JPS61149804A - Detecting method of moving blade position of axial flow turbo machine - Google Patents

Detecting method of moving blade position of axial flow turbo machine

Info

Publication number
JPS61149804A
JPS61149804A JP27098584A JP27098584A JPS61149804A JP S61149804 A JPS61149804 A JP S61149804A JP 27098584 A JP27098584 A JP 27098584A JP 27098584 A JP27098584 A JP 27098584A JP S61149804 A JPS61149804 A JP S61149804A
Authority
JP
Japan
Prior art keywords
diffraction grating
light
frequency
shroud
axial flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27098584A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kawagishi
裕之 川岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27098584A priority Critical patent/JPS61149804A/en
Publication of JPS61149804A publication Critical patent/JPS61149804A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent a position shift and a contact accident by fitting plural arrays of diffraction gratings on the shroud surface of the tip of a moving blade, irradiating those diffraction gratings with laser light, and measuring the frequency of diffracted light and detecting the position of the moving blade. CONSTITUTION:Diffraction grating arrays 4 which differ in grating interval in the axial direction A are provided on the top surface of the shroud of the tip part of the moving blade 1 implanted in a disk 2, and the laser light 8 from a light source 5 is made incident on those diffraction grating arrays in a peripheral direction through an optical fiber 6 and a light emitting device 7. Then, the diffracted light 9 is photodetected by a photodetector 10, whose output is inputted to a frequency analyzer 13 through the optical fiber 6 and a photomultiplier 11. When the shroud 3 moves in the axial direction A, the irradiated diffraction grating 4 also shifts in position and the diffracted light varies in frequency, so the quantity of this variation is analyzed by the analyzer 13 to calculate the gap between a stationary part and a rotating part in the axial direction A. Further, light is made incident on the diffraction gratings 4 in the axial direction as well and then the deviation of the rotating part in a radial direction B is also detected from variation in the frequency of said diffracted light.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、軸流ターボ機械のms+=おける軸方向およ
び半径方向の位置変化を検出する軸流ターボ機械のwJ
萬位置検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention provides a method for detecting axial and radial position changes in wJ of an axial flow turbomachine in ms+=.
This invention relates to a position detection method.

〔発明の技術的背景とその間照点〕[Technical background of the invention and points of interest]

一般に軸流ターボdA械において、そのfi!A動時お
よび停止時には、静止部でめるケーシングと回転部でめ
るロータとに上に軸方向の相対的な位置ずれが生じる。
Generally in axial flow turbo dA machines, the fi! During movement and when stopped, a relative displacement occurs in the axial direction between the casing held by the stationary part and the rotor held by the rotating part.

この相対的な位置ずれは、一般にケーシングおよびロー
タの周v!A温度、膨張率、熱伝熱率、熱伝導率または
熱容量等の相違に起因するものと考えられる。また運転
時には、ロータに取付けられたIdJJ!tが遠心応力
や熱応力を受けるため、半径方向C二伸長する。
This relative misalignment is generally due to the circumference v! of the casing and rotor. This is thought to be due to differences in A temperature, coefficient of expansion, coefficient of heat transfer, thermal conductivity, or heat capacity. Also, during operation, the IdJJ! Since t receives centrifugal stress and thermal stress, it expands in the radial direction C2.

このように、ケーシングとロータおよび動翼との間に生
じる相対的な位置ずれは、チップフィン。
In this way, the relative misalignment that occurs between the casing and the rotor and rotor blades causes the tip fins to deteriorate.

シュラウドおよびラビリンスパツキン部等において接触
を起こさせる。この結果、軸流ターボ愼械における振動
は、増大して薔しい場合には接触部の破損等の事故を招
来する危険を生じる。このような事故を回避するために
は、各部の間隙が大きくなるように設計する方法がある
が、この方法では動翼を通過せず仕41≦二関与しない
作動流体が増加するため、効率は低下する。したがって
、軸流ターボ機械の性能および信頼性の向上を目指すに
は、各部の間隙をでさるだけ小さくし、かつ間隙の変化
を常時、監視する必要かめる。
Contact is caused at the shroud, labyrinth packing, etc. As a result, if the vibrations in the axial flow turbomachine increase and become too loose, there is a risk of causing accidents such as damage to contact parts. In order to avoid such accidents, there is a method of designing the gaps between each part to be larger, but this method increases the amount of working fluid that does not pass through the rotor blades and does not participate in the process, resulting in a decrease in efficiency. descend. Therefore, in order to improve the performance and reliability of axial flow turbomachines, it is necessary to reduce the gaps between each part as much as possible and constantly monitor changes in the gaps.

