WO2011118376A1 - Contactless power transmission device and contactless charging system - Google Patents

Contactless power transmission device and contactless charging system Download PDF

Info

Publication number
WO2011118376A1
WO2011118376A1 PCT/JP2011/055310 JP2011055310W WO2011118376A1 WO 2011118376 A1 WO2011118376 A1 WO 2011118376A1 JP 2011055310 W JP2011055310 W JP 2011055310W WO 2011118376 A1 WO2011118376 A1 WO 2011118376A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charging
primary coil
output
receiving device
Prior art date
Application number
PCT/JP2011/055310
Other languages
French (fr)
Japanese (ja)
Inventor
宇宙 松元
篤 井坂
一敬 鈴木
恭平 加田
圭秀 金久保
洋平 長竹
秀之 木原
Original Assignee
パナソニック電工 株式会社
パナソニック 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工 株式会社, パナソニック 株式会社 filed Critical パナソニック電工 株式会社
Publication of WO2011118376A1 publication Critical patent/WO2011118376A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode

Definitions

  • the present invention relates to a non-contact power transmission device that performs non-contact power transmission between devices using electromagnetic induction, and a non-contact charging system having the non-contact power transmission device.
  • non-contact power transmission device is widely known as a device capable of charging a secondary battery (battery) built in a portable device such as a mobile phone or a digital camera in a non-contact manner.
  • a portable device and a charger (power transmission device) corresponding to the portable device are each provided with a coil for transmitting and receiving electric power for charging, and is carried from the charger by electromagnetic induction between the two coils.
  • the AC power transmitted to the device is converted into DC power by the portable device, so that the secondary battery as the power source of the portable device is charged.
  • the connection terminal for electrically connecting the charger and the portable device can be omitted by such non-contact charging, whether or not the charger and the portable device are always connected and charging is possible. It is necessary to exchange information on whether or not wirelessly (see Patent Document 1, Patent Document 2, and Patent Document 3).
  • the power transmission device outputs a detection signal (wireless signal) for detecting and authenticating the portable device during standby and during authentication.
  • a detection signal wireless signal
  • the power transmission device determines that the portable device is installed and can be charged. Further, during standby and during authentication, the output of wireless signals is made intermittent, for example, so as to suppress the power consumption.
  • the present invention has been made by paying attention to such problems existing in the prior art.
  • the object is to provide a non-contact power transmission apparatus and a non-contact charging system that can quickly terminate the connection confirmation between the non-contact power transmission apparatus and the non-contact power reception apparatus and can quickly charge the load.
  • an alternating magnetic flux is generated based on alternating current power, and the alternating magnetic flux is caused to intersect with a secondary coil of the non-contact power receiving device.
  • a primary coil for transmitting the AC power to the non-contact power receiving device via the power supply, and intermittently outputting the AC power to the primary coil in the standby state, while in the charging state than in the standby state.
  • An output control unit for controlling the output of the AC power so as to output high AC power to the primary coil, a measurement unit for measuring a waveform of the AC power generated in the primary coil, and the measurement unit.
  • a detector that detects that the non-contact power receiving device is installed at a chargeable position when the waveform of the measured AC power changes, and the output control unit includes the detection unit that detects the non-contact power receiving device. If detected, A confirmation signal for confirming whether or not the load can be charged is transmitted to the non-contact power receiving device by changing the waveform of the alternating current power by outputting the same alternating current power to the primary coil. When a response signal indicating that charging is possible is received from the non-contact power receiving device, the output of AC power to the primary coil is continued to start charging.
  • a second aspect of the present invention is a non-contact power transmission device including a primary coil that generates an alternating magnetic flux based on AC power, and a secondary that can be electromagnetically coupled by intersecting with the alternating magnetic flux generated in the primary coil.
  • a non-contact charging system comprising a non-contact power receiving device including a coil and charging a load via the non-contact power receiving device, wherein the non-contact power transmitting device supplies the AC power to the primary coil in a standby state. Is generated intermittently in the primary coil, and an output control unit that controls the output of the AC power to output higher AC power to the primary coil than in the standby state in the charging state.
  • the non-contact power receiving device includes a response unit capable of responding to a control signal from the non-contact power transmitting device, and the output control unit has the same alternating current as when charging when the detecting unit detects the non-contact power receiving device.
  • (A)-(n) is a schematic diagram which shows the waveform of the electric power which flows into a primary coil, and the waveform of the electric power which flows into a secondary coil.
  • FIG. 1 is a block diagram illustrating a configuration of a contactless charging system 100 including the contactless power transmitting device and the contactless power receiving device of the present embodiment.
  • the non-contact charging system 100 is roughly composed of a non-contact power transmission device 10 and a non-contact power reception device 20.
  • the non-contact power transmission device 10 includes a voltage stabilization circuit 11, a power transmission unit 12, a primary coil L1, a voltage detection circuit 13 as a measurement unit, a device detection unit (that is, a power reception device detection unit), and a primary side as an output control unit.
  • a control unit 14 is provided.
  • the voltage stabilization circuit 11 is a circuit that stabilizes the voltage of the input power input from the external power supply E.
  • a power transmission unit 12 is connected to the voltage stabilization circuit 11. When transmitting power, the power transmission unit 12 generates AC power having a predetermined frequency. Moreover, the power transmission part 12 produces
  • the power transmission unit 12 generates and outputs AC power having the frequency f1 when outputting a signal corresponding to “1”, while the frequency f2 when outputting a signal corresponding to “0”. AC power is generated and output.
  • the primary coil L1 is configured to generate an alternating magnetic flux having a frequency corresponding to the frequency of the AC voltage when AC power is input.
  • the primary coil (power transmission side coil) L1 is electromagnetically coupled to the secondary coil (power reception side coil) L2 to transmit electric power.
  • the voltage detection circuit 13 is a circuit that detects an induced voltage of the primary coil L1.
  • the voltage detection circuit 13 is connected to the primary side control unit 14, and outputs the detected induced electromotive force (voltage) waveform to the primary side control unit 14.
  • the primary side control unit 14 is configured mainly by a microcomputer or system LSI having a central processing unit (CPU), a storage device (nonvolatile memory (ROM), volatile memory (RAM), etc.) Various controls such as oscillation control of the power transmission unit 12 are executed based on various data and programs stored in the computer.
  • CPU central processing unit
  • ROM nonvolatile memory
  • RAM volatile memory
  • the primary side control unit 14 is connected to the power transmission unit 12. Then, when the contactless power transmission device 10 transmits a signal to the contactless power receiving device 20, the primary side control unit 14 notifies the power transmission unit 12 of a signal to be transmitted (or a frequency corresponding to the signal to be transmitted). Thus, AC power having a frequency corresponding to the signal to be transmitted is generated in the power transmission unit 12.
  • the primary side control unit 14 measures the change in the induced electromotive force of the primary coil received from the voltage detection circuit 13, and performs signal detection, foreign object detection, and the like.
  • the signal control circuit 23 of the non-contact power receiving apparatus 20 performs a load modulation process for transmitting a signal to the non-contact power transmission apparatus 10
  • the waveform of the induced electromotive force of the primary coil L1 changes. That is, when the non-contact power receiving apparatus 20 reduces the load to transmit the data “0” signal, the amplitude of the signal waveform of the induced electromotive force of the primary coil L1 decreases, and the signal “1” is transmitted. Therefore, when the load is increased, the amplitude of the signal waveform increases.
  • the primary-side control unit 14 can determine the type of signal depending on whether or not the peak voltage of the induced electromotive force exceeds a threshold value.
  • the primary side control part 14 of this embodiment demodulates the radio
  • the ROM stores various thresholds and various parameters necessary for demodulating a wireless communication signal with the non-contact power receiving apparatus 20 described in detail later and analyzing the demodulated signal. ing.
  • the non-contact power receiving device 20 includes a secondary coil L2 that receives the alternating magnetic flux from the non-contact power transmitting device 10, a power receiving unit 21, a secondary side control unit 22 as a response unit, a signal detection circuit 24, and a signal control circuit. 23.
  • the power receiving unit 21 includes a rectifier circuit that converts AC power (inductive electromotive force) generated in the secondary coil L2 into DC power when the secondary coil L2 receives the alternating magnetic flux.
  • the rectifier circuit includes a rectifier diode and a smoothing capacitor that smoothes the power rectified by the rectifier diode, and converts the AC power input from the secondary coil L2 into DC power, a so-called half-wave rectifier circuit. It is configured as.
  • the configuration of this rectifier circuit is merely an example of a rectifier circuit that converts AC power into DC power, and is not limited to this configuration.
  • a full-wave rectifier circuit using a diode bridge or other known rectifier circuit is also used. You may have the structure of a rectifier circuit.
  • the signal detection circuit 24 is a circuit that detects the induced electromotive force of the secondary coil L2.
  • the signal detection circuit 24 is connected to the secondary side control unit 22, and outputs the detected induced electromotive force (voltage) waveform to the secondary side control unit 22.
  • the signal control circuit 23 When the signal control circuit 23 transmits a signal from the non-contact power receiving device 20 to the non-contact power transmission device 10, the signal control circuit 23 changes the load applied to the secondary coil L2 according to the signal to be transmitted, thereby inducing the induced electromotive force of the primary coil L1.
  • the load modulation process is performed to change the signal waveform.
  • the signal control circuit 23 is connected to the secondary side control unit 22 and executes load modulation processing based on a control signal from the secondary side control unit 22.
  • the secondary side control unit 22 is mainly configured by a microcomputer having a central processing unit (CPU) and a storage device (ROM, RAM, etc.), and based on various data and programs stored in the memory, The state of charge of the battery BA included in the non-contact power receiving device 20 is determined and various controls such as charge amount control are executed. In the present embodiment, a signal to the non-contact power transmission apparatus 10 is also generated based on the charge amount of the battery BA. In addition, in the ROM, various information required for charge amount control such as determination of the charge amount of the battery (main load) BA, generation of a signal with the contactless power transmission device 10, and modulation based on the signal Various parameters required for the purpose are stored in advance.
  • the secondary-side control unit 22 is connected to the positive and negative electrodes of the battery BA, and receives power for driving from the battery BA.
  • the secondary-side control unit 22 receives the voltage between the terminals of the battery BA and the like.
  • the charge amount of the battery BA can be grasped.
  • the secondary side control part 22 adjusts the alternating current power input from the power receiving part 21 to a predetermined voltage, produces
  • the secondary side control part 22 switches whether to output charging power according to the charge amount of the battery BA.
  • the secondary-side control unit 22 determines that it is preferable to charge the battery BA because the voltage between the terminals of the battery BA is lower than a preset charge amount determination threshold value, the charging power is supplied to the battery. Supply to BA.
  • the secondary control unit 22 does not supply the charging power to the battery BA.
  • the secondary side control unit 22 stops the output of the charging power when transmitting and receiving signals to and from the non-contact power transmission apparatus 10. Further, when the operating voltage is lower than the operable voltage, the secondary side control unit 22 electrically disconnects the connection with the battery BA and prevents the reverse flow of the voltage from the battery BA. Further, the secondary side control unit 22 monitors the frequency of the induced electromotive force of the secondary coil L2, and determines whether the signal from the non-contact power transmission device 10 is data “1” or data “0”. It comes to judge.
  • the primary side control unit 14 When the primary side control unit 14 is in a standby state (when not electromagnetically connected to the non-contact power receiving device 20), the primary side control unit 14 intermittently outputs power every predetermined standby period ( Step S10). Specifically, as shown in FIG. 3A, power is output intermittently, and the power is the power and data at the time of charging power transmission (charging) per unit time. It is smaller than the power when transmitting a signal of “0” or data “1”. In the following, a state in which power is output for each standby period may be referred to as a power save mode.
