JP6365510B2 - Conveyance state detection device - Google Patents

Conveyance state detection device Download PDF

Info

Publication number
JP6365510B2
JP6365510B2 JP2015220590A JP2015220590A JP6365510B2 JP 6365510 B2 JP6365510 B2 JP 6365510B2 JP 2015220590 A JP2015220590 A JP 2015220590A JP 2015220590 A JP2015220590 A JP 2015220590A JP 6365510 B2 JP6365510 B2 JP 6365510B2
Authority
JP
Japan
Prior art keywords
conveyance
laser doppler
transport
different
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015220590A
Other languages
Japanese (ja)
Other versions
JP2017088321A (en
Inventor
光太郎 西村
光太郎 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015220590A priority Critical patent/JP6365510B2/en
Publication of JP2017088321A publication Critical patent/JP2017088321A/en
Application granted granted Critical
Publication of JP6365510B2 publication Critical patent/JP6365510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Controlling Sheets Or Webs (AREA)

Description

本発明は、搬送物の搬送状態検出装置に関し、例えば鋼板のように平坦で連続する外表面を有し且つ予め設定された搬送方向に搬送される搬送物の搬送状態を検出するのに好適なものである。   The present invention relates to a conveyance state detection apparatus for a conveyance object, and is suitable for detecting a conveyance state of a conveyance object having a flat and continuous outer surface such as a steel plate and conveyed in a preset conveyance direction. Is.

鋼板のように平坦で連続する外表面を有する搬送物の搬送状態は、例えば下記特許文献1に記載されるレーザドップラ速度計を用いて搬送方向への移動速度を検出することができる。このレーザドップラ速度計は、例えば搬送物の搬送方向に平行で且つ搬送物の平坦外表面と垂直な平面内を通るレーザ光を同じ照射角度で2方向から予め設定された搬送物の測定点に照射し、その測定点に照射されたレーザ光の散乱光を測定点垂直線上の受光部で受光し、ドップラシフトで生じる散乱光の干渉縞の周波数(ドップラ周波数)から搬送方向への移動速度を算出するものである。   For example, a laser Doppler velocimeter described in Patent Document 1 below can be used to detect the moving speed in the conveying direction of the conveyed state of a conveyed object having a flat and continuous outer surface such as a steel plate. This laser Doppler velocimeter, for example, applies laser light that passes through a plane parallel to the transport direction of the transport object and perpendicular to the flat outer surface of the transport object to the measurement point of the transport object set in advance from two directions at the same irradiation angle. The scattered light of the laser beam irradiated to the measurement point is received by the light receiving unit on the measurement point vertical line, and the moving speed from the interference fringe fringe frequency (Doppler frequency) generated in the Doppler shift to the transport direction Is to be calculated.

特開平7−270436号公報JP 7-270436 A

ところで、鋼板の搬送ラインでは、搬送方向と直交方向、搬送方向に対して異方向に鋼板が移動する、所謂蛇行が問題となる。蛇行量が大きくなると、鋼板の搬送ライン周辺の設備と干渉し、種々の問題が生じる。しかしながら、鋼板は相応に速い速度で搬送されており、鋼板の搬送速度を正確に検出する手段がないので、鋼板が搬送ライン内のどの位置にあるか分からない。そのため、どの箇所で鋼板と設備との干渉が生じたかは検出しにくい。このように鋼板の搬送状態、特に設備との干渉が生じたことを判別可能な搬送状態検出装置が望まれている。   By the way, in the conveyance line of a steel plate, what is called meandering in which the steel plate moves in a direction orthogonal to the conveyance direction and in a direction different from the conveyance direction becomes a problem. When the amount of meandering becomes large, it interferes with equipment around the steel sheet conveying line, and various problems arise. However, since the steel plate is being conveyed at a correspondingly high speed and there is no means for accurately detecting the conveyance speed of the steel plate, it is not known where the steel plate is in the conveyance line. For this reason, it is difficult to detect at which location the interference between the steel sheet and the equipment occurs. Thus, there is a demand for a conveyance state detection device capable of determining the conveyance state of a steel sheet, particularly that interference with equipment has occurred.

本発明は、上記のような問題点に着目してなされたものであり、演算処理機能を有する計算機を用いて、鋼板などの搬送物の干渉を判別することが可能な搬送状態検出装置を提供することを目的とするものである。   The present invention has been made paying attention to the problems as described above, and provides a conveyance state detection device capable of determining interference of a conveyance object such as a steel plate using a computer having an arithmetic processing function. It is intended to do.

上記課題を解決するために、本発明の一態様によれば、平坦で連続する外表面を有し且つ予め設定された搬送方向に搬送される搬送物に対して、演算処理機能を有する計算機によって搬送物の搬送方向と異なる異方向への移動状態を検出する搬送状態検出装置であって、搬送方向及び異方向を含む搬送平面上で且つ搬送物の外表面に設定された測定点に対し、夫々搬送平面と垂直で且つ測定点で交差する互いに異なる平面内を通るレーザ光を測定点に照射し且つ測定点に照射したレーザ光の散乱光を受光する受光部が搬送平面に垂直で且つ測定点を通る直線上に配置された2つのレーザドップラ速度計を有するレーザドップラ速度検出装置と、レーザドップラ速度検出装置の2つのレーザドップラ速度計の出力から搬送方向及び異方向の2つの成分を有する搬送物の実移動速度を算出する実移動速度算出部と、搬送物の実移動速度の搬送方向速度成分を積分して搬送物の搬送方向移動量を算出する搬送方向移動量算出部と、搬送物の実移動速度の異方向速度成分を積分して搬送物の異方向移動量を算出する異方向移動量算出部と、搬送物の異方向移動量の最大値と最小値との差分値から搬送物の異方向移動変動量を算出する異方向移動変動量算出部と、搬送物の異方向移動変動量が予め設定された規定値以上となったときに、その時点における搬送物の搬送方向移動量の記憶及び出力の少なくとも何れか一方を行う搬送状態検出部と、を備えた搬送状態検出装置が提供される。   In order to solve the above-described problems, according to one aspect of the present invention, a computer having a calculation processing function is performed on a transported object having a flat and continuous outer surface and transported in a preset transport direction. A transport state detection device that detects a movement state in a different direction different from a transport direction of a transport object, on a transport plane including the transport direction and the different direction, and on measurement points set on the outer surface of the transport object, The light receiving unit that irradiates the measurement point with laser light that passes through different planes that are perpendicular to the transport plane and intersects at the measurement point, and that receives the scattered light of the laser light irradiated to the measurement point is perpendicular to the transport plane and measures A laser Doppler velocity detector having two laser Doppler velocimeters arranged on a straight line passing through a point, and two of the laser Doppler velocity meter of the laser Doppler velocity detector, the conveyance direction and the opposite direction. An actual movement speed calculation unit that calculates an actual movement speed of a conveyed product having components, and a conveyance direction movement amount calculation unit that calculates a conveyance direction movement amount of the conveyance object by integrating a conveyance direction speed component of the actual movement speed of the conveyance object A different direction movement amount calculation unit that calculates a different direction movement amount of the conveyed product by integrating the different direction speed component of the actual moving speed of the conveyed product, and a maximum value and a minimum value of the different direction movement amount of the conveyed product. A different-direction movement fluctuation amount calculation unit for calculating the different-direction movement fluctuation amount of the conveyed product from the difference value, and the conveyed item at the time when the different-direction movement fluctuation amount of the conveyed object becomes equal to or more than a preset specified value. There is provided a conveyance state detection device including a conveyance state detection unit that performs at least one of storage and output of the movement amount in the conveyance direction.