これまで間隙を監視する方法として、軸流ターボ機械の
ケーシング内面より所定の距離に回転軸と平行あるいは
平行に近くレーザ光線を照射し、動翼先端がレーザ光線
をよぎるか否かで動翼先端ギャップの大きさを監視する
方法、ケーシング内壁に発光器および発光器より発射さ
れて動翼先端で反射された光線を受光するセンサを取付
け、このセンナを介して動翼先端ギャップの大きさを監
視する方法等が提案されている。しかしこれらの方法で
は、軸方向の間隙の変化は全く検出することができない
ため、軸方向の位置ずれによる接触事故は回避できない
。また上述の方法では、半径方向の間隙の変化を詳aに
横出することができない。
Until now, as a method of monitoring the gap, a laser beam is irradiated at a predetermined distance from the inner surface of the casing of an axial flow turbomachinery parallel to or nearly parallel to the rotation axis, and the tip of the rotor blade is checked to see if the tip of the rotor blade crosses the laser beam or not. A method for monitoring the size of the gap: A light emitter and a sensor that receives the light emitted from the light emitter and reflected at the tip of the rotor blade are installed on the inner wall of the casing, and the size of the gap at the tip of the rotor blade is monitored via this sensor. Methods to do this have been proposed. However, with these methods, it is impossible to detect any change in the gap in the axial direction, so contact accidents due to positional deviation in the axial direction cannot be avoided. Furthermore, the above-mentioned method cannot reveal the change in the gap in the radial direction in detail.

い。stomach.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、軸流ターボ機械の静止部と回転部との
軸方向および半径方向の間隙の変化な旺細4=検出する
ことのできる軸流ターボ機械の動翼位置検出方法を提供
するにある。
An object of the present invention is to provide a method for detecting the position of a rotor blade in an axial flow turbomachine, which can detect changes in the gap in the axial and radial directions between the stationary part and the rotating part of the axial flow turbomachine. It is in.

〔発明の概要〕[Summary of the invention]

本発明による軸流ターボ機械の動翼位置検出方法は、#
興先端のシュラウド面に軸方向位1it4二よって格子
間隔の異なる光の反射機能を呈する回折格子を複数列取
9つけ、この回折格子列(ニー械の外部にめるレーザ光
源装置より光ファイバーを用いて機械内ζ二尋いたレー
ザ光を照射し、その回折光の周波数を計測することC;
よって動翼位置を検出す乞ことを特徴とするものである
The method for detecting the rotor blade position of an axial flow turbomachine according to the present invention is #
A plurality of rows of diffraction gratings exhibiting a light reflecting function with different grating spacings depending on the axial position are installed on the shroud surface of the cutting tip, and these diffraction grating rows (using optical fibers from a laser light source device installed outside the knee machine) are installed on the shroud surface of the cutting tip. C; irradiate the inside of the machine with a laser beam of ζ2 degrees and measure the frequency of the diffracted light;
Therefore, the present invention is characterized in that the moving blade position can be detected.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図向口示す実施例ζ;基づいて説明する
。本開明のa翼位置検出方法を適用する勘興位lk@出
餉良な示す第1181および第2図区=おいて、−XI
は図示しないロータと一体又は嵌込まれたディスク2に
植込まれている。その#翼1の先端部は、シュラウド3
ζ;よって縁られている。
Hereinafter, the present invention will be explained based on an embodiment ζ shown in the drawings. 1181 and 2, where the a-wing position detection method of the present invention is applied, -XI
is embedded in a disk 2 that is integrated with or fitted into a rotor (not shown). The tip of #wing 1 is connected to shroud 3
ζ; Therefore, it is bordered.

でしてこのシュラウド3の上面には、軸方向位置によっ
て格子間隔の異なる回折格子列4が取付けられている。
Mounted on the upper surface of the shroud 3 are diffraction grating arrays 4 having different grating intervals depending on their axial positions.

