   One embodiment of the present invention is a power receiving method in a power receiving device, the step of receiving power in a power receiving coil in a contactless manner from the power transmitting device in accordance with an intermittent power transmission current, and power received by the power receiving coil. When the induced voltage corresponding to the electric power exceeds a predetermined value, the first timer circuit counts the first predetermined time, and the first timer circuit counts the first predetermined time while the first timer circuit counts the first predetermined time. And a step in which a predetermined constant current flows in the constant current circuit in response to an operation control signal from the circuit.

この方法によれば、受電装置は、間欠的な送電電流に応じた電力を送電装置から非接触で受電し、受電される電力に応じた誘起電圧が所定値を超えた場合に、第1タイマー回路が第1所定時間を計時する間、第1タイマー回路からの動作制御信号に応じて、定電流回路において所定の定電流が流れる。   According to this method, the power receiving device receives the power corresponding to the intermittent power transmission current from the power transmission device in a non-contact manner, and when the induced voltage corresponding to the received power exceeds a predetermined value, the first timer While the circuit measures the first predetermined time, a predetermined constant current flows in the constant current circuit in accordance with the operation control signal from the first timer circuit.

これにより、受電装置は、送電装置に接近した場合に、受電装置の第1タイマー回路の動作に必要最小限の間欠的な送電電流に応じた電力を基にして第1タイマー回路が第1所定時間を計時する間は定電流が流れるので、受電装置に定電流が流れることによって送電装置におけるインピーダンスの変化を大きくなり、受電装置が送電装置の載置面に載置されたことを送電装置に対して認識させることができる。   Accordingly, when the power receiving device approaches the power transmitting device, the first timer circuit is set to the first predetermined value based on the power corresponding to the minimum intermittent power transmission current necessary for the operation of the first timer circuit of the power receiving device. Since a constant current flows while timing the time, the constant current flows through the power receiving device, which increases the impedance change in the power transmitting device, and informs the power transmitting device that the power receiving device is mounted on the mounting surface of the power transmitting device. Can be recognized.

また、本発明の一実施形態は、送電装置と受電装置とを含む電力伝送システムであって、前記送電装置は、間欠的な送電電流に応じた電力を非接触で送電する送電コイルと、前記受電装置が所定の載置面上に載置されたことを検知する載置検知部と、を備え、前記受電装置は、前記送電コイルから送電された電力を受電する受電コイルと、前記受電コイルにより受電された電力に応じた誘起電圧が所定値を超えた場合に、第1所定時間を計時する第1タイマー回路と、前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、所定の定電流が流れる定電流回路と、を備え、前記載置検知部は、前記所定の定電流に基づく前記送電装置におけるインピーダンスの変化に応じて、前記受電装置が前記所定の載置面上に載置されたことを検知する、電力伝送システムである。   Moreover, one embodiment of the present invention is a power transmission system including a power transmission device and a power reception device, wherein the power transmission device transmits power corresponding to an intermittent power transmission current in a contactless manner, A placement detector that detects that the power receiving device has been placed on a predetermined placement surface, the power receiving device receiving power received from the power transmission coil, and the power receiving coil. A first timer circuit that counts a first predetermined time when an induced voltage corresponding to the power received by the power exceeds a predetermined value; and while the first timer circuit counts the first predetermined time, A constant current circuit through which a predetermined constant current flows in response to an operation control signal from one timer circuit, wherein the position detection unit according to a change in impedance in the power transmission device based on the predetermined constant current The power receiving device It detects that it has been placed on the predetermined mounting surface, a power transmission system.

この構成では、送電装置は、受電装置の第1タイマー回路の動作に必要最小限の間欠的な送電電流に応じた電力を非接触で送電し、受電装置が所定の載置面上に載置されたことを検知する。受電装置は、間欠的な送電電流に応じた電力を送電装置から非接触で受電し、受電される電力に応じた誘起電圧が所定値を超えた場合に、第1タイマー回路が第1所定時間を計時する間、第1タイマー回路からの動作制御信号に応じて、定電流回路において所定の定電流が流れる。また、送電装置は、受電装置において所定の定電流が流れたことで送電装置のインピーダンスの変化に応じて、受電装置が所定の載置面上に載置されたことを検知する。   In this configuration, the power transmission device transmits the power corresponding to the minimum intermittent power transmission current necessary for the operation of the first timer circuit of the power reception device in a non-contact manner, and the power reception device is placed on a predetermined placement surface. It is detected that The power receiving device receives the power corresponding to the intermittent power transmission current from the power transmission device in a non-contact manner, and when the induced voltage corresponding to the received power exceeds a predetermined value, the first timer circuit performs the first predetermined time. During the time measurement, a predetermined constant current flows in the constant current circuit according to the operation control signal from the first timer circuit. In addition, the power transmission device detects that the power reception device is placed on a predetermined placement surface according to a change in impedance of the power transmission device due to a predetermined constant current flowing in the power reception device.