本発明によれば、演算処理機能を有する計算機を用いて、鋼板などの搬送物の干渉や蛇行量を判別することが可能となる。   According to the present invention, it is possible to determine the interference and meandering amount of a conveyed object such as a steel plate using a computer having an arithmetic processing function.

本発明の搬送状態検出装置の一実施形態が適用された鋼板剪断ラインを示す概略構成図である。It is a schematic block diagram which shows the steel plate shear line to which one Embodiment of the conveyance state detection apparatus of this invention was applied. 図1の鋼板剪断ラインにおける搬送状態検出装置の配置説明図である。It is arrangement | positioning explanatory drawing of the conveyance state detection apparatus in the steel plate shear line of FIG. 図2に配置された搬送状態検出装置の概略構成図である。It is a schematic block diagram of the conveyance state detection apparatus arrange | positioned in FIG. レーザドップラ速度計の概略構成図である。It is a schematic block diagram of a laser Doppler velocimeter. 図4のレーザドップラ速度計による速度検出の説明図である。It is explanatory drawing of the speed detection by the laser Doppler velocimeter of FIG. 図3の2つのレーザドップラ速度計による速度検出の説明図である。It is explanatory drawing of the speed detection by the two laser Doppler velocimeters of FIG. 図2の各レーザドップラ速度検出装置で検出される鋼板移動速度の説明図である。It is explanatory drawing of the steel plate moving speed detected by each laser Doppler speed detection apparatus of FIG. 図7の単一のレーザドップラ速度検出装置で検出される鋼板移動速度の説明図である。It is explanatory drawing of the steel plate moving speed detected with the single laser Doppler speed detection apparatus of FIG. 図3のコンピュータシステムで実行される演算処理のフローチャートである。It is a flowchart of the arithmetic processing performed with the computer system of FIG. 図2の鋼板剪断ラインで発生するバリの説明図である。It is explanatory drawing of the burr | flash which generate | occur | produces in the steel plate shear line of FIG. 図9の演算処理の作用の説明図である。It is explanatory drawing of the effect | action of the arithmetic processing of FIG.

以下に示す実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
以下、本発明の実施形態に係る搬送状態検出装置について図面を参照しながら説明する。この実施形態の搬送状態検出装置は、例えば図1に示す鋼板剪断ラインに用いられる。この鋼板剪断ラインは、図の右方から左方に搬送される圧延後の鋼板Sを剪断するものであり、まずクロップシャー11で、鋼板Sの搬送方向先尾端のクロップ部と呼ばれる非定常部を剪断する。次に、幅剪断機12で、鋼板Sの幅方向の両端部及び幅方向中央部を剪断する。次に、レーザ板厚計13で鋼板Sの板厚を測定する。次に、エンドシャー14で鋼板Sを搬送方向に剪断して規定の長さとする。次に、走間検査機15でバリなどの外観検査を行って搬出する。幅剪断機12には、ダブルサイドシャーと呼ばれる鋼板Sの幅方向両端部剪断機と、ローリングスリットシャーと呼ばれる鋼板Sの幅方向中央部剪断機がある。なお、ダブルサイドシャーもローリングスリットシャーも、所謂ハサミ状に刃物を鋼板Sに押し当てて剪断する。これらの鋼板剪断時には、鋼板Sの搬送を停止して剪断を行う。
The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, arrangement, etc. of components. Is not specified as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
Hereinafter, a conveyance state detection device according to an embodiment of the present invention will be described with reference to the drawings. The conveyance state detection apparatus of this embodiment is used for, for example, a steel plate shear line shown in FIG. This steel plate shearing line is for shearing the rolled steel plate S conveyed from the right to the left in the figure. First, the crop shear 11 is called an unsteady state called a crop portion at the leading end of the conveying direction of the steel plate S. Shear the part. Next, the width shearing machine 12 shears both ends in the width direction and the center in the width direction of the steel sheet S. Next, the plate thickness of the steel plate S is measured by the laser plate thickness meter 13. Next, the steel plate S is sheared in the transport direction by the end shear 14 to a predetermined length. Next, the running inspection machine 15 carries out an appearance inspection such as burrs and carries it out. The width shearing machine 12 includes a shearing machine at both ends in the width direction of the steel sheet S called a double side shear and a shearing machine at the center in the width direction of the steel sheet S called a rolling slit shear. Both the double side shear and the rolling slit shear are sheared by pressing the blade against the steel sheet S in a so-called scissors shape. At the time of shearing these steel plates, the conveyance of the steel plates S is stopped to perform shearing.

図2は、図1の鋼板剪断ライン、特に幅剪断機12に設けられた搬送状態検出装置の配置説明図である。この図では、鋼板Sは図の左方から右方に搬送される。図中の符号16は、幅剪断機12の入側に配置されたダブルサイドシャー、符号17は、ダブルサイドシャー16より出側に配置されたローリングスリットシャーである。ダブルサイドシャー16の入側には、鋼板搬送ラインの幅方向両側に第1ピンチロール18が配置されている。また、ダブルサイドシャー16の出側には、鋼板搬送ラインの幅方向両側に第2ピンチロール19が配置されている。また、第2ピンチロール19の出側には、鋼板搬送ラインの幅方向両側に第2ピンチロール出側ガイドロール22が配置されている。また、ローリングスリットシャー17の鋼板搬送ライン幅方向両側にはローリングスリットシャーサイドガイド21が配置され、各ローリングスリットシャーサイドガイド21の入側部分にはサイドガイド入側ガイドロール23が、出側部分にはサイドガイド出側ガイドロール24が配置されている。また、ローリングスリットシャーサイドガイド21の出側には、鋼板搬送ラインの幅方向両側に第3ピンチロール入側ガイドロール25が配置されている。また、第3ピンチロール入側ガイドロール25の出側には、鋼板搬送ラインの幅方向両側に第3ピンチロール20が配置されている。また、第3ピンチロール20の出側には、鋼板搬送ラインの幅方向両側に第3ピンチロール出側ガイドロール26が配置されている。なお、鋼板搬送ラインの下方には図示しない多数のテーブルロールが配置されている。   FIG. 2 is an explanatory view of the arrangement of the conveyance state detection device provided in the steel plate shear line of FIG. In this figure, the steel sheet S is conveyed from the left to the right in the figure. Reference numeral 16 in the drawing is a double side shear disposed on the entry side of the width shearing machine 12, and reference numeral 17 is a rolling slit shear disposed on the exit side from the double side shear 16. On the entry side of the double side shear 16, first pinch rolls 18 are disposed on both sides in the width direction of the steel plate conveyance line. Moreover, the 2nd pinch roll 19 is arrange | positioned at the exit side of the double side shear 16 at the width direction both sides of a steel plate conveyance line. Moreover, the 2nd pinch roll exit side guide roll 22 is arrange | positioned at the exit side of the 2nd pinch roll 19 at the width direction both sides of a steel plate conveyance line. Further, rolling slit shear side guides 21 are arranged on both sides of the rolling slit shear 17 in the width direction of the steel sheet conveying line, and side guide entrance side guide rolls 23 are provided on the entrance side of each rolling slit shear side guide 21. A side guide outlet guide roll 24 is disposed in the side guide. Further, on the exit side of the rolling slit shear side guide 21, third pinch roll entry side guide rolls 25 are arranged on both sides in the width direction of the steel sheet conveying line. Moreover, the 3rd pinch roll 20 is arrange | positioned at the exit side of the 3rd pinch roll entrance side guide roll 25 at the width direction both sides of a steel plate conveyance line. Moreover, the 3rd pinch roll exit side guide roll 26 is arrange | positioned at the exit side of the 3rd pinch roll 20 at the width direction both sides of a steel plate conveyance line. A number of table rolls (not shown) are arranged below the steel plate conveyance line.

