JP6365679B2 - シミュレーションプログラム、シミュレーション方法およびシミュレーション装置 - Google Patents

シミュレーションプログラム、シミュレーション方法およびシミュレーション装置 Download PDF

Info

Publication number
JP6365679B2
JP6365679B2 JP2016555042A JP2016555042A JP6365679B2 JP 6365679 B2 JP6365679 B2 JP 6365679B2 JP 2016555042 A JP2016555042 A JP 2016555042A JP 2016555042 A JP2016555042 A JP 2016555042A JP 6365679 B2 JP6365679 B2 JP 6365679B2
Authority
JP
Japan
Prior art keywords
intruder
agent
simulation
movement
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016555042A
Other languages
English (en)
Other versions
JPWO2016063426A1 (ja
Inventor
耕太郎 大堀
耕太郎 大堀
穴井 宏和
宏和 穴井
高橋 真吾
真吾 高橋
悠希 蜂谷
悠希 蜂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2016063426A1 publication Critical patent/JPWO2016063426A1/ja
Application granted granted Critical
Publication of JP6365679B2 publication Critical patent/JP6365679B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • G06Q50/265Personal security, identity or safety
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、シミュレーション方法、シミュレーションプログラムおよびシミュレーション装置に関する。
所定の区域に侵入する犯罪者に対する警備計画を策定する技術が提案されている。例えば、線形計画法や混合整数計画法等を繰り返す数学的アプローチにより警備計画を策定する手法が提案されている。
また、パラメータ値を変化させて感度分析を行い数学的に策定した警備計画の評価を行う手法や専門家の主観に基づいて警備計画の評価を行う手法が提案されている(例えば、非特許文献1乃至非特許文献3参照)。
上記の警備計画のうち、数学的アプローチによる手法は、合理的な犯罪者を仮定した前提で、警備計画の策定および評価を行う。例えば、合理的な侵入者は、侵入者が警備側の警備対象施設を全て知っているものとして仮定される。また、合理的な侵入者は、対象となる施設に最短経路で進むと仮定される。
従って、合理的な犯罪者を仮定することが前提となるため、適切な警備計画を評価することは難しいことが指摘されている。また、専門家の主観に基づく警備計画の評価手法は、経験則に基づくものであり、適切な警備計画を評価することは難しいことが指摘されている(例えば、非特許文献4参照)。
M. Jain, D. Korzhyk, O. Vanek, V. Conitzer, M. Pechoucek and M. Tambe, "A double oracle algorithm for zero-sum security games on graphs" (米国)In The 10th International Conference on Autonomous Agents and Multiagent Systems - AAMAS ’11, pp.327-334, 2011. M. Jain, V. Conitzer, and M. Tambe "Security Scheduling for Real-world Networks" (米国)In The 12th International Conference on Autonomous Agents and Multiagent Systems - AAMAS’13, pp.215-222, 2013. M.E. Taylor, C. Kiekintveld, C. Western and M. Tambe, "A Framework for Evaluating Deployed Security Systems: Is There a Chink in your ARMOR?" (スロベニア)Informatica, Vol.34, pp.129-139, 2010. A.X. Jian, M. Jain, M. Tambe, "Computational game theory for security and sustainability" Journal of Information Processing, Vol.22, No.2, pp.176-185, 2014
従来技術にかかるシミュレーションでは、侵入者の行動を実態に即してシミュレーションすることは難しい。また、数学的アプローチまたは専門家の主観に基づいて警備計画の評価を行う場合、警備計画の評価を適切に行うことが難しい。
本発明は、1つの側面として、侵入者の実態に即した移動経路の形成を行うことを目的とする。他の側面として、警備計画の評価を適切に行うことを目的とする。
1つの態様では、警備区域での侵入者の移動を、前記警備区域に対応するモデルにおける侵入者エージェントを用いてシミュレーションするシミュレーションプログラムは、前記侵入者エージェントが認知した、前記モデルにおける警備員配置の情報、および、前記モデルにおける過去の警備員配置の情報に基づき、前記侵入者エージェントの前記モデルにおける移動経路を算出する、処理をコンピュータに実行させる。
1つの側面として、侵入者の実態に即した移動経路の形成を行うことができる。他の側面として、警備計画の評価を適切に行うことができる。
シミュレーション装置の一例を示す機能ブロック図である。 モデルの一例を示す図である。 空間情報の一例を示す図である。 警備計画情報の一例を示す図である。 侵入者情報の一例を示す図である。 実施形態の処理の流れの一例を示すフローチャート(その1)である。 実施形態の処理の流れの一例を示すフローチャート(その2)である。 モデル上の警備員および侵入者エージェントの一例を示す図(その1)である。 モデル上の警備員および侵入者エージェントの一例を示す図(その2)である。 実施形態の処理の流れの一例を示すフローチャート(その3)である。 第1の具体例のシミュレーションを説明する図(その1)である。 第1の具体例のシミュレーションを説明する図(その2)である。 第1の具体例のシミュレーションを説明する図(その3)である。 第1の具体例のシミュレーションを説明する図(その4)である。 第1の具体例のシミュレーションを説明する図(その5)である。 第1の具体例のシミュレーションを説明する図(その6)である。 第1の具体例のシミュレーションを説明する図(その7)である。 第1の具体例のシミュレーションを説明する図(その8)である。 第1の具体例のシミュレーションを説明する図(その9)である。 第1の具体例のシミュレーションを説明する図(その10)である。 第2の具体例のシミュレーションを説明する図(その1)である。 第2の具体例のシミュレーションを説明する図(その2)である。 第2の具体例のシミュレーションを説明する図(その3)である。 第2の具体例のシミュレーションを説明する図(その4)である。 第2の具体例のシミュレーションを説明する図(その5)である。 第2の具体例のシミュレーションを説明する図(その6)である。 第2の具体例のシミュレーションを説明する図(その7)である。 第3の具体例のシミュレーションを説明する図(その1)である。 第3の具体例のシミュレーションを説明する図(その2)である。 第3の具体例のシミュレーションを説明する図(その3)である。 数的評価の一例を説明する図(その1)である。 数的評価の一例を説明する図(その2)である。 シミュレーション装置のハードウェア構成の一例を示す図である。
<シミュレーション装置の一例>
以下、図面を参照して、実施形態について説明する。図1は、シミュレーションを行うシミュレーション装置1の一例である。図1の例では、入力装置2と表示装置3とがシミュレーション装置1に接続されている。シミュレーション装置1は、所定の情報を処理する情報処理装置であってもよい。
入力装置2は、シミュレーション装置1に所定の情報を入力する装置である。例えば、入力装置2は、マウスやキーボード等であってもよい。表示装置3は、シミュレーション装置1に制御により所定の情報を表示する。例えば、表示装置3は、ディスプレイ等であってもよい。表示装置3は、表示部の一例である。
シミュレーション装置1は、情報受付部11と入力情報記憶部12とモデル生成部13と警備員配置制御部14と侵入者発生制御部15とシミュレーション実行部16と履歴情報記憶部17と表示制御部18と結果出力部19と実行結果記憶部20とを備える。
情報受付部11は、入力装置2から所定の情報を受け付ける。情報受付部11が受け付ける所定の情報は、例えば、モデル情報と警備計画情報と侵入者情報とを含む。情報受付部11は、モデル情報、警備計画情報および侵入者情報以外の情報を受け付けてもよい。
例えば、空間情報は、警備区域の空間に関する情報である。空間情報は、警備区域の道路や施設等の情報を含む地図情報から道路や施設等を抜粋し、地図情報の道路の情報に基づく経路の情報であってもよい。
警備計画情報は、例えば、予め策定された警備区域に関する情報である。警備計画情報は、警備員の配置位置に関する情報を含んでもよい。警備方式に関する情報は、例えば、警備区域に侵入した侵入者が計画している犯罪種別に応じて、予め策定した警備方式に関する情報であってもよい。
侵入者情報は、警備区域内に侵入者が侵入した場合における該侵入者に関する情報である。警備区域内には、1または複数の侵入者が侵入することもある。侵入者は、それぞれ固有の属性を有している。従って、侵入者情報は、侵入者ごとに設定される。