  • the non-contact power transmission device 10 outputs power intermittently and executes device installation determination for determining whether or not the non-contact power reception device 20 is installed (step S11). More specifically, when the non-contact power transmission device 10 is in a standby state (power save mode), the non-contact power reception device 20 is installed at a predetermined location, and the primary coil L1 and the secondary coil L2 are electromagnetically coupled. Then, as shown in FIG. 3B, the primary coil L1 is affected by the secondary coil L2, and the power waveform changes. Specifically, it changes so that the peak voltage of the AC power of the primary coil L1 becomes small at the time of power output in the standby state.
  • the primary-side control unit 14 determines (affirmative determination) that the non-contact power receiving device 20 is set when the power waveform changes in the standby state in the device installation determination. On the other hand, in the device installation determination, the primary-side control unit 14 determines that the non-contact power receiving device 20 is not set (determination determination) when the predetermined time has elapsed without changing the standby power waveform. It has become.
  • step S11 When the negative determination is made in the device installation determination (step S11), the primary side control unit 14 executes the process of step S10 again after a predetermined time has elapsed, and intermittently outputs power again.
  • step S11 when the affirmative determination is made in the device installation determination (step S11), the primary side control unit 14 outputs a charge confirmation signal to the non-contact power receiving device 20 with the power at the time of charging power transmission (step S12).
  • the time of charging power transmission as shown in FIG. 3C, power is continuously output, and a period during which power is stopped is not set.
  • the primary side control unit 14 when the primary side control unit 14 outputs the charge confirmation signal, the primary side control unit 14 converts (modulates) the charge confirmation signal into a combination of signals “0” or “1”, and as illustrated in FIG.
  • the power transmission unit 12 is controlled to output the converted signals in order.
  • the waveform of the induced electromotive force of the secondary coil L2 changes according to the output charge confirmation signal, as shown in FIG. 3 (i).
  • the secondary side control unit 22 When the secondary side control unit 22 demodulates and analyzes the signal consisting of “0” or “1” detected by the signal detection circuit 24 and determines that the charge confirmation signal has been received, the secondary side control unit 22 performs charging based on the voltage of the battery BA. Determine the amount. Then, when charging is possible (when the voltage of the battery BA is equal to or lower than the threshold value), the secondary side control unit 22 outputs a first response signal corresponding to the charging confirmation signal (step S21). Specifically, as shown in FIG. 3 (j), the secondary side control unit 22 changes the load applied to the secondary coil L2 so that the signal control circuit 23 outputs the first response signal. .
  • the secondary side control unit 22 outputs a control signal to the signal control circuit 23 so as to change the load applied to the secondary coil L2 in order to output the first response signal.
  • the voltage of the induced electromotive force of the primary coil L1 will change.
  • the primary-side control unit 14 demodulates and analyzes the signal based on the waveform of the induced electromotive force detected by the voltage detection circuit 13 and determines whether or not the first response signal is input (that is, the non-contact power receiving device) (Confirmation of whether or not a signal is returned from 20) (step S13).
  • the primary control unit 14 executes the process of step 10 again after a predetermined time has elapsed.
  • step S14 when the determination result of step S13 is affirmative (when the first response signal is received), the primary side control unit 14 outputs an ID confirmation signal indicating 1D for performing ID authentication (step S14).
  • the process when outputting the ID confirmation signal is the same as the process when outputting the charge confirmation signal.
  • the primary side control unit 14 converts (modulates) the ID confirmation signal into a combination of the signals “0” or “1”, as shown in FIG.
  • the power transmission unit 12 is controlled by the control signal so as to sequentially output the converted signals.
  • the waveform of the induced electromotive force of the secondary coil L2 changes according to the ID confirmation signal as shown in FIG.
  • the secondary-side control unit 22 When the secondary-side control unit 22 demodulates and analyzes the signal consisting of “0” or “1” detected by the signal detection circuit 24 and determines that the ID confirmation signal has been received, the secondary-side control unit 22 can charge the device (contactless power transmission). It is determined whether the ID of the apparatus 10). If the ID of the device that can be charged (when ID authentication is completed (established)), the secondary control unit 22 outputs a second response signal corresponding to the ID confirmation signal (step S22). . Specifically, the secondary side control unit 22 changes the load applied to the secondary coil L2 so that the signal control circuit 23 outputs the second response signal, as shown in FIG. . Thereby, as shown in FIG.3 (f), the voltage of the induced electromotive force of the primary coil L1 will change.
  • the secondary side control part 22 complete
  • the primary-side control unit 14 demodulates and analyzes the signal based on the waveform of the induced electromotive force detected by the voltage detection circuit 13 and determines whether or not the second response signal is input (that is, the non-contact power receiving device) (Confirmation of whether or not a signal is returned from 20) (step S15). When this determination result is negative (when ID authentication fails), the primary-side control unit 14 executes the process of step 10 again after a predetermined time has elapsed.
  • step S15 when the determination result of step S15 is affirmative (when the second response signal is received), the primary side control unit 14 maintains the power at the time of charging power transmission (FIG. 3 (g)) and performs charging. Start (step S16). After the second response signal is output, the secondary side control unit 22 controls the voltage of the DC power (FIG. 3 (m)) input via the secondary coil L2 and the power receiving unit 21 to generate charging power. , Supplied to the battery BA. Thereby, the secondary side control part 22 starts charge (step S23).
  • the secondary side control unit 22 continues to monitor the charge amount of the battery BA after the start of charging, and determines whether or not the charging is completed (step S24). Specifically, the secondary side control unit 22 monitors the voltage of the battery BA and determines whether or not it is equal to or greater than a predetermined threshold value. When the determination result of step S24 is negative (when charging is not completed), the secondary-side control unit 22 executes the process of step S24 again after a predetermined time has elapsed.
  • step S24 when the determination result of step S24 is affirmative (when charging is completed), a charging completion signal indicating that charging is completed is output (step S25). Specifically, as shown in FIG. 3 (n), the secondary side control unit 22 changes the load applied to the secondary coil L2 so that the signal control circuit 23 outputs a charge completion signal. Thereby, as shown in FIG.3 (h), the voltage of the induced electromotive force of the primary coil L1 will change.
  • the primary-side control unit 14 performs device installation determination for determining whether or not the non-contact power receiving device 20 is installed as it is (step). S17). More specifically, when the contactless power transmission device 10 is in a charged state, the electromagnetic coupling between the primary coil L1 and the secondary coil L2 is released when the contactless power reception device 20 is removed from a predetermined location.
  • the waveform of the power of the primary coil L1 that flows during charging changes. Specifically, the peak voltage of the AC power of the primary coil L1 that flows during charging changes so as to increase.
  • the primary-side control unit 14 determines that the non-contact power receiving device 20 has been removed (negative determination) when the waveform of the voltage of the primary coil L1 that flows during charging changes in the device installation determination in step S17. It is supposed to be.
  • the primary-side control unit 14 installs the non-contact power receiving device 20 when a certain time has elapsed without changing the waveform of the power of the primary coil L1 flowing during charging in the device installation determination in step S17. It is determined (affirmative determination) that it has been performed.
  • the primary side control part 14 transfers to the process of step S10, when the apparatus installation determination of step S17 becomes negative.
  • the primary side control part 14 determines whether the charge completion signal was received, when the apparatus installation determination of step S17 is affirmation (step S18).
  • the processing in step S18 will be described in detail.
  • the primary side control unit 14 demodulates and analyzes the signal based on the induced electromotive force waveform detected by the voltage detection circuit 13, and determines whether or not a charging completion signal is input. Determine. If this determination result is negative, the primary-side control unit 14 executes the process of step S17 again after a predetermined time has elapsed. In addition, when the determination result of step S18 is affirmative (when a charging completion signal is received), the primary side control unit 14 determines that charging is complete and ends the process.
  • the primary side control part 14 outputs electric power intermittently in a standby state.
  • the voltage detection circuit 13 measures the voltage of the induced electromotive force of the primary coil L ⁇ b> 1 and transmits the measurement result to the primary side control unit 14.
  • the primary side control part 14 monitors the induced electromotive force of the primary coil L1, and when the amplitude (peak voltage) of the induced electromotive force changes, the non-contact power receiving device 20 is in a predetermined position (position where charging is possible).
  • the charging confirmation signal and the ID confirmation signal are transmitted with the same output AC power as that at the time of charging.
  • the primary side control part 14 is made to charge continuously the output of the alternating current power to the primary coil L1, when the 1st and 2nd response signal is received.
  • the non-contact power transmission apparatus 10 of this embodiment is a control signal for confirming whether charging is possible (installed at a position where charging is possible and whether ID authentication is completed).
  • the transmission / reception of the charging confirmation signal and the ID confirmation signal can be quickly terminated. Therefore, charging can be started quickly.
  • the primary side control unit 14 shifts to the power save mode after a predetermined time has elapsed, Output intermittently. That is, when charging is impossible or unnecessary, AC power is output intermittently. Thereby, the power consumption by alternating current power can be decreased.
  • the battery BA is provided in the non-contact power receiving device 20, but of course, it may be a separate body from the power receiving device 20. That is, the battery BA may be detachably attached to the non-contact power receiving device 20. Furthermore, the non-contact power receiving device 20 may be detachably attached to a device such as a portable device.
  • the primary side control unit 14 may continue charging until a predetermined charging time has elapsed from the start of charging.
  • the AC power of the primary coil L1 in the standby state may be arbitrarily changed as long as it is lower than the AC power during charging power transmission.
  • the primary side control unit 14 determines the signal depending on whether or not the peak voltage exceeds the threshold value.
  • the signal may be determined based on whether the amount is equal to or greater than a certain value.
  • the secondary control unit 22 has received power for driving from the battery BA, but may be supplied from the power receiving unit 21.
  • the primary-side control unit 14 outputs a charging confirmation signal from the non-contact power transmission device 10 when it is determined (affirmative determination) that the non-contact power receiving device 20 is installed in the device installation determination. Then, the contactless power receiving device 20 receives the charge confirmation signal, and transmits the first response signal to the contactless power transmission device 10.
  • the non-contact power transmitting device 10 starts continuous power transmission, and the non-contact power receiving device 20 starts receiving power.
  • a response signal may be transmitted to the non-contact power transmission apparatus 10. That is, the transmission of the charging confirmation signal may be performed by continuous power transmission from the primary coil L1 to the secondary coil L2 with the same AC power as at the time of charging.
  • the timing for determining the charge amount of the battery BA is before the output of the first response signal, but the charge amount may be determined before the start of charging.
  • the processing when determining the amount of charge, if it is determined that charging is not required, the processing is terminated without outputting the first response signal, but a response indicating that charging is not required A signal may be output to the non-contact power transmission apparatus 10.
  • the ID is determined by the secondary control unit 22, but may be determined by the primary control unit 14.
  • the primary control unit 14 determines whether the non-contact power receiving device 20 is installed as it is (equipment installation determination) with the power waveform of the primary coil L1. Although determined, it may be determined by performing signal communication every predetermined period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