こ\で回折格子列4とは、ガラスや金属の板に非常C二
細かく等間隔の線(数千本/cILン を刻んだもので
、緑と線との間の平らな部が光を反射する。
Here, the diffraction grating array 4 is a glass or metal plate with extremely finely spaced lines (thousands of lines/cIL) carved into it, and the flat area between the green and the lines emits light. reflect.

格子間隔の軸方向位置による違いの様子を41図の回折
格子4上の白黒の帯で示している。例えば回折格子4a
の格子間隔が最も細かく、回折格子4bから格子4e 
、格子4dに進むととに間隔が粗くなっている場合を示
している。
The difference in the grating spacing depending on the axial position is shown by the black and white bands on the diffraction grating 4 in Figure 41. For example, the diffraction grating 4a
The grating spacing is the finest, from diffraction grating 4b to grating 4e.
, a case in which the intervals become coarser as the grid progresses to 4d is shown.

一方、レーザ光源装に5から発せられたレーザ光は、光
フアイバ64二よってタービン内の発光器7に導かれ、
さら(ニシュラウド3の上面の回折格子4に照射される
。照射されたレーザ光は干渉ζ二よって強めあう方向に
反射する。すなわち、第3図(;おいて、回折格子4の
格子間隔なd、レーザ光の入射角をβ、反射角をβ′お
よびレーザ光の波長なλとすると、干渉によって強めあ
う条件は、光路差がレーザ光の波長の整数倍の場合であ
るから、 djcoaβ−d−coISβ/ = nλ (n ・
−・via )  …(1)となる。つま9(1)式が
成立つβ′の方向に回折光9が生じる。
On the other hand, the laser light emitted from the laser light source device 5 is guided to the light emitter 7 in the turbine by the optical fiber 642,
Furthermore, the diffraction grating 4 on the upper surface of the Nishroud 3 is irradiated. The irradiated laser light is reflected in the direction of mutual reinforcement due to interference ζ2. d, the incident angle of the laser beam is β, the reflection angle is β', and the wavelength of the laser beam is λ.The condition for mutual reinforcement due to interference is when the optical path difference is an integral multiple of the wavelength of the laser beam, so djcoaβ- d-coISβ/ = nλ (n ・
-・via ) ...(1). Diffracted light 9 is generated in the direction β' where equation (1) holds true.

また、回折格子4はシュラウド3ととも一回転移動する
ので、回折光の周波数はドツプラ効果によって偏倚する
。すなわち第3図において、入射光8の速度なC1周波
数をf1回折光9の周波数をf′、回折格子4の移動速
度なVとすると、ドツプラ効果によって回折光の周波数
f′は”=c−v、cos7s” :8F(1+ ” cos〆)i =1+÷cos/’     ・・−・・・(2)とな
る。なお干渉によって強めあう条件は、回折格子が静止
している場合は(1)式で表わされるが、回折格子が回
転して回折光の周波数が偏倚する場合は次式で示される
(λ′二回回折の波長)。
Furthermore, since the diffraction grating 4 moves once with the shroud 3, the frequency of the diffracted light is shifted by the Doppler effect. That is, in FIG. 3, if the C1 frequency, which is the velocity of the incident light 8, is f1, and the frequency of the diffracted light 9 is f', and the moving speed of the diffraction grating 4 is V, then the frequency f' of the diffracted light due to the Doppler effect is "=c-" v, cos7s":8F(1+"cos〆)i =1+÷cos/' (2).The condition for mutual reinforcement due to interference is that when the diffraction grating is stationary, ), but when the diffraction grating rotates and the frequency of the diffracted light shifts, it is expressed by the following equation (wavelength of λ' second diffraction).

d cosβ=nλ 、  dcosβ’=nλ’  
・−・−・13)(3)式を(2)式C2代入して[f
iすると、となる。つまシ、回折光の周波数f′は、入
射光の周波数fおよび回折格子の移動速度Vが一定の場
合、同じ次数の回折光(nが等しい)については格子間
隔dによって変化するといえる。
dcosβ=nλ, dcosβ'=nλ'
・-・-・13) Substitute equation (3) into equation (2) C2 and get [f
If i, then it becomes. If the frequency f of the incident light and the moving speed V of the diffraction grating are constant, it can be said that the frequency f' of the diffracted light changes depending on the grating spacing d for diffracted light of the same order (n is equal).