入力情報記憶部12は、情報受付部11が受け付けた情報を記憶する。上述した例では、入力情報記憶部12は、空間情報と警備計画情報と侵入者情報とを記憶する。入力情報記憶部12は、空間情報、警備計画情報および侵入者情報以外の情報を記憶してもよい。入力情報記憶部12は、第1の記憶部または記憶部の一例である。
モデル生成部13は、入力情報記憶部12が記憶している空間情報を参照して、シミュレーションを行う際のモデルを生成する。空間情報は、道路等に関する情報を含む。モデル生成部13が生成するモデルは、道路等の情報に基づいた移動経路のモデルになる。このモデルは、ネットワークモデルとも称される。
実施形態では、モデル生成部13は、警備区域内の経路をエッジとし、エッジの分岐点をノードとしてモデルを生成する。なお、モデルは、エッジおよびノード以外の情報を有していてもよい。例えば、侵入者がノードに隣接する施設で犯罪を計画している場合、モデル生成部13は、ノードと施設とを関連付けたモデルを生成してもよい。
警備員配置制御部14は、入力情報記憶部12が記憶している警備計画情報を参照して、シミュレーション実行部16のモデルに警備員を配置する。警備員配置制御部14は、モデルのエッジに1または複数の警備員を配置する。警備員が配置される位置は、エッジには限定されない。
侵入者発生制御部15は、入力情報記憶部12が記憶している侵入者情報を参照して、シミュレーション実行部16のモデルに1または複数の侵入者のエージェントをモデルの移動経路の何れかに発生させる。
実施形態では、侵入者発生制御部15は、侵入者のエージェントをノードに発生させる。侵入者のエージェントが発生する位置は、ノードには限定されない。侵入者発生制御部15は、エージェント発生部の一例である。
シミュレーション実行部16は、モデル生成部13が生成したモデルに発生させた侵入者のエージェント(以下、侵入者エージェントと称する)の行動をシミュレーションする。また、シミュレーション実行部16は、侵入者エージェントが移動したときの移動経路を特定する。
シミュレーション実行部16は、侵入者エージェントを移動させる際に、モデル上に配置されている警備員の位置を回避する回避経路を選択する選択可能性を高めるように移動経路を選択する。なお、シミュレーションにおいては、侵入者エージェントは、所定のノードまたはエッジで停止している場合もある。
侵入者エージェントはモデル内を移動するに応じて、履歴情報を取得する。履歴情報記憶部17は、侵入者エージェントごとに履歴情報を記憶する。履歴情報記憶部17は、第2の記憶部の一例である。
履歴情報は、認知情報および逮捕情報を含む。認知情報は、侵入者エージェントが認知している警備員の配置位置に関する情報である。逮捕情報は、他の侵入者エージェントが逮捕されたときの逮捕された位置に関する情報である。履歴情報は、経時的に情報が追加される場合がある。
表示制御部18は、シミュレーション実行部16が実行しているシミュレーションの内容を表示装置3に表示する。表示制御部18は、シミュレーション実行部16が特定した侵入者エージェントの移動経路を表示する。表示制御部18は、侵入者エージェントの移動経路を他の移動経路と異なる態様で表示してもよい。
結果出力部19は、シミュレーション実行部16からシミュレーションの実行結果を取得する。そして、結果出力部19は、取得した実行結果を実行結果記憶部20に記憶する。結果出力部19は、シミュレーションの実行結果を表示制御部18にも出力する。
実行結果記憶部20は、シミュレーション結果を記憶する。シミュレーション結果は、種々の情報が含まれる。例えば、シミュレーション結果は、侵入者エージェントの移動経路または侵入者エージェントの目標達成、逮捕または撤退の情報を含んでもよい。また、シミュレーションの実行結果は、侵入者エージェントが移動するごとに変化する認知情報を含んでもよい。
入力情報記憶部12と履歴情報記憶部17と実行結果記憶部20とは1つの記憶装置に記憶されてもよいし、それぞれ異なる記憶装置に記憶されてもよい。上記3つの記憶部が1つの記憶装置に記憶される場合には、記憶装置の異なる記憶領域に上記3つの記憶部の内容が記憶される。
<モデルの一例>
図2は、モデル生成部13が生成するモデルの一例を示す。モデルは、エッジおよびノードを含む。実施形態では、エッジは経路であり、ノードは経路の分岐点である。ただし、経路はエッジには限定されず、ノードは経路の分岐点には限定されない。図2の例では、ノードは1番から22番まであり、ノード間を接続するエッジは1番から33番まである。モデルは、図2の例には限定されない。
モデルに含まれるエッジは、それぞれ移動に要する時間(移動時間)を有する。例えば、図2の例の場合、エッジ33番の長さは短いため、侵入者エージェントがエッジ33番を移動する時間は短い。一方、エッジ9番の長さは長いため、侵入者エージェントがエッジ9番を移動する時間は長い。
図2の例では、警備員配置制御部14は、警備員Dをエッジ10番に配置している。また、侵入者発生制御部15は、エッジ5番に侵入者エージェントCを発生させている。シミュレーション実行部16は、図2の例に示すようなモデルにおいて、侵入者エージェントCを行動させることにより、シミュレーションを行う。
図2の例で、各ノードのうち四角で示しているノードは、侵入者発生制御部15が侵入者エージェントを発生させるノード(以下、発生ノードと称する)である。図2の例では、1番、2番、3番、4番および6番が発生ノードである。発生ノードは、侵入者を発生させるノードであるため、例えば、侵入者発生制御部15は地理的条件に基づいて、発生ノードを決定してもよい。
図2の例で、各ノードのうち六角形で示しているノードは、侵入者エージェントCが目標とするターゲット(以下、ターゲットノードと称する)を示す。図2の例では、13番および16番がターゲットノードである。シミュレーション実行部16は、ターゲットノードに向けて、侵入者エージェントCを移動させる。
例えば、侵入者エージェントCがターゲットノード16番の近傍の施設に対する攻撃を計画している場合、シミュレーション実行部16は、侵入者エージェントCをターゲットノード16番に向けて移動させる。施設としては、例えば、空港や駅等がある。
ターゲットノードが16番の場合、侵入者エージェントがノード16番に到達できれば、侵入者エージェントの目標は達成する。この場合、施設に対する攻撃は成功し、警備計画は失敗という結果になる。一方、侵入者エージェントが警備員に逮捕された場合、施設に対する攻撃は失敗する。よって、警備計画は成功という結果になる。
図2の例で、各ノードのうち丸で示しているノードは、エッジとエッジとの分岐点である。シミュレーション実行部16は、侵入者エージェントCがノードに到達したときに、侵入者エージェントCの経路選択を行う。
<空間情報の一例>
図3は、空間情報の一例を示している。図3(A)の例は、エッジ番号とノード番号Aとノード番号Bと移動ステップとの関係を示している。エッジ番号で特定されるエッジは、ノード番号Aで特定されるノードとノード番号Bで特定されるノードとを接続するエッジである。例えば、図3(A)の例のうち、エッジ番号が1番のエッジは、ノード番号1とノード番号2との間を接続するエッジであることを示している。
移動ステップは、上述した侵入者エージェントの移動時間をステップ数で示している。図3(A)の例では、エッジ番号が1番のエッジは、移動ステップ数が20であることを示している。また、エッジ番号が2番のエッジは、移動ステップ数が14であることを示している。
従って、エッジ番号が1番のエッジよりもエッジ番号が2番のエッジの方が短い距離となる。実施形態では、モデルは33個のエッジを含むため、空間情報は、33個のエッジと移動ステップ数とを関連付けた情報を含む。
空間情報は、ターゲットノードの情報を含む。実施形態では、ターゲットノードは13番および16番である。ターゲットノードが13番および16番であることは、情報受付部11が受け付けた情報に基づく。例えば、ターゲットノード13番および16番の近傍に攻撃対象の施設が存在する場合には、ターゲットノードは13番および16番に設定される。
実施形態では、モデルに22個のノードが設定される。各ノードはXY座標系で設定される。図3(C)の例では、ノード番号に対応するXY座標が定義される。なお、ノードおよびエッジは、XY座標系で定義されることには限定されない。
<警備計画情報の一例>
次に、図4を参照して、警備計画情報の一例を説明する。図4(A)の例は、タイムスロットとステップとの関係を示す。図4(A)の例では、120ステップごとに1つのタイムスロットが割り当てられている。
図4(A)の例では、タイムスロットは1から6までを示しているが、タイムスロットの数は6には限定されない。また、1つのタイムスロットに割り当てるステップ数は120には限定されない。
図4(B)の例は、警備計画を示す。警備計画は、予め策定された警備員の配置に関する情報を含む。図4(B)の列は、警備方式における警備番号を示す。警備方式は、犯罪種別に応じて策定される警備計画の方式である。侵入者が計画する犯罪種別は1つであるとは限らない。また、侵入者は、複数の犯罪種別を計画している場合もある。
例えば、ある侵入者は施設の破壊を計画している場合もあり、他の侵入者は施設において危険物の散布を計画している場合もある。また、さらに他の侵入者は、施設において、危険物の取引を計画している場合もある。
従って、侵入者によって、該侵入者が計画している犯罪種別が異なる場合がある。警備計画は、犯罪種別に応じて策定される。例えば、図4(B)の警備方式1は、施設の破壊を計画している侵入者に対する警備計画であるとする。また、警備方式2は、施設において危険物の散布を計画している侵入者に対する警備計画であるとする。
図4(B)では、警備方式は1番および2番が示されているが、警備方式は3番以降があってもよい。例えば、警備方式3は、施設において、危険物の取引を計画している侵入者に対する警備計画であってもよい。
1つの警備方式には、割り当てられる警備員のリソースがある。例えば、図4(B)の例では、警備方式1に警備番号が1番から3番までのリソースが割り当てられる。図4(B)では、警備番号1番は「警備1」、警備番号2番は「警備2」および警備番号3番は「警備3」として示している。
