JP6365699B2 - Method for producing metallized polyimide film substrate - Google Patents

Method for producing metallized polyimide film substrate Download PDF

Info

Publication number
JP6365699B2
JP6365699B2 JP2017010228A JP2017010228A JP6365699B2 JP 6365699 B2 JP6365699 B2 JP 6365699B2 JP 2017010228 A JP2017010228 A JP 2017010228A JP 2017010228 A JP2017010228 A JP 2017010228A JP 6365699 B2 JP6365699 B2 JP 6365699B2
Authority
JP
Japan
Prior art keywords
polyimide film
film
polyimide
metal thin
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017010228A
Other languages
Japanese (ja)
Other versions
JP2017115247A (en
Inventor
敦 猪狩
敦 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017010228A priority Critical patent/JP6365699B2/en
Publication of JP2017115247A publication Critical patent/JP2017115247A/en
Application granted granted Critical
Publication of JP6365699B2 publication Critical patent/JP6365699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、金属化ポリイミドフィルム基板における、金属薄膜とポリイミドフィルム間の密着強度判定方法、及び、当該判定方法によってスクリーニングされたポリイミドフィルムを用いた金属化ポリイミドフィルム基板に関する。   The present invention relates to a method for determining adhesion strength between a metal thin film and a polyimide film in a metallized polyimide film substrate, and a metallized polyimide film substrate using a polyimide film screened by the determination method.

金属化ポリイミドフィルム基板は、銅箔とポリイミドフィルムの間に接着剤を用いて両者を張り合わせたものが主流である。この金属化ポリイミドフィルム基板は、フレキシブルプリント配線板として使用され、電子機器内の配線材料として広く採用されている。   A metallized polyimide film substrate is mainly a laminate of copper foil and polyimide film using an adhesive. This metallized polyimide film substrate is used as a flexible printed wiring board and widely used as a wiring material in electronic equipment.

近年電子部品の軽薄短小化に伴い、配線を狭ピッチ化する要求が高まっており、金属化ポリイミドフィルム基板に対する要求も微細配線が描ける基材を要求され、接着剤層の無い金属化ポリイミドフィルム基板が開発された。これは、接着剤層が無いことで接着剤層の特性に影響を受けず、狭ピッチ化した配線加工が可能なためである。   In recent years, as electronic parts have become lighter, thinner and shorter, there is an increasing demand for narrow pitch wiring, and the demand for metalized polyimide film substrates is also demanded of a substrate that can draw fine wiring, and there is no adhesive layer. Was developed. This is because the absence of the adhesive layer does not affect the characteristics of the adhesive layer, and wiring processing with a narrow pitch is possible.

接着剤層の無い金属化ポリイミドフィルム基板を得る方法としては、ポリイミドフィルム表面にスパッタ法および蒸着法で直接金属層を積層させた後に電気めっき法、無電解めっき法を用いて金属層を厚付けする方法がある。一般的には特許文献1や2のように、ポリイミドフィルムをプラズマ処理して金属層とポリイミドフィルムの密着性を向上させている。しかし、この方法はシワが入りやすいなどの不具合が多く、プラズマ処理なしで同程度の密着性をもつ基板が得られれば、工程安定性やコストの面からも有利である。   As a method of obtaining a metalized polyimide film substrate without an adhesive layer, a metal layer is directly laminated on the polyimide film surface by sputtering and vapor deposition, and then the metal layer is thickened by electroplating or electroless plating. There is a way to do it. Generally, as in Patent Documents 1 and 2, a polyimide film is plasma-treated to improve the adhesion between the metal layer and the polyimide film. However, this method has many inconveniences such as easy wrinkling, and if a substrate having the same degree of adhesion can be obtained without plasma treatment, it is advantageous in terms of process stability and cost.

しかし、接着剤を使用せず、プラズマ処理も行わない場合、金属層とポリイミドフィルムの接着性はポリイミドフィルムの表面物性に大きく左右される。また、ポリイミドフィルムの表面物性は製造工程の気流の影響で容易に変動する。この要因のために金属化ポリイミドフィルム基板の密着性にばらつきが生じる。   However, when no adhesive is used and no plasma treatment is performed, the adhesion between the metal layer and the polyimide film is greatly influenced by the surface properties of the polyimide film. Further, the surface physical properties of the polyimide film easily vary due to the influence of the air flow in the manufacturing process. Due to this factor, the adhesion of the metallized polyimide film substrate varies.