A contactless power transmission device (10), which charges a load (BA) via a contactless power receiving device (20) without contact, includes an output controller (14) that controls the AC power output to a first coil (L1) in such a manner that AC power is intermittently output to the first coil when in standy mode. When the contactless power receiving device (20) is detected by a detection unit (14), the output controller (14) transmits a confirmation signal to the contactless power receiving device (20) to confirm whether or not the load (BA) can be charged by outputting the same AC power as when charging to the first coil (L1), and modifying the waveform of said AC power. When a response signal indicating that charging is possible is received from the contactless power receiving device (20), the output controller (14) continues outputting AC power to the first coil (L1), thereby initiating charging.

Description

非接触送電装置及び非接触充電システムContactless power transmission device and contactless charging system
 本発明は、電磁誘導を利用して、機器間の電力伝送を非接触にて行う非接触送電装置、及び非接触送電装置を有する非接触充電システムに関するものである。 The present invention relates to a non-contact power transmission device that performs non-contact power transmission between devices using electromagnetic induction, and a non-contact charging system having the non-contact power transmission device.
 このような非接触送電装置は、携帯電話やデジタルカメラ等の携帯機器に内蔵される二次電池(バッテリ)を非接触で充電することのできる装置として、近年、広く知られている。このような携帯機器及びこの携帯機器に対応する充電器(送電装置)には、充電のための電力を授受するコイルがそれぞれ備えられており、それら両コイル間での電磁誘導により充電器から携帯機器に伝送された交流電力が携帯機器にて直流電力に変換されることで、携帯機器の電源である二次電池への充電が行なわれるようになっている。ただし、このような非接触充電によって充電器と携帯機器とを電気的に接続するための接続端子が省略可能とはなるものの、常に充電器と携帯機器が接続されたか否か、及び充電が可能か否かの情報を無線でやりとりする必要があった(特許文献1、特許文献2、特許文献3参照)。 In recent years, such a non-contact power transmission device is widely known as a device capable of charging a secondary battery (battery) built in a portable device such as a mobile phone or a digital camera in a non-contact manner. Such a portable device and a charger (power transmission device) corresponding to the portable device are each provided with a coil for transmitting and receiving electric power for charging, and is carried from the charger by electromagnetic induction between the two coils. The AC power transmitted to the device is converted into DC power by the portable device, so that the secondary battery as the power source of the portable device is charged. However, although the connection terminal for electrically connecting the charger and the portable device can be omitted by such non-contact charging, whether or not the charger and the portable device are always connected and charging is possible. It is necessary to exchange information on whether or not wirelessly (see Patent Document 1, Patent Document 2, and Patent Document 3).
 従来の技術では、待機中及び認証中において、送電装置が、携帯機器を検知及び認証するための検知信号(無線信号)を出力している。送電装置は、当該検知信号に対する携帯機器からの応答信号を受信すると、携帯機器が設置され、充電可能であることを判断する。また、待機中及び認証中は、無線信号の出力を間欠的にするなど、出力を抑えて消費電力を抑えるようにしている。 In the conventional technology, the power transmission device outputs a detection signal (wireless signal) for detecting and authenticating the portable device during standby and during authentication. When the power transmission device receives a response signal from the portable device with respect to the detection signal, the power transmission device determines that the portable device is installed and can be charged. Further, during standby and during authentication, the output of wireless signals is made intermittent, for example, so as to suppress the power consumption.
特開平6-311658号公報JP-A-6-31658 特開2001-8450号公報JP 2001-8450 A 特開2009-189230号公報JP 2009-189230 A
 しかしながら、認証中も間欠的に出力される無線信号にて情報をやりとりすると、情報量が少なくなるため、認証が完了するまでに時間がかかり、使用者に、正しく設置されていないのではないかと思わせてしまう可能性があった。また、検知信号の出力を抑えているため、認証直後から充電電力の出力を最大にすることができず、充電に時間がかかる虞があった。 However, if information is exchanged with radio signals that are output intermittently even during authentication, the amount of information decreases, so it takes time to complete authentication, and the user may not have installed it correctly. There was a possibility of reminiscent. Further, since the output of the detection signal is suppressed, the output of the charging power cannot be maximized immediately after the authentication, and there is a possibility that it takes time for charging.
 この発明は、このような従来の技術に存在する問題点に着目してなされたものである。その目的は、非接触送電装置と非接触受電装置との接続確認を素早く終了させると共に、負荷への充電を早くできる非接触送電装置及び非接触充電システムを提供することにある。 The present invention has been made by paying attention to such problems existing in the prior art. The object is to provide a non-contact power transmission apparatus and a non-contact charging system that can quickly terminate the connection confirmation between the non-contact power transmission apparatus and the non-contact power reception apparatus and can quickly charge the load.
 上記目的を達成するために、本発明の第1の態様は、交流電力に基づいて交番磁束を発生し、該交番磁束を前記非接触受電装置の2次コイルに交差させることにより該2次コイルを介して前記非接触受電装置に前記交流電力を送電する1次コイルと、待機状態の時には前記1次コイルに前記交流電力を間欠的に出力する一方、充電状態の時には前記待機状態の時より高い交流電力を前記1次コイルに出力するように前記交流電力の出力を制御する出力制御部と、前記1次コイルに生じた前記交流電力の波形を計測する計測部と、前記計測部にて計測された交流電力の波形が変化した場合、前記非接触受電装置が充電可能な位置に設置されたと検出する検出部とを備え、前記出力制御部は、前記非接触受電装置を前記検出部が検出した場合、充電時と同じ交流電力を前記1次コイルに出力して該交流電力の波形を変化させることにより、前記負荷を充電可能か否かを確認するための確認信号を前記非接触受電装置に送信し、前記非接触受電装置から充電可能である旨の応答信号を受信した場合、前記1次コイルへの交流電力の出力を継続して充電を開始させることを特徴とするものである。 In order to achieve the above object, according to a first aspect of the present invention, an alternating magnetic flux is generated based on alternating current power, and the alternating magnetic flux is caused to intersect with a secondary coil of the non-contact power receiving device. A primary coil for transmitting the AC power to the non-contact power receiving device via the power supply, and intermittently outputting the AC power to the primary coil in the standby state, while in the charging state than in the standby state. An output control unit for controlling the output of the AC power so as to output high AC power to the primary coil, a measurement unit for measuring a waveform of the AC power generated in the primary coil, and the measurement unit. A detector that detects that the non-contact power receiving device is installed at a chargeable position when the waveform of the measured AC power changes, and the output control unit includes the detection unit that detects the non-contact power receiving device. If detected, A confirmation signal for confirming whether or not the load can be charged is transmitted to the non-contact power receiving device by changing the waveform of the alternating current power by outputting the same alternating current power to the primary coil. When a response signal indicating that charging is possible is received from the non-contact power receiving device, the output of AC power to the primary coil is continued to start charging.
 本発明の第2の態様は、交流電力に基づいて交番磁束を発生する1次コイルを含む非接触送電装置と、前記1次コイルに発生した交番磁束と交差することにより電磁結合可能な2次コイルを含む非接触受電装置とを備え、前記非接触受電装置を介して負荷を充電する非接触充電システムであって、前記非接触送電装置は、待機状態の時には前記1次コイルに前記交流電力を間欠的に出力する一方、充電状態の時には前記待機状態の時より高い交流電力を前記1次コイルに出力するように前記交流電力の出力を制御する出力制御部と、前記1次コイルに生じた前記交流電力の波形を計測する計測部と、前記計測部にて計測された交流電力の波形が変化した場合、前記非接触受電装置が充電可能な位置に設置されたと検出する検出部とを含み、前記非接触受電装置は、前記非接触送電装置からの制御信号に応答可能な応答部を含み、前記出力制御部は、前記非接触受電装置を前記検出部が検出した場合、充電時と同じ交流電力を前記1次コイルに出力して該交流電力の波形を変化させることにより、前記負荷を充電可能か否かを確認するための確認信号を前記制御信号として前記非接触受電装置に送信し、前記応答部から充電可能である旨の応答信号を受信した場合、前記1次コイルへの交流電力の出力を継続して充電を開始させることを特徴とするものである。 A second aspect of the present invention is a non-contact power transmission device including a primary coil that generates an alternating magnetic flux based on AC power, and a secondary that can be electromagnetically coupled by intersecting with the alternating magnetic flux generated in the primary coil. A non-contact charging system comprising a non-contact power receiving device including a coil and charging a load via the non-contact power receiving device, wherein the non-contact power transmitting device supplies the AC power to the primary coil in a standby state. Is generated intermittently in the primary coil, and an output control unit that controls the output of the AC power to output higher AC power to the primary coil than in the standby state in the charging state. A measurement unit that measures the waveform of the AC power, and a detection unit that detects that the non-contact power receiving device is installed at a chargeable position when the waveform of the AC power measured by the measurement unit changes. Including The non-contact power receiving device includes a response unit capable of responding to a control signal from the non-contact power transmitting device, and the output control unit has the same alternating current as when charging when the detecting unit detects the non-contact power receiving device. By transmitting power to the primary coil and changing the waveform of the AC power, a confirmation signal for confirming whether the load can be charged is transmitted to the non-contact power receiving device as the control signal, When a response signal indicating that charging is possible is received from the response unit, the output of AC power to the primary coil is continued to start charging.
非接触充電システムを示すブロック図。The block diagram which shows a non-contact charge system. 充電時の処理の流れを示すフローチャート。The flowchart which shows the flow of the process at the time of charge. (a)~(n)は、1次コイルに流れる電力の波形と、2次コイルに流れる電力の波形を示す模式図。(A)-(n) is a schematic diagram which shows the waveform of the electric power which flows into a primary coil, and the waveform of the electric power which flows into a secondary coil.
 以下、本発明に係る非接触送電装置及び非接触充電システムを具体化した実施形態について図に従って説明する。図1は、本実施形態の非接触送電装置及び非接触受電装置を備える非接触充電システム100についての構成を示すブロック図である。図1に示すように、非接触充電システム100は、大きく分けて、非接触送電装置10と非接触受電装置20とから構成されている。 Hereinafter, embodiments of the non-contact power transmission device and the non-contact charging system according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of a contactless charging system 100 including the contactless power transmitting device and the contactless power receiving device of the present embodiment. As shown in FIG. 1, the non-contact charging system 100 is roughly composed of a non-contact power transmission device 10 and a non-contact power reception device 20.
 まず、非接触送電装置10について説明する。
 非接触送電装置10は、電圧安定化回路11、送電部12、1次コイルL1、計測部としての電圧検出回路13、機器検出部(即ち受電装置検出部)及び出力制御部としての1次側制御部14を備えている。
First, the non-contact power transmission apparatus 10 will be described.
The non-contact power transmission device 10 includes a voltage stabilization circuit 11, a power transmission unit 12, a primary coil L1, a voltage detection circuit 13 as a measurement unit, a device detection unit (that is, a power reception device detection unit), and a primary side as an output control unit. A control unit 14 is provided.
 電圧安定化回路11は、外部電源Eから入力される入力電力の電圧を安定化させる回路である。そして、電圧安定化回路11には、送電部12が接続されている。送電部12は、電力を送る際には、所定周波数の交流電力を生成する。また、送電部12は、信号送信時には、送信する信号に応じた周波数の交流電力を生成し、送電部12に接続された1次コイルL1に出力するようになっている。なお、送電部12は、「1」に応じた信号を出力する際には、周波数f1の交流電力を生成して出力する一方、「0」に応じた信号を出力する際には、周波数f2の交流電力を生成して出力する。 The voltage stabilization circuit 11 is a circuit that stabilizes the voltage of the input power input from the external power supply E. A power transmission unit 12 is connected to the voltage stabilization circuit 11. When transmitting power, the power transmission unit 12 generates AC power having a predetermined frequency. Moreover, the power transmission part 12 produces | generates the alternating current power of the frequency according to the signal to transmit at the time of signal transmission, and outputs it to the primary coil L1 connected to the power transmission part 12. FIG. The power transmission unit 12 generates and outputs AC power having the frequency f1 when outputting a signal corresponding to “1”, while the frequency f2 when outputting a signal corresponding to “0”. AC power is generated and output.