従って、警備方式1の場合、モデルの中の3箇所が警備の対象となる。警備番号で特定される警備位置を警備する警備員の数は1人であってもよいし、複数であってもよい。犯罪種別によっては、警備員配置制御部14は、1箇所の警備に対して複数の警備員を配置してもよい。実施形態では、警備員配置制御部14は、1箇所の警備位置に1人の警備員を配置するものとする。
実施形態では、各警備番号が警備する位置は、タイムスロットによって変更される。例えば、警備員配置制御部14は、警備番号が1番であり、タイムスロットが1のときは、エッジ24番に警備員を配置する。
そして、警備員配置制御部14は、タイムスロットが2のときに、警備員の配置位置を24番から5番に変更する。なお、警備員配置制御部14は、タイムスロットによらず、常に同じ位置に警備員を固定して配置してもよい。
<侵入者情報の一例>
次に、侵入者情報の一例について、図5を参照して説明する。図5の例において、侵入者情報は、侵入者IDと発生ステップと発生ノードと犯罪種別と犯罪性向とターゲットノード数と施設と警備情報リストと逮捕情報リストとの項目を含む。
侵入者ID(IDはIdentificationの略称である)は、侵入者エージェントを識別する識別子である。図5の例では、侵入者情報は、侵入者IDが1番から8番を含んでいる。発生ステップは、侵入者ごとに、モデル内に発生させる侵入者のステップ数を示す。発生ステップの間隔が短い期間では、発生頻度が高いことを示す。
発生ノードは、侵入者ごとに、侵入者が発生するノードのノード番号を示す。犯罪性向は、侵入者ごとの犯罪に関する性向を示す。犯罪性向は、リスク選好と称されることもある。犯罪性向が「High」の侵入者は、リスクを犯してでも、計画している犯罪を達成しようとする。一方、犯罪性向が「Low」の侵入者は、リスクを回避する傾向がある。
ターゲットノード数は、上述のターゲットノードの数を侵入者ごとに示す。ターゲットノード数は、侵入者が行動を終了するか否かを判定する基準を示す。例えば、ターゲットノード数が1の侵入者エージェントがターゲットノードに到達した場合、侵入者エージェントの行動は終了する。
一方、ターゲットノード数が2の侵入者エージェントが1つ目のターゲットノードに到達したとしても、ターゲットノード数が2であるため、侵入者エージェントの行動は終了しない。この場合、シミュレーション実行部16は、侵入者エージェントを次のターゲットノードに向けて移動させる。
ターゲットノード候補は、侵入者ごとのターゲットノードの候補を示す。図5の例では、ノード番号が13番および16番のノードがターゲットノードの候補となっている。図5の例に示すように、ターゲットノード候補には利得が関連付けられている。利得は、侵入者エージェントがターゲットノード候補に到達したときに得られるポイントである。
警備情報リストは、認知情報の一例である。実施形態の警備情報リストは、侵入者エージェントが認知している警備員の配置位置の情報を含むリストである。シミュレーション実行部16は、侵入者エージェントを移動させるに応じて、警備情報リストに警備員の配置位置に関する新たな情報を追加する場合がある。
逮捕情報リストは、逮捕情報の一例である。モデルに他の侵入者エージェントが発生し、且つ他の侵入者エージェントが逮捕された場合、シミュレーション実行部16は、逮捕情報リストに他の侵入者エージェントが逮捕された位置の情報を追加する。
<実施形態の処理の流れの一例>
次に、図6を参照して、実施形態の処理の流れの一例について説明する。情報受付部11は、空間情報の入力を受け付ける(ステップS1)。空間情報は、警備区域のモデルの基礎となる情報であり、警備区域内の経路に関する情報を含む。空間情報は、例えば、地図情報に基づく情報であってもよい。
また、情報受付部11は、警備計画情報の入力を受け付ける(ステップS2)。警備計画情報は、モデルのうち警備員を配置する情報を含む。実施形態では、警備員は、モデルのうちエッジに配置されるが、エッジ以外の位置に警備員が配置されてもよい。
また、情報受付部11は、侵入者情報の入力を受け付ける(ステップS3)。情報受付部11は、入力を受け付けた空間情報と警備計画情報と侵入者情報とを入力情報記憶部12に記憶する。
モデル生成部13は、空間情報に基づいて、シミュレーション実行部16が実行するための移動経路のモデルを生成する(ステップS4)。実施形態では、モデルは、エッジおよびノードを含む。モデルは、エッジおよびノード以外の移動経路で表現されていてもよい。
侵入者エージェントの目標は、モデル内の所定のポイントまたはゾーンである。シミュレーション実行部16は、侵入者エージェントが移動経路を通って、所定のポイントに到達したときに、侵入者エージェントの目標が達成されたとしてもよい。目標がゾーンの場合、シミュレーション実行部16は、侵入者エージェントがゾーンの内側に入ったときに、侵入者エージェントの目標は達成されたとしてもよい。実施形態では、侵入者エージェントの目標は、ターゲットノードである。
モデル生成部13が生成したモデルは、シミュレーション実行部16に出力される。警備員配置制御部14は、入力情報記憶部12が記憶している警備計画情報に基づいて、シミュレーション実行部16のモデル上に警備員を初期的に配置する(ステップS5)。警備員配置制御部14は、警備方式ごとにモデル上に警備員を初期配置する。
シミュレーション実行部16は、ステップをカウントする。シミュレーション実行部16は、シミュレーションの実行を開始するときには、ステップ数を1に設定する(ステップS6)。このステップ数は、所定時間ごとに、シミュレーション実行部16によりインクリメントされていく。ステップ数のインクリメントについては、後述する。
シミュレーション実行部16は、カウントしているステップ数が警備位置を変更するステップに到達したか否かを判定する(ステップS7)。実施形態では、警備員は、タイムスロットごとに警備位置を変更する。
従って、シミュレーション実行部16は、カウントしているステップ数が警備員の警備位置を変更するステップ数に到達したとき(ステップS7でYES)、モデルにおける警備員の位置を変更する(ステップS8)。
一方、シミュレーション実行部16は、カウントしているステップ数が警備員の警備位置を変更するステップ数に到達していないとき(ステップS7でNO)、ステップS8の処理は行わない。
シミュレーション実行部16は、カウントしているステップ数が侵入者エージェントの発生ステップであるか否かを判定する(ステップS9)。侵入者情報は、侵入者エージェントごとに発生ステップの情報を含んでいる。
よって、侵入者発生制御部15は、現在のステップ数が侵入者情報の何れかの侵入者エージェントの発生ステップに到達したときに(ステップS9でYES)、シミュレーション実行部16のモデルに侵入者エージェントを発生させる(ステップS10)。
上述した侵入者情報に複数のターゲットノード候補が含まれる場合、侵入者発生制御部15は、複数のターゲットノード候補の中からターゲットノードを選択する。例えば、侵入者発生制御部15は、複数のターゲットノード候補のうちランダムに1つのターゲットノードを選択してもよい。
また、ターゲットノード候補には利得が関連付けられている。従って、侵入者発生制御部15は、利得に基づいて確率的にターゲットノードを選択してもよい。例えば、図5の例の場合、侵入者IDが1番のターゲットノード候補は13番および16番がある。
ターゲットノード候補が13番の利得は5であり、ターゲットノード候補が16番の利得は3である。よって、侵入者発生制御部15は、「5/8」の確率で13番のノードをターゲットノードとして選択し、「3/8」の確率で16番のノードをターゲットノードとして選択してもよい。
侵入者発生制御部15は、現在のステップ数が侵入者情報の何れの侵入者情報の発生ステップにも到達していないとき(ステップS9でNO)、ステップS10の処理は行わない。
シミュレーション実行部16は、モデル上において侵入者エージェントを移動させる(ステップS11)。シミュレーション実行部16は、警備員の配置位置を回避する可能性を高めるように侵入者エージェントの移動経路を回避経路として選択する。侵入者エージェントの移動については、後述する。
シミュレーション実行部16は、モデル上の侵入者エージェントに関連付けて、認知情報および逮捕情報を含む履歴情報を表示するように、表示制御部18を制御する。表示制御部18は、表示装置3に侵入者エージェントと関連付けて履歴情報を表示する(ステップS12)。
シミュレーション実行部16は、侵入者エージェントの移動経路を形成する。表示制御部18は、形成された侵入者エージェントの移動経路を表示装置3に表示する(ステップS13)。
シミュレーション実行部16には、予めシミュレーションを終了するステップ(以下、終了ステップ数と称する)が設定されている。この終了ステップ数は、任意の値でシミュレーション実行部16に設定される。
シミュレーション実行部16は、カウントしているステップ数が終了ステップ数に達したか否かを判定する(ステップS14)。終了ステップ数に達していなければ(ステップS14でNO)、シミュレーション実行部16は、カウントしているステップ数をインクリメントする(ステップS15)。
そして、処理はステップS7に戻る。従って、シミュレーション実行部16は、カウントしているステップ数が終了ステップ数に達するまでステップS7からステップS13までの処理を繰り返す。つまり、シミュレーション実行部16は、終了ステップ数に達するまでシミュレーションを実行する。
シミュレーション実行部16がカウントしているステップ数が終了ステップ数に達した場合(ステップS14でYES)、表示制御部18は表示装置3に実行結果を表示する(ステップS16)。
実行結果は、シミュレーション実行部16がシミュレーションを実行した結果に関する情報である。実行結果は、シミュレーションを実行した結果の情報だけでなく、空間情報や警備計画情報、侵入者情報等の情報を含んでもよい。
結果出力部19は、シミュレーション実行部16から実行結果を取得する。そして、結果出力部19は、取得した実行結果を実行結果記憶部20に記憶する。また、結果出力部19は、実行結果を表示制御部18に出力し、表示制御部18は実行結果を表示装置3に表示する。
結果出力部19は、シミュレーション実行部16からステップごとの実行結果を実行結果記憶部20に記憶してもよい。実行結果記憶部20が記憶した実行結果はログとして出力可能にしてもよい。