ダブルサイドシャー16は、鋼板Sの幅方向両端部を同時期に剪断するものである。ローリングスリットシャー17は、鋼板Sの幅方向中央部を剪断するものである。また、各ピンチロール18〜20は、鋼板Sの幅方向両端部を上下から挟んで駆動するものである。各ピンチロール18〜20の駆動とダブルサイドシャー16、ローリングスリットシャー17の剪断動作は電気制御的に独立しており、ピンチロール18〜20による鋼板搬送中は、ダブルサイドシャー16の刃先及びローリングスリットシャー17の刃先は鋼板Sと干渉しないように構成されている。幅剪断機12では、例えばテーブルロールによってダブルサイドシャー16の剪断位置まで鋼板Sを搬送して一時停止する。その状態で、ピンチロール18で鋼板Sを挟むとダブルサイドシャー16が剪断を開始する。剪断終了と同時に鋼板Sを一定量・一定速度で搬送する。この剪断と搬送を繰り返した後、鋼板はダブルサイドシャー16の出側に搬送される。ローリングスリットシャー17でも同様に剪断と搬送動作が行われる。鋼板Sのバリは、例えば図10に示すささくれのような断面不良である。この断面不良は、前述のようなシャーによる剪断・搬送動作の繰り返し中に、鋼板が搬送方向と異なる方向に動くことによって生じる剪断位置の位置ずれが原因で発生する。   The double side shear 16 shears both ends in the width direction of the steel sheet S at the same time. The rolling slit shear 17 shears the central portion in the width direction of the steel sheet S. Moreover, each pinch roll 18-20 drives the both ends of the width direction of the steel plate S across from the upper and lower sides. The drive of each pinch roll 18-20 and the shearing operation of the double side shear 16 and the rolling slit shear 17 are electrically controlled independently, and the blade edge and rolling of the double side shear 16 are conveyed while the steel plates are conveyed by the pinch rolls 18-20. The cutting edge of the slit shear 17 is configured not to interfere with the steel plate S. In the width shearing machine 12, the steel plate S is conveyed to the shearing position of the double side shear 16 by, for example, a table roll and temporarily stopped. In that state, when the steel sheet S is sandwiched between the pinch rolls 18, the double side shear 16 starts shearing. Simultaneously with the end of shearing, the steel sheet S is transported at a constant amount and at a constant speed. After repeating this shearing and conveyance, the steel plate is conveyed to the exit side of the double side shear 16. Similarly, the rolling slit shear 17 performs shearing and conveying operations. The burr | flash of the steel plate S is a cross-sectional defect like the whirling shown, for example in FIG. This cross-sectional defect occurs due to the displacement of the shear position caused by the steel plate moving in a direction different from the conveyance direction during the repetition of the shearing / conveying operation by the shear as described above.

この実施形態では、対をなす第1ピンチロール18の間、同じく対をなす第2ピンチロール19の間、及び同じく対をなす第3ピンチロール20の間の夫々に搬送状態検出装置のレーザドップラ速度検出装置7を配置している。図3には、レーザドップラ速度検出装置7を含む搬送状態検出装置の概略構成を示す。この搬送状態検出装置は、2つのレーザドップラ速度計1、2を組合せたレーザドップラ速度検出装置7と、高度な演算処理機能を有するコンピュータシステム(計算機)8を備えて構成される。このうちレーザドップラ速度検出装置7は、鋼板Sの搬送方向及び搬送方向と直交する蛇行方向、即ち異方向を含む搬送平面上で且つ鋼板Sの上表面に測定点Pを設定し、2つのレーザドップラ速度計1、2の夫々で、搬送平面と垂直で且つ測定点Pで交差する互いに異なる平面内を通るレーザ光Lを測定点Pに照射し、且つ測定点Pに照射したレーザ光Lの散乱光を、搬送平面に垂直で且つ測定点Pを通る直線上に配置された受光部6で受光する。   In this embodiment, the laser Doppler of the conveyance state detection apparatus is provided between the paired first pinch rolls 18, between the paired second pinch rolls 19, and between the paired third pinch rolls 20. A speed detection device 7 is arranged. FIG. 3 shows a schematic configuration of the conveyance state detection device including the laser Doppler velocity detection device 7. This conveyance state detection device includes a laser Doppler velocity detection device 7 that is a combination of two laser Doppler velocimeters 1 and 2 and a computer system (computer) 8 having an advanced arithmetic processing function. Among them, the laser Doppler velocity detection device 7 sets the measurement point P on the upper surface of the steel sheet S on the transport plane including the transport direction of the steel sheet S, the meandering direction orthogonal to the transport direction, that is, the different direction, and two lasers. Each of the Doppler velocimeters 1 and 2 irradiates the measurement point P with laser light L passing through different planes perpendicular to the transport plane and intersecting at the measurement point P, and the laser beam L irradiated to the measurement point P. The scattered light is received by the light receiving unit 6 arranged on a straight line that is perpendicular to the transport plane and passes through the measurement point P.