 1次コイルL1は、交流電力が入力されることにより、交流電圧の周波数に応じた周波数の交番磁束を発生するようになっている。そして、1次コイル(送電側コイル)L1は、2次コイル(受電側コイル)L2と電磁結合して、電力を伝送するようになっている。電圧検出回路13は、1次コイルL1の誘起電圧を検出する回路である。そして、電圧検出回路13は、1次側制御部14と接続されており、検出した誘導起電力(電圧)の波形を1次側制御部14に出力するようになっている。 The primary coil L1 is configured to generate an alternating magnetic flux having a frequency corresponding to the frequency of the AC voltage when AC power is input. The primary coil (power transmission side coil) L1 is electromagnetically coupled to the secondary coil (power reception side coil) L2 to transmit electric power. The voltage detection circuit 13 is a circuit that detects an induced voltage of the primary coil L1. The voltage detection circuit 13 is connected to the primary side control unit 14, and outputs the detected induced electromotive force (voltage) waveform to the primary side control unit 14.
 1次側制御部14は、中央演算処理装置(CPU)、記憶装置(不揮発性メモリー(ROM)、揮発性メモリー(RAM)など)を有するマイクロコンピュータやシステムLSIを中心に構成されており、メモリーに格納されている各種データ及びプログラムに基づいて、送電部12の発振制御などの各種制御を実行する。 The primary side control unit 14 is configured mainly by a microcomputer or system LSI having a central processing unit (CPU), a storage device (nonvolatile memory (ROM), volatile memory (RAM), etc.) Various controls such as oscillation control of the power transmission unit 12 are executed based on various data and programs stored in the computer.
 つまり、1次側制御部14は、送電部12と接続されている。そして、1次側制御部14は、非接触送電装置10が非接触受電装置20に信号を送信する際、送電部12に対して、送信する信号(又は送信する信号に応じた周波数)を通知して、送信する信号に応じた周波数の交流電力を送電部12に生成させるようになっている。 That is, the primary side control unit 14 is connected to the power transmission unit 12. Then, when the contactless power transmission device 10 transmits a signal to the contactless power receiving device 20, the primary side control unit 14 notifies the power transmission unit 12 of a signal to be transmitted (or a frequency corresponding to the signal to be transmitted). Thus, AC power having a frequency corresponding to the signal to be transmitted is generated in the power transmission unit 12.
 また、1次側制御部14は、電圧検出回路13から受信した1次コイルの誘導起電力の変化を測定して、信号検出、異物検出などを行うようになっている。例えば、非接触受電装置20の信号制御回路23が非接触送電装置10に対して信号を送信するための負荷変調処理を実行すると、1次コイルL1の誘導起電力の波形が変化する。すなわち、非接触受電装置20が、データ「0」の信号を送信するために負荷を小さくすると、1次コイルL1の誘導起電力の信号波形の振幅が小さくなり、データ「1」の信号を送信するために負荷を大きくすると、信号波形の振幅が大きくなる。従って、誘導起電力のピーク電圧が閾値を超えたか否かにより、1次側制御部14が信号の種類を判別できるようになっている。なお、本実施形態の1次側制御部14は、非接触受電装置20からの無線通信信号を復調するとともに、復調された信号を解析して、同解析結果に基づいて送電部12の発振(周波数)を制御するようにもなっている。また、ROMには、各種閾値や、後に詳述する非接触受電装置20との間の無線通信信号の復調、同復調された信号の解析などに必要とされる各種のパラメータなどが予め保存されている。 Further, the primary side control unit 14 measures the change in the induced electromotive force of the primary coil received from the voltage detection circuit 13, and performs signal detection, foreign object detection, and the like. For example, when the signal control circuit 23 of the non-contact power receiving apparatus 20 performs a load modulation process for transmitting a signal to the non-contact power transmission apparatus 10, the waveform of the induced electromotive force of the primary coil L1 changes. That is, when the non-contact power receiving apparatus 20 reduces the load to transmit the data “0” signal, the amplitude of the signal waveform of the induced electromotive force of the primary coil L1 decreases, and the signal “1” is transmitted. Therefore, when the load is increased, the amplitude of the signal waveform increases. Therefore, the primary-side control unit 14 can determine the type of signal depending on whether or not the peak voltage of the induced electromotive force exceeds a threshold value. In addition, the primary side control part 14 of this embodiment demodulates the radio | wireless communication signal from the non-contact power receiving apparatus 20, analyzes a demodulated signal, and oscillates the power transmission part 12 based on the analysis result ( Frequency) is also controlled. The ROM stores various thresholds and various parameters necessary for demodulating a wireless communication signal with the non-contact power receiving apparatus 20 described in detail later and analyzing the demodulated signal. ing.
 次に、非接触受電装置20について説明する。
 非接触受電装置20は、非接触送電装置10からの交番磁束を受ける2次コイルL2と、受電部21と、応答部としての2次側制御部22と、信号検出回路24と、信号制御回路23を備えている。
Next, the non-contact power receiving device 20 will be described.
The non-contact power receiving device 20 includes a secondary coil L2 that receives the alternating magnetic flux from the non-contact power transmitting device 10, a power receiving unit 21, a secondary side control unit 22 as a response unit, a signal detection circuit 24, and a signal control circuit. 23.
 受電部21は、2次コイルL2が交番磁束を受けることにより2次コイルL2に発生する交流電力(誘導起電力)を直流電力に変換する整流回路を有する。整流回路は、整流ダイオードと、整流ダイオードにて整流された電力を平滑化させる平滑コンデンサとを備えており、2次コイルL2から入力された交流電力を直流電力に変換する、いわゆる半波整流回路として構成されている。なお、この整流回路の構成は、交流電力を直流電力に変換する整流回路としての一例に過ぎず、この構成に限定されるものではなく、ダイオードブリッジを用いた全波整流回路やその他の周知の整流回路の構成を有していてもよい。信号検出回路24は、2次コイルL2の誘導起電力を検出する回路である。そして、信号検出回路24は、2次側制御部22と接続されており、検出した誘導起電力(電圧)の波形を2次側制御部22に出力するようになっている。 The power receiving unit 21 includes a rectifier circuit that converts AC power (inductive electromotive force) generated in the secondary coil L2 into DC power when the secondary coil L2 receives the alternating magnetic flux. The rectifier circuit includes a rectifier diode and a smoothing capacitor that smoothes the power rectified by the rectifier diode, and converts the AC power input from the secondary coil L2 into DC power, a so-called half-wave rectifier circuit. It is configured as. The configuration of this rectifier circuit is merely an example of a rectifier circuit that converts AC power into DC power, and is not limited to this configuration. A full-wave rectifier circuit using a diode bridge or other known rectifier circuit is also used. You may have the structure of a rectifier circuit. The signal detection circuit 24 is a circuit that detects the induced electromotive force of the secondary coil L2. The signal detection circuit 24 is connected to the secondary side control unit 22, and outputs the detected induced electromotive force (voltage) waveform to the secondary side control unit 22.
 信号制御回路23は、非接触受電装置20から非接触送電装置10に信号を送信する場合、送信する信号に応じて2次コイルL2にかかる負荷を変化させて、1次コイルL1の誘導起電力の信号波形を変化させる負荷変調処理を行う。この信号制御回路23は、2次側制御部22と接続されており、2次側制御部22からの制御信号に基づき、負荷変調処理を実行する。 When the signal control circuit 23 transmits a signal from the non-contact power receiving device 20 to the non-contact power transmission device 10, the signal control circuit 23 changes the load applied to the secondary coil L2 according to the signal to be transmitted, thereby inducing the induced electromotive force of the primary coil L1. The load modulation process is performed to change the signal waveform. The signal control circuit 23 is connected to the secondary side control unit 22 and executes load modulation processing based on a control signal from the secondary side control unit 22.
 2次側制御部22は、中央演算処理装置(CPU)、記憶装置(ROM、RAMなど)を有するマイクロコンピュータを中心に構成されており、メモリーに格納されている各種データ及びプログラムに基づいて、非接触受電装置20が有するバッテリBAの充電状態を判定するとともにその充電量制御などの各種制御を実行する。なお、本実施形態では、バッテリBAの充電量に基づいて非接触送電装置10への信号を生成するようにもなっている。また、ROMには、バッテリ(本負荷)BAの充電量の判定等の充電量制御に必要とされる各種情報や、非接触送電装置10との間の信号の生成や、同信号に基づく変調のために必要とされる各種のパラメータなどが予め保存されている。 The secondary side control unit 22 is mainly configured by a microcomputer having a central processing unit (CPU) and a storage device (ROM, RAM, etc.), and based on various data and programs stored in the memory, The state of charge of the battery BA included in the non-contact power receiving device 20 is determined and various controls such as charge amount control are executed. In the present embodiment, a signal to the non-contact power transmission apparatus 10 is also generated based on the charge amount of the battery BA. In addition, in the ROM, various information required for charge amount control such as determination of the charge amount of the battery (main load) BA, generation of a signal with the contactless power transmission device 10, and modulation based on the signal Various parameters required for the purpose are stored in advance.
 そして、2次側制御部22には、バッテリBAの正極及び負極がそれぞれ接続され、バッテリBAから駆動用の電力供給を受けるとともに、2次側制御部22は、バッテリBAの端子間電圧などからバッテリBAの充電量を把握することができるようになっている。また、2次側制御部22は、受電部21から入力した交流電力を予め決められた電圧に調節して充電電力を生成し、バッテリBAに出力するようになっている。また、2次側制御部22は、バッテリBAの充電量に応じて充電電力を出力するか否かを切り替えるようになっている。例えば、2次側制御部22は、バッテリBAの端子間電圧が予め設定された充電量判定用の閾値よりも低いことなどからバッテリBAを充電することが好ましいと判断する場合、充電電力をバッテリBAに供給する。一方、バッテリBAの端子間電圧が充電量判定用の閾値よりも高いことなどからバッテリBAを充電する必要が無いと判断する場合、2次側制御部22は、充電電力をバッテリBAに供給しない。 The secondary-side control unit 22 is connected to the positive and negative electrodes of the battery BA, and receives power for driving from the battery BA. The secondary-side control unit 22 receives the voltage between the terminals of the battery BA and the like. The charge amount of the battery BA can be grasped. Moreover, the secondary side control part 22 adjusts the alternating current power input from the power receiving part 21 to a predetermined voltage, produces | generates charging power, and outputs it to battery BA. Moreover, the secondary side control part 22 switches whether to output charging power according to the charge amount of the battery BA. For example, when the secondary-side control unit 22 determines that it is preferable to charge the battery BA because the voltage between the terminals of the battery BA is lower than a preset charge amount determination threshold value, the charging power is supplied to the battery. Supply to BA. On the other hand, when it is determined that it is not necessary to charge the battery BA because the voltage between the terminals of the battery BA is higher than the threshold for determining the charge amount, the secondary control unit 22 does not supply the charging power to the battery BA. .
 また、2次側制御部22は、非接触送電装置10と信号の送受信をする場合には、充電電力の出力を停止するようになっている。また、2次側制御部22は、動作電圧が動作可能な電圧よりも低い場合、バッテリBAとの接続を電気的に遮断し、バッテリBAからの電圧の逆流を防止するようになっている。また、2次側制御部22は、2次コイルL2の誘導起電力の周波数を監視して、非接触送電装置10からの信号がデータ「1」であるか又はデータ「0」であるかを判断するようになっている。 In addition, the secondary side control unit 22 stops the output of the charging power when transmitting and receiving signals to and from the non-contact power transmission apparatus 10. Further, when the operating voltage is lower than the operable voltage, the secondary side control unit 22 electrically disconnects the connection with the battery BA and prevents the reverse flow of the voltage from the battery BA. Further, the secondary side control unit 22 monitors the frequency of the induced electromotive force of the secondary coil L2, and determines whether the signal from the non-contact power transmission device 10 is data “1” or data “0”. It comes to judge.
 次に、バッテリBAの充電に係わる制御について説明する。まず、非接触送電装置10側における制御について図2及び図3に基づき説明する。なお、図3では、誘導起電力(V)を縦軸としている。 Next, control related to charging of the battery BA will be described. First, control on the non-contact power transmission apparatus 10 side will be described with reference to FIGS. 2 and 3. In FIG. 3, the induced electromotive force (V) is on the vertical axis.
 1次側制御部14は、待機状態(非接触受電装置20と電磁的に接続されていないとき)であるとき、所定の待機周期毎に、間欠的に電力を出力させるようになっている(ステップS10)。具体的には、図3(a)に示すように、電力が間欠的に出力されるようになっており、その電力は、単位時間当たりにおいて、充電電力伝送時(充電時)の電力、データ「0」又はデータ「1」の信号を送信するときの電力よりも小さいものとなっている。なお、以下では、待機周期毎に電力を出力させる状態をパワーセーブモードと示す場合がある。 When the primary side control unit 14 is in a standby state (when not electromagnetically connected to the non-contact power receiving device 20), the primary side control unit 14 intermittently outputs power every predetermined standby period ( Step S10). Specifically, as shown in FIG. 3A, power is output intermittently, and the power is the power and data at the time of charging power transmission (charging) per unit time. It is smaller than the power when transmitting a signal of “0” or data “1”. In the following, a state in which power is output for each standby period may be referred to as a power save mode.