これにより、電力伝送システムでは、送電装置は、受電装置の第1タイマー回路の動作に必要最小限の間欠的な送電電流に応じた電力を非接触で送電するので消費電力の増大を抑制することができる。また、受電装置は、送電装置に接近した場合に、間欠的な送電電流に応じた電力を基にして第1タイマー回路が第1所定時間を計時する間は定電流が流れるので、受電装置に定電流が流れることによって送電装置におけるインピーダンスの変化が大きくなることで、受電装置が送電装置の載置面に載置されたことを送電装置に対して認識させることができる。   Thereby, in the power transmission system, the power transmission device transmits power according to the minimum intermittent power transmission current necessary for the operation of the first timer circuit of the power reception device in a non-contact manner, thereby suppressing an increase in power consumption. Can do. Further, when the power receiving device approaches the power transmitting device, a constant current flows while the first timer circuit counts the first predetermined time based on the power corresponding to the intermittent power transmitting current. When the constant current flows, the change in impedance in the power transmission device increases, so that the power transmission device can recognize that the power reception device is placed on the placement surface of the power transmission device.

また、本発明の一実施形態は、前記送電装置は、前記受電装置が前記所定の載置面上に載置されたことが前記載置検知部により検知された後、前記所定の定電流に基づく連続的な送電電流に応じた電力の信号に所定の認証信号を重畳した伝送信号を前記送電コイルから送電し、前記受電装置は、前記第1タイマー回路が前記第1所定時間の計時を開始した後、前記送電コイルから送電された前記伝送信号を基に、前記送電装置との間で認証する認証部、を更に備える、電力伝送システムである。   In one embodiment of the present invention, the power transmission device is configured to change the power reception device to the predetermined constant current after the placement detection unit detects that the power reception device is placed on the predetermined placement surface. A transmission signal in which a predetermined authentication signal is superimposed on a power signal corresponding to a continuous transmission current based on the power is transmitted from the power transmission coil, and the power receiving device starts counting the first predetermined time by the first timer circuit Then, the power transmission system further includes an authentication unit that authenticates with the power transmission device based on the transmission signal transmitted from the power transmission coil.

この構成によれば、電力伝送システムでは、送電装置は、受電装置が所定の載置面上に載置されたことを検知した後、受電装置において生じる所定の定電流に基づいて連続的な送電電流に応じた電力の信号に所定の認証信号を重畳した伝送信号を送電コイルから送電する。また、受電装置は、第1タイマー回路が第1所定時間の計時を開始した後、送電装置から送電された伝送信号を基に、送電装置との間で認証を行うので、受電装置における認証信号の分離精度を向上することができ、送電装置との間で高精度な認証処理を行うことができる。   According to this configuration, in the power transmission system, the power transmission device detects that the power reception device is placed on a predetermined placement surface, and then continuously transmits power based on the predetermined constant current generated in the power reception device. A transmission signal in which a predetermined authentication signal is superimposed on a power signal corresponding to the current is transmitted from the power transmission coil. In addition, since the power receiving device performs authentication with the power transmission device based on the transmission signal transmitted from the power transmission device after the first timer circuit starts measuring the first predetermined time, the authentication signal in the power reception device Separation accuracy can be improved, and highly accurate authentication processing can be performed with the power transmission apparatus.

また、本発明の一実施形態は、前記受電装置は、前記誘起電圧を所定の直流電圧に変圧する直流変圧部と、前記第1所定時間の計時後又は前記送電装置との間の認証が成功した後、第2所定時間を計時する第2タイマー回路と、前記受電コイルにより受電された電力を基に、充電池を充電する充電制御部と、を更に備え、前記送電装置は、前記第2所定時間が経過した後、連続的な送電電流に基づく電力を非接触で前記送電コイルから送電し、前記充電制御部は、前記第2タイマー回路が前記第2所定時間を計時した後、前記送電コイルから送電される電力を基に、前記受電コイルとの間が導通となった前記直流変圧部を介して、前記充電池に充電させる、電力伝送システムである。   Further, according to an embodiment of the present invention, the power receiving device has succeeded in authentication between the direct current transformer that transforms the induced voltage into a predetermined direct current voltage and the time measurement of the first predetermined time or the power transmission device. And a charging control unit for charging the rechargeable battery based on the power received by the power receiving coil, and the power transmission device includes the second timer circuit that counts the second predetermined time. After a predetermined time has elapsed, power based on a continuous transmission current is transmitted from the power transmission coil in a non-contact manner, and the charging control unit is configured to transmit the power transmission after the second timer circuit has timed the second predetermined time. In the power transmission system, the rechargeable battery is charged through the direct current transformer that is electrically connected to the power receiving coil based on the power transmitted from the coil.

この構成によれば、電力伝送システムでは、受電装置は、第1所定時間の計時後又は送電装置との間の認証が成功した後で、更に、第2タイマー回路が第2所定時間を計時し終えた後、第2所定時間の間に送電装置への載置物が受電装置であることが送電装置において判断されると送電コイルから連続的な送電電流に応じた電力が送電されるので、受電コイルと直流変圧部との間を導通させることで、直流変圧部を介した充電池への充電を安全に行うことができる。   According to this configuration, in the power transmission system, the power receiving device counts the second predetermined time after the first predetermined time is measured or after the authentication with the power transmission device is successful. When the power transmission device determines that the object placed on the power transmission device is the power reception device during the second predetermined time, power corresponding to the continuous transmission current is transmitted from the power transmission coil. By conducting between the coil and the direct current transformer, charging of the rechargeable battery via the direct current transformer can be performed safely.