一方、非特許文献1、2には、金属とポリイミドの接着に寄与する因子が報告されている。   On the other hand, Non-Patent Documents 1 and 2 report factors contributing to adhesion between metal and polyimide.

特開2002−252257号公報JP 2002-252257 A 特開2003−334890号公報JP 2003-334890 A

前田重義、J.Jpn.Soc.Colour Mater.,80(1),26−31(2007)Maeda Shigeyoshi, J.M. Jpn. Soc. Color Mater. , 80 (1), 26-31 (2007) 前田重義、J.Jpn.Soc.Colour Mater.,80(1),68−74(2007)Maeda Shigeyoshi, J.M. Jpn. Soc. Color Mater. , 80 (1), 68-74 (2007)

上記のように、接着剤層の無い金属化ポリイミドフィルム基板が製造されているが、接着材層のある3層材FCCLよりも接着強度が低く、ポリイミドフィルム原料により密着力にばらつきがある。その接着強度の測定方法は、JIS C 6471 8.1(銅はくの引きはがし強さ)常態 方法A、に定められている。そこで、原料であるポリイミドフィルムの表面物性を管理し、密着力が安定した金属化ポリイミドフィルム基板が要求されている。   As described above, a metallized polyimide film substrate without an adhesive layer is manufactured, but the adhesive strength is lower than that of a three-layer material FCCL having an adhesive layer, and the adhesive strength varies depending on the polyimide film raw material. The measuring method of the adhesive strength is defined in JIS C 6471 8.1 (copper peel strength) normal method A. Therefore, there is a demand for a metallized polyimide film substrate that manages the surface physical properties of the raw material polyimide film and has stable adhesion.

よって、本発明の目的は、密着性と相関のあるポリイミドフィルムの表面物性を管理し、その物性の高いポリイミドフィルムを使用することで高い密着力を示す基板を提供することにある。   Therefore, the objective of this invention is to provide the board | substrate which shows the high adhesive force by managing the surface physical property of the polyimide film which has a correlation with adhesiveness, and using the polyimide film with the high physical property.

本発明者らは上記課題を解決するために鋭意研究した結果、ポリイミドフィルムの極表面の分子鎖の配向性が基板の密着性に与えることを発見し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the orientation of molecular chains on the extreme surface of the polyimide film has an effect on the adhesion of the substrate, thereby completing the present invention.

具体的には、本発明は以下のようなものを提供する。   Specifically, the present invention provides the following.

(1) ポリイミドフィルム表面に金属薄膜が積層されている金属薄膜/ポリイミド積層体において、前記金属薄膜/ポリイミド積層体を積層する前の前記ポリイミドフィルムの積層面側の極表面の分子鎖の配向性を視斜角入射X線回折法を用いて測定し、X線強度の面内異方性である最大X線強度/最小X線強度の比が1.05〜1.40の場合に、前記金属薄膜と前記ポリイミドフィルムとの密着強度を良と判定する工程と、前記密着強度が良と判定された金属薄膜/ポリイミド積層体の前記金属薄膜上に、電気めっき法、無電解めっき法もしくは両者を組み合わせた方法で銅を積層する工程と、を有する金属化ポリイミドフィルム基板の製造方法。   (1) In a metal thin film / polyimide laminate in which a metal thin film is laminated on the polyimide film surface, the orientation of molecular chains on the pole surface on the laminate surface side of the polyimide film before the metal thin film / polyimide laminate is laminated When the ratio of the maximum X-ray intensity / minimum X-ray intensity, which is the in-plane anisotropy of the X-ray intensity, is 1.05 to 1.40, A step of determining that the adhesion strength between the metal thin film and the polyimide film is good, and an electroplating method, an electroless plating method or both on the metal thin film of the metal thin film / polyimide laminate having the adhesion strength determined to be good. And a step of laminating copper by a method combining the above, and a method for producing a metallized polyimide film substrate.

(2) 前記金属がニッケル、銅、クロムより選択される1種以上である(1)に記載の金属化ポリイミドフィルム基板の製造方法。   (2) The method for producing a metallized polyimide film substrate according to (1), wherein the metal is one or more selected from nickel, copper, and chromium.