 そして、非接触送電装置10は、この間欠的に電力を出力すると共に、非接触受電装置20が設置されたか否かを判定する機器設置判定を実行するようになっている(ステップS11)。より詳しく説明すると、非接触送電装置10が待機状態(パワーセーブモード)であるときに、非接触受電装置20が所定の場所に設置され、1次コイルL1と2次コイルL2が電磁的に結合すると、図3(b)に示すように、1次コイルL1が2次コイルL2の影響を受けて、電力の波形が変化する。具体的には、待機状態における電力出力時に、1次コイルL1の交流電力のピーク電圧が小さくなるように変化する。従って、1次側制御部14は、機器設置判定において、待機状態において電力の波形が変化した場合には、非接触受電装置20が設定されたと判定(肯定判定)するようになっている。一方、1次側制御部14は、機器設置判定において、待機状態の電力波形が変化せずに、一定時間経過した場合には、非接触受電装置20が設定されないと判定(否定判定)するようになっている。 Then, the non-contact power transmission device 10 outputs power intermittently and executes device installation determination for determining whether or not the non-contact power reception device 20 is installed (step S11). More specifically, when the non-contact power transmission device 10 is in a standby state (power save mode), the non-contact power reception device 20 is installed at a predetermined location, and the primary coil L1 and the secondary coil L2 are electromagnetically coupled. Then, as shown in FIG. 3B, the primary coil L1 is affected by the secondary coil L2, and the power waveform changes. Specifically, it changes so that the peak voltage of the AC power of the primary coil L1 becomes small at the time of power output in the standby state. Therefore, the primary-side control unit 14 determines (affirmative determination) that the non-contact power receiving device 20 is set when the power waveform changes in the standby state in the device installation determination. On the other hand, in the device installation determination, the primary-side control unit 14 determines that the non-contact power receiving device 20 is not set (determination determination) when the predetermined time has elapsed without changing the standby power waveform. It has become.
 1次側制御部14は、機器設置判定(ステップS11)において否定判定した場合、所定時間経過後、再びステップS10の処理を実行して、間欠的に電力を再び出力させる。一方、1次側制御部14は、機器設置判定(ステップS11)において肯定判定した場合、充電電力伝送時の電力で、非接触受電装置20に充電確認信号を出力する(ステップS12)。本実施形態において、充電電力伝送時には、図3(c)に示すように、継続的に電力が出力されるようになっており、電力が停止する期間が設定されないようになっている。また、1次側制御部14は、充電確認信号を出力する際、充電確認信号を信号「0」又は「1」の組み合わせに変換し(変調し)、図3(c)に示すように、当該変換後の信号を順番に出力させるように送電部12を制御する。これにより、2次コイルL2の誘導起電力は、図3(i)に示すように、出力される充電確認信号に応じて、その波形が変化する。 When the negative determination is made in the device installation determination (step S11), the primary side control unit 14 executes the process of step S10 again after a predetermined time has elapsed, and intermittently outputs power again. On the other hand, when the affirmative determination is made in the device installation determination (step S11), the primary side control unit 14 outputs a charge confirmation signal to the non-contact power receiving device 20 with the power at the time of charging power transmission (step S12). In the present embodiment, at the time of charging power transmission, as shown in FIG. 3C, power is continuously output, and a period during which power is stopped is not set. In addition, when the primary side control unit 14 outputs the charge confirmation signal, the primary side control unit 14 converts (modulates) the charge confirmation signal into a combination of signals “0” or “1”, and as illustrated in FIG. The power transmission unit 12 is controlled to output the converted signals in order. As a result, the waveform of the induced electromotive force of the secondary coil L2 changes according to the output charge confirmation signal, as shown in FIG. 3 (i).
 2次側制御部22は、信号検出回路24が検出した「0」又は「1」からなる信号を復調及び解析して、充電確認信号を受信したと判定すると、バッテリBAの電圧に基づき、充電量を判定する。そして、2次側制御部22は、充電が可能である場合(バッテリBAの電圧が閾値以下である場合)、充電確認信号に応じた第1の応答信号を出力する(ステップS21)。具体的には、2次側制御部22は、図3(j)に示すように、信号制御回路23に対して第1の応答信号を出力させるように2次コイルL2に掛かる負荷を変化させる。つまり、2次側制御部22は、第1の応答信号を出力させるため、2次コイルL2に掛かる負荷を変化させるように信号制御回路23に対して制御信号を出力する。これにより、図3(d)に示すように、1次コイルL1の誘導起電力の電圧が変化することとなる。なお、2次側制御部22は、充電が不要である場合、第1の応答信号を出力させることなく、処理を終了する。 When the secondary side control unit 22 demodulates and analyzes the signal consisting of “0” or “1” detected by the signal detection circuit 24 and determines that the charge confirmation signal has been received, the secondary side control unit 22 performs charging based on the voltage of the battery BA. Determine the amount. Then, when charging is possible (when the voltage of the battery BA is equal to or lower than the threshold value), the secondary side control unit 22 outputs a first response signal corresponding to the charging confirmation signal (step S21). Specifically, as shown in FIG. 3 (j), the secondary side control unit 22 changes the load applied to the secondary coil L2 so that the signal control circuit 23 outputs the first response signal. . That is, the secondary side control unit 22 outputs a control signal to the signal control circuit 23 so as to change the load applied to the secondary coil L2 in order to output the first response signal. Thereby, as shown in FIG.3 (d), the voltage of the induced electromotive force of the primary coil L1 will change. In addition, the secondary side control part 22 complete | finishes a process, without outputting a 1st response signal, when charge is unnecessary.
 1次側制御部14は、電圧検出回路13が検出した誘導起電力の波形に基づき、信号を復調及び解析し、第1の応答信号を入力したか否かを判定(すなわち、非接触受電装置20から信号が返信されたか否かの確認を)する(ステップS13)。この判定結果が否定の場合(充電が不要である場合、又は電磁的に接続されていない場合)、1次側制御部14は、所定時間経過後、再びステップ10の処理を実行する。 The primary-side control unit 14 demodulates and analyzes the signal based on the waveform of the induced electromotive force detected by the voltage detection circuit 13 and determines whether or not the first response signal is input (that is, the non-contact power receiving device) (Confirmation of whether or not a signal is returned from 20) (step S13). When the determination result is negative (when charging is not required or when the electromagnetic connection is not established), the primary control unit 14 executes the process of step 10 again after a predetermined time has elapsed.
 一方、1次側制御部14は、ステップS13の判定結果が肯定の場合(第1の応答信号を受信すると)、ID認証を行うための1Dを示すID確認信号を出力する(ステップS14)。なお、ID確認信号を出力する際の処理は、充電確認信号の出力時の処理と同様である。具体的には、1次側制御部14は、ID確認信号を出力する際、ID確認信号を信号「0」又は「1」の組み合わせに変換し(変調し)、図3(e)に示すように、当該変換後の信号を順番に出力させるように送電部12を制御信号にて制御する。これにより、2次コイルL2の誘導起電力は、図3(k)に示すように、ID確認信号に応じて、その波形が変化する。 On the other hand, when the determination result of step S13 is affirmative (when the first response signal is received), the primary side control unit 14 outputs an ID confirmation signal indicating 1D for performing ID authentication (step S14). The process when outputting the ID confirmation signal is the same as the process when outputting the charge confirmation signal. Specifically, when outputting the ID confirmation signal, the primary side control unit 14 converts (modulates) the ID confirmation signal into a combination of the signals “0” or “1”, as shown in FIG. As described above, the power transmission unit 12 is controlled by the control signal so as to sequentially output the converted signals. As a result, the waveform of the induced electromotive force of the secondary coil L2 changes according to the ID confirmation signal as shown in FIG.
 2次側制御部22は、信号検出回路24が検出した「0」又は「1」からなる信号を復調及び解析して、ID確認信号を受信したと判定すると、充電可能な機器(非接触送電装置10)のIDであるか否かを判定する。そして、2次側制御部22は、充電が可能な機器のIDである場合(ID認証が完了(確立)した場合)、ID確認信号に応じた第2の応答信号を出力する(ステップS22)。具体的には、2次側制御部22は、図3(l)に示すように、信号制御回路23に対して第2の応答信号を出力させるように2次コイルL2に掛かる負荷を変化させる。これにより、図3(f)に示すように、1次コイルL1の誘導起電力の電圧が変化することとなる。なお、2次側制御部22は、ID認証が失敗した(充電可能な機器でない)場合、第2の応答信号を出力することなく、処理を終了し、非接触送電装置10が待機状態(パワーセーブモード)に移行する。その結果、1次側制御部14は、待機周期で間欠的に電力を出力する。 When the secondary-side control unit 22 demodulates and analyzes the signal consisting of “0” or “1” detected by the signal detection circuit 24 and determines that the ID confirmation signal has been received, the secondary-side control unit 22 can charge the device (contactless power transmission). It is determined whether the ID of the apparatus 10). If the ID of the device that can be charged (when ID authentication is completed (established)), the secondary control unit 22 outputs a second response signal corresponding to the ID confirmation signal (step S22). . Specifically, the secondary side control unit 22 changes the load applied to the secondary coil L2 so that the signal control circuit 23 outputs the second response signal, as shown in FIG. . Thereby, as shown in FIG.3 (f), the voltage of the induced electromotive force of the primary coil L1 will change. In addition, when ID authentication fails (it is not a chargeable apparatus), the secondary side control part 22 complete | finishes a process, without outputting a 2nd response signal, and the non-contact power transmission apparatus 10 is a standby state (power). Switch to save mode. As a result, the primary side control part 14 outputs electric power intermittently with a standby period.
 1次側制御部14は、電圧検出回路13が検出した誘導起電力の波形に基づき、信号を復調及び解析し、第2の応答信号を入力したか否かを判定(すなわち、非接触受電装置20から信号が返信されたか否かの確認を)する(ステップS15)。この判定結果が否定の場合(ID認証に失敗した場合)、1次側制御部14は、所定時間経過後、再びステップ10の処理を実行する。 The primary-side control unit 14 demodulates and analyzes the signal based on the waveform of the induced electromotive force detected by the voltage detection circuit 13 and determines whether or not the second response signal is input (that is, the non-contact power receiving device) (Confirmation of whether or not a signal is returned from 20) (step S15). When this determination result is negative (when ID authentication fails), the primary-side control unit 14 executes the process of step 10 again after a predetermined time has elapsed.
 一方、1次側制御部14は、ステップS15の判定結果が肯定の場合(第2の応答信号を受信すると)、充電電力伝送時の電力を維持して(図3(g))、充電を開始する(ステップS16)。2次側制御部22は、第2の応答信号出力後、2次コイルL2及び受電部21を介して入力した直流電力(図3(m))の電圧を制御して、充電電力を生成し、バッテリBAに供給する。これにより、2次側制御部22は、充電を開始する(ステップS23)。 On the other hand, when the determination result of step S15 is affirmative (when the second response signal is received), the primary side control unit 14 maintains the power at the time of charging power transmission (FIG. 3 (g)) and performs charging. Start (step S16). After the second response signal is output, the secondary side control unit 22 controls the voltage of the DC power (FIG. 3 (m)) input via the secondary coil L2 and the power receiving unit 21 to generate charging power. , Supplied to the battery BA. Thereby, the secondary side control part 22 starts charge (step S23).
 2次側制御部22は、充電開始後、バッテリBAの充電量を監視し続け、充電が完了したか否かを判定する(ステップS24)。具体的には、2次側制御部22は、バッテリBAの電圧を監視し、所定の閾値以上であるか否かを判定する。2次側制御部22は、ステップS24の判定結果が否定の場合(充電が完了していない場合)、所定時間経過後、再びステップS24の処理を実行する。 The secondary side control unit 22 continues to monitor the charge amount of the battery BA after the start of charging, and determines whether or not the charging is completed (step S24). Specifically, the secondary side control unit 22 monitors the voltage of the battery BA and determines whether or not it is equal to or greater than a predetermined threshold value. When the determination result of step S24 is negative (when charging is not completed), the secondary-side control unit 22 executes the process of step S24 again after a predetermined time has elapsed.
 一方、ステップS24の判定結果が肯定の場合(充電が完了した場合)、充電が完了した旨を示す充電完了信号を出力する(ステップS25)。具体的には、2次側制御部22は、図3(n)に示すように、信号制御回路23に対して充電完了信号を出力させるように2次コイルL2に掛かる負荷を変化させる。これにより、図3(h)に示すように、1次コイルL1の誘導起電力の電圧が変化することとなる。 On the other hand, when the determination result of step S24 is affirmative (when charging is completed), a charging completion signal indicating that charging is completed is output (step S25). Specifically, as shown in FIG. 3 (n), the secondary side control unit 22 changes the load applied to the secondary coil L2 so that the signal control circuit 23 outputs a charge completion signal. Thereby, as shown in FIG.3 (h), the voltage of the induced electromotive force of the primary coil L1 will change.