また、本発明の一実施形態は、前記送電装置は、前記送電コイルへの送電電流の大きさと、前記受電装置との間の認証の成否とを基に、前記所定の載置面に前記受電装置以外の金属異物が載置されたことを検知する異物載置判断部と、前記金属異物が前記所定の載置面上に載置されたことが前記異物載置判断部により判断された後、所定期間にわたって前記間欠的な送電電流の出力周期を増加させる送電電流制御部と、を更に備える、電力伝送システムである。   In one embodiment of the present invention, the power transmission device receives the power reception on the predetermined placement surface based on a magnitude of a power transmission current to the power transmission coil and success or failure of authentication with the power reception device. After the foreign object placement determination unit detects that a metal foreign object other than the apparatus has been placed and the foreign object placement judgment unit determines that the metal foreign object has been placed on the predetermined placement surface. A power transmission system further comprising: a power transmission current control unit that increases an output cycle of the intermittent power transmission current over a predetermined period.

この構成によれば、電力伝送システムでは、送電装置は、送電コイルへの送電電流の大きさと、受電装置との間の認証の成否との両方を基に、所定の載置面に受電装置以外の金属異物が載置されたことを検知することができ、更に、金属異物が所定の載置面上に載置されたことを判断した後、所定期間にわたって間欠的な送電電流の出力周期を増加させるので、受電装置との間の認証において伝送信号に含まれる認証信号の検知精度を向上させることができ、認証を効率的に行うことができる。   According to this configuration, in the power transmission system, the power transmission device is a device other than the power reception device on a predetermined placement surface based on both the magnitude of the power transmission current to the power transmission coil and the success or failure of authentication with the power reception device. It is possible to detect that the metal foreign object has been placed, and after determining that the metal foreign object has been placed on the predetermined placement surface, the output cycle of the intermittent transmission current is determined over a predetermined period. Therefore, the detection accuracy of the authentication signal included in the transmission signal can be improved in the authentication with the power receiving apparatus, and the authentication can be performed efficiently.

また、本発明の一実施形態は、前記送電電流制御部は、前記送電装置と前記受電装置との間の認証が前記所定期間において失敗した場合に、前記間欠的な送電電流の出力周期を減少させる、電力伝送システムである。   In one embodiment of the present invention, the power transmission current control unit decreases the output cycle of the intermittent power transmission current when authentication between the power transmission device and the power receiving device fails in the predetermined period. It is a power transmission system.

この構成によれば、電力伝送システムは、送電装置は、受電装置との間の認証が所定期間において失敗した場合には、間欠的な送電電流の出力周期を減少させるので、受電装置又は金属異物が載置面に載置されることを検知するまでの間に出力する送電電流の消費電力の増大を抑制することができる。   According to this configuration, the power transmission system reduces the output cycle of the intermittent power transmission current when authentication between the power transmission device and the power receiving device fails in a predetermined period. The increase in power consumption of the transmission current that is output until it is detected that is placed on the placement surface can be suppressed.

また、本発明の一実施形態は、前記送電電流制御部は、前記出力周期が増加した後の前記送電電流が所定の異物検知閾値未満となった場合には、前記間欠的な送電電流の出力周期を減少させる、電力伝送システムである。   Further, according to an embodiment of the present invention, the transmission current control unit outputs the intermittent transmission current when the transmission current after the output cycle increases becomes less than a predetermined foreign object detection threshold. A power transmission system that reduces the period.

この構成によれば、電力伝送システムでは、送電装置は、出力周期が増加した後の送電電流が所定の異物検知閾値未満となった場合には、載置面に対して受電装置が載置された可能性が高いために、間欠的な送電電流の出力周期を減少させることで消費電力の増大を抑制することができる。   According to this configuration, in the power transmission system, when the power transmission current after the output cycle increases is less than the predetermined foreign object detection threshold, the power transmission device is placed on the placement surface. Therefore, the increase in power consumption can be suppressed by reducing the output cycle of intermittent transmission current.

また、本発明の一実施形態は、前記受電装置は、前記第1所定時間の計時後又は前記送電装置との間の認証が成功した後、第2所定時間を計時する第2タイマー回路、を更に備え、前記異物載置判断部は、前記第2タイマー回路が前記第2所定時間を計時する間の前記送電コイルへの送電電流の大きさが所定の異物検知閾値を超える場合に、前記所定の載置面に前記受電装置以外の金属異物が載置されたことを検知する、電力伝送システムである。   Further, according to an embodiment of the present invention, the power receiving device includes a second timer circuit that counts a second predetermined time after counting the first predetermined time or after successful authentication with the power transmission device. The foreign object placement determination unit further includes the predetermined foreign object detection value when a magnitude of a power transmission current to the power transmission coil exceeds a predetermined foreign object detection threshold while the second timer circuit measures the second predetermined time. It is an electric power transmission system which detects that metal foreign objects other than the said power receiving apparatus were mounted in this mounting surface.