次に、ステップS11の侵入者エージェント行動処理について、図7のフローチャートを参照して説明する。シミュレーション実行部16は、侵入者エージェントに現在位置に応じた認知範囲を認知させる(ステップS21)。シミュレーション実行部16は、複数の侵入者エージェントが存在する場合には、それぞれの侵入者エージェントに現在位置に応じた認知範囲を認知させる。
認知範囲について説明する。図8は、モデル、モデル上に配置される警備員D1〜D3およびモデル上を移動する侵入者エージェントC1の一例を示している。警備員D1は、エッジ24番に配置されている。警備員D2は、エッジ8番に配置されている。警備員D3はエッジ22番に配置されている。侵入者エージェントC1は、ノード12番に到達している。
認知範囲は、モデルの位置に応じて、侵入者エージェントが警備員を認知できる範囲である。認知範囲は、モデル上の位置によって変化する。例えば、湾曲した経路については、侵入者エージェントC1が認知できる範囲は狭い。また、経路上に遮蔽物等がある場合にも、侵入者エージェントC1が認知できる範囲は狭い。
一方、直線状の経路の途中位置における侵入者エージェントC1が認知できる範囲は広い。また、経路上に遮蔽物等がない場合にも、侵入者エージェントC1が認知できる範囲は広い。例えば、ノードの位置によっては、該ノードを中心にして、複数のノードおよびエッジを含む広い範囲が認知範囲となる場合もある。
図8の例では、侵入者エージェントC1が認知している認知範囲Aは破線で示されている。侵入者エージェントC1が位置しているノード12番は比較的、認知範囲Aが広い。従って、侵入者エージェントC1は、認知範囲Aに含まれる警備員D1を認知することができる。
シミュレーション実行部16は、侵入者エージェントC1の認知範囲Aに警備員が含まれる場合、認知した警備員の位置に関する認知情報を警備情報リストに追加する。図8の例の場合、エッジ24に警備員D1が位置しているため、シミュレーション実行部16は、警備情報リストにエッジ24を追加する。
図9は、侵入者エージェントC1がノード10番に位置している例を示している。図10の例では、例えば、経路が湾曲していること等を要因として、ノード10番における認知範囲Aは狭いものとする。この場合、侵入者エージェントC1と警備員D3との距離は近い。しかし、ノード10番の認知範囲に警備員D3が含まれないため、侵入者エージェントC1は警備員D3を認知しない。
実施形態では、侵入者エージェントはノードに到達した後に、次に移動する経路、つまりエッジを決定する。このとき、ノードの認知範囲Aは、侵入者エージェントが次に何れの経路を選択するかを決定する要素の1つとなる。
このため、実施形態では、ノード1番〜22番に対して、それぞれ認知範囲Aが設定されている。ただし、認知範囲Aはノードではなく、エッジが有していてもよい。認知範囲Aは、モデルの経路の位置ごとに設定されていてもよい。
以上が、図7のステップS21の認知範囲に関する説明である。シミュレーション実行部16は、侵入者エージェントがモデル上の現在位置の認知範囲を認知した後に、自身がノードに位置しているか否かを判定する(ステップS22)。
侵入者エージェントがノードに位置している場合(ステップS22でYES)、シミュレーション実行部16は、侵入者エージェントが次に何れのエッジに移動するかを決定する。侵入者エージェントは、撤退という行動をとる場合もある。撤退は、侵入者が警備区域内から離脱することを示す。シミュレーション実行部16は、侵入者エージェントが撤退をするか否かの判定を行う(ステップS24)。
侵入者エージェントが撤退する場合(ステップS24でYES)、シミュレーション実行部16は、モデルから侵入者エージェントを撤退させる(ステップS25)。この場合、侵入者エージェントはモデルから消滅する。侵入者エージェントが撤退しない場合(ステップS24でNO)、シミュレーション実行部16は、侵入者エージェントの次の経路を選択する(ステップS26)。
経路選択および撤退の判定について説明する。最初に、図10のフローチャートを参照して、経路選択について説明する。あるノードに位置する侵入者エージェントがターゲットノードに到達するまでには複数の経路がある。侵入者エージェントが位置するノードとターゲットノードとの間に複数のエッジおよびノードが存在する場合、経路選択の対象となる経路の数が多くなる。
シミュレーション実行部16は、侵入者エージェントが位置するノードから移動可能なエッジを抽出する(ステップS26−1)。シミュレーション実行部16が抽出したエッジを移動候補エッジと称する。移動候補エッジは、侵入者エージェントが位置しているノードと接続されているエッジである。
シミュレーション実行部16は、移動候補エッジから直前に通ったエッジおよび警備情報リストに含まれるエッジを除外する(ステップS26−2)。直前に通ったエッジは、侵入者エージェントが通ったエッジであるため、移動候補から除外する。
また、警備情報リストに含まれるエッジは、侵入者エージェントが逮捕される可能性が高いため、移動候補から除外する。これにより、侵入者エージェントが逮捕されることから回避する可能性が高くなる。なお、シミュレーション実行部16は、移動候補エッジから逮捕情報リストに含まれるエッジを除外してもよい。
つまり、シミュレーション実行部16は、認知情報および履歴情報を含む履歴情報に基づいて、逮捕される可能性のある移動経路を除外する。除外した移動経路は、警備員D1からD3を回避する可能性を高める回避経路となる。これにより、シミュレーション実行部16は、移動経路として回避経路の選択可能性を高めることができる。
回避経路の選択可能性が高くなれば、侵入者エージェントはターゲットノードに到達する可能性が高くなる。警備区域に侵入した侵入者は、警備員を回避する経路を選択するため、実態に即したシミュレーションを行うことができる。
シミュレーション実行部16は、上記のエッジを除外した移動候補エッジを通り、且つターゲットノードに到達するまでの全ての経路の中の最短経路の評価を行う。このために、シミュレーション実行部16は、評価値を演算する。
評価値は、シミュレーション実行部16が侵入者エージェントを移動させるに際して、経路選択を行うための指標となる値である。評価値は、基準評価値に対して補正を行うことにより、得られる。
シミュレーション実行部16は、移動候補エッジを通り、且つターゲットノードに到達するまでの全ての経路のうち最短経路を求める。最短経路を求める手法としては、例えば、ダイクストラ法を適用してもよい。
シミュレーション実行部16は、最短経路の距離(長さ)を演算し(ステップS26−3)、演算した距離を基準評価値とする。シミュレーション実行部16は、以下の式を用いて、基準評価値を補正して評価値を演算する(ステップS26−4)。
「評価値=基準評価値+W1×(最短経路に含まれるエッジの警備情報リストで認知している警備回数の合計)+W2×(最短経路に含まれるエッジの逮捕情報リストで認知している警備回数の合計)」
なお、W1およびW2は、所定の係数である。例えば、最短経路に含まれる警備情報リストおよび逮捕情報リストで認知している警備回数がゼロであれば、評価値は基準評価値と一致する。同様に、W1およびW2がゼロの場合も、評価値は基準評価値と一致する。従って、侵入者エージェントは、最短経路を通って、ターゲットノードに到達する。
一方、最短経路に含まれる警備情報リストおよび逮捕情報リストの警備回数が多くなるほど、評価値は高くなる。評価値が高くなるに応じて、侵入者エージェントは逮捕される可能性が高くなる。
シミュレーション実行部16は、上記の式を用いて、各経路の評価値を演算する。そして、シミュレーション実行部16は、移動候補エッジを通り、且つターゲットノードに到達するまでの全ての経路の中の最短経路のうち評価値が低い経路を選択する(ステップS26−5)。この選択がステップS26の経路選択である。
上記の式のうち、W1およびW2は、侵入者エージェントの性向に基づく係数である。W1およびW2の値は、侵入者エージェントの性向がHighの場合(つまり、リスクを犯してでも目標を達成する性向を持つ場合)、低くなる。
この場合、上記の警備回数の値が多いとしても、評価値は低くなる。一方、侵入者エージェントの性向がLowの場合(つまり、リスクを回避する傾向の場合)、W1およびW2の値が高くなるため、評価値は高くなる。
よって、シミュレーション実行部16は、ターゲットノードまでの複数の移動経路のそれぞれの移動時間と侵入者エージェントの性向とに基づいて、評価値を演算する。そして、シミュレーション実行部16は、評価値に基づいて、経路の選択を行う。シミュレーション実行部16が行う侵入者エージェントの経路選択は、上記の例には限定されず、任意の手法を採用してもよい。
次に、撤退の判定について説明する。シミュレーション実行部16には、予め撤退閾値が設定されている。撤退閾値は、侵入者エージェントが撤退するか否かを判定する閾値になる。シミュレーション実行部16は、演算した評価値と撤退閾値とを比較し、評価値が撤退閾値を超過したときに、撤退と判断する。これにより、侵入者エージェントはモデルから撤退し、消滅する。
撤退閾値は、侵入者エージェントごとに設定される。そして、撤退閾値は、侵入者エージェントの性向に基づいて、設定されてもよい。侵入者エージェントの性向がHighの場合、リスクを犯してでも目標を達成しようとするため、撤退閾値は高くなる。一方、侵入者エージェントの性向がLowの場合、リスクを回避する傾向があるため、撤退閾値は低くなる。
上述のようにして、シミュレーション実行部16は、侵入者エージェントの行動を決定する。シミュレーション実行部16は、侵入者エージェントの撤退を判断した場合には、侵入者エージェントは消滅する。この場合、侵入者エージェントの行動は終了する。
従って、侵入者エージェントは撤退をしたため、該侵入者エージェントは、目標を達成せず、且つ逮捕もされなかったことになる。この場合、シミュレーション実行部16は、侵入者エージェントが警備区域から離脱したことを認識する。
次に、図7のステップS27以降の処理について説明する。シミュレーション実行部16が侵入者エージェントの移動経路を選択すると、シミュレーション実行部16は、選択した移動経路に向けて侵入者エージェントを移動させる(ステップS27)。
シミュレーション実行部16は、侵入者エージェントが移動した先のエッジに警備員が配置されているか否かを判定する(ステップS28)。侵入者エージェントが移動した先のエッジに警備員が配置されていれば(ステップS28でYES)、シミュレーション実行部16は、警備方式の対象であるか否かの判定を行う(ステップS29)。