図4には、レーザドップラ速度計1、2の概略構成を、図5には、図4のレーザドップラ速度計1、2による速度検出の原理を示す。このレーザドップラ速度計1、2は、例えば半導体レーザなどのレーザ発光源3aを発光源とする発光部3を有する。発光部3では、レーザ発光源3aで発光されるレーザ光をコリメータレンズ3bで平行光束とし、このレーザ光束をビームスプリッタ4で2つのレーザ光束に分割する。この2つのレーザ光束は逆方向に向いているので、夫々、ミラー5で反射して、同一平面内を通る2つのレーザ光束(レーザ光)Lとして、搬送物、この場合は鋼板Sの上表面の測定点Pに同一入射角θで照射する。この照射されたレーザ光束Lの散乱光を、測定点Pの直上、即ち搬送平面に垂直で且つ測定点Pを通る直線上に配置された受光部6、具体的には集光レンズ6a及び光検出器6bで受光する。速度Vで搬送される鋼板Sに照射された2つのレーザ光束Lの散乱光は互いにドップラシフトを受けるので、受光部6で受光した2つのレーザ光束Lの散乱光には干渉縞が生じる。この干渉縞の周波数をドップラ周波数と呼ぶ。   FIG. 4 shows a schematic configuration of the laser Doppler velocimeters 1 and 2, and FIG. 5 shows a principle of speed detection by the laser Doppler velocimeters 1 and 2 of FIG. The laser Doppler velocimeters 1 and 2 each include a light emitting unit 3 that uses a laser light source 3a such as a semiconductor laser as a light source. In the light emitting unit 3, the laser light emitted from the laser light source 3 a is converted into a parallel light beam by the collimator lens 3 b, and this laser light beam is divided into two laser light beams by the beam splitter 4. Since these two laser light beams are directed in opposite directions, they are reflected by the mirror 5 and passed through the same plane as two laser light beams (laser light) L, respectively, so that the conveyed object, in this case, the upper surface of the steel sheet S Is irradiated at the same incident angle θ. The scattered light of the irradiated laser light beam L is reflected on the light receiving unit 6, specifically the condenser lens 6 a and the light, which is arranged immediately above the measurement point P, that is, on a straight line perpendicular to the transport plane and passing through the measurement point P. The detector 6b receives light. Since the scattered light of the two laser light beams L irradiated to the steel sheet S conveyed at the speed V undergoes Doppler shift, interference fringes are generated in the scattered light of the two laser light beams L received by the light receiving unit 6. The frequency of this interference fringe is called the Doppler frequency.

例えば、鋼板Sの搬送方向がドップラシフトの方向に一致、つまり2つのレーザ光束Lの通る平面と平行であるとして、鋼板Sの搬送速度をV、レーザ光の照射入射角をθ、レーザ光Lの散乱光の夫々が受けるドップラシフト周波数を+Δf、−Δf、レーザ光Lの波長をλとすると、ドップラ周波数Fは下記1式で表れる。   For example, assuming that the conveying direction of the steel sheet S coincides with the Doppler shift direction, that is, parallel to the plane through which the two laser beams L pass, the conveying speed of the steel sheet S is V, the irradiation incident angle of the laser beam is θ, and the laser beam L When the Doppler shift frequencies received by each of the scattered light are + Δf and −Δf, and the wavelength of the laser light L is λ, the Doppler frequency F is expressed by the following equation (1).

Figure 0006365510
Figure 0006365510

実際の鋼板Sの搬送方向とドップラシフトの方向、つまり2つのレーザ光束Lが通る平面のなす最小角、換言すれば本来の鋼板Sの搬送方向と実際の搬送方向とのずれ角がαであるとすると、ドップラ周波数Fは補正係数cosαを用いて、下記2式で表れる。   The actual transport direction of the steel sheet S and the Doppler shift direction, that is, the minimum angle formed by the plane through which the two laser beams L pass, in other words, the deviation angle between the original transport direction of the steel sheet S and the actual transport direction is α. Then, the Doppler frequency F is expressed by the following two equations using the correction coefficient cos α.

Figure 0006365510
Figure 0006365510

この実施形態では、2つのレーザドップラ速度計1、2の夫々における2つのレーザ光束Lの通る平面が互いに直交するように2つのレーザドップラ速度計1、2を配置すると共に一方の(第1)レーザドップラ速度計1の2つのレーザ光束Lの通る平面を鋼板Sの搬送方向と平行になるように配置してレーザドップラ速度検出装置7を構成する。従って、図6に示すように、例えば鋼板Sの本来の搬送方向をX、この搬送方向Xと水平面内で直交する異方向、つまり蛇行方向をY、鉛直方向をZとし、第1レーザドップラ速度計1の2つのレーザ光束がXZ平面を通り、第2レーザドップラ速度計2の2つのレーザ光束がYZ平面を通るものとすると、第1レーザドップラ速度計1で検出される鋼板Sの搬送方向速度成分はV・cosΔα、第2レーザドップラ速度計2で検出される鋼板Sの蛇行方向速度成分はV・sinΔαとして得られる。   In this embodiment, the two laser Doppler velocimeters 1 and 2 are arranged so that the planes through which the two laser light beams L pass in each of the two laser Doppler velocimeters 1 and 2 are orthogonal to each other and the first (first). The laser Doppler velocity detection device 7 is configured by arranging the plane through which the two laser light beams L of the laser Doppler velocimeter 1 pass in parallel with the conveying direction of the steel sheet S. Therefore, as shown in FIG. 6, for example, the original conveying direction of the steel sheet S is X, the different direction orthogonal to the conveying direction X in the horizontal plane, that is, the meandering direction is Y, and the vertical direction is Z, and the first laser Doppler velocity When the two laser beams of the total 1 pass through the XZ plane and the two laser beams of the second laser Doppler velocimeter 2 pass through the YZ plane, the conveying direction of the steel sheet S detected by the first laser Doppler velocimeter 1 The velocity component is obtained as V · cos Δα, and the velocity component in the meandering direction of the steel sheet S detected by the second laser Doppler velocimeter 2 is obtained as V · sin Δα.