(3) 前記ポリイミドフィルム表面に前記金属薄膜が蒸着法またはスパッタ法により積層される(1)または(2)に記載の金属化ポリイミドフィルム基板の製造方法。   (3) The method for producing a metalized polyimide film substrate according to (1) or (2), wherein the metal thin film is laminated on the surface of the polyimide film by vapor deposition or sputtering.

(4) 前記積層前の前記ポリイミドフィルムにおける、積層面側の表面が未処理である(1)から(3)のいずれか1つに記載の金属化ポリイミドフィルム基板の製造方法。   (4) The method for producing a metallized polyimide film substrate according to any one of (1) to (3), wherein a surface on the lamination surface side in the polyimide film before lamination is untreated.

本発明によれば、金属薄膜との密着強度を向上するポリイミドフィルムをスクリーニングでき、これによって、金属薄膜とポリイミドフィルムとの密着強度が高い金属化ポリイミドフィルム基板を得ることができる。   According to this invention, the polyimide film which improves the adhesive strength with a metal thin film can be screened, and, thereby, the metallized polyimide film board | substrate with high adhesive strength with a metal thin film and a polyimide film can be obtained.

実施例3におけるGIXDスペクトルを示す図である。It is a figure which shows the GIXD spectrum in Example 3. 比較例1におけるGIXDスペクトルを示す図である。It is a figure which shows the GIXD spectrum in the comparative example 1. 比較例3におけるGIXDスペクトルを示す図である。It is a figure which shows the GIXD spectrum in the comparative example 3.

以下、本発明の実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. it can.

接着剤層を必要としない金属化ポリイミドフィルム基板は、蒸着法やスパッタ法を用いた乾式法でニッケル、クロム、銅、またはこれらの合金などの第1次金属層を形成した後、電気めっき法もしくは無電解めっき法、および両者を組み合わせた方法を用いて第2次金属層である銅層を厚付けする。通常、第1次金属層は数オングストロームから数千オングストロームまでの厚みであり、第2次金属層の厚みは数μmから数百μmまでの厚みを形成する。各工程はフィルムを数m〜数十m/分で搬送させながら、セル内を移動させ金属層を積層するものである。   The metalized polyimide film substrate that does not require an adhesive layer is formed by forming a primary metal layer such as nickel, chromium, copper, or an alloy thereof by a dry method using a vapor deposition method or a sputtering method, followed by an electroplating method. Or the copper layer which is a secondary metal layer is thickened using the electroless-plating method and the method which combined both. Usually, the primary metal layer has a thickness of several angstroms to several thousand angstroms, and the secondary metal layer has a thickness of several μm to several hundreds of μm. Each process moves the inside of a cell and laminate | stacks a metal layer, conveying a film at several m-several dozen m / min.

このとき、金属化ポリイミドフィルム基板の密着力には、ポリイミドフィルム極表面の物性が大きく関与する。本発明によれば、ポリイミドフィルム極表面の分子鎖の配向性が所定の範囲内であれば、密着力を示す金属化ポリイミドフィルム基板が得られる。   At this time, the physical properties of the surface of the polyimide film are greatly involved in the adhesion of the metalized polyimide film substrate. According to the present invention, when the orientation of the molecular chain on the surface of the polyimide film is within a predetermined range, a metallized polyimide film substrate showing adhesion is obtained.

ここで、ポリイミドフィルム極表面とは、表面から数十nmの深さのことであり、通常のX線回折法では測定できない。この領域の分子鎖の配向性を測定するためには視斜角入射X線回折法(Grazing Incident X−ray Diffraction:GIXDと略する)などで測定する必要がある。ポリイミドではおよそ0.15度が臨界角となるため、この角度以下でX線を入射させる必要がある。なお、サンプルに数十nm以上の凹凸がある場合、X線が極表面よりも深い領域に侵入してしまうため、サンプルの凹凸は数十nm以下であることが求められる。装置にサンプルを固定する際にも平滑に固定することが必要である。   Here, the polyimide film pole surface is a depth of several tens of nanometers from the surface, and cannot be measured by a normal X-ray diffraction method. In order to measure the orientation of the molecular chain in this region, it is necessary to measure by a grazing incident X-ray diffraction (abbreviated as GIXD) or the like. Since the critical angle is about 0.15 degrees in polyimide, it is necessary to make X-rays incident below this angle. In addition, when the sample has unevenness of several tens of nm or more, the X-rays penetrate into a region deeper than the extreme surface, and thus the unevenness of the sample is required to be several tens of nm or less. When the sample is fixed to the apparatus, it is necessary to fix the sample smoothly.