この構成によれば、電力伝送システムでは、送電装置は、第2タイマー回路が第2所定時間を計時する間に送電コイルへの送電電流の大きさが所定の異物検知閾値を超える場合には、送電装置におけるインピーダンスが低下したと考えられるので、載置面に受電装置以外の金属異物が載置されたことを検知することができる。   According to this configuration, in the power transmission system, when the magnitude of the power transmission current to the power transmission coil exceeds the predetermined foreign object detection threshold while the second timer circuit measures the second predetermined time, Since it is considered that the impedance in the power transmission device has decreased, it is possible to detect that a metal foreign object other than the power receiving device is placed on the placement surface.

また、本発明の一実施形態は、前記異物載置判断部は、前記第2タイマー回路が前記第2所定時間を計時してから所定猶予期間が経過するまでの間の前記送電コイルへの送電電流が前記異物検知閾値を超える場合に、前記所定の載置面に前記受電装置以外の金属異物が載置されたことを検知し、前記送電電流制御部は、前記金属異物が前記所定の載置面上に載置されたことが前記異物載置判断部により判断された場合に、前記第2タイマー回路が前記第2所定時間を計時してからの前記連続的な送電電流から前記間欠的な送電電流に切り替える、電力伝送システムである。   In one embodiment of the present invention, the foreign object placement determining unit transmits power to the power transmission coil from when the second timer circuit measures the second predetermined time until a predetermined grace period elapses. When the current exceeds the foreign object detection threshold, it is detected that a metallic foreign object other than the power receiving device is placed on the predetermined placement surface, and the power transmission current control unit detects that the metallic foreign object is the predetermined placement surface. When the foreign object placement determining unit determines that the object is placed on the placement surface, the second timer circuit intermittently calculates the second predetermined time from the continuous power transmission current. This is a power transmission system that switches to a different transmission current.

この構成によれば、電力伝送システムでは、送電装置は、第2タイマー回路が第2所定時間を計時してから所定猶予期間が経過するまでの間の送電コイルへの送電電流が異物検知閾値を超える場合には、送電装置におけるインピーダンスが低下したままの状態が継続していると考えられるので、載置面に受電装置以外の金属異物が載置されたことを高い確度で検知することができる。また、送電装置は、金属異物が所定の載置面上に載置されたことを判断した場合に、第2タイマー回路が第2所定時間を計時してからの連続的な送電電流から間欠的な送電電流に切り替えるので、消費電力の増大を抑制することができる。   According to this configuration, in the power transmission system, the power transmission device causes the power transmission current to the power transmission coil from the time when the second timer circuit measures the second predetermined time until the predetermined grace period elapses to set the foreign object detection threshold value. In the case of exceeding, it is considered that the state where the impedance in the power transmission device is lowered is continued, so that it is possible to detect with high accuracy that the metal foreign object other than the power receiving device is placed on the placement surface. . Further, when the power transmission device determines that the metal foreign object has been placed on the predetermined placement surface, the power transmission device intermittently starts from the continuous power transmission current after the second timer circuit measures the second predetermined time. Therefore, the increase in power consumption can be suppressed.

以上、図面を参照しながら各種の実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   While various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、送電装置に接近した場合に、一定時間にわたって定電流を流すことで送電装置におけるインピーダンスの変化を大きくさせ、送電装置の載置面に載置されたことを認識させる受電装置、受電方法及び電力伝送システムとして有用である。   The present invention relates to a power receiving device and a power receiving device that, when approaching a power transmission device, increase a change in impedance in the power transmission device by flowing a constant current over a certain period of time, and recognize that the power receiving device is mounted on the mounting surface. It is useful as a method and power transmission system.

10 送電装置
11 コントロールCPU
12、25 給電IC
13 ドライブ回路
14 インバータ回路
15 LPF
16 搭載検知回路
17、21 共振用コンデンサ
18 異物検知回路
20 受電装置
22 整流平滑回路
23 DC/DC
24 チャージャ
26 定電流回路
I 送電電流
Ith1 定電流動作閾値
RxC 受電コイル
TM1、TM2 タイマー回路
TxC 送電コイル
10 Power Transmission Device 11 Control CPU
12, 25 Power supply IC
13 Drive circuit 14 Inverter circuit 15 LPF
16 On-Board Detection Circuits 17, 21 Resonant Capacitor 18 Foreign Object Detection Circuit 20 Power Receiving Device 22 Rectification Smoothing Circuit 23 DC / DC
24 Charger 26 Constant current circuit I Transmission current Ith1 Constant current operation threshold RxC Power reception coils TM1, TM2 Timer circuit TxC Power transmission coil

Claims (15)