この実施形態では、各レーザドップラ速度検出装置7の2つのレーザドップラ速度計1、2の出力から鋼板Sの移動速度の2成分をコンピュータシステム8で算出する。コンピュータシステム8は、周知のように、高度な演算処理を行う演算処理部の他に、入出力部や記憶部、表示部などを備え、互いに高速通信バスで連絡されている。コンピュータシステム8の表示部には、画像や音声の表示装置、印刷装置などが挙げられる。この実施形態では、3箇所のレーザドップラ速度検出装置7に対してコンピュータシステム8を1つだけ配置した。例えば、2箇所の測定点P1、P2のレーザドップラ速度検出装置7で検出された鋼板搬送方向への移動速度成分及び鋼板蛇行方向への移動速度成分が図7(a)に示すようなものであった場合、鋼板搬送方向先方の測定点P2では測定点P1よりも鋼板蛇行方向への移動速度成分が大きくなっているから、2箇所の測定点P1、P2の間で鋼板Sの蛇行方向への移動速度が加速していることが分かる。また、この場合は、同一鋼板Sの搬送方向先方と後方が同方向に移動しているので、鋼板Sは所謂並進していることが分かる。一方、図7(b)に示すように、同一鋼板Sの搬送方向先方と後方が異なる方向に移動している場合には、鋼板Sは所謂回転していることが分かる。また、前述したように、シャーによる鋼板剪断時には鋼板Sの搬送を停止するので、例えば図8のように鋼板搬送方向速度成分と鋼板蛇行方向速度成分を組合せて鋼板Sの蛇行状態を評価することも可能である。なお、コンピュータシステムは、レーザドップラ速度検出装置毎に配置してもよいし、複数のレーザドップラ速度検出装置でまとめて1つだけ配置してもよい。また、各レーザドップラ速度計自体が鋼板の移動速度成分を算出し、コンピュータシステムは、各レーザドップラ速度計で算出された鋼板の移動速度成分を読込むようにしてもよい。   In this embodiment, two components of the moving speed of the steel sheet S are calculated by the computer system 8 from the outputs of the two laser Doppler velocimeters 1 and 2 of each laser Doppler speed detector 7. As is well known, the computer system 8 includes an input / output unit, a storage unit, a display unit, and the like in addition to an arithmetic processing unit that performs advanced arithmetic processing, and is connected to each other via a high-speed communication bus. Examples of the display unit of the computer system 8 include an image and audio display device, a printing device, and the like. In this embodiment, only one computer system 8 is arranged for the three laser Doppler velocity detection devices 7. For example, the movement speed component in the steel plate conveyance direction and the movement speed component in the steel plate meandering direction detected by the laser Doppler velocity detection device 7 at two measurement points P1 and P2 are as shown in FIG. In this case, since the moving speed component in the meandering direction of the steel sheet is larger at the measurement point P2 ahead of the steel sheet conveyance direction than in the measurement point P1, the meandering direction of the steel sheet S between the two measurement points P1 and P2. It can be seen that the moving speed of is accelerating. Further, in this case, since the front and rear of the same steel sheet S are moved in the same direction, it can be seen that the steel sheet S is so-called translated. On the other hand, as shown in FIG. 7B, it can be seen that when the same steel plate S is moving in a direction in which the forward direction and the backward direction of the same steel plate S are different, the steel plate S is so-called rotating. Further, as described above, since the conveyance of the steel plate S is stopped when the steel plate is sheared by the shear, for example, the meandering state of the steel plate S is evaluated by combining the steel plate conveyance direction speed component and the steel plate meandering direction velocity component as shown in FIG. Is also possible. Note that the computer system may be arranged for each laser Doppler velocity detection device, or only one computer system may be arranged by a plurality of laser Doppler velocity detection devices. Further, each laser Doppler velocimeter itself may calculate the moving speed component of the steel sheet, and the computer system may read the moving speed component of the steel sheet calculated by each laser Doppler velocimeter.

この実施形態では、読込まれたレーザドップラ速度検出装置7の2つのレーザドップラ速度計1、2の出力に対して、図9に示す演算処理を行って鋼板Sの搬送状態を評価する。この演算処理は、予め設定された規定サンプリング時間毎にタイマ処理され、まずステップS1で、第1レーザドップラ速度計1の出力から第1設定方向、この場合は搬送方向の移動速度(成分)を前述の1式から算出する。   In this embodiment, the processing state shown in FIG. 9 is performed on the read outputs of the two laser Doppler velocimeters 1 and 2 of the laser Doppler velocity detector 7 to evaluate the conveyance state of the steel sheet S. This calculation process is performed by a timer process for each predetermined sampling time set in advance. First, in step S1, the movement speed (component) in the first setting direction, in this case the conveyance direction, is determined from the output of the first laser Doppler velocimeter 1. Calculated from the above-mentioned one equation.

次にステップS2に移行して、第2レーザドップラ速度計2の出力から第2設定方向、この場合は蛇行方向の移動速度(成分)を前述の1式から算出する。
次にステップS3に移行して、第1設定方向(搬送方向)移動速度(成分)及び第2設定方向(蛇行方向)移動速度(成分)から鋼板Sの実移動速度(ベクトル)を算出する。この場合は、ステップS1で算出された搬送方向移動速度成分及びステップS2で算出された蛇行方向移動速度成分がそのまま鋼板Sの実移動速度のベクトルを構成する。
次にステップS4に移行して、鋼板Sの実移動速度の搬送方向速度(成分)を積分して搬送方向移動量を算出する。
次にステップS5に移行して、鋼板Sの実移動速度の蛇行方向速度(成分)を積分して蛇行方向移動量を算出する。
Next, the process proceeds to step S2, and the moving speed (component) in the second setting direction, in this case, the meandering direction, is calculated from the above-described equation 1 from the output of the second laser Doppler velocimeter 2.
Next, the process proceeds to step S3, and the actual moving speed (vector) of the steel sheet S is calculated from the first setting direction (conveying direction) moving speed (component) and the second setting direction (meandering direction) moving speed (component). In this case, the conveyance direction moving speed component calculated in step S1 and the meandering direction moving speed component calculated in step S2 constitute the actual moving speed vector of the steel sheet S as it is.
Next, the process proceeds to step S4, and the conveyance direction movement amount is calculated by integrating the conveyance direction speed (component) of the actual movement speed of the steel sheet S.
Next, the process proceeds to step S5, and the meandering direction speed (component) of the actual moving speed of the steel sheet S is integrated to calculate the meandering direction moving amount.

次にステップS6に移行して、予め設定された規定時間T、例えば一枚の鋼板Sを処理する時間内における蛇行方向移動量の最大値と最小値の差分値から蛇行変動量(絶対値)を算出する。
次にステップS7に移行して、ステップS6で算出された蛇行変動量(の絶対値)が予め設定された蛇行変動量規定値以上であるか否かを判定し、蛇行変動量が蛇行変動量規定値以上である場合にはステップS8に移行し、そうでない場合には復帰する。
ステップS8では、蛇行変動量が蛇行変動量規定値以上となったときの搬送方向移動量を記憶し且つ出力してから復帰する。
Next, the process proceeds to step S6, and the meandering fluctuation amount (absolute value) from a difference value between the maximum value and the minimum value of the meandering direction movement amount within a predetermined time T set in advance, for example, the time for processing one steel sheet S. Is calculated.
Next, the process proceeds to step S7, where it is determined whether or not the meandering fluctuation amount (absolute value) calculated in step S6 is equal to or greater than a predetermined meandering fluctuation amount prescribed value, and the meandering fluctuation amount is the meandering fluctuation amount. If it is equal to or greater than the specified value, the process proceeds to step S8, and if not, the process returns.
In step S8, the amount of movement in the conveyance direction when the amount of meandering fluctuation becomes equal to or greater than the prescribed value of meandering fluctuation is stored and output, and then the process returns.