GIXD測定では、最初に通常の透過法によるX線回折でバルクの結晶状態の情報を得る。次に、臨界角以下でX線を入射したX線回折プロファイルを得る。バルクと極表面のX線プロファイルを比較し、極表面に特有の回折面がある場合、検出器をその回折面の2θ(シータ)に固定して臨界角以下でX線回折を実施したφ(ファイ:Phi)スキャンを行うことで、フィルム極表面のX線回折強度が得られる。一方、極表面に特有のX線回折ピークが無い場合は、注目する回折面の2θに検出器を固定し、上記と同様に測定することでφスキャンデータが得られる。得られたφスキャンデータから、回折強度を読み取り、ピークの凸部(最大X線強度)と凹部(最小X線強度)の比である、凸値(最大X線強度)/凹値(最小X線強度)、を算出することで分子鎖の配向性を判断する。   In GIXD measurement, information on the bulk crystal state is first obtained by X-ray diffraction by a normal transmission method. Next, an X-ray diffraction profile in which X-rays are incident at a critical angle or less is obtained. Comparing the X-ray profiles of the bulk and the pole surface, and if there is a diffractive surface peculiar to the pole surface, the detector was fixed to 2θ (theta) of the diffractive surface and X-ray diffraction was performed below the critical angle φ ( Phi: Phi) By scanning, the X-ray diffraction intensity of the film pole surface can be obtained. On the other hand, when there is no X-ray diffraction peak peculiar to the pole surface, φ scan data can be obtained by fixing the detector to 2θ of the target diffraction surface and performing the same measurement as described above. From the obtained φ scan data, the diffraction intensity is read, and the convex value (maximum X-ray intensity) / concave value (minimum X), which is the ratio of the peak convex part (maximum X-ray intensity) to the concave part (minimum X-ray intensity). The molecular chain orientation is determined by calculating the (linear intensity).

GIXD測定ではX線をフィルムに対して0.15度程度で入射するので、X線はフィルム上で数cmに広がる。したがって、フィルムは数cmにわたってある程度の平滑さを持っている必要があり、切り出すときも余裕を見て大きめにサンプリングする。これは、フィルムを360度回転させるφスキャンでは特に重要である。GIXD測定でφスキャンをするときに、フィルムを長方形に切り出すと、長辺方向は広がったX線がフィルムからはみださなかったとしても、短辺方向は広がった照射範囲からはみだす可能性がでてくる。広がったX線がフィルムからはみ出した場合、検出されるX線の強度も必然的に下がる。このため、φスキャンに用いるフィルムとしては、長方形ではなく円形にサンプリングすることが好ましい。   In GIXD measurement, X-rays are incident on the film at about 0.15 degrees, so that the X-rays spread over several centimeters on the film. Therefore, the film needs to have a certain degree of smoothness over several centimeters, and is sampled to a large extent with a margin when cutting. This is particularly important for φ scans that rotate the film 360 degrees. When performing φ scan with GIXD measurement, if the film is cut into a rectangle, even if X-rays extending in the long side direction do not protrude from the film, the short side direction may protrude from the extended irradiation range. Come on. When the spread X-rays protrude from the film, the intensity of the detected X-rays inevitably decreases. For this reason, it is preferable that the film used for φ scan is sampled in a circular shape instead of a rectangular shape.

なお、一般に延伸フィルムは製造時の流れ方向であるMD方向と、製造時の幅方向であるTD方向とで面内異方性を有しており、上記の比である凸値(最大X線強度)/凹値(最小X線強度)は、その製造方法(延伸方法)によって、MD方向/TD方向、またはTD方向/MD方向、のいずれかに対応する場合が多い。   In general, a stretched film has in-plane anisotropy in the MD direction, which is the flow direction at the time of manufacture, and the TD direction, which is the width direction in the manufacture. The strength / concave value (minimum X-ray intensity) often corresponds to either the MD direction / TD direction or the TD direction / MD direction depending on the production method (stretching method).