 一方、ステップS16の処理後(充電開始後)、1次側制御部14は、非接触受電装置20がそのまま設置されているか否かを判定する機器設置判定を実行するようになっている(ステップS17)。より詳しく説明すると、非接触送電装置10が充電状態であるときに、非接触受電装置20が所定の場所から取り外されると、1次コイルL1と2次コイルL2との電磁的な結合が解除され、充電時に流れる1次コイルL1の電力の波形が変化する。具体的には、充電時に流れる1次コイルL1の交流電力のピーク電圧が大きくなるように変化する。従って、1次側制御部14は、ステップS17の機器設置判定において、充電時に流れる1次コイルL1の電圧の波形が変化した場合には、非接触受電装置20が取り外されたと判定(否定判定)するようになっている。一方、1次側制御部14は、ステップS17の機器設置判定において、充電時に流れる1次コイルL1の電力の波形が変化せずに、一定時間経過した場合には、非接触受電装置20が設置されたままであると判定(肯定判定)するようになっている。 On the other hand, after the processing of step S16 (after the start of charging), the primary-side control unit 14 performs device installation determination for determining whether or not the non-contact power receiving device 20 is installed as it is (step). S17). More specifically, when the contactless power transmission device 10 is in a charged state, the electromagnetic coupling between the primary coil L1 and the secondary coil L2 is released when the contactless power reception device 20 is removed from a predetermined location. The waveform of the power of the primary coil L1 that flows during charging changes. Specifically, the peak voltage of the AC power of the primary coil L1 that flows during charging changes so as to increase. Therefore, the primary-side control unit 14 determines that the non-contact power receiving device 20 has been removed (negative determination) when the waveform of the voltage of the primary coil L1 that flows during charging changes in the device installation determination in step S17. It is supposed to be. On the other hand, the primary-side control unit 14 installs the non-contact power receiving device 20 when a certain time has elapsed without changing the waveform of the power of the primary coil L1 flowing during charging in the device installation determination in step S17. It is determined (affirmative determination) that it has been performed.
 1次側制御部14は、ステップS17の機器設置判定が否定となった場合、ステップS10の処理に移行する。一方、1次側制御部14は、ステップS17の機器設置判定が肯定である場合、充電完了信号を受信したか否かを判定する(ステップS18)。ステップS18の処理を具体的に説明すると、1次側制御部14は、電圧検出回路13が検出した誘導起電力の波形に基づき、信号を復調及び解析し、充電完了信号を入力したか否かを判定する。この判定結果が否定の場合、1次側制御部14は、所定時間経過後、再びステップS17の処理を実行する。また、ステップS18の判定結果が肯定の場合(充電完了信号を受信した場合)、1次側制御部14は、充電完了であると判定し、処理を終了する。 The primary side control part 14 transfers to the process of step S10, when the apparatus installation determination of step S17 becomes negative. On the other hand, the primary side control part 14 determines whether the charge completion signal was received, when the apparatus installation determination of step S17 is affirmation (step S18). The processing in step S18 will be described in detail. The primary side control unit 14 demodulates and analyzes the signal based on the induced electromotive force waveform detected by the voltage detection circuit 13, and determines whether or not a charging completion signal is input. Determine. If this determination result is negative, the primary-side control unit 14 executes the process of step S17 again after a predetermined time has elapsed. In addition, when the determination result of step S18 is affirmative (when a charging completion signal is received), the primary side control unit 14 determines that charging is complete and ends the process.
 以上詳述したように、本実施形態は、以下の効果を有する。
 (1)1次側制御部14は、待機状態において電力を間欠的に出力させる。電圧検出回路13は、1次コイルL1の誘導起電力の電圧を計測し、その計測結果を1次側制御部14に送信する。1次側制御部14は、1次コイルL1の誘導起電力を監視し、当該誘導起電力の振幅(ピーク電圧)が変化した場合、非接触受電装置20が所定の位置(充電可能な位置)に設置されたと判定し、充電時と同じ出力の交流電力で、充電確認信号及びID確認信号を送信する。そして、1次側制御部14は、第1及び第2応答信号を受信した場合、1次コイルL1への交流電力の出力を継続して充電させる。
As described above in detail, the present embodiment has the following effects.
(1) The primary side control part 14 outputs electric power intermittently in a standby state. The voltage detection circuit 13 measures the voltage of the induced electromotive force of the primary coil L <b> 1 and transmits the measurement result to the primary side control unit 14. The primary side control part 14 monitors the induced electromotive force of the primary coil L1, and when the amplitude (peak voltage) of the induced electromotive force changes, the non-contact power receiving device 20 is in a predetermined position (position where charging is possible). The charging confirmation signal and the ID confirmation signal are transmitted with the same output AC power as that at the time of charging. And the primary side control part 14 is made to charge continuously the output of the alternating current power to the primary coil L1, when the 1st and 2nd response signal is received.
 そして、充電電力伝送時と同じ出力で継続的に出力される確認信号の方が、待機状態における電力(間欠的に出力される電力)よりも、情報量が多くなっている。このため、本実施形態の非接触送電装置10は、充電が可能であるか否か(充電可能な位置に設置されており、且つID認証が完了したか否か)を確認するための制御信号(即ち、充電確認信号及びID確認信号)の送受信を素早く終了させることができる。従って、充電を素早く開始させることができる。 And, the confirmation signal that is continuously output at the same output as when charging power is transmitted has a larger amount of information than the power in the standby state (intermittently output power). For this reason, the non-contact power transmission apparatus 10 of this embodiment is a control signal for confirming whether charging is possible (installed at a position where charging is possible and whether ID authentication is completed). The transmission / reception of the charging confirmation signal and the ID confirmation signal can be quickly terminated. Therefore, charging can be started quickly.
 (2)また、確認信号出力時から充電電力伝送時と同じ出力で交流電力を出力している。このため、非接触受電装置20が第2の応答信号を出力して(すなわち、ID認証が完了して)すぐに充電を開始することができる。従って、充電を素早く開始させることができる。 (2) In addition, AC power is output from the same output as when charging power is transmitted from when the confirmation signal is output. Therefore, charging can be started immediately after the non-contact power receiving apparatus 20 outputs the second response signal (that is, after the ID authentication is completed). Therefore, charging can be started quickly.
 (3)また、1次側制御部14は、確認信号送信後、応答信号を受信しなかった場合、又は充電完了信号を受信した場合、所定時間経過後、パワーセーブモードに移行し、電力を間欠的に出力させる。すなわち、充電が不可能である場合又は不要である場合、交流電力を間欠的に出力させる。これにより、交流電力による消費電力を少なくすることができる。 (3) Further, when the primary side control unit 14 does not receive the response signal after transmitting the confirmation signal or receives the charge completion signal, the primary side control unit 14 shifts to the power save mode after a predetermined time has elapsed, Output intermittently. That is, when charging is impossible or unnecessary, AC power is output intermittently. Thereby, the power consumption by alternating current power can be decreased.
 なお、上記実施形態は以下のように変更してもよい。
 ・バッテリBAが非接触受電装置20に設けられていたが、勿論、受電装置20と別体でもよい。即ち、非接触受電装置20に着脱可能にバッテリBAが設けられてもよい。更には、非接触受電装置20が携帯機器などの機器に着脱可能に設けられてもよい。
In addition, you may change the said embodiment as follows.
The battery BA is provided in the non-contact power receiving device 20, but of course, it may be a separate body from the power receiving device 20. That is, the battery BA may be detachably attached to the non-contact power receiving device 20. Furthermore, the non-contact power receiving device 20 may be detachably attached to a device such as a portable device.
 ・上記実施形態において、1次側制御部14は、充電開始から予め決められた充電時間が経過するまで、充電を継続しても良い。
 ・上記実施形態において、待機状態(パワーセーブモード)における1次コイルL1の交流電力は、充電電力伝送時の交流電力よりも小さくなるような電力であれば、任意変更しても良い。
In the above embodiment, the primary side control unit 14 may continue charging until a predetermined charging time has elapsed from the start of charging.
In the above embodiment, the AC power of the primary coil L1 in the standby state (power save mode) may be arbitrarily changed as long as it is lower than the AC power during charging power transmission.
 ・上記実施形態において、非接触受電装置20の信号制御回路23が負荷変調処理を実行した際、1次側制御部14は、ピーク電圧が閾値を超えたか否かにより信号を判定したが、変化量が一定値以上であるか否かにより信号を判定しても良い。 In the above embodiment, when the signal control circuit 23 of the non-contact power receiving apparatus 20 executes the load modulation process, the primary side control unit 14 determines the signal depending on whether or not the peak voltage exceeds the threshold value. The signal may be determined based on whether the amount is equal to or greater than a certain value.
 ・上記実施形態において、2次側制御部22は、バッテリBAから駆動用の電力供給を受けていたが、受電部21から供給されてもよい。
 ・上記実施形態において、1次側制御部14は、機器設置判定において、非接触受電装置20が設置されたと判定(肯定判定)した場合、非接触送電装置10から充電確認信号を出力する。そして、非接触受電装置20が充電確認信号を受信することで、第1の応答信号を非接触送電装置10に送信する。この構成において、非接触受電装置20が設置されたと判定した(肯定判定)した場合、非接触送電装置10が連続送電を開始し、非接触受電装置20が受電を開始することで、第1の応答信号を非接触送電装置10へ送信しても良い。すなわち、充電確認信号の送信が、充電時と同じ交流電力で1次コイルL1から2次コイルL2への連続送電によって行われてもよい。
In the above-described embodiment, the secondary control unit 22 has received power for driving from the battery BA, but may be supplied from the power receiving unit 21.
In the above embodiment, the primary-side control unit 14 outputs a charging confirmation signal from the non-contact power transmission device 10 when it is determined (affirmative determination) that the non-contact power receiving device 20 is installed in the device installation determination. Then, the contactless power receiving device 20 receives the charge confirmation signal, and transmits the first response signal to the contactless power transmission device 10. In this configuration, when it is determined that the non-contact power receiving device 20 is installed (affirmative determination), the non-contact power transmitting device 10 starts continuous power transmission, and the non-contact power receiving device 20 starts receiving power. A response signal may be transmitted to the non-contact power transmission apparatus 10. That is, the transmission of the charging confirmation signal may be performed by continuous power transmission from the primary coil L1 to the secondary coil L2 with the same AC power as at the time of charging.
 ・上記実施形態では、バッテリBAの充電量を判定するタイミングは、第1の応答信号出力前であったが、充電開始までの間に充電量を判定すればよい。
 ・上記実施形態において、充電量を判定した際、充電が不要であると判定した場合、第1の応答信号を出力することなく、処理を終了するとしていたが、充電が不要である旨の応答信号を非接触送電装置10に出力しても良い。
In the above embodiment, the timing for determining the charge amount of the battery BA is before the output of the first response signal, but the charge amount may be determined before the start of charging.
In the above embodiment, when determining the amount of charge, if it is determined that charging is not required, the processing is terminated without outputting the first response signal, but a response indicating that charging is not required A signal may be output to the non-contact power transmission apparatus 10.
 ・上記実施形態では、2次側制御部22は、ID認証が失敗した(充電可能な機器でない)場合、第2の応答信号を出力させることなく、処理を終了したが、ID認証が失敗した(充電可能な機器でない)旨を応答信号として非接触送電装置10に出力しても良い。 -In above-mentioned embodiment, when ID authentication failed (it is not a device which can be charged), the secondary side control part 22 complete | finished the process, without outputting a 2nd response signal, but ID authentication failed You may output to the non-contact power transmission apparatus 10 as a response signal that it is not a device that can be charged.
 ・上記実施形態において、IDを2次側制御部22で判定したが、1次側制御部14で判定しても良い。
 ・上記実施形態において、充電開始後、1次側制御部14は、非接触受電装置20がそのまま設置されているか否かを判定(機器設置判定)する際、1次コイルL1の電力波形にて判定したが、所定の周期毎に信号通信を行うことにより判定しても良い。
In the above embodiment, the ID is determined by the secondary control unit 22, but may be determined by the primary control unit 14.
In the above embodiment, after starting charging, the primary control unit 14 determines whether the non-contact power receiving device 20 is installed as it is (equipment installation determination) with the power waveform of the primary coil L1. Although determined, it may be determined by performing signal communication every predetermined period.
 ・上記実施形態において、充電開始から予め決められた充電時間が経過したか否かを判定する機能はなくてもよい。 In the above embodiment, there may be no function for determining whether or not a predetermined charging time has elapsed since the start of charging.