この演算処理によれば、鋼板Sの搬送方向先端から搬送方向尾端まで、鋼板Sの搬送方向移動量と蛇行方向移動量が算出される。鋼板Sの蛇行方向移動量は、蛇行方向速度が同じ方向である限り増加し続けるが、例えば蛇行方向速度の方向が変化すれば、変化後、蛇行方向移動量は小さくなり、やがて逆方向に大きくなる。例えば、鋼板Sが設備と干渉し、蛇行方向速度が変化して蛇行方向移動量の蛇行変動量が大きくなり、この蛇行変動量が蛇行変動量規定値以上になると、そのときの搬送方向移動量が記憶され、出力される。
図2の幅剪断機12の実操業において、あるときからローリングスリットシャー17の剪断面に割り箸状のバリが発生するようになった。そこで、図9の演算処理を行いながら図11に示す鋼板Sの搬送状態を検出した。図9の演算処理では、レーザドップラ速度検出装置7の出力から求めた蛇行方向移動量が負値から正値に大きく変動し、その結果、規定時間T内の蛇行変動量が蛇行変動量規定値以上となった。このとき関連づけて記憶・出力された搬送方向移動量から、この蛇行変動量の急激な増大は、鋼板Sが第3ピンチロール入側ガイドロール25に到達するときに生じることが判明した。そこで、第3ピンチロール入側ガイドロール25の状態を調査すると、第3ピンチロール入側ガイドロール25が規定の位置よりも搬送ラインの幅方向内側に2mmずれていた。つまり、この第3ピンチロール入側ガイドロール25の位置ずれによって鋼板Sが第3ピンチロール入側ガイドロール25と干渉し、その前後で鋼板位置が特に幅方向にずれ、ローリングスリットシャー17による剪断位置がずれて割り箸状のバリが発生したことも判明した。
According to this calculation process, the moving amount and the meandering direction moving amount of the steel sheet S are calculated from the leading end of the steel sheet S to the tail end of the conveying direction. The amount of movement in the meandering direction of the steel sheet S continues to increase as long as the meandering direction speed is the same direction. For example, if the direction of the meandering direction speed is changed, the amount of movement in the meandering direction becomes small after the change and eventually increases in the reverse direction. Become. For example, when the steel plate S interferes with the equipment, the meandering direction speed changes, the meandering fluctuation amount of the meandering direction movement amount increases, and when this meandering fluctuation amount becomes equal to or greater than the meandering fluctuation amount prescribed value, the conveyance direction movement amount at that time Is stored and output.
In the actual operation of the width shearing machine 12 of FIG. 2, chopstick-shaped burrs are generated on the shearing surface of the rolling slit shear 17 from a certain time. Therefore, the carrying state of the steel sheet S shown in FIG. 11 was detected while performing the arithmetic processing of FIG. In the arithmetic processing of FIG. 9, the amount of movement in the meandering direction obtained from the output of the laser Doppler velocity detection device 7 fluctuates greatly from a negative value to a positive value, and as a result, the amount of meandering fluctuation within the prescribed time T becomes the meandering fluctuation amount prescribed value. That's it. From the amount of movement in the conveyance direction stored and output in association with this, it has been found that this rapid increase in the meandering fluctuation amount occurs when the steel sheet S reaches the third pinch roll entry side guide roll 25. Then, when the state of the 3rd pinch roll entry side guide roll 25 was investigated, the 3rd pinch roll entry side guide roll 25 shifted | deviated 2 mm inside the width direction of the conveyance line rather than the regulation position. That is, the steel plate S interferes with the third pinch roll entry side guide roll 25 due to the displacement of the third pinch roll entry side guide roll 25, and the steel plate position is particularly displaced in the width direction before and after that, and shearing by the rolling slit shear 17 is performed. It was also found that the position shifted and chopstick-shaped burrs occurred.

このように、この実施形態の搬送状態検出装置では、平坦で連続する外表面を有し且つ予め設定された搬送方向に搬送される搬送物、この場合は鋼板Sに対して、演算処理機能を有するコンピュータシステム(計算機)8によって鋼板Sの搬送方向と異なる異方向、つまり蛇行方向への移動状態を検出する。そのために、搬送方向及び蛇行方向を含む搬送平面上で且つ鋼板Sの外表面に設定された測定点Pに対し、夫々搬送平面と垂直で且つ測定点Pで交差する互いに異なる平面内を通るレーザ光Lを測定点Pに照射し且つ測定点Pに照射したレーザ光Lの散乱光を受光する受光部6が搬送平面に垂直で且つ測定点Pを通る直線上に配置された2つのレーザドップラ速度計1、2でレーザドップラ速度検出装置7を構成する。一方、コンピュータシステム8では、レーザドップラ速度検出装置7の2つのレーザドップラ速度計1、2の出力から搬送方向及び蛇行方向の2つの成分を有する鋼板Sの実移動速度を実移動速度算出ステップS1〜S3で算出する。また、鋼板Sの実移動速度の搬送方向速度成分を積分して鋼板Sの搬送方向移動量を搬送方向移動量算出ステップS4で算出する。また、鋼板Sの実移動速度の蛇行方向速度成分を積分して鋼板Sの蛇行方向移動量を蛇行方向移動量算出ステップS5で算出する。また、鋼板Sの蛇行方向移動量の最大値と最小値との差分値から鋼板Sの蛇行(異方向移動)変動量を蛇行変動量算出ステップS6で算出する。そして、鋼板Sの蛇行変動量が予め設定された規定値以上となったときに、その時点における鋼板Sの搬送方向移動量の記憶及び出力を搬送状態検出ステップS7〜S8で行う。これにより、鋼板Sなどの搬送物が設備と干渉したことを判別することができる。   Thus, in the conveyance state detection apparatus of this embodiment, the calculation processing function is performed on the conveyance object having a flat and continuous outer surface and conveyed in the preset conveyance direction, in this case, the steel sheet S. A moving state in a different direction different from the conveying direction of the steel sheet S, that is, a meandering direction, is detected by the computer system (computer) 8 having it. For this purpose, lasers that pass through different planes perpendicular to the conveyance plane and intersecting at the measurement point P with respect to the measurement point P set on the conveyance plane including the conveyance direction and the meandering direction and on the outer surface of the steel sheet S. Two laser Dopplers in which the light receiving unit 6 that irradiates the measurement point P with the light L and receives the scattered light of the laser beam L irradiated to the measurement point P is arranged on a straight line that is perpendicular to the transport plane and passes through the measurement point P The laser Doppler speed detection device 7 is constituted by the speedometers 1 and 2. On the other hand, in the computer system 8, the actual moving speed of the steel sheet S having two components in the conveying direction and the meandering direction from the outputs of the two laser Doppler speed meters 1 and 2 of the laser Doppler speed detecting device 7 is calculated as an actual moving speed step S1. Calculated in ~ S3. Moreover, the conveyance direction speed component of the actual moving speed of the steel sheet S is integrated, and the conveyance direction movement amount of the steel sheet S is calculated in the conveyance direction movement amount calculation step S4. Further, the meandering direction velocity component of the actual moving speed of the steel plate S is integrated to calculate the meandering direction moving amount of the steel plate S in the meandering direction moving amount calculating step S5. Further, the meandering (different direction movement) fluctuation amount of the steel sheet S is calculated in the meandering fluctuation amount calculating step S6 from the difference value between the maximum value and the minimum value of the meandering direction movement amount of the steel sheet S. Then, when the meandering fluctuation amount of the steel sheet S becomes equal to or greater than a preset specified value, storage and output of the movement amount of the steel sheet S at that time are stored and output in transport state detection steps S7 to S8. Thereby, it can discriminate | determine that conveyance objects, such as the steel plate S, interfered with the installation.