そして、本発明においては、X線強度の面内異方性である最大X線強度/最小X線強度の比が1.05〜1.40の場合に密着強度を良と判定する。より好ましくは1.08〜1.22の範囲である。極表面の分子鎖の配向性が上記範囲内のポリイミドフィルムは、極表面の分子鎖がフィルム面に対して均一に散らばっており、アモルファス性が高くなっており、その結果、金属との接着性が高くなったと考えられる。一方、1.40超のポリイミドフィルムは分子鎖が引っ張られており、延伸が強すぎて結晶性が高くなった結果、金属との接着性が低下したと考えられる。一方、理由は定かでないが1.05未満の場合にも密着強度が低下する。   In the present invention, the adhesion strength is determined to be good when the ratio of the maximum X-ray intensity / minimum X-ray intensity, which is the in-plane anisotropy of the X-ray intensity, is 1.05 to 1.40. More preferably, it is the range of 1.08 to 1.22. The polyimide film whose molecular chain orientation on the extreme surface is within the above range is highly amorphous because the molecular chains on the extreme surface are evenly scattered on the film surface, resulting in adhesion to metal. It is thought that became higher. On the other hand, molecular chains of the polyimide film exceeding 1.40 are pulled, and it is considered that the adhesion to the metal is lowered as a result of the stretching being too strong and the crystallinity being increased. On the other hand, although the reason is not clear, the adhesion strength also decreases when it is less than 1.05.

上記スクリーニングで得られたポリイミドフィルムは、密着強度として660N/m以上、好ましくは700N/m以上という高い密着力の金属化ポリイミドフィルム基板が得られる。ここで、密着強度とは、上記のJIS C 6471 8.1(銅はくの引きはがし強さ)常態 方法A、で得られる測定値である。   The polyimide film obtained by the above screening provides a metallized polyimide film substrate having a high adhesion strength of 660 N / m or more, preferably 700 N / m or more as adhesion strength. Here, the adhesion strength is a measured value obtained by the above-described JIS C 6471 8.1 (copper peel strength) normal method A.

本発明に用いられるポリイミドフィルムは、金属薄膜の積層面が未処理であることが好ましいが、プラズマ処理やコロナ処理が行われていてもよい。ここで未処理とはプラズマ処理やコロナ処理やプライマー処理などが行われていないことを意味する。   In the polyimide film used in the present invention, the laminated surface of the metal thin film is preferably untreated, but may be subjected to plasma treatment or corona treatment. Here, untreated means that plasma treatment, corona treatment, primer treatment or the like has not been performed.

以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention does not receive a restriction | limiting at all in these description.

[金属化ポリイミドフィルム基板の作成]
<実施例1>
ポリイミドフィルムとして、Kapton(登録商標) 150EN(東レ・デュポン製)の38μmを用い、真空度0.01〜0.1Paに保持されたチャンバー内で150℃、1分間の加熱処理を行った。なお、このポリイミドフィルムは積層表面未処理である。
[Production of metallized polyimide film substrate]
<Example 1>
As a polyimide film, 38 μm of Kapton (registered trademark) 150EN (manufactured by Toray DuPont) was used, and heat treatment was performed at 150 ° C. for 1 minute in a chamber maintained at a vacuum degree of 0.01 to 0.1 Pa. This polyimide film is untreated on the laminated surface.

引き続き、クロムを20質量%含有するニッケル−クロム合金ターゲット、および銅ターゲットを用い、ポリイミドフィルム表面に厚さ20nmのニッケル-クロム合金層、および厚さ100nmの銅層を形成した。   Subsequently, a nickel-chromium alloy target containing 20% by mass of chromium and a copper target were used to form a nickel-chromium alloy layer having a thickness of 20 nm and a copper layer having a thickness of 100 nm on the polyimide film surface.