力を送電装置から非接触で受電する受電コイルと、
前記送電装置における間欠的な送電電流に応じて前記受電コイルで受電される間欠送電電力に応じた誘起電圧が所定値を超えた場合に、第1所定時間を計時する第1タイマー回路と、
前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、前記送電装置のインピーダンスが小さくなるように所定の定電流が流れ、前記第1所定時間が経過すると前記送電装置のインピーダンスが大きくなるよう定電流動作を停止する定電流回路と、を備える、
受電装置。
A power receiving coil for receiving a non-contact power from the power transmission device,
A first timer circuit for measuring a first predetermined time when an induced voltage corresponding to the intermittent transmission power received by the power receiving coil exceeds a predetermined value according to an intermittent transmission current in the power transmission device ;
While the first timer circuit measures the first predetermined time , a predetermined constant current flows so as to reduce the impedance of the power transmission device in accordance with an operation control signal from the first timer circuit . A constant current circuit that stops constant current operation so that the impedance of the power transmission device increases when a predetermined time elapses ,
Power receiving device.
電力を送電装置から非接触で受電する受電コイルと、A power receiving coil for receiving power from a power transmission device in a contactless manner;
前記受電コイルで受電される電力信号に対して整流処理及び平滑処理を行う整流平滑回路と、を備える受電装置であって、A power receiving device comprising: a rectifying / smoothing circuit that performs rectification processing and smoothing processing on a power signal received by the power receiving coil;
前記受電装置は、The power receiving device is:
前記整流平滑回路からの出力を基に、前記送電装置から送電された電力を充電池に充電し、又は前記受電装置のシステムを動作させる充電部と、Based on the output from the rectifying and smoothing circuit, charging the rechargeable battery with the power transmitted from the power transmitting device, or operating the system of the power receiving device;
前記送電装置における間欠的な送電電流に応じて前記受電コイルで受電される間欠送電電力に応じた誘起電圧が所定値を超えた場合に、第1所定時間を計時する第1タイマー回路と、A first timer circuit for measuring a first predetermined time when an induced voltage corresponding to the intermittent transmission power received by the power receiving coil exceeds a predetermined value according to an intermittent transmission current in the power transmission device;
前記整流平滑回路から前記充電部への電力供給線から分岐して前記整流平滑回路と前記受電装置の接地部との間に配置され、前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、所定の定電流が流れる定電流回路と、をさらに備える、While being branched from the power supply line from the rectifying / smoothing circuit to the charging unit and disposed between the rectifying / smoothing circuit and the grounding unit of the power receiving apparatus, the first timer circuit measures the first predetermined time. A constant current circuit through which a predetermined constant current flows according to an operation control signal from the first timer circuit,
受電装置。Power receiving device.
請求項1又は2に記載の受電装置であって、
前記第1タイマー回路が前記第1所定時間の計時を開始した後、前記所定の定電流に基づく連続的な送電電流に応じた電力の信号に所定の認証信号が重畳された伝送信号を基に、前記送電装置との間で認証する認証部、を更に備える、
受電装置。
The power receiving device according to claim 1 or 2 ,
After the first timer circuit starts measuring the first predetermined time, based on a transmission signal in which a predetermined authentication signal is superimposed on a power signal corresponding to a continuous transmission current based on the predetermined constant current An authentication unit that authenticates with the power transmission device,
Power receiving device.
請求項に記載の受電装置であって、
前記受電コイルで受電される電力に応じた誘起電圧を所定の直流電圧に変圧する直流変圧部と、
前記第1所定時間の計時後又は前記送電装置との間の認証が成功した後、第2所定時間を計時する第2タイマー回路と、を更に備え、
前記第2タイマー回路が前記第2所定時間を計時する間、前記受電コイルと前記直流変圧部との間は非導通である、
受電装置。
The power receiving device according to claim 3 ,
A DC transformer that transforms an induced voltage corresponding to the power received by the power receiving coil into a predetermined DC voltage;
A second timer circuit for measuring a second predetermined time after the first predetermined time is measured or after successful authentication with the power transmission device,
While the second timer circuit measures the second predetermined time, the power receiving coil and the direct current transformer are non-conductive.
Power receiving device.
請求項に記載の受電装置であって、
前記誘起電圧を所定の直流電圧に変圧する直流変圧部と、
前記第1所定時間の計時後又は前記送電装置との間の認証が成功した後、第2所定時間を計時する第2タイマー回路と、
前記受電コイルにより受電された電力を基に、充電池を充電する充電制御部と、を更に備え、
前記充電制御部は、
前記第2タイマー回路が前記第2所定時間を計時した後、前記送電装置から連続的に送電される電力を基に、前記受電コイルとの間が導通となった前記直流変圧部を介して、前記充電池に充電させる、
受電装置。
The power receiving device according to claim 3 ,
A DC transformer that transforms the induced voltage into a predetermined DC voltage;
A second timer circuit for measuring a second predetermined time after counting the first predetermined time or after successful authentication with the power transmission device;
A charge control unit for charging the rechargeable battery based on the power received by the power receiving coil; and
The charge controller is
After the second timer circuit has timed the second predetermined time, based on the electric power continuously transmitted from the power transmission device, through the DC transformer unit that has become conductive with the power receiving coil, Charging the rechargeable battery,
Power receiving device.
受電装置における受電方法であって、
間欠的な送電電流に応じた間欠送電電力を送電装置から非接触で受電コイルにおいて受電するステップと、
前記受電コイルにより受電された前記間欠送電電力に応じた誘起電圧が所定値を超えた場合に、第1タイマー回路において第1所定時間を計時するステップと、
前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、前記送電装置のインピーダンスが小さくなるように定電流回路において所定の定電流が流れるステップと、
前記第1所定時間が経過すると前記送電装置のインピーダンスが大きくなるよう前記定電流回路の動作を停止するステップと、を有する、
受電方法。
A power receiving method in a power receiving device,