Claims (6)

  1.  非接触受電装置を介して負荷を非接触で充電する非接触送電装置であって、
     交流電力に基づいて交番磁束を発生し、該交番磁束を前記非接触受電装置の2次コイルに交差させることにより該2次コイルを介して前記非接触受電装置に前記交流電力を送電する1次コイルと、
     待機状態の時には前記1次コイルに前記交流電力を間欠的に出力する一方、充電状態の時には前記待機状態の時より高い交流電力を前記1次コイルに出力するように前記交流電力の出力を制御する出力制御部と、
     前記1次コイルに生じた前記交流電力の波形を計測する計測部と、
     前記計測部にて計測された交流電力の波形が変化した場合、前記非接触受電装置が充電可能な位置に設置されたと検出する検出部と、を備え、
     前記出力制御部は、
     前記非接触受電装置を前記検出部が検出した場合、充電時と同じ交流電力を前記1次コイルに出力して該交流電力の波形を変化させることにより、前記負荷を充電可能か否かを確認するための確認信号を前記非接触受電装置に送信し、
     前記非接触受電装置から充電可能である旨の応答信号を受信した場合、前記1次コイルへの交流電力の出力を継続して充電を開始させる、ことを特徴とする非接触送電装置。
    A non-contact power transmission device that charges a load in a non-contact manner via a non-contact power receiving device,
    A primary that generates alternating magnetic flux based on AC power and transmits the AC power to the non-contact power receiving device via the secondary coil by causing the alternating magnetic flux to intersect with the secondary coil of the non-contact power receiving device. Coils,
    The AC power is controlled so that the AC power is intermittently output to the primary coil in the standby state, while the AC power is output to the primary coil higher in the standby state than in the standby state. An output control unit,
    A measuring unit for measuring a waveform of the AC power generated in the primary coil;
    A detection unit that detects that the non-contact power receiving device is installed at a chargeable position when the waveform of the AC power measured by the measurement unit changes;
    The output control unit
    When the detection unit detects the non-contact power receiving device, the same AC power as that during charging is output to the primary coil to change the waveform of the AC power, thereby confirming whether the load can be charged. Transmitting a confirmation signal to the non-contact power receiving device,
    When a response signal indicating that charging is possible is received from the non-contact power receiving device, output of AC power to the primary coil is continued to start charging.
  2.  前記出力制御部は、前記確認信号の送信後、前記応答信号を受信しなかった場合又は充電不要である旨の前記応答信号を受信した場合、前記待機状態に移行して再び前記1次コイルに交流電力を間欠的に出力することを特徴とする請求項1に記載の非接触送電装置。 When the output control unit does not receive the response signal after transmitting the confirmation signal or receives the response signal indicating that charging is not required, the output control unit shifts to the standby state and again enters the primary coil. 2. The contactless power transmission device according to claim 1, wherein AC power is intermittently output.
  3.  前記確認信号の送信が、前記充電時と同じ交流電力で前記1次コイルから前記2次コイルへの連続送電によって行われることを特徴とする請求項1に記載の非接触送電装置。 The contactless power transmission device according to claim 1, wherein the transmission of the confirmation signal is performed by continuous power transmission from the primary coil to the secondary coil with the same AC power as in the charging.
  4.  交流電力に基づいて交番磁束を発生する1次コイルを含む非接触送電装置と、前記1次コイルに発生した交番磁束と交差することにより電磁結合可能な2次コイルを含む非接触受電装置とを備え、前記非接触受電装置を介して負荷を充電する非接触充電システムであって、
     前記非接触送電装置は、
     待機状態の時には前記1次コイルに前記交流電力を間欠的に出力する一方、充電状態の時には前記待機状態の時より高い交流電力を前記1次コイルに出力するように前記交流電力の出力を制御する出力制御部と、
     前記1次コイルに生じた前記交流電力の波形を計測する計測部と、
     前記計測部にて計測された交流電力の波形が変化した場合、前記非接触受電装置が充電可能な位置に設置されたと検出する検出部と、を含み、
     前記非接触受電装置は、前記非接触送電装置からの制御信号に応答可能な応答部を含み、
     前記出力制御部は、
     前記非接触受電装置を前記検出部が検出した場合、充電時と同じ交流電力を前記1次コイルに出力して該交流電力の波形を変化させることにより、前記負荷を充電可能か否かを確認するための確認信号を前記制御信号として前記非接触受電装置に送信し、
     前記応答部から充電可能である旨の応答信号を受信した場合、前記1次コイルへの交流電力の出力を継続して充電を開始させる、ことを特徴とする非接触充電システム。
    A non-contact power transmission device including a primary coil that generates an alternating magnetic flux based on AC power, and a non-contact power reception device including a secondary coil that can be electromagnetically coupled by intersecting with the alternating magnetic flux generated in the primary coil. A contactless charging system for charging a load via the contactless power receiving device,
    The contactless power transmission device is:
    The AC power is controlled so that the AC power is intermittently output to the primary coil in the standby state, while the AC power is output to the primary coil higher in the standby state than in the standby state. An output control unit,
    A measuring unit for measuring a waveform of the AC power generated in the primary coil;
    When the waveform of the alternating current power measured by the measurement unit is changed, the detection unit detects that the non-contact power receiving device is installed at a chargeable position,
    The non-contact power receiving device includes a response unit capable of responding to a control signal from the non-contact power transmission device,
    The output control unit
    When the detection unit detects the non-contact power receiving device, the same AC power as that during charging is output to the primary coil to change the waveform of the AC power, thereby confirming whether the load can be charged. A confirmation signal for transmitting to the non-contact power receiving device as the control signal,
    When a response signal indicating that charging is possible is received from the response unit, output of AC power to the primary coil is continued to start charging.
  5.  前記出力制御部は、前記確認信号の送信後、前記応答信号を受信しなかった場合又は充電不要である旨の前記応答信号を受信した場合、前記待機状態に移行して再び前記1次コイルに交流電力を間欠的に出力することを特徴とする請求項4に記載の非接触充電システム。 When the output control unit does not receive the response signal after transmitting the confirmation signal or receives the response signal indicating that charging is not required, the output control unit shifts to the standby state and again enters the primary coil. 5. The contactless charging system according to claim 4, wherein AC power is intermittently output.
  6.  前記確認信号の送信が、前記充電時と同じ交流電力で前記1次コイルから前記2次コイルへの連続送電によって行われることを特徴とする請求項4に記載の非接触充電システム。 The non-contact charging system according to claim 4, wherein the transmission of the confirmation signal is performed by continuous power transmission from the primary coil to the secondary coil with the same AC power as in the charging.
PCT/JP2011/055310 2010-03-26 2011-03-08 Contactless power transmission device and contactless charging system WO2011118376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-073506 2010-03-26
JP2010073506A JP2011205867A (en) 2010-03-26 2010-03-26 Contactless power transmission device, and contactless charging system