その後、硫酸を180g/L、硫酸銅を80g/L、塩素イオンを50mg/L、および銅めっき被膜の平滑性等を確保する目的で有機添加剤を所定量添加しためっき液を使用し、種々のめっき条件で厚さ8μmまで電気めっき法によって銅被膜を形成した。   Thereafter, 180 g / L of sulfuric acid, 80 g / L of copper sulfate, 50 mg / L of chloride ions, and a plating solution added with a predetermined amount of organic additives for the purpose of ensuring the smoothness of the copper plating film, etc. A copper film was formed by electroplating to a thickness of 8 μm under the above plating conditions.

以上により、本発明の実施例に係る金属化ポリイミドフィルム基板として、ポリイミドフィルム38μm上に、ニッケル、クロム、銅から構成されるスパッタ金属薄膜20nm、銅薄膜のスパッタ100nm、銅めっき被膜8μmの構成の積層体を得た。   As described above, the metallized polyimide film substrate according to the embodiment of the present invention has a structure of a sputtered metal thin film 20 nm composed of nickel, chromium and copper, a sputtered copper thin film 100 nm, and a copper plating film 8 μm on a polyimide film 38 μm. A laminate was obtained.

<実施例2から5、比較例1から3>
実施例1のポリイミドフィルムとは、製法やロットの異なる各種のポリイミドフィルムを用いた以外は実施例1と同様にして、実施例2から5、比較例1から3の金属化ポリイミドフィルム基板を得た。
<Examples 2 to 5, Comparative Examples 1 to 3>
The polyimide film of Example 1 is the same as Example 1 except that various polyimide films having different manufacturing methods and lots were used, and the metalized polyimide film substrates of Examples 2 to 5 and Comparative Examples 1 to 3 were obtained. It was.

[密着強度測定]
密着強度測定条件:JIS C 6471 8.1(銅はくの引きはがし強さ)常態 方法A、により評価した。その結果を表1に示す。
[Adhesion strength measurement]
Adhesion strength measurement conditions: JIS C 6471 8.1 (copper peel strength) normal state Evaluation was made by method A. The results are shown in Table 1.

[ポリイミドフィルムの極表面の分子の配向性評価]
実施例および比較例で用いた原料ポリイミドフィルムを、銅張積層板加工する前に未処理の状態で表面が汚染されないように直径10cmの円形状にサンプリングした。平板ガラスにワセリンを塗布し、フィルムを平滑に密着固定した後、以下の条件でGIXD測定した。
[Evaluation of molecular orientation on the surface of polyimide film]
The raw material polyimide film used in the examples and comparative examples was sampled into a circular shape having a diameter of 10 cm so that the surface was not contaminated in an untreated state before the copper-clad laminate was processed. Vaseline was applied to the flat glass and the film was adhered and fixed smoothly and then subjected to GIXD measurement under the following conditions.

その結果を表1に示す。また、図1から3には、それぞれ実施例3(最大X線強度/最小X線強度の比が1.20)、比較例1(最大X線強度/最小X線強度の比が1.00)、比較例3(最大X線強度/最小X線強度の比が2.00)のサンプルのGIXDスペクトルを示す。なお、図1から3における縦の点線は、交互に最大X線強度及び最小X線強度を表しており、最大X線強度と最小X線強度は、GIXDスペクトルをスムージング処理して得たものである。   The results are shown in Table 1. 1 to 3 show Example 3 (the ratio of maximum X-ray intensity / minimum X-ray intensity is 1.20) and Comparative Example 1 (the ratio of maximum X-ray intensity / minimum X-ray intensity is 1.00, respectively). ), A GIXD spectrum of the sample of Comparative Example 3 (the ratio of maximum X-ray intensity / minimum X-ray intensity is 2.00). The vertical dotted lines in FIGS. 1 to 3 alternately represent the maximum X-ray intensity and the minimum X-ray intensity, and the maximum X-ray intensity and the minimum X-ray intensity are obtained by smoothing the GIXD spectrum. is there.