Receiving the intermittent transmission power corresponding to the intermittent transmission current in the power receiving coil from the power transmission device in a contactless manner;
A step of measuring a first predetermined time in a first timer circuit when an induced voltage corresponding to the intermittent transmission power received by the power receiving coil exceeds a predetermined value;
While the first timer circuit measures the first predetermined time, a predetermined constant current flows in the constant current circuit so as to reduce the impedance of the power transmission device according to an operation control signal from the first timer circuit. Steps,
Stopping the operation of the constant current circuit so as to increase the impedance of the power transmission device after the first predetermined time has elapsed ,
Power receiving method.
受電装置における受電方法であって、A power receiving method in a power receiving device,
間欠的な送電電流に応じた間欠送電電力を送電装置から非接触で受電コイルにおいて受電するステップと、Receiving the intermittent transmission power corresponding to the intermittent transmission current in the power receiving coil from the power transmission device in a contactless manner;
前記受電コイルで受電される電力信号に対して整流平滑回路において整流処理及び平滑処理を行うステップと、Performing a rectification process and a smoothing process on a power signal received by the power reception coil in a rectification smoothing circuit;
充電部において前記整流平滑回路からの出力を基に、前記送電装置から送電された電力を充電池に充電し、又は前記受電装置のシステムを動作させるステップと、を有する受電方法であって、Charging a rechargeable battery with electric power transmitted from the power transmission device based on an output from the rectifying and smoothing circuit in a charging unit, or operating a system of the power reception device,
前記受電方法は、The power receiving method is:
前記送電装置における間欠的な送電電流に応じて前記受電コイルで受電される間欠送電電力に応じた誘起電圧が所定値を超えた場合に、第1タイマー回路において第1所定時間を計時するステップと、Measuring a first predetermined time in a first timer circuit when an induced voltage corresponding to the intermittent transmission power received by the power receiving coil exceeds a predetermined value according to an intermittent transmission current in the power transmission device; ,
前記整流平滑回路から前記充電部への電力供給線から分岐して前記整流平滑回路と前記受電装置の接地部との間に配置された定電流回路において、前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、所定の定電流が流れるステップと、をさらに有する、In the constant current circuit that is branched from the power supply line from the rectifying / smoothing circuit to the charging unit and disposed between the rectifying / smoothing circuit and the grounding unit of the power receiving device, the first timer circuit includes the first predetermined circuit. A step of causing a predetermined constant current to flow in response to an operation control signal from the first timer circuit while measuring time.
受電方法。Power receiving method.
送電装置と受電装置とを含む電力伝送システムであって、
前記送電装置は、
間欠的な送電電流に応じた電力を非接触で送電する送電コイルと、
前記受電装置が所定の載置面上に載置されたことを検知する載置検知部と、を備え、
前記受電装置は、
前記送電コイルから送電された電力を受電する受電コイルと、
前記受電コイルにより受電された電力に応じた誘起電圧が所定値を超えた場合に、第1所定時間を計時する第1タイマー回路と、
前記第1タイマー回路が前記第1所定時間を計時する間、前記第1タイマー回路からの動作制御信号に応じて、所定の定電流が流れる定電流回路と、を備え、
前記載置検知部は、
前記所定の定電流に基づく前記送電装置におけるインピーダンスの変化に応じて、前記受電装置が前記所定の載置面上に載置されたことを検知する、
電力伝送システム。
A power transmission system including a power transmission device and a power reception device,
The power transmission device is:
A power transmission coil for non-contact power transmission according to intermittent power transmission current;
A placement detector that detects that the power receiving device is placed on a predetermined placement surface;
The power receiving device is:
A power receiving coil for receiving the power transmitted from the power transmitting coil;
A first timer circuit that counts a first predetermined time when an induced voltage corresponding to the power received by the power receiving coil exceeds a predetermined value;
A constant current circuit through which a predetermined constant current flows in response to an operation control signal from the first timer circuit while the first timer circuit measures the first predetermined time;
The above-mentioned position detector is
Detecting that the power receiving device is mounted on the predetermined mounting surface in response to a change in impedance in the power transmitting device based on the predetermined constant current;
Power transmission system.
請求項に記載の電力伝送システムであって、
前記送電装置は、
前記受電装置が前記所定の載置面上に載置されたことが前記載置検知部により検知された後、前記所定の定電流に基づく連続的な送電電流に応じた電力の信号に所定の認証信号を重畳した伝送信号を前記送電コイルから送電し、
前記受電装置は、
前記第1タイマー回路が前記第1所定時間の計時を開始した後、前記送電コイルから送電された前記伝送信号を基に、前記送電装置との間で認証する認証部、を更に備える、
電力伝送システム。
The power transmission system according to claim 8 ,
The power transmission device is:
After the placement detector detects that the power receiving device is placed on the predetermined placement surface, the power signal corresponding to the continuous transmission current based on the predetermined constant current is set to a predetermined value. Transmitting a transmission signal superimposed with an authentication signal from the power transmission coil,
The power receiving device is:
An authentication unit that authenticates with the power transmission device based on the transmission signal transmitted from the power transmission coil after the first timer circuit starts measuring the first predetermined time;
Power transmission system.
請求項に記載の電力伝送システムであって、
前記受電装置は、
前記誘起電圧を所定の直流電圧に変圧する直流変圧部と、
前記第1所定時間の計時後又は前記送電装置との間の認証が成功した後、第2所定時間を計時する第2タイマー回路と、
前記受電コイルにより受電された電力を基に、充電池を充電する充電制御部と、を更に備え、
前記送電装置は、
前記第2所定時間が経過した後、連続的な送電電流に基づく電力を非接触で前記送電コイルから送電し、
前記充電制御部は、