上述したように、予め策定された警備計画には複数の警備方式が含まれている場合がある。実施形態では、警備方式は、犯罪種別に応じて設定される。例えば、上述したように、警備方式1は、施設の破壊を計画している侵入者に対する警備計画であるとする。
この警備方式1は、危険物の散布を計画している侵入者エージェントに対する警備計画ではない。この場合、シミュレーション実行部16は、侵入者エージェントが警備方式の対象でないと判定する(ステップS29でNO)。
例えば、図4(B)で示した警備方式の番号と図5で示した犯罪種別の番号とが一致したときに、シミュレーション実行部16は、警備方式の対象であると判定し、一致しない場合は、警備方式の対象でないと判定してもよい。
侵入者エージェントが警備方式の対象であると判定された場合(ステップS29でYES)、侵入者エージェントは警備対象の警備員に遭遇するため、侵入者エージェントは逮捕される(ステップS30)。この場合、シミュレーション実行部16は、逮捕した侵入者エージェントを消滅させる。
ステップS28においてNOと判定された場合、およびステップS29でNOと判定された場合、侵入者エージェントは逮捕されない。この場合、シミュレーション実行部16は、選択した経路(エッジ)を通って、次のノードに侵入者エージェントを移動させる。
シミュレーション実行部16は、侵入者エージェントが移動したノードがターゲットノードであるか否かを判定する(ステップS31)。侵入者エージェントが移動したノードがターゲットノードである場合(ステップS31でYES)、侵入者エージェントは利得を獲得する(ステップS32)。
この場合、侵入者エージェントは、ターゲットノードに到達したため、目標を達成したことになる。シミュレーション実行部16は、侵入者エージェントのターゲットノード数が1の場合、侵入者エージェントを消滅させる。侵入者エージェントのターゲットノード数が2以上の場合は、シミュレーション実行部16は、侵入者エージェントを消滅させず、次のターゲットノードに向けて移動させる。
以上により、ステップS11の侵入者エージェント行動処理が終了する。シミュレーション実行部16は、上述したシミュレーションをステップS14の終了ステップ数に達するまで行う。
従って、実施形態では、シミュレーション実行部16は、侵入者エージェントが認知する認知範囲に警備員が含まれるかに基づいて、侵入者エージェントの移動経路を選択するシミュレーションを行う。
実際の侵入者の行動も、警備員を認知した場合には、警備員を回避する経路を選択するため、実態に即した侵入者に対する警備計画のシミュレーションを行うことができる。また、シミュレーション実行部16は、認知範囲内の警備員の位置を回避する回避経路を選択する。従って、より実態に即したシミュレーションを行うことができる。
シミュレーション実行部16は、さらに警備員の位置の他に、他の侵入者エージェントが逮捕された位置を回避する回避経路を選択する。これにより、侵入者エージェントが回避可能性を高める情報が得られるため、侵入者エージェントが警備員を回避する可能性はより高くなる。このため、より実態に即したシミュレーションを行うことができる。
<第1の具体例>
次に、第1の具体例について、図11乃至図20を参照して説明する。図11は、モデル生成部13が生成したモデルに警備員D1、D2およびD3を配置した場合のシミュレーション画面の一例を示している。このシミュレーション画面は、表示装置3に表示される。
モデル生成部13は、入力情報記憶部12に記憶されている空間情報に基づいて、警備区域のモデルを生成する。警備員配置制御部14は、警備計画情報に基づいて、シミュレーション実行部16のモデルに警備員を配置する。
第1の具体例では、シミュレーション実行部16は、警備方式1のシミュレーションを行う。図11の例に示すように、タイムスロット1における警備1はエッジ24である。よって、警備員配置制御部14は、警備員D1をエッジ24に配置する。同様に、警備員配置制御部14は、警備員D2をエッジ8に配置し、警備員D3をエッジ22に配置する。
図12の例は、侵入者発生制御部15がシミュレーション実行部16のモデルに侵入者エージェントC1を発生させた場合を示している。侵入者発生制御部15は、図12の例に示す侵入者IDが1番の侵入者情報に基づいて、侵入者エージェントC1をモデルのノード4番に発生させる。
図12の侵入者情報の場合、ターゲットノード候補はノード13番および16番がある。このうち、侵入者エージェントC1は、利得に基づく確率は低いが(3/8)、ノード16番をターゲットノードに選択したとする。なお、ターゲットノード数は1であるため、侵入者エージェントC1は、ターゲットノード16番に到達した時点で目標達成となる。
図12の例に示すように、表示制御部18は、侵入者エージェントC1に履歴情報および属性情報を関連付けて表示する。履歴情報は、上述したように、警備情報リストおよび逮捕情報リストを含む。属性情報は、犯罪種別、犯罪性向、ターゲットノード数およびターゲットノードの情報を含む。
ノード4番に発生した時点で、侵入者エージェントC1の履歴情報には情報が含まれていない。シミュレーション実行部16は、移動候補エッジとして3番、4番および9番を抽出する。侵入者エージェントC1は、まだ移動しておらず、且つ履歴情報には何らの情報も含まれていない。
よって、シミュレーション実行部16は、エッジ番号3番、4番および9番のそれぞれについて、ターゲットノード16番に移動するエッジを選択する。侵入者エージェントC1の履歴情報には何らの情報も含まれていないため、シミュレーション実行部16は、ターゲットノードに向かう最短経路のエッジを選択する。このとき、評価値は基準評価値と等しくなっている。
シミュレーション実行部16が選択したエッジが9番であるとする。また、エッジ9番の移動ステップ数が19であるとする。なお、侵入者エージェントC1が1つのエッジを移動するために要する時間を移動ステップ数と称する。
図13の例に示すように、ステップ数が2〜21の間、シミュレーション実行部16は、侵入者エージェントC1をエッジ9の上で停止させる。表示装置3は、侵入者エージェントC1がエッジ9の上で停止しているシミュレーション画面を表示する。
シミュレーション実行部16は、ステップ数をインクリメントする。そして、シミュレーション実行部16は、ステップ数が22のときに、侵入者エージェントC1をノード12番に移動させる。
図14は、侵入者エージェントC1がノード12番に位置している場合を示している。表示制御部18は、侵入者エージェントC1の移動経路(エッジ9番)を他のエッジとは異なる態様で表示する。図14の例では、侵入者エージェントC1の移動経路を点線で表示している。
シミュレーション実行部16は、ノード12番に位置する侵入者エージェントC1の認知範囲に警備員が含まれるか否かを判定する。図14の例では、警備員D1が侵入者エージェントC1の認知範囲A1に含まれているとする。この場合、シミュレーション実行部16は、履歴情報の警備情報リストにエッジ24を追加する。
シミュレーション実行部16は、侵入者エージェントC1の次の移動経路を選択する。移動候補エッジは、9番、17番および24番になる。エッジ9番は、直前に通ったエッジになる。従って、シミュレーション実行部16は、移動候補エッジからエッジ9番を除外する。
また、エッジ24番は、侵入者エージェントC1が認知した警備情報リストに含まれている。よって、シミュレーション実行部16は、エッジ24番を移動候補エッジから除外する。このため、シミュレーション実行部16は、残りのエッジ17番を次の移動先として決定する。
図15は、エッジ17番の上で侵入者エージェントC1が停止している状態の一例を示している。エッジ17番の移動ステップ数が18であるとすると、ステップ数が23から39の間、侵入者エージェントC1はエッジ17番で停止する。
ステップ数が40になったときに、シミュレーション実行部16は、侵入者エージェントC1をエッジ17番に移動させる。表示制御部18は、図16の例に示すように、侵入者エージェントC1の移動経路(エッジ17番)を他のエッジとは異なる態様で表示する。
シミュレーション実行部16は、ノード11番に位置する侵入者エージェントC1の認知範囲に警備員が含まれるか否かを判定する。図16の例では、侵入者エージェントC1の認知範囲に警備員D2が含まれるとする。この場合、シミュレーション実行部16は、警備情報リストにエッジ8を追加する。そして、シミュレーション実行部16は、侵入者エージェントC1の次の移動経路を選択する。
移動候補エッジは、8番、16番、17番および23番になる。侵入者エージェントC1はエッジ8番の警備員D2を認知しているため、エッジ8番は移動候補エッジから除外される。また、エッジ17番は、直前に通ったエッジであるため、移動候補エッジから除外される。
従って、シミュレーション実行部16は、エッジ16番とエッジ23番とのうち何れかの移動経路(エッジ)を選択する。図16の例では、シミュレーション実行部16が上述した式により演算した評価値は、エッジ23番よりエッジ16番の方が低いものとする。よって、シミュレーション実行部16は、侵入者エージェントC1をエッジ16番に移動させる。
図17は、シミュレーション実行部16が侵入者エージェントC1をエッジ16番に移動させた状態を示している。エッジ16番の移動ステップ数は4であるものとする。よって、シミュレーション実行部16は、ステップ数が41から45までの間、侵入者エージェントC1をエッジ16番で停止させる。
ステップ数が46のとき、シミュレーション実行部16は、侵入者エージェントC1をノード10番に移動させる。図18の例に示すように、表示制御部18は、侵入者エージェントC1の移動経路(エッジ16番)を他のエッジとは異なる態様で表示する。
侵入者エージェントC1がノード10番に位置しているとき、侵入者エージェントC1の移動候補エッジは、14番、15番、16番および22番である。このうち、直前に通ったエッジ16番は除外される。
ここで、図18の例に示すように、エッジ22番には警備員D3が配置されている。ただし、図18の例では、ノード10番の認知範囲に警備員D3が含まれないものとする。従って、侵入者エージェントC1は、警備員D3を認知しないため、シミュレーション実行部16は、エッジ22番を移動候補エッジから除外しない。