また、蛇行変動量算出ステップS7〜S8は、予め設定された規定時間T内における鋼板Sの蛇行方向移動量の最大値と最小値との差分値から鋼板Sの蛇行変動量を算出する。これにより、比較的短時間に生じる鋼板Sなどの搬送物と設備との干渉を確実に判別することができる。
また、2つのレーザドップラ速度計1、2のレーザ光が通る互いに異なる平面内を互いに直交する平面とすることで、鋼板Sの実移動速度の搬送方向及び蛇行方向の2成分を容易に算出することができる。
Further, the meandering fluctuation amount calculation steps S7 to S8 calculate the meandering fluctuation amount of the steel sheet S from the difference value between the maximum value and the minimum value of the movement amount of the steel sheet S within the predetermined time T set in advance. Thereby, interference with conveyance objects, such as the steel plate S produced in a comparatively short time, and an installation can be discriminate | determined reliably.
Further, by making the planes different from each other through the planes through which the laser beams of the two laser Doppler velocimeters 1 and 2 pass are orthogonal to each other, the two components of the actual moving speed of the steel sheet S in the conveying direction and the meandering direction are easily calculated. be able to.

また、互いに直交する平面のうちの一方の平面を鋼板Sの搬送方向と平行な平面とすることで、鋼板Sの実移動速度の搬送方向及び蛇行方向の2成分をより一層容易に算出することができる。
なお、前述の実施形態では、レーザドップラ速度検出装置7を構成する2つのレーザドップラ速度計1、2のレーザ光が通る互いに異なる平面内を互いに直交する平面とし且つ互いに直交する平面のうちの一方の平面を鋼板の搬送方向と平行な平面とした。これにより、搬送方向移動速度(成分)や蛇行方向(異方向)移動速度(成分)の算出が容易になった。しかし、前述の説明からも推察されるように、2つのレーザドップラ速度計1、2のレーザ光が通る互いに異なる平面のうちの一方の平面を鋼板の搬送方向と平行な平面としなくともよいし、それらの平面が直交しなくともよい。つまり、このような場合には、例えば三角関数などを用いて、2つのレーザドップラ速度計1、2で検出される2つの移動速度成分を搬送方向移動速度(成分)や蛇行方向(異方向)移動速度(成分)に置き換えればよいだけである。
Further, by making one of the planes orthogonal to each other as a plane parallel to the conveying direction of the steel sheet S, the two components of the conveying direction and the meandering direction of the actual moving speed of the steel sheet S can be calculated more easily. Can do.
In the above-described embodiment, different planes through which the laser beams of the two laser Doppler velocimeters 1 and 2 constituting the laser Doppler velocity detection device 7 pass are orthogonal to each other and one of the planes orthogonal to each other. The plane was set to a plane parallel to the conveying direction of the steel plate. This facilitates the calculation of the transport direction moving speed (component) and the meandering direction (different direction) moving speed (component). However, as can be inferred from the above description, one of the different planes through which the laser beams of the two laser Doppler velocimeters 1 and 2 pass may not be a plane parallel to the conveying direction of the steel plate. The planes do not have to be orthogonal. That is, in such a case, for example, by using a trigonometric function, the two moving speed components detected by the two laser Doppler velocimeters 1 and 2 are converted into the moving direction moving speed (component) and the meandering direction (different direction). It is only necessary to replace the moving speed (component).

本発明がここに記載していない様々な実施の形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に記載された発明特定事項によってのみ定められるものである。   It goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention-specific matters described in the appropriate claims from the above description.

1 第1レーザドップラ速度計
2 第2レーザドップラ速度計
3 発光部
4 ビームスプリッタ
5 ミラー
6 受光部
7 レーザドップラ速度検出装置
8 コンピュータシステム(計算機)
11 クロップシャー
12 幅剪断機
13 レーザ板厚計
14 エンドシャー
15 走間検査機
16 ダブルサイドシャー
17 ローリングスリットシャー
18 第1ピンチロール
19 第2ピンチロール
20 第3ピンチロール
21 ローリングスリットシャーサイドガイド
22 第2ピンチロール出側ガイドロール
23 サイドガイド入側ガイドロール
24 サイドガイド出側ガイドロール
25 第3ピンチロール入側ガイドロール
26 第3ピンチロール出側ガイドロール
S 鋼板(搬送物)
DESCRIPTION OF SYMBOLS 1 1st laser Doppler velocimeter 2 2nd laser Doppler velocimeter 3 Light emission part 4 Beam splitter 5 Mirror 6 Light-receiving part 7 Laser Doppler velocity detection apparatus 8 Computer system (computer)
DESCRIPTION OF SYMBOLS 11 Crop shear 12 Width shearing machine 13 Laser plate thickness meter 14 End shear 15 Running inspection machine 16 Double side shear 17 Rolling slit shear 18 First pinch roll 19 Second pinch roll 20 Third pinch roll 21 Rolling slit shear side guide 22 2nd pinch roll exit side guide roll 23 Side guide entry side guide roll 24 Side guide exit side guide roll 25 3rd pinch roll entry side guide roll 26 3rd pinch roll exit side guide roll S Steel plate (conveyed material)

Claims (3)