すなわち、第1図C二おいて、シュラウド3の上面(;
は軸方同位i!によって格子間隔の異なる回折格子4が
取つけられているので、発光器7が取つけられている静
止部に対して回転部のシュラウド3が軸方向C二移動す
ると照射される回折格子4の位置も移動し、その結果回
折光の周波数も変化する。この周波数の変化量を針側す
ることにより、静止部と回転部の軸方向の間隙を求める
ことができる。
That is, in FIG. 1 C2, the upper surface of the shroud 3 (;
is the axial peer i! Since the diffraction gratings 4 with different grating spacings are installed, when the shroud 3 of the rotating part moves in the axial direction C2 with respect to the stationary part where the light emitter 7 is installed, the position of the diffraction grating 4 that is irradiated changes. moves, and as a result, the frequency of the diffracted light also changes. By adjusting the amount of change in frequency to the needle side, the axial gap between the stationary part and the rotating part can be determined.

f11図および第2図C二おいては、回折光9を受光器
lOで受光し、光ファイバ6を介して機械の外鄭屯装置
かれている光電子増倍管11に入射させる。
In FIG. f11 and FIG. 2 C2, the diffracted light 9 is received by a light receiver 10, and is made to enter a photomultiplier tube 11 provided in an external device of the machine via an optical fiber 6.

回折光の周波数は非常に太き((10” Hzのオーダ
)、そのtまでは周波数分析することができないので、
2本の光のJif数の差を求めるヘテロダイン検出法を
用いる。すなわち、周波数偏倚を受けた回折光9とレー
ザ光源t装置5から分岐した基準元栓とを光電子増倍管
11に入射させる。光電子増倍管■の出力のうち、光と
同程度の周波数のものは、光電子増倍管11の特性のた
め減衰して現れず、結局回折光9と基準元栓の周波数の
差をもつ成分が得られる。この信号を周波数解析器13
に人力することにより、回折光9の周波数偏倚の大きさ
がわか夛、軸方向の移動1m離も求めることができる。
The frequency of the diffracted light is very large (on the order of 10” Hz), and it is not possible to analyze the frequency up to t.
A heterodyne detection method is used to find the difference in Jif numbers between two beams of light. That is, the frequency-shifted diffracted light 9 and the reference source branched from the laser light source t device 5 are made to enter the photomultiplier tube 11 . Among the outputs of the photomultiplier tube ■, those with a frequency similar to that of light are attenuated and do not appear due to the characteristics of the photomultiplier tube 11, and as a result, components with a difference in frequency between the diffracted light beam 9 and the reference source stop appear. can get. This signal is passed to the frequency analyzer 13
By applying human power, it is possible to determine the magnitude of the frequency deviation of the diffracted light 9 and also to determine the distance of 1 m in the axial direction.

すなわち、第1図においては、回折格子C二対する入射
光8が回折格子4b口入射しているが1回転部の軸方向
への偏tel二よって回折格子4al二人射する状態に
なると、回折光9の周波数が回折格子4bへの入射の場
合と大きく変化する。したがってこの信号を周波数解析
器13に人力することにより、回折光9の周波数偏倚の
大き゛さがわかって回転部の軸方向の移動距離を求める
ことができる。
That is, in FIG. 1, the incident light 8 to the diffraction grating C2 is incident on the diffraction grating 4b, but when it enters the diffraction grating 4al due to the axial deviation of the one rotation part, the diffraction occurs. The frequency of the light 9 changes greatly from that when it is incident on the diffraction grating 4b. Therefore, by manually inputting this signal to the frequency analyzer 13, the magnitude of the frequency deviation of the diffracted light 9 can be determined, and the moving distance of the rotating part in the axial direction can be determined.

次に第4図(:示す他の実施例ζ:ついて説明する。Next, another embodiment ζ shown in FIG. 4 will be described.

第1図および第21ζ二示す実施例では、回転部の軸方
向の移動変化のみを検出するだけで、半径方向の変化は
検出できない。そこで44図に示す実施例では、回折格
子4に対して軸方向からレーザ光の入射光8を入射させ
るようC二したものである。
In the embodiments shown in FIGS. 1 and 21ζ2, only changes in the movement of the rotating part in the axial direction are detected, but changes in the radial direction cannot be detected. Therefore, in the embodiment shown in FIG. 44, the laser beam 8 is made incident on the diffraction grating 4 from the axial direction.