(測定装置)
D8 DISCOVER μ−HR(Bruker AXS社製)を用いた。
(測定条件)
CuKαを用い、電圧と電流を50kV−22mAに設定した。検出器は0次元検出器(scintillation counter)を用いた。
(測定方法)
X線の入射角度を振りながら、表面散乱強度を測定し、散乱強度が急激に変化する点(臨界角度)を実験的に求めた。今回のポリイミドの場合は0.15度前後であった。インプレイン軸と呼ばれる2θχ軸を回転させてインプレイン測定し、「φ−2θχ」プロファイルを得た。このプロファイルを元に、ポリイミドの代表的な回折面である(002)面のピーク(約5度)で検出器を固定し、フィルムを回してφスキャンすることで、フィルム極表面の分子鎖の配向性を示すデータを得た。
(measuring device)
D8 DISCOVER μ-HR (manufactured by Bruker AXS) was used.
(Measurement condition)
Using CuKα, the voltage and current were set to 50 kV-22 mA. A zero-dimensional detector (scintillation counter) was used as the detector.
(Measuring method)
The surface scattering intensity was measured while changing the incident angle of X-rays, and the point (critical angle) at which the scattering intensity changed rapidly was experimentally determined. In the case of this polyimide, it was around 0.15 degree. An in-plane measurement was performed by rotating the 2θχ axis called the in-plane axis to obtain a “φ-2θχ” profile. Based on this profile, the detector is fixed at the peak of the (002) plane (about 5 degrees), which is a typical diffraction surface of polyimide, and the film is rotated to scan the Data indicating orientation was obtained.

Figure 0006365699
Figure 0006365699

表1、および、図1から3の結果から、ポリイミドフィルム極表面のGIXDスペクトルにおける最大X線強度/最小X線強度の比が本発明の範囲内である場合に密着力が高く、本発明の上下限範囲外は共に密着力が低下することがわかる。   From the results of Table 1 and FIGS. 1 to 3, when the ratio of the maximum X-ray intensity / minimum X-ray intensity in the GIXD spectrum of the polyimide film pole surface is within the range of the present invention, the adhesion is high. It can be seen that the adhesion is reduced both outside the upper and lower limits.

本発明の金属化ポリイミドフィルム基板は、例えばフレキシブルプリント配線板に好適に利用できる。   The metallized polyimide film substrate of the present invention can be suitably used for a flexible printed wiring board, for example.

Claims (4)

ポリイミドフィルム表面に金属薄膜が積層されている金属薄膜/ポリイミド積層体において、前記金属薄膜/ポリイミド積層体を積層する前の前記ポリイミドフィルムの積層面側の極表面の分子鎖の配向性を視斜角入射X線回折法を用いて測定し、X線強度の面内異方性である最大X線強度/最小X線強度の比が1.05〜1.40の場合に、前記金属薄膜と前記ポリイミドフィルムとの密着強度を良と判定する工程と、
前記密着強度が良と判定された金属薄膜/ポリイミド積層体の前記金属薄膜上に、電気めっき法、無電解めっき法もしくは両者を組み合わせた方法で銅を積層する工程と、を有する
金属化ポリイミドフィルム基板の製造方法。
In a metal thin film / polyimide laminate in which a metal thin film is laminated on the surface of the polyimide film, the orientation of molecular chains on the polar surface on the lamination surface side of the polyimide film before the metal thin film / polyimide laminate is laminated When the ratio of the maximum X-ray intensity / minimum X-ray intensity, which is an in-plane anisotropy of the X-ray intensity, is measured by using an angle incident X-ray diffraction method, Determining the adhesion strength with the polyimide film as good,
A step of laminating copper on the metal thin film of the metal thin film / polyimide laminate determined to have good adhesion strength by electroplating, electroless plating, or a combination of both, and a metallized polyimide film A method for manufacturing a substrate.
前記金属がニッケル、銅、クロムより選択される1種以上である
請求項1に記載の金属化ポリイミドフィルム基板の製造方法。
The method for producing a metallized polyimide film substrate according to claim 1, wherein the metal is one or more selected from nickel, copper, and chromium.
前記ポリイミドフィルム表面に前記金属薄膜が蒸着法またはスパッタ法により積層される
請求項1または2に記載の金属化ポリイミドフィルム基板の製造方法。
The method for producing a metallized polyimide film substrate according to claim 1 or 2, wherein the metal thin film is laminated on the surface of the polyimide film by vapor deposition or sputtering.
前記積層前の前記ポリイミドフィルムにおける、積層面側の表面が未処理である
請求項1から3のいずれか1つに記載の金属化ポリイミドフィルム基板の製造方法。
The method for producing a metallized polyimide film substrate according to any one of claims 1 to 3, wherein a surface on the lamination surface side of the polyimide film before lamination is untreated.
JP2017010228A 2017-01-24 2017-01-24 Method for producing metallized polyimide film substrate Active JP6365699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017010228A JP6365699B2 (en) 2017-01-24 2017-01-24 Method for producing metallized polyimide film substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017010228A JP6365699B2 (en) 2017-01-24 2017-01-24 Method for producing metallized polyimide film substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013262671A Division JP6090148B2 (en) 2013-12-19 2013-12-19 Method for determining adhesion strength of metal thin film / polyimide laminate, and metallized polyimide film substrate using the same