前記第2タイマー回路が前記第2所定時間を計時した後、前記送電コイルから送電される電力を基に、前記受電コイルとの間が導通となった前記直流変圧部を介して、前記充電池に充電させる、
電力伝送システム。
The power transmission system according to claim 9 ,
The power receiving device is:
A DC transformer that transforms the induced voltage into a predetermined DC voltage;
A second timer circuit for measuring a second predetermined time after counting the first predetermined time or after successful authentication with the power transmission device;
A charge control unit for charging the rechargeable battery based on the power received by the power receiving coil; and
The power transmission device is:
After the second predetermined time has elapsed, power based on continuous power transmission current is transmitted from the power transmission coil in a contactless manner,
The charge controller is
After the second timer circuit measures the second predetermined time, the rechargeable battery is connected to the rechargeable battery via the direct current transformer that is electrically connected to the power receiving coil based on the power transmitted from the power transmitting coil. To charge,
Power transmission system.
請求項に記載の電力伝送システムであって、
前記送電装置は、
前記送電コイルへの送電電流の大きさと、前記受電装置との間の認証の成否とを基に、前記所定の載置面に前記受電装置以外の金属異物が載置されたことを検知する異物載置判断部と、
前記金属異物が前記所定の載置面上に載置されたことが前記異物載置判断部により判断された後、所定期間にわたって前記間欠的な送電電流の出力周期を増加させる送電電流制御部と、を更に備える、
電力伝送システム。
The power transmission system according to claim 9 ,
The power transmission device is:
A foreign object that detects that a metal foreign object other than the power receiving device is placed on the predetermined placement surface based on the magnitude of the power transmission current to the power transmission coil and the success or failure of authentication with the power receiving device. A placement determination unit;
A power transmission current control unit configured to increase an output period of the intermittent power transmission current over a predetermined period after the foreign material placement determination unit determines that the metal foreign matter is placed on the predetermined placement surface; , Further comprising
Power transmission system.
請求項11に記載の電力伝送システムであって、
前記送電電流制御部は、
前記送電装置と前記受電装置との間の認証が前記所定期間において失敗した場合に、前記間欠的な送電電流の出力周期を減少させる、
電力伝送システム。
The power transmission system according to claim 11 ,
The transmission current controller is
When the authentication between the power transmission device and the power reception device fails in the predetermined period, the output cycle of the intermittent power transmission current is decreased.
Power transmission system.
請求項11に記載の電力伝送システムであって、
前記送電電流制御部は、
前記出力周期が増加した後の前記送電電流が所定の異物検知閾値未満となった場合には、前記間欠的な送電電流の出力周期を減少させる、
電力伝送システム。
The power transmission system according to claim 11 ,
The transmission current controller is
When the transmission current after the output cycle has increased is less than a predetermined foreign object detection threshold, the output cycle of the intermittent transmission current is decreased,
Power transmission system.
請求項11に記載の電力伝送システムであって、
前記受電装置は、
前記第1所定時間の計時後又は前記送電装置との間の認証が成功した後、第2所定時間を計時する第2タイマー回路、を更に備え、
前記異物載置判断部は、
前記第2タイマー回路が前記第2所定時間を計時する間の前記送電コイルへの送電電流の大きさが所定の異物検知閾値を超える場合に、前記所定の載置面に前記受電装置以外の金属異物が載置されたことを検知する、
電力伝送システム。
The power transmission system according to claim 11 ,
The power receiving device is:
A second timer circuit for measuring a second predetermined time after counting the first predetermined time or after successful authentication with the power transmission device,
The foreign object placement determination unit includes:
A metal other than the power receiving device on the predetermined placement surface when the magnitude of the power transmission current to the power transmission coil exceeds the predetermined foreign object detection threshold while the second timer circuit measures the second predetermined time. Detect that a foreign object has been placed,
Power transmission system.
請求項14に記載の電力伝送システムであって、
前記異物載置判断部は、
前記第2タイマー回路が前記第2所定時間の計時を終了してから所定猶予期間が経過するまでの間の前記送電コイルへの送電電流が前記異物検知閾値を超える場合に、前記所定の載置面に前記受電装置以外の金属異物が載置されたことを検知し、
前記送電電流制御部は、
前記金属異物が前記所定の載置面上に載置されたことが前記異物載置判断部により判断された場合に、前記第2タイマー回路が前記第2所定時間を計時してからの前記連続的な送電電流から前記間欠的な送電電流に切り替える、
電力伝送システム。
The power transmission system according to claim 14 ,
The foreign object placement determination unit includes:
When the second timer circuit finishes counting the second predetermined time and the power transmission current to the power transmission coil after the predetermined grace period elapses exceeds the foreign object detection threshold, the predetermined placement Detecting that a metal foreign object other than the power receiving device is placed on the surface,
The transmission current controller is
When the foreign matter placement determination unit determines that the metallic foreign matter has been placed on the predetermined placement surface, the second timer circuit counts the second predetermined time. Switching from a normal transmission current to the intermittent transmission current,
Power transmission system.
JP2014176198A 2014-08-29 2014-08-29 Power receiving apparatus, power receiving method, and power transmission system Active JP6366016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014176198A JP6366016B2 (en) 2014-08-29 2014-08-29 Power receiving apparatus, power receiving method, and power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014176198A JP6366016B2 (en) 2014-08-29 2014-08-29 Power receiving apparatus, power receiving method, and power transmission system