この実施例では、回転部が点線で示すように半径方向に
伸長すると、入射光8が実線入射光から点線入射光に変
化し、その入射光が照射する回折格子4bから回折格子
46に変化する丸め、回折光90周波数も変化する。こ
の回折光9の周波数変化によって回@部の半径方向の偏
倚を検出することができる。
In this embodiment, when the rotating part extends in the radial direction as shown by the dotted line, the incident light 8 changes from the solid line incident light to the dotted line incident light, and the incident light changes from the diffraction grating 4b irradiated to the diffraction grating 46. The rounded, diffracted light 90 frequency also changes. The deviation in the radial direction of the rotation part can be detected by the frequency change of the diffracted light 9.

またこの実施例では、軸方向の変化も検出することがで
きる。
In this embodiment, changes in the axial direction can also be detected.

次6二第5図に示す他の実施例では、回折格子4に対し
て円周方間から照射する発光器7aと軸方向から照射す
る発光器7bを設けたものである。すなわち周波数の異
なるレーザ光は、28のレーザ光fA装置5a、5bよ
り発振され、光ファイバ6a +6bを通って発光器7
b、7mに導かれる。2萱の発光器7a、7bから回折
格子41=照射された入射光8a * 8bは、前述の
ようシニ周波数偏倚を受けた回折光9m、9bとしてそ
れぞれの方向に反射する。
In another embodiment shown in FIG. 5, a light emitter 7a that emits light from the circumference of the diffraction grating 4 and a light emitter 7b that emits light from the axial direction are provided. That is, laser beams with different frequencies are oscillated by 28 laser beam fA devices 5a and 5b, and are passed through optical fibers 6a + 6b to a light emitter 7.
b, led to 7m. The incident light 8a*8b irradiated by the diffraction grating 41 from the two light emitters 7a, 7b is reflected in respective directions as diffracted light 9m, 9b which has been subjected to a sinusoidal frequency shift as described above.

2本の回折光9a、9bは、受光器10a 、 lOb
を通して光ファイバcta、eb+=よって光電子増倍
管11a。
The two diffracted lights 9a and 9b are transmitted to the receivers 10a and lOb.
Through the optical fiber cta, eb+ = photomultiplier tube 11a.

11b媚二人射される。11b Two people are shot.

また、2台のレーザ光源装置i5a、5bからのレーザ
光を途中で分岐した基準光12(12bも光電子増倍管
11a 、 llb 4二人射させる。光鴫子増倍管L
la。
In addition, the reference beam 12 (12b) which is obtained by branching the laser beams from the two laser light source devices i5a and 5b is also emitted from the photomultiplier tubes 11a and llb 4.The photomultiplier tube L
la.

flbの信号を周波数解析器13& 、 13b l二
人力することによ)、回折光9a、9bの周波数偏倚の
大きさがわかる。さら(;この信号を計算d 15 に
人力することによ〕、静止部と回転部との軸方向および
半径方向の間隙を求めることかで龜る。
By inputting the flb signal to the frequency analyzers 13&, 13b1), the magnitude of the frequency deviation of the diffracted lights 9a and 9b can be determined. Furthermore, it is difficult to determine the axial and radial gaps between the stationary part and the rotating part (by manually inputting this signal to the calculation d 15 ).

さらζ;この信号を計算機15に人力すること4;よル
、静止部と回転部との軸方向および半径方向の間隙を求
めることができる。なお計算機15には、あらかじめ静
止時に定常時の各点の間隙量が入力されており、リアル
タイムで間隙量を監視することができ、異常の場合は、
回転数減少等の運転コントロール信号を出すことができ
る。またレーザ光源とし1:2種類の周波数のレーザ光
を用いるのは、2本の回折光9+a、9bの周a、aレ
ベルを変えること(:より、ノイズや同レベルの周波数
口よる誤信号を避けるためでめる。
Furthermore, by manually inputting this signal to the computer 15, the axial and radial gaps between the stationary part and the rotating part can be determined. Note that the gap amount at each point at a steady state when the machine is stationary is input in advance to the calculator 15, and the gap amount can be monitored in real time, and in the case of an abnormality,
It is possible to issue operation control signals such as a reduction in rotation speed. In addition, the use of laser beams with 1:2 different frequencies as a laser light source is achieved by changing the circumference a and a level of the two diffracted beams 9+a and 9b. Decame to avoid.