Publications (2)

Publication Number Publication Date
JP2017115247A JP2017115247A (en) 2017-06-29
JP6365699B2 true JP6365699B2 (en) 2018-08-01

Family

ID=59233698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017010228A Active JP6365699B2 (en) 2017-01-24 2017-01-24 Method for producing metallized polyimide film substrate

Country Status (1)

Country Link
JP (1) JP6365699B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151304A (en) * 1991-01-22 1992-09-29 International Business Machines Corporation Structure and method for enhancing adhesion to a polyimide surface
JP5456953B2 (en) * 2006-09-06 2014-04-02 株式会社デンソー Resin bonding method
JP5272933B2 (en) * 2009-07-07 2013-08-28 住友金属鉱山株式会社 Method for manufacturing plated substrate

Also Published As

Publication number Publication date
JP2017115247A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6090148B2 (en) Method for determining adhesion strength of metal thin film / polyimide laminate, and metallized polyimide film substrate using the same
TWI589431B (en) A conductive film substrate, a transparent conductive film, a method of manufacturing the same, and a touch panel
US20110311834A1 (en) Two-layer flexible substrate, and copper electrolytic solution for producing same
TWI787174B (en) Metal-clad laminate and manufacturing method thereof
JP5178064B2 (en) Metal layer laminate having metal surface roughened layer and method for producing the same
JP2017039992A (en) Production method of thermoplastic liquid crystal polymer film with metal deposition layer, thermoplastic liquid crystal polymer film with metal deposition layer using production method, production method of metal-clad laminate, and metal-clad laminate
Schaubroeck et al. Surface modification of a photo-definable epoxy resin with polydopamine to improve adhesion with electroless deposited copper
JP5579350B1 (en) Electrolytic copper foil, battery current collector using the electrolytic copper foil, secondary battery electrode using the current collector, and secondary battery using the electrode
JP7132435B2 (en) LAMINATED STRUCTURE, FLEXIBLE COPPER FILM LAMINATED CONTAINING SAME, AND METHOD FOR MANUFACTURING SAME LAMINATED STRUCTURE
TWI674044B (en) Flexible copper clad laminate and method of manufacturing the same
JP6365699B2 (en) Method for producing metallized polyimide film substrate
JP5938824B2 (en) Method for producing metallized film and method for producing metal foil
TW201208502A (en) Surface-roughened copper foil and copper-clad laminated substrate
JP2013147016A (en) Flexible circuit copper clad laminate, printed circuit board using the same, and method of manufacturing the same
KR20200066263A (en) Hard rolled copper foil and manufacturing method of hard rolled copper foil
JP6354871B2 (en) Method for producing metallized polyimide film substrate
KR20220042307A (en) A polyarylene sulfide-based resin film, a metal laminate, a method for producing a polyarylene sulfide-based resin film, and a method for producing a metal laminate
JP6090145B2 (en) Method for determining adhesion strength of metal thin film / polyimide laminate, and metallized polyimide film substrate using the same
TWI640424B (en) Nano metal substrate for FPC and COF materials
JP2014101581A (en) Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode
KR102504267B1 (en) Flexible Copper Clad Laminate and Method for Manufacturing The Same
JP2015081376A (en) Two-layer flexible wiring board and production method thereof
US20240107731A1 (en) Matte-type electromagnetic interference shielding film comprising bio-based component and preparation method thereof
JP5697051B2 (en) Electrolytic copper alloy foil, method for producing the same, electrolyte used for the production, negative electrode current collector for secondary battery, secondary battery and electrode thereof
KR20170090067A (en) Flexible Copper Clad Laminate of Improved Flexibility and Method for Manufacturing The Same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6365699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150