Publications (1)

Publication Number Publication Date
WO2011118376A1 true WO2011118376A1 (en) 2011-09-29

Family

ID=44672941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055310 WO2011118376A1 (en) 2010-03-26 2011-03-08 Contactless power transmission device and contactless charging system

Country Status (2)

Country Link
JP (1) JP2011205867A (en)
WO (1) WO2011118376A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410979A (en) * 2016-12-05 2017-02-15 青岛鲁渝能源科技有限公司 Wireless electric energy transmission system and control method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5147999B1 (en) * 2012-02-13 2013-02-20 パナソニック株式会社 Power feeding device, power receiving device, charging system, and obstacle detection method
JP6547402B2 (en) * 2015-05-13 2019-07-24 セイコーエプソン株式会社 Control device, electronic device and contactless power transmission system
JP6360093B2 (en) * 2016-03-28 2018-07-18 三菱電機株式会社 Induction heating cooker and non-contact power supply system
CN108886271B (en) 2016-06-06 2022-04-01 株式会社村田制作所 Wireless power supply system, wireless power transmission device, and wireless power receiving device
JP6584583B2 (en) * 2018-05-17 2019-10-02 三菱電機株式会社 Induction heating cooker and non-contact power supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311658A (en) * 1993-04-21 1994-11-04 Kyushu Hitachi Maxell Ltd Miniature electric appliance
EP2079144A2 (en) * 2008-01-09 2009-07-15 Seiko Epson Corporation Power transmission control device, power transmitting device, non-contact power transmission system, electronic instrument, and power transmission control method
US20100026236A1 (en) * 2008-07-16 2010-02-04 Seiko Epson Corporation Power transmission control device, power transmission device, power receiving control device, power receiving device, electronic apparatus, and contactless power transmission method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311658A (en) * 1993-04-21 1994-11-04 Kyushu Hitachi Maxell Ltd Miniature electric appliance
EP2079144A2 (en) * 2008-01-09 2009-07-15 Seiko Epson Corporation Power transmission control device, power transmitting device, non-contact power transmission system, electronic instrument, and power transmission control method
US20100026236A1 (en) * 2008-07-16 2010-02-04 Seiko Epson Corporation Power transmission control device, power transmission device, power receiving control device, power receiving device, electronic apparatus, and contactless power transmission method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410979A (en) * 2016-12-05 2017-02-15 青岛鲁渝能源科技有限公司 Wireless electric energy transmission system and control method thereof
CN106410979B (en) * 2016-12-05 2019-03-12 青岛鲁渝能源科技有限公司 Radio energy transmission system and its control method

Also Published As

Publication number Publication date
JP2011205867A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
WO2011118377A1 (en) Non-contact power-receiving device, and non-contact charging system
JP4695691B2 (en) Non-contact charge battery and charger, battery charge set including these, and charge control method
US20230378810A1 (en) Power control method and device in wireless power transmission system
WO2011122248A1 (en) Non-contact power transmission device, non-contact power receiving device and non-contact charging system
US8680715B2 (en) Power supplying device, control method for the same, and power-supplying system
JP6467350B2 (en) Wireless power transmission control method in resonance type wireless power transmission system, wireless power transmitting apparatus using the same, and wireless power receiving apparatus using the same
JP5777757B2 (en) Foreign object detection device and method in wireless power transmission system
JP6002513B2 (en) Non-contact power supply system, terminal device, and non-contact power supply method
WO2011118371A1 (en) Contactless power supply device and contactless charging system
US10523061B2 (en) Power receiving device, power feeding device, and electronic apparatus
US20180351406A1 (en) Wireless charging device, wireless power transmission method therefor, and recording medium for same
WO2011118376A1 (en) Contactless power transmission device and contactless charging system
JP6279452B2 (en) Non-contact power transmission device
JP2009213294A (en) Contactless battery charger
KR20140067247A (en) The non contact point charging controller and control method of the cellular phone
KR100903463B1 (en) Wiress charger and Battery charging set having the same
JP6555848B2 (en) Charged device, its control method, control program, and non-contact charging system
KR20090025876A (en) Apparatus for supplying power and battery-charging with position recognizing function and charging system thereof
JP7126887B2 (en) Power transmission device and power transmission system
JP2011211788A (en) Non-contact power transmission device, non-contact power reception device and non-contact charging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759184

Country of ref document: EP

Kind code of ref document: A1