さら(ニル6図に示す他の夾厖例C二おいては、1台の
レーザ光源装715から周波数の異なる′4.数のレー
ザ光を得るように構成したものである。丁なわち、レー
ザ光源装vt5から発振するレーザ光は、超音波光変調
器16に人射する。超音波光変調器16の底部には、水
晶振動子等のS!lb子が取りりけられており、発振器
17によって振動子両面4二高周波砿圧が加えられる。
Furthermore, in another example C2 shown in Figure 6, the configuration is such that a number of laser beams with different frequencies are obtained from one laser light source device 715. The laser beam oscillated from the laser light source device VT5 is incident on the ultrasonic light modulator 16. An S!lb element such as a crystal oscillator is installed at the bottom of the ultrasonic light modulator 16. An oscillator 17 applies high frequency abrasive pressure to both sides of the vibrator.

この結果、圧電逆効果(;よって振動子は厚さ方向4二
高速で振動し、超音波光変調器16内の媒体中6二進行
超f波が発生する。
As a result, the piezoelectric reverse effect (; therefore, the vibrator vibrates at a high speed in the thickness direction, and a traveling ultra-f wave is generated in the medium in the ultrasonic optical modulator 16.

このよう4二超音技が媒体中を伝播すると媒体に密度差
が生じ、媒体の屈折率が変化する。その結果超音波は回
折格子の働きをし、元を入射させると特定の方向にのみ
強く光が回折する。さらに音波は媒体中を伝播する弾性
波であるため、回折格子が音速で移動しているように考
えられる。このため、前述したよう(;ドツプラ効果に
上って回折光の周波数は偏倚する。超音波の周波数を1
0とすると、+1次回折光18と一1次回折光19の周
波数は。
When such supersonic waves propagate through a medium, a density difference occurs in the medium, and the refractive index of the medium changes. As a result, the ultrasonic waves act as a diffraction grating, and when the source is incident, the light is strongly diffracted only in a specific direction. Furthermore, since sound waves are elastic waves that propagate in a medium, the diffraction grating can be considered to be moving at the speed of sound. Therefore, as mentioned above (; due to the Doppler effect, the frequency of the diffracted light is biased.
If it is 0, the frequencies of the +1st-order diffracted light 18 and the 1st-order diffracted light 19 are as follows.