このため、侵入者エージェントC1の移動候補エッジは、14番、15番および22番になる。これらの移動候補エッジのうち、評価値が最も低いエッジは22番であるものとする。よって、シミュレーション実行部16は、侵入者エージェントC1をエッジ22番に移動させる。
図19の例において、エッジ22番には警備員D3が配置されている。警備員D3の警備方式と侵入者エージェントC1との犯罪種別が一致する場合、侵入者エージェントC1と警備員D3とが遭遇したため、侵入者エージェントC1は警備員D3に逮捕される。つまり、この場合の警備計画は成功になる。
表示制御部18は、侵入者エージェントC1が警備員D3と遭遇したことにより、逮捕されことを示す表示を表示装置3に表示する。これにより、侵入者エージェントC1が警備員D3と遭遇したことにより逮捕されたことを可視化することができる。表示制御部18は、「逮捕!」というアラートを表示することで、良好な視認性でシミュレーションの結果を表示することができる。
シミュレーション実行部16は、侵入者エージェントC1と警備員D1からD3と遭遇することを回避するように移動経路を特定している。そして、表示制御部18は、シミュレーション実行部16が特定した侵入者エージェントC1の移動経路を警備員D1からD3の配置位置と共に表示装置3に表示している。
シミュレーション画面を視認するユーザは、警備員D1からD3の配置位置に応じて、侵入者エージェントC1がどのような移動を行うかを認識することができる。つまり、移動経路の表示は、侵入者エージェントC1の位置の経時変化を動的に表示である。
このときの侵入者エージェントC1は、上述したように、警備員D1からD3を回避するように移動経路を特定するため、実態に即している。従って、警備計画の評価を客観的に行うことができる。
また、図19の例のように、表示制御部18は、侵入者エージェントC1が逮捕されたことを示すアラートだけでなく、アラートと共に逮捕されたときの移動経路を表示装置3に表示している。これにより、ユーザは、シミュレーションの結果と侵入者エージェントC1の移動経路とを認識することができ、警備計画の評価を客観的に行うことができる。
また、図10乃至図18で示したように、表示制御部18は、侵入者エージェントC1の移動に応じて、認知情報を表示装置3に表示している。このため、ユーザは、シミュレーション実行部16が侵入者エージェントC1の経路を選択するときの認知情報の内容を認識することができる。
また、表示制御部18は、侵入者エージェントC1の移動に応じて、認知情報の変化を表示している。従って、ユーザは、認知情報の変化に基づいて、シミュレーション実行部16が侵入者エージェントC1の経路選択をどのように変化させたかを認識することができる。
また、表示制御部18は、侵入者エージェントC1の位置に応じて認知範囲A1を示す領域を表示装置3に表示している。このため、ユーザは、侵入者エージェントC1の位置に応じた認知範囲A1を認識することができる。
図20は、図18の例において、ノード10番の認知範囲A1に警備員D3が含まれている例を示している。この場合、図20のように、シミュレーション実行部16は、警備情報リストにエッジ22番を追加する。移動候補エッジは、14番および15番になる。
シミュレーション実行部16は、評価値を演算する。評価値はエッジ15番の方が低いものとする。このため、シミュレーション実行部16は、侵入者エージェントC1をエッジ15番に移動させる。
従って、ノード10番において侵入者エージェントC1が警備員D3を認知した場合、シミュレーション実行部16は、侵入者エージェントC1に警備員D3を回避する経路を選択させる。この場合、侵入者エージェントC1は、ノード9番からエッジ21番を通ってターゲットノード16番に到達する。
従って、ノード10番の認知範囲に警備員D3が含まれるか否かによって、侵入者エージェントC1は逮捕される場合もあり、ターゲットノード16番に到達して目標を達成する場合もある。
<第2の具体例>
次に、図21乃至図27を参照して、第2の具体例について説明する。第2の具体例では、ステップ数が20のときに、侵入者エージェントC1がノード12番に位置しているものとする。そして、ステップ数が20のときに、侵入者エージェントC1とは異なる侵入者エージェントC2が発生するものとする。
侵入者エージェントC2の属性情報は、侵入者エージェントC1と同様、犯罪種別が1、犯罪性向がHigh,ターゲットノード数が1、ターゲットノードが16番であるとする。侵入者エージェントC2の属性情報と侵入者エージェントC1との属性情報は異なっていてもよい。
図21の例では、侵入者エージェントC2は、ノード6番に発生している。侵入者エージェントC1の警備情報リストはエッジ24番を含んでいる。このため、シミュレーション実行部16は、侵入者発生制御部15が発生させた侵入者エージェントC2の警備情報リストにエッジ24番を追加する。つまり、侵入者エージェントC2が発生した時点で、侵入者エージェントC2の警備情報リストはエッジ24番を含む。
図22は、侵入者エージェントC1と警備員D3とが遭遇し、侵入者エージェントC1が警備員D3に逮捕された例を示す。このときのステップ数を46とする。ノード6番で発生した侵入者エージェントC2は、ステップ数が46の時点では、エッジ11番、ノード15番、エッジ14番、ノード13番を通って、エッジ18番に位置しているものとする。
図22の例では、表示制御部18は、侵入者エージェントC1の移動経路と侵入者エージェントC2の移動経路とを異なる態様で表示している。図22の例では、表示制御部24は、侵入者エージェントC1の移動経路の線と、侵入者エージェントC2の移動経路の線とを、異なる太さで表示装置3に表示している。
ステップ数が46のとき、侵入者エージェントC1は、警備員D3に逮捕されている。従って、シミュレーション実行部16は、侵入者エージェントC1が逮捕されたときのエッジ22番を侵入者エージェントC2の逮捕情報リストに追加する。
図23は、侵入者エージェントC1がノード12番に位置している例を示している。このときのステップ数を50とする。ステップ数50のときには、侵入者エージェントC1は逮捕されている。よって、侵入者エージェントC1はシミュレーション画面から消滅している。
図23の例に示すように、ノード12番の認知範囲A2には警備員D1が含まれる。従って、侵入者エージェントC2は警備員D1を認知する。シミュレーション実行部16は、侵入者エージェントC2の警備情報リストにエッジ24を追加する。
図24は、侵入者エージェントC2がノード11番に位置している例を示している。このときのステップ数を60とする。ノード11番の認知範囲には警備員D2が含まれる。従って、侵入者エージェントC2は警備員D2を認知する。シミュレーション実行部16は、侵入者エージェントC2の警備情報リストにエッジ8番を追加する。
図25は、侵入者エージェントC2がノード10番に位置している例を示している。このときのステップ数を74とする。ノード10番の認知範囲A2には警備員D3は含まれない。よって、侵入者エージェントC2は警備員D3を認知しない。
一方、侵入者エージェントC2の逮捕情報リストにはエッジ22番が含まれている。従って、侵入者エージェントC2が警備員D3を認知しない場合でも、シミュレーション実行部16は、移動候補エッジからエッジ22番を除外する。
シミュレーション実行部16は、エッジ14番とエッジ15番とのうち、評価値の低いエッジを選択する。図25の例では、エッジ15番の評価値の方が低いものとする。このため、シミュレーション実行部16は、侵入者エージェントC2をエッジ15番に移動させる。
図26は、侵入者エージェントC2がノード9番の位置している例を示している。このときのステップ数を75とする。シミュレーション実行部16は、エッジ13番とエッジ21番とのうち評価値が低いエッジを選択する。エッジ21番は、ターゲットノード16番に接続されているため、評価値は低くなる。
よって、シミュレーション実行部16は、侵入者エージェントC2をエッジ21番に移動させる。そして、図27の例に示すように、侵入者エージェントC2はターゲットノード16番に到達する。このときのステップ数を75とする。
従って、ステップ数75で、侵入者エージェントC2はターゲットノード16番に到達したため、侵入者エージェントC2は目標を達成する。表示制御部18は、侵入者エージェントC2が目標のポイントまたはゾーンに到達したため、表示装置3に「目標達成!」というアラートを表示する。つまり、この場合の警備計画は失敗になる。
<第3の具体例>
次に図28乃至図30の例を参照して、第3の具体例について説明する。第3の具体例は、シミュレーション実行部16が侵入者エージェントC3を撤退させる場合を示している。
図28の例では、侵入者発生制御部15は、侵入者エージェントC3をノード1番に発生させている。侵入者エージェントC3の犯罪性向はLowである。従って、侵入者エージェントC3はリスクを回避する傾向にある。
図28の例では、ノード1番に接続されるエッジ6番に警備員D1が配置されている。そして、ノード1番の認知範囲A3に警備員D1が含まれるとする。この場合、侵入者エージェントC3は、警備員C1を認知する。シミュレーション実行部16は、侵入者エージェントC3の警備情報リストにエッジ6番を追加する。
侵入者エージェントC3の移動候補エッジは1番および6番である。上記したように、侵入者エージェントC3の警備情報リストには6番が含まれているため、シミュレーション実行部16は、次の移動先のエッジを1番に選択する。
シミュレーション実行部16は、エッジ1番を通る最短経路の評価値を演算する。侵入者エージェントC3の犯罪性向はLowであるため、撤退閾値は低い。例えば、侵入者エージェントC3の撤退閾値が、エッジ6番、13番および21番を通る経路の移動ステップ数とほぼ同じである場合を想定する。
この場合、侵入者エージェントC3がエッジ1番を通る場合の最短経路の評価値は撤退閾値よりも高くなる。よって、シミュレーション実行部16は、侵入者エージェントC3を撤退させる。従って、シミュレーション実行部16は、侵入者エージェントC3を消滅させる。
図29は、ノード1番で発生した侵入者エージェントC4の属性情報における性向がHighである例を示している。エッジ6番の認知範囲A4は、警備員D1を含む。このため、シミュレーション実行部16は、警備情報リストにエッジ6番を追加する。エッジ6番に配置されている侵入者エージェントC4の移動候補エッジは、1番になる。