平坦で連続する外表面を有し且つ予め設定された搬送方向に搬送される搬送物に対して、演算処理機能を有する計算機によって前記搬送物の搬送方向と異なる異方向への移動状態を検出する搬送状態検出装置であって、
前記搬送方向及び前記異方向を含む搬送平面上で且つ前記搬送物の前記外表面に設定された測定点に対し、夫々前記搬送平面と垂直で且つ前記測定点で交差する互いに異なる平面内を通るレーザ光を前記測定点に照射し且つ前記測定点に照射したレーザ光の散乱光を受光する受光部が前記搬送平面に垂直で且つ前記測定点を通る直線上に配置された2つのレーザドップラ速度計を有するレーザドップラ速度検出装置と、
前記レーザドップラ速度検出装置の2つのレーザドップラ速度計の出力から前記搬送方向及び前記異方向の2つの成分を有する搬送物の実移動速度を算出する実移動速度算出部と、
前記搬送物の実移動速度の搬送方向速度成分を積分して搬送物の搬送方向移動量を算出する搬送方向移動量算出部と、
前記搬送物の実移動速度の異方向速度成分を、前記2つのレーザドップラ速度計がレーザ光を前記搬送物の搬送方向先端の測定点に照射した時点から前記2つのレーザドップラ速度計がレーザ光を前記搬送物の搬送方向尾端の測定点に照射した時点まで、所定時間毎に区切って複数回積分して搬送物の変動する異方向移動量を算出する異方向移動量算出部と、
前記2つのレーザドップラ速度計がレーザ光を前記搬送物の搬送方向先端の測定点に照射した時点から前記2つのレーザドップラ速度計がレーザ光を前記搬送物の搬送方向尾端の測定点に照射した時点までの間における前記搬送物の、異方向移動量がゼロを基準とした変動する異方向移動量の絶対値が最大である最大値と異方向移動量がゼロを基準とした変動する異方向移動量の絶対値が最小である最小値との差分値から搬送物の異方向移動変動量を算出する異方向移動変動量算出部と、
前記搬送物の異方向移動変動量が予め設定された規定値以上となったときに、その時点における前記搬送物の搬送方向移動量の記憶及び出力の少なくとも何れか一方を行う搬送状態検出部と、
を備えた搬送状態検出装置。
For a transported object having a flat and continuous outer surface and transported in a preset transport direction, a moving state of the transported object in a direction different from the transport direction is detected by a computer having an arithmetic processing function. A conveyance state detection device comprising:
The measurement points set on the transfer plane including the transfer direction and the different direction and on the outer surface of the transfer object pass through different planes perpendicular to the transfer plane and intersecting at the measurement points. Two laser Doppler velocities in which a light receiving unit that irradiates the measurement point with a laser beam and receives scattered light of the laser beam irradiated on the measurement point is arranged on a straight line that is perpendicular to the transport plane and passes through the measurement point A laser Doppler velocity detection device having a meter;
An actual moving speed calculation unit that calculates an actual moving speed of a conveyed object having two components in the conveying direction and the different direction from outputs of two laser Doppler velocimeters of the laser Doppler speed detecting device;
A conveyance direction movement amount calculation unit that calculates a conveyance direction movement amount of the conveyance object by integrating a conveyance direction speed component of the actual movement speed of the conveyance object;
The two laser Doppler velocimeters indicate the different direction speed component of the actual moving speed of the transported object from the time when the two laser Doppler velocimeters irradiate the measurement point at the front end of the transported object in the transport direction. A different direction movement amount calculation unit that calculates a different direction movement amount that the conveyance object fluctuates by dividing a plurality of times by dividing each predetermined time until the measurement point at the end of the conveyance direction of the conveyance object is irradiated ,
The two laser Doppler velocimeters irradiate the measurement point at the tail end in the conveyance direction of the conveyed object from the time when the two laser Doppler velocities irradiate the measurement point at the leading end in the conveyance direction of the conveyance object. Until the point of time, the maximum amount of the different direction movement amount that fluctuates with reference to zero is different from that of the conveyed product, and the different direction movement amount varies with reference to zero. A different direction movement fluctuation amount calculating unit for calculating a different direction movement fluctuation amount of a conveyed product from a difference value from a minimum value in which an absolute value of a direction movement amount is minimum ;
A transport state detector that performs at least one of storage and output of the transport direction movement amount of the transport object at the time when the amount of movement change in the different direction of the transport object is equal to or greater than a predetermined value set in advance; ,
The conveyance state detection apparatus provided with.
前記2つのレーザドップラ速度計のレーザ光が通る互いに異なる平面内が互いに直交する平面である請求項に記載の搬送状態検出装置。 The two transport state detection device according to claim 1 to one another in different planes of the laser light of the laser Doppler velocimeter passes are planes orthogonal to each other. 前記互いに直交する平面のうちの一方の平面が前記搬送物の搬送方向と平行な平面である請求項に記載の搬送状態検出装置。 The conveyance state detection device according to claim 2 , wherein one of the planes orthogonal to each other is a plane parallel to a conveyance direction of the conveyance object.
JP2015220590A 2015-11-10 2015-11-10 Conveyance state detection device Active JP6365510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220590A JP6365510B2 (en) 2015-11-10 2015-11-10 Conveyance state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220590A JP6365510B2 (en) 2015-11-10 2015-11-10 Conveyance state detection device

Publications (2)

Publication Number Publication Date
JP2017088321A JP2017088321A (en) 2017-05-25
JP6365510B2 true JP6365510B2 (en) 2018-08-01

Family

ID=58771560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220590A Active JP6365510B2 (en) 2015-11-10 2015-11-10 Conveyance state detection device

Country Status (1)

Country Link
JP (1) JP6365510B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672308A (en) * 1979-11-19 1981-06-16 Mitsubishi Heavy Ind Ltd Detector for shape of strip
JPS61149804A (en) * 1984-12-24 1986-07-08 Toshiba Corp Detecting method of moving blade position of axial flow turbo machine
JPS61247903A (en) * 1985-04-26 1986-11-05 Hitachi Ltd Two-dimensional displacement and speed measuring instrument utilizing laser speckle
JPH0827350B2 (en) * 1988-09-30 1996-03-21 スズキ株式会社 Laser doppler velocimeter
JPH07270436A (en) * 1994-03-31 1995-10-20 Nkk Corp Length measuring apparatus for moving object
JP2001280919A (en) * 2000-03-28 2001-10-10 Kawasaki Steel Corp Instrument and method for measuring plate width of rolled material
JP2005189169A (en) * 2003-12-26 2005-07-14 Olympus Corp Speed detecting device, carrying speed detecting device, and image forming device
JP4093971B2 (en) * 2004-02-12 2008-06-04 シャープ株式会社 Optical movement information detection apparatus, movement information detection system, electronic apparatus and encoder
JP4641460B2 (en) * 2005-07-28 2011-03-02 キヤノン株式会社 Sheet conveying apparatus, image forming apparatus, and image reading apparatus
JP2013174456A (en) * 2012-02-23 2013-09-05 Tokai Univ Laser doppler speedometer
JP6452391B2 (en) * 2014-11-12 2019-01-16 株式会社竹中工務店 Laser measuring apparatus and vibration isolation system

Also Published As

Publication number Publication date
JP2017088321A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
US20110240169A1 (en) Straightening and cutting-off machine
US3802774A (en) Method and apparatus for determining the thickness or width of work pieces
US8643851B2 (en) Scanning device
JP6733379B2 (en) Steel piece cross-sectional shape measuring device and steel piece cross-sectional shape measuring method
US6909106B2 (en) Web velocity-based registration control system
TWI295600B (en)
JP6213595B2 (en) Method and apparatus for detecting surface position of metal body on which chips are placed
JP6365510B2 (en) Conveyance state detection device
JP2017150973A (en) Apparatus and method for measuring length of steel material, and apparatus and method for manufacturing steel material
ITBO20120221A1 (en) METHOD FOR POSITIONING A TOOL OF A MACHINE TOOL IN THE VISUAL FIELD OF A VISION AND RELATED MACHINE SYSTEM
JP6596149B2 (en) Dimension measuring apparatus and method
KR101389428B1 (en) Vibration measuring system of nuclear fusion device using laser doppler vibrometry system
JP4619865B2 (en) Sheet length measuring device, sheet sorting line, sheet cutting line, and sheet length measuring method
JPH1019546A (en) Method for measuring length of moving material to be measured
KR20020002047A (en) An apparatus for cutting crop of hot bar using laser speed measuring device
JP3494580B2 (en) Synchronous control device for traveling cutting / processing equipment
JP2021146351A (en) Laser welding device and laser beam position deviation detection method in laser welding device
JP2019005812A (en) Cutting device of material rubber mass and cutting method of material rubber mass
JP2018066573A (en) Gap sensor
JP2011242298A (en) Shape measuring instrument, method, and program for strip-shaped material
JP2009294012A (en) Apparatus and method for measuring board thickness
JPH0545128A (en) Method for measuring length of moving object
JP2006284284A (en) Method of correcting sheet steel length and its device
JP2009198433A (en) Method and device for determining length of material to be determined having substantially circular cross-section
JP6393666B2 (en) Steel plate behavior detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6365510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250