−それぞれj+fo、f−fo  となり、また0次回
折光加の周波数は変化せずfである。第6図4=示すよ
うに、±1次回折元18.19を入射光8として用い、
0次回折光」を基準光りとすることζ;よp、第5図の
場合と同様に静止部と回転部との軸方向および半径方間
の間隙を求めることができる。
-j+fo and f-fo, respectively, and the frequency of the 0th order diffracted light does not change and remains f. Figure 6 4 = As shown, ±1st order diffraction sources 18.19 are used as incident light 8,
By using the 0th-order diffracted light as the reference light, the axial and radial gaps between the stationary part and the rotating part can be determined as in the case of FIG. 5.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明1二おいては、軸流ターボ機械にお
いて、機械の外#鴫;6るレーザ光源fi、itより光
ファイバを用いて機械内礪二導いたレーザ光をsb貞先
端のシュラウド面に取つけた一方向位置によって格子間
隔の異なる回折格子1二照射し、その回折光の周波数を
計測することζ;より、静止部と回転部との軸方向およ
び半径方向の1ml隙を常時監視することができるので
、相対的な位置ずれζ;よる償触事故を防止することが
できる。
As described above, in the present invention 12, in the axial flow turbomachine, the laser light guided into the machine from the laser light source fi, it located outside the machine using an optical fiber is directed to the tip of the sb. By irradiating two diffraction gratings 1 with different grating intervals depending on the position in one direction attached to the shroud surface and measuring the frequency of the diffracted light. Since it can be constantly monitored, it is possible to prevent contact accidents caused by relative positional deviation ζ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による軸流ターボ1械のwJX位置慣出
方法を過用するam位置検出装置の一実施例を示す概略
構成図、第2図は第1図Y:ll11方向逼;見た概略
構成図、′s3図は本発明鴫二便用した回折格子の作用
を説明する概略図、第4図は本発明の他の実施例を説明
する丸めの概略構成図、1!I5図および第6図は本開
明のそれぞれ異なる他の4M例を示す概略構成図である
。 1−・・動翼      2・・・ディスク3・・・シ
ェツウド   4・・・回折格子5・・・レーザ光源装
置 6・・・元ファイバ7・・・発光器     8・
・・入射光9・・・回折光     10・・・受光器
11・・・光峨子増倍管  12・・・基準光13・・
・周波数解析器  14・・・ケーシング15・・・計
算機     16・・・超音波光変調器17・・・発
振器     18・・・+1次回折光19・・・−1
次回折光“加・・・0次回折光21・・・レンズ (8733)代理人 弁理士 猪 股 祥 晃(ほか1
名)第  1  図 第2図 第 3 図 第  4  図 !? 第  5  図
FIG. 1 is a schematic configuration diagram showing an embodiment of an am position detection device that makes use of the wJX position habituation method for an axial flow turbo machine according to the present invention, and FIG. Figure 3 is a schematic diagram illustrating the function of the diffraction grating used in the second embodiment of the present invention, and Figure 4 is a rounded schematic diagram illustrating another embodiment of the present invention. FIG. I5 and FIG. 6 are schematic configuration diagrams showing other different 4M examples of the present invention. 1-... Moving blade 2... Disk 3... Sheet 4... Diffraction grating 5... Laser light source device 6... Original fiber 7... Light emitter 8.
...Incoming light 9... Diffracted light 10... Light receiver 11... Optical multiplier tube 12... Reference light 13...
-Frequency analyzer 14...Casing 15...Computer 16...Ultrasonic light modulator 17...Oscillator 18...+1st order diffracted light 19...-1
Next-order diffracted light “addition… 0th-order diffracted light 21… Lens (8733) Agent: Patent attorney Yoshiaki Inomata (and 1 others)
Name) Figure 1 Figure 2 Figure 3 Figure 4! ? Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)先端をシユラウドで綴じられた動翼を有する軸流
ターボ機械において、そのシユラウド面に軸方向位置に
よつて格子間隔の異なる複数の光の反射機能を呈する回
折格子列を取りつけ、このシユラウド面の回折格子列に
機械の外部にあるレーザ光源装置より光フアイバを用い
て機械内に導いたレーザ光を照射し、回折格子列からの
回折光の周波数を計測することによつて動翼位置を検出
することを特徴とする軸流ターボ機械の動翼位置検出方
法。
(1) In an axial flow turbomachine that has rotor blades whose tips are bound by a shroud, a diffraction grating array is attached to the shroud surface that exhibits the function of reflecting multiple lights with different grating intervals depending on the axial position, and this shroud is The moving blade position is determined by irradiating the diffraction grating array on the surface with laser light guided into the machine using an optical fiber from a laser light source device located outside the machine, and measuring the frequency of the diffracted light from the diffraction grating array. A method for detecting the position of rotor blades in axial flow turbomachinery, characterized by detecting the position of moving blades in axial flow turbomachinery.
(2)シユラウド面の回折格子列にその円周方向からレ
ーザ光を照射することを特徴とする特許請求の範囲第1
項記載の細流ターボ機械の動翼位置検出方法。
(2) Claim 1, characterized in that the diffraction grating array on the shroud surface is irradiated with laser light from the circumferential direction thereof.
A method for detecting the position of a rotor blade in a trickle turbomachine as described in .
(3)シユラウド面の回折格子列にその軸方向からレー
ザ光を照射することを特徴とする特許請求の範囲第1項
記載の軸流ターボ機械の動翼位置検出方法。
(3) A method for detecting a rotor blade position of an axial flow turbomachine according to claim 1, characterized in that a laser beam is irradiated onto a diffraction grating array on a shroud surface from an axial direction thereof.
(4)シユラウド面の回折格子列にその円周方向および
軸方向の両方向からレーザ光を照射することを特徴とす
る特許請求の範囲第1項記載の軸流ターボ機械の動翼位
置検出方法。
(4) The method for detecting the position of a rotor blade for an axial flow turbomachine according to claim 1, characterized in that the diffraction grating array on the shroud surface is irradiated with laser light from both the circumferential direction and the axial direction.
(5)レーザ光源装置からのレーザ光を超音波変調器に
よつて周波数変調および分光させシユラウド面の回折格
子列に複数のレーザ光を照射させることを特徴とする特
許請求の範囲第4項記載の軸流ターボ機械の動翼位置検
出方法。
(5) A plurality of laser beams are irradiated onto the diffraction grating array on the shroud surface by frequency modulating and splitting the laser beam from the laser light source device using an ultrasonic modulator. A method for detecting the position of rotor blades in axial flow turbomachinery.
JP27098584A 1984-12-24 1984-12-24 Detecting method of moving blade position of axial flow turbo machine Pending JPS61149804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27098584A JPS61149804A (en) 1984-12-24 1984-12-24 Detecting method of moving blade position of axial flow turbo machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27098584A JPS61149804A (en) 1984-12-24 1984-12-24 Detecting method of moving blade position of axial flow turbo machine