シミュレーション実行部16は、エッジ1番を通り、且つターゲットノード16番に到達する最短経路を評価する。図29の例の侵入者エージェントC4の性向はHighである。侵入者エージェントC4の性向がHighであるため、シミュレーション実行部16は、エッジ1番を通る最短経路の評価値が撤退閾値以下であると判定する。
よって、侵入者エージェントC4は、エッジ1番を通り、ノード2番に到達する。図30は、侵入者エージェントC4がノード2番に位置している例を示している。ノード2番の認知範囲A4は警備員D2を含んでいるとする。この場合、シミュレーション実行部16は、侵入者エージェントC4の警備情報リストにエッジ7番を追加する。
シミュレーション実行部16は、移動候補エッジは2番であると判定する。シミュレーション実行部16は、エッジ2番を通り、且つターゲットノード16番に到達する各経路の評価値のうち最も低い経路の評価値が撤退閾値を超過したとする。
この場合、シミュレーション実行部16は、侵入者エージェントC4の属性情報の性向がHighであるが、最も低い経路の評価値が撤退閾値を超過したため、侵入者エージェントC4を撤退させると判断させる。従って、シミュレーション実行部16は、侵入者エージェントC4を消滅させる。そして、表示制御部18は、「撤退!」というアラートを表示装置3に表示する。
<数的評価の一例>
シミュレーション実行部16は、予め策定された警備計画に基づいて、侵入者エージェントを移動させるシミュレーションを行う。結果出力部19は、シミュレーション実行部16がシミュレーションを行った結果を実行結果記憶部20に記憶させる。また、結果出力部19は、実行結果を表示制御部18に出力する。
警備計画は、モデルに配置する警備員の情報を含む。シミュレーション実行部16は、1つの警備計画について繰り返しシミュレーションを行う。結果出力部19は、シミュレーション結果の集計を行い、表示制御部18に集計結果を出力し、表示制御部18は表示装置3に集計結果を表示する。
図31は、表示装置3に表示される集計結果の一例を示す。例えば、図31の例では、警備計画1に基づく警備員の配置に基づいて、シミュレーション実行部16がシミュレーションを実行した結果の逮捕数と目標達成数とが表示装置3に表示される。
図31の例の場合、警備計画1は目標達成数より逮捕数の方が多いため、ユーザは、表示装置3の表示に基づいて、警備計画1が有効であることを客観的に評価することができる。
また、図31の例の場合、警備計画2は逮捕数より目標達成数の方が多いため、ユーザは、表示装置3の表示に基づいて、警備計画2が有効でないことを客観的に評価することができる。
図32は、侵入者タイプごとの集計結果の表示例を示している。侵入者タイプは、上述した犯罪種別を示す。警備計画1の場合、侵入者タイプ1および侵入者タイプ2の両者について、目標達成数より逮捕数の方が多いため、ユーザは、表示装置3の表示に基づいて、警備計画1が有効であることを客観的に評価することができる。
警備計画2では、侵入者タイプ1については、逮捕数より目標達成数の方が多い。一方、侵入者タイプ2については、目標達成数より逮捕数の方が多い。このため、ユーザは、警備計画2は、侵入者タイプ2には有効であるが、侵入者タイプ1には有効でないことを表示装置3の表示に基づいて認識できる。
図31および図32の例では、警備計画(警備員の配置パターンごと)の目標達成数および逮捕数を示したが、表示制御部18は他のパラメータの集計結果を表示装置3に表示してもよい。例えば、表示制御部18は撤退数を表示装置3に表示してもよい。
また、表示制御部18は、目標達成数または逮捕数の何れか一方を表示してもよい。また、表示制御部18は、侵入者の性向またはターゲットノードごと、侵入者エージェントが移動したノードまたはエッジごとに集計結果を表示してもよい。
また、図31および図32の例では、表示装置3は、それぞれの警備計画について棒グラフで数値の表示を行っている。ただし、表示装置3は、棒グラフ以外の数値表示を行ってもよい。例えば、表形式で数値を表示してもよい。
<シミュレーション装置のハードウェア構成の一例>
次に、図33を参照して、シミュレーション装置のハードウェア構成の一例を説明する。図33の例に示すように、バス100に対して、プロセッサ111とRandom Access Memory(RAM)112とRead Only Memory(ROM)113と補助記憶装置114と媒体接続部115と入出力インタフェース116とが接続されている。
プロセッサ111はCentral Processing Unit(CPU)のような任意の処理回路である。プロセッサ111はRAM112に展開されたプログラムを実行する。実行されるプログラムとしては、実施形態のシミュレーションプログラムを適用することができる。ROM113はRAM112に展開されるプログラムを記憶する不揮発性の記憶装置である。
補助記憶装置114は、種々の情報を記憶する記憶装置であり、例えばハードディスクドライブや半導体メモリ等を補助記憶装置114に適用することができる。媒体接続部115は、可搬型記録媒体118と接続可能に設けられている。
可搬型記録媒体118としては、可搬型のメモリや光学式ディスク(例えば、Compact Disk(CD)やDigital Versatile Disk(DVD)等)を適用することができる。この可搬型記録媒体118に実施形態のシミュレーションプログラムが記録されていてもよい。
入出力インタフェース116は、例えば、入力装置2および表示装置3に接続される。シミュレーション装置1の入力情報記憶部12、履歴情報記憶部17および実行結果記憶部20は、RAM112や補助記憶装置114により実現されてもよい。
シミュレーション装置1のうち、入力情報記憶部12、履歴情報記憶部17および実行結果記憶部20以外の各部は、プロセッサ111により実現されてもよい。RAM112、ROM113および補助記憶装置114は、何れもコンピュータ読み取り可能な有形の記憶媒体の一例である。これらの有形な記憶媒体は、信号搬送波のような一時的な媒体ではない。
<その他>
開示の実施形態とその利点について詳しく説明したが、当業者は、特許請求の範囲に明確に記載した本発明の範囲から逸脱することなく、様々な変更、追加、省略をすることができるであろう。
1 シミュレーション装置
2 入力装置
3 表示装置
11 情報受付部
12 入力情報記憶部
13 モデル生成部
14 警備員配置制御部
15 侵入者発生制御部
16 シミュレーション実行部
17 履歴情報記憶部
18 表示制御部
19 結果出力部
20 実行結果記憶部

Claims (11)

  1. 警備区域での侵入者の移動を、前記警備区域に対応するモデルにおける侵入者エージェントを用いてシミュレーションするシミュレーションプログラムであって、
    前記侵入者エージェントが認知した、前記モデルにおける警備員配置の情報、および、前記モデルにおける過去の警備員配置の情報に基づき、前記侵入者エージェントの前記モデルにおける移動経路を算出する、
    処理をコンピュータに実行させることを特徴とするシミュレーションプログラム。
  2. 前記モデルにおける他の侵入者エージェントが認知した警備員配置の情報に基づき、前記侵入者エージェントの前記モデルにおける移動経路を算出することを特徴とする、
    請求項1記載のシミュレーションプログラム。
  3. 前記モデルにおける、前記侵入者エージェントまたは他の侵入者エージェントによる警備員遭遇位置の情報に基づき、前記侵入者エージェントの前記モデルにおける移動経路を算出することを特徴とする、
    請求項1記載のシミュレーションプログラム。
  4. 警備区域での侵入者の移動を、前記警備区域に対応するモデルにおける侵入者エージェントを用いてシミュレーションするシミュレーションプログラムであって、
    前記侵入者エージェントの前記モデルにおける移動をシミュレーションする際に、前記侵入者エージェントが警備員を認知する認知範囲内に前記警備員が含まれる場合、該警備員の位置に応じて、前記侵入者ージェントの移動経路を形成し、
    前記侵入者のエージェントの移動に応じて前記認知範囲を変化させる、
    処理をコンピュータに実行させることを特徴とするシミュレーションプログラム。
  5. 警備区域での侵入者の移動を、前記警備区域に対応するモデルにおける侵入者エージェントを用いてシミュレーションするシミュレーションプログラムであって、
    前記侵入者エージェントの前記モデルにおける移動をシミュレーションする際に、前記侵入者エージェントが警備員を認知する認知範囲内に前記警備員が含まれる場合、該警備員の位置に応じて、前記侵入者ージェントの移動経路を形成し、
    前記移動経路の長さと前記侵入者エージェントの性向とに基づく値が所定の値以上になったときに、前記モデルにおける前記侵入者エージェントによる行動を終了させる、
    処理をコンピュータに実行させることを特徴とするシミュレーションプログラム。
  6. 警備区域での侵入者の移動を、コンピュータにより前記警備区域に対応するモデルにおける侵入者エージェントを用いてシミュレーションするシミュレーション方法であって、
    前記侵入者エージェントが認知した、前記モデルにおける警備員配置の情報、および、前記モデルにおける過去の警備員配置の情報に基づき、前記侵入者エージェントの前記モデルにおける移動経路を算出する、
    ことを特徴とするシミュレーション方法。
  7. 警備区域での侵入者の移動を、コンピュータにより前記警備区域に対応するモデルにおける侵入者エージェントを用いてシミュレーションするシミュレーション方法であって、
    前記侵入者エージェントの前記モデルにおける移動をシミュレーションする際に、前記侵入者エージェントが警備員を認知する認知範囲内に前記警備員が含まれる場合、該警備員の位置に応じて、前記侵入者ージェントの移動経路を形成し、
    前記侵入者のエージェントの移動に応じて前記認知範囲を変化させる、
    ことを特徴とするシミュレーション方法。
  8. 警備区域での侵入者の移動を、コンピュータにより前記警備区域に対応するモデルにおける侵入者エージェントを用いてシミュレーションするシミュレーション方法であって、
    前記侵入者エージェントの前記モデルにおける移動をシミュレーションする際に、前記侵入者エージェントが警備員を認知する認知範囲内に前記警備員が含まれる場合、該警備員の位置に応じて、前記侵入者ージェントの移動経路を形成し、