Publications (2)

Publication Number Publication Date
JP2016052187A JP2016052187A (en) 2016-04-11
JP6366016B2 true JP6366016B2 (en) 2018-08-01

Family

ID=55659349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014176198A Active JP6366016B2 (en) 2014-08-29 2014-08-29 Power receiving apparatus, power receiving method, and power transmission system

Country Status (1)

Country Link
JP (1) JP6366016B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640255A (en) * 2018-09-05 2021-04-09 三菱电机株式会社 Non-contact power supply system and power transmission device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795886B2 (en) * 2003-11-20 2006-07-12 Tdk株式会社 Lithium ion secondary battery charging method, charging device and power supply device
JP2010187495A (en) * 2009-02-13 2010-08-26 Panasonic Corp Noncontact power supply system, power supply apparatus, and power-receiving apparatus
JP2011024395A (en) * 2009-07-21 2011-02-03 Ricoh Co Ltd Charger and electronic apparatus
JP2014195334A (en) * 2011-07-27 2014-10-09 Sanyo Electric Co Ltd Battery built-in apparatus and charging stand, and battery built-in apparatus

Also Published As

Publication number Publication date
JP2016052187A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
TWI710196B (en) Methods and apparatus of performing foreign object detecting
US10491017B2 (en) Wireless charging systems with multiple power receiving deices
EP3396807B1 (en) Energy receiver, detection method, power transmission system, detection device, and energy transmitter
JP5756925B2 (en) Power receiving device provided in electrical equipment
EP2845290B1 (en) System and method for triggering power transfer across an inductive power coupling and non resonant transmission
JP4649430B2 (en) Non-contact power transmission device
WO2011118371A1 (en) Contactless power supply device and contactless charging system
EP2950417A1 (en) Wireless power transmission system and power transmission device
CN106451815A (en) Power transmitting device and wireless power transmission system
JP2011229265A (en) Non-contacting power transmitter
US20120326661A1 (en) Contactless power receiving device, and contactless charging system
JP6834799B2 (en) Metal foreign matter detector, wireless power supply device, wireless power receiving device, and wireless power transmission system
JP6279452B2 (en) Non-contact power transmission device
KR20120096422A (en) Power supply apparatus, method, and storage medium
WO2014148315A1 (en) Power transmission device, power transmission and receiving device, method for detecting power receiving device, power receiving device detection program, and semiconductor device
WO2011122248A1 (en) Non-contact power transmission device, non-contact power receiving device and non-contact charging system
JP2021523670A (en) Wireless power transmission control method and equipment
CN103988387A (en) Power supply device, power supply system, and electronic apparatus
WO2011118376A1 (en) Contactless power transmission device and contactless charging system
JP6366016B2 (en) Power receiving apparatus, power receiving method, and power transmission system
JP5962687B2 (en) Contactless power transmission system and charging station
KR101046659B1 (en) Wireless charging system for mobile battery
EP3297124A1 (en) Wireless power transmission apparatus and control method therefor, method for controlling wireless power reception apparatus, and wireless power transmission system and wireless power transmission method therefor
JP6061019B2 (en) Power transmission device and wireless power transmission system
KR20200013320A (en) Wireless Power Transmission Method and Apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R151 Written notification of patent or utility model registration

Ref document number: 6366016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151