Publications (1)

Publication Number Publication Date
JPS61149804A true JPS61149804A (en) 1986-07-08

Family

ID=17493783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27098584A Pending JPS61149804A (en) 1984-12-24 1984-12-24 Detecting method of moving blade position of axial flow turbo machine

Country Status (1)

Country Link
JP (1) JPS61149804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180697A (en) * 2006-12-21 2008-08-07 General Electric Co <Ge> System and method for converting clearance data into vibration data
CN106225649A (en) * 2016-08-09 2016-12-14 中国科学院长春光学精密机械与物理研究所 The measurement apparatus of the ruling tool for grating angle of pitch and measuring method thereof
CN106247907A (en) * 2016-09-07 2016-12-21 中国科学院长春光学精密机械与物理研究所 The measurement apparatus of grating scribing cutter orientation angle and measuring method thereof
JP2017088321A (en) * 2015-11-10 2017-05-25 Jfeスチール株式会社 Transportation state detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180697A (en) * 2006-12-21 2008-08-07 General Electric Co <Ge> System and method for converting clearance data into vibration data
JP2017088321A (en) * 2015-11-10 2017-05-25 Jfeスチール株式会社 Transportation state detection device
CN106225649A (en) * 2016-08-09 2016-12-14 中国科学院长春光学精密机械与物理研究所 The measurement apparatus of the ruling tool for grating angle of pitch and measuring method thereof
CN106247907A (en) * 2016-09-07 2016-12-21 中国科学院长春光学精密机械与物理研究所 The measurement apparatus of grating scribing cutter orientation angle and measuring method thereof

Similar Documents

Publication Publication Date Title
US5511426A (en) Process and device for measuring operating turbine blade vibrations
US4080823A (en) Vibration measurement
US7341428B2 (en) Turbine blade for monitoring torsional blade vibration
US8164761B2 (en) Differential focus blade clearance probe and methods for using same
US8096184B2 (en) Turbine blade for monitoring blade vibration
US3419330A (en) Diffraction grating angular rate sensor
US4022532A (en) Sample point interferometric system for optical figure monitoring
US4438330A (en) Wavefront sensor employing a modulation reticle
US4060329A (en) Method and apparatus for measuring deflection of rotating airfoils
JP3254737B2 (en) encoder
EP2201342A2 (en) A multipoint laser doppler vibrometer
JP4429705B2 (en) Distance measuring method and distance measuring device
US4601580A (en) Measurement of oscillatory and vibrational motion
JPS61149804A (en) Detecting method of moving blade position of axial flow turbo machine
US4395123A (en) Interferometric angle monitor
JPH07198848A (en) Speed measuring apparatus
US5572039A (en) Method and apparatus for observing a gap
JPH04291112A (en) Shaft rotation speed sensor for turbine engine
JP3917387B2 (en) Torque measuring device
RU2152590C1 (en) Method determining deformation of blades of rotating wheel of turbo-machine and gear for its implementation
JPH0781883B2 (en) encoder
CHI et al. Demonstration testing of a noninterference technique for measuring turbine engine rotor blade stresses
JPH05256666A (en) Rotary encoder
JPH0425791A (en) Doppler speed indicator
JPH079053Y2 (en) Velocity measuring device using reflective diffraction grating