    前記移動経路の長さと前記侵入者エージェントの性向とに基づく値が所定の値以上になったときに、前記モデルにおける前記侵入者エージェントによる行動を終了させる、
    ことを特徴とするシミュレーション方法。
  9. 警備区域での侵入者の移動を、前記警備区域に対応するモデルにおける侵入者エージェントを用いてシミュレーションするシミュレーション装置であって、
    前記侵入者エージェントが認知した、前記モデルにおける警備員配置の情報、および、前記モデルにおける過去の警備員配置の情報に基づき、前記侵入者エージェントの前記モデルにおける移動経路を算出するシミュレーション実行部、
    を備えることを特徴とするシミュレーション装置。
  10. 警備区域での侵入者の移動を、前記警備区域に対応するモデルにおける侵入者エージェントを用いてシミュレーションするシミュレーション装置であって、
    前記侵入者エージェントの前記モデルにおける移動をシミュレーションする際に、前記侵入者エージェントが警備員を認知する認知範囲内に前記警備員が含まれる場合、該警備員の位置に応じて、前記侵入者ージェントの移動経路を形成し、前記侵入者のエージェントの移動に応じて前記認知範囲を変化させるシミュレーション実行部、
    を備えることを特徴とするシミュレーション装置。
  11. 警備区域での侵入者の移動を、前記警備区域に対応するモデルにおける侵入者エージェントを用いてシミュレーションするシミュレーション装置であって、
    前記侵入者エージェントの前記モデルにおける移動をシミュレーションする際に、前記侵入者エージェントが警備員を認知する認知範囲内に前記警備員が含まれる場合、該警備員の位置に応じて、前記侵入者エージェントの移動経路を形成し、前記移動経路の長さと前記侵入者エージェントの性向とに基づく値が所定の値以上になったときに、前記モデルにおける前記侵入者エージェントによる行動を終了させるシミュレーション実行部、
    を備えることを特徴とするシミュレーション装置。
JP2016555042A 2014-10-24 2014-10-24 シミュレーションプログラム、シミュレーション方法およびシミュレーション装置 Active JP6365679B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078416 WO2016063426A1 (ja) 2014-10-24 2014-10-24 シミュレーション方法、シミュレーションプログラムおよびシミュレーション装置

Publications (2)

Publication Number Publication Date
JPWO2016063426A1 JPWO2016063426A1 (ja) 2017-08-17
JP6365679B2 true JP6365679B2 (ja) 2018-08-01

Family

ID=55760492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016555042A Active JP6365679B2 (ja) 2014-10-24 2014-10-24 シミュレーションプログラム、シミュレーション方法およびシミュレーション装置

Country Status (4)

Country Link
US (1) US20170220714A1 (ja)
EP (1) EP3211584A4 (ja)
JP (1) JP6365679B2 (ja)
WO (1) WO2016063426A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11036897B2 (en) * 2015-03-24 2021-06-15 Carrier Corporation Floor plan based planning of building systems
JP6818272B2 (ja) * 2016-10-07 2021-01-20 富士通株式会社 リスク評価プログラム、リスク評価方法およびリスク評価装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680930B2 (ja) * 2010-10-07 2015-03-04 綜合警備保障株式会社 情報処理装置及び行動モデル作成方法
US8545332B2 (en) * 2012-02-02 2013-10-01 International Business Machines Corporation Optimal policy determination using repeated stackelberg games with unknown player preferences
US20140279818A1 (en) * 2013-03-15 2014-09-18 University Of Southern California Game theory model for patrolling an area that accounts for dynamic uncertainty

Also Published As

Publication number Publication date
WO2016063426A1 (ja) 2016-04-28
US20170220714A1 (en) 2017-08-03
JPWO2016063426A1 (ja) 2017-08-17
EP3211584A1 (en) 2017-08-30
EP3211584A4 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
US10895454B2 (en) Movement line information generation system, movement line information generation method and movement line information generation program
JP5996689B2 (ja) 避難シミュレーション装置、避難シミュレーション方法及びプログラム
CN107808122A (zh) 目标跟踪方法及装置
US9292629B2 (en) Building path identification
Soltani et al. Enhancing Cluster-based RFID Tag Localization using artificial neural networks and virtual reference tags
Zhang et al. Locating and protecting facilities from intentional attacks using secrecy
Alcaraz et al. Recovery of structural controllability for control systems
US10769855B2 (en) Personnel movement simulation and control
Stiffler et al. Complete and optimal visibility-based pursuit-evasion
CN107843252A (zh) 导航路径优化方法、装置及电子设备
JP6365679B2 (ja) シミュレーションプログラム、シミュレーション方法およびシミュレーション装置
Firmansyah et al. Comparative analysis of a* and basic theta* algorithm in android-based pathfinding games
KR101508429B1 (ko) 사용자 단말에 에이전트 서비스를 제공하는 방법 및 시스템
Aksakalli et al. Optimal obstacle placement with disambiguations
Kim Workspace exploration and protection with multiple robots assisted by sensor networks
Hua et al. Qualitative place maps for landmark-based localization and navigation in GPS-denied environments
Esposito et al. Urban resilience and risk assessment: how urban layout affects flood risk in the city
JP2016211900A5 (ja)
JP6818272B2 (ja) リスク評価プログラム、リスク評価方法およびリスク評価装置
Thombre Multi-objective path finding using reinforcement learning
Ward et al. An Empirical Method for Benchmarking Multi-Robot Patrol Strategies in Adversarial Environments
Yu et al. Probabilistic shadow information spaces
Brown et al. Multi-layered security investment optimization using a simulation embedded within a genetic algorithm
Monechi et al. Exploratory analysis of safety data and their interrelation with flight trajectories and network metrics
Wang et al. An integrated shelter location and route planning approach for emergent evacuation in transportation networks

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6365679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150