JP6365222B2 - Control apparatus and control method - Google Patents

Control apparatus and control method Download PDF

Info

Publication number
JP6365222B2
JP6365222B2 JP2014213345A JP2014213345A JP6365222B2 JP 6365222 B2 JP6365222 B2 JP 6365222B2 JP 2014213345 A JP2014213345 A JP 2014213345A JP 2014213345 A JP2014213345 A JP 2014213345A JP 6365222 B2 JP6365222 B2 JP 6365222B2
Authority
JP
Japan
Prior art keywords
battery
current
allowable
allowable current
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014213345A
Other languages
Japanese (ja)
Other versions
JP2016082767A (en
Inventor
博之 野村
博之 野村
隆広 都竹
隆広 都竹
隆介 長谷
隆介 長谷
順一 波多野
順一 波多野
皓子 安谷屋
皓子 安谷屋
俊雄 小田切
俊雄 小田切
西垣 研治
研治 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014213345A priority Critical patent/JP6365222B2/en
Publication of JP2016082767A publication Critical patent/JP2016082767A/en
Application granted granted Critical
Publication of JP6365222B2 publication Critical patent/JP6365222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、複数の電池を有する電池パックに流れる電流を制御する技術に関する。   The present invention relates to a technique for controlling a current flowing in a battery pack having a plurality of batteries.

複数の電池を有する電池パックでは、各電池の内部抵抗のバラツキなどにより、充電時又は放電時に各電池に流れる電流が互いに異なる。そして、各電池に流れる電流が互いに異なる場合は、ある電池に流れる電流がその電池の許容電流を超えないように電池パックに流れる電流を制御しても、他の電池に流れる電流がその電池の許容電流を超えて、その電池が劣化してしまうおそれがある。   In a battery pack having a plurality of batteries, the currents flowing through the batteries at the time of charging or discharging differ from each other due to variations in the internal resistance of the batteries. If the currents flowing through each battery are different from each other, even if the current flowing through the battery pack is controlled so that the current flowing through the battery does not exceed the allowable current of the battery, the current flowing through the other battery If the allowable current is exceeded, the battery may be deteriorated.

関連する技術として、例えば、各電池に流れる電流が、それぞれ対応する電池の許容電流を超えないように電池パックに流れる電流を制御するものがある。例えば、特許文献1参照。   As a related technique, for example, there is a technique of controlling the current flowing through the battery pack so that the current flowing through each battery does not exceed the allowable current of the corresponding battery. For example, see Patent Document 1.

特開2004−215459号公報Japanese Patent Laid-Open No. 2004-215559

本発明は、電池パックが有する複数の電池の内部抵抗のバラツキなどにより各電池に流れる電流が互いに異なる場合でも、各電池に流れる電流が、それぞれ対応する電池の許容電流を超えることを抑えて電池パックに流れる電流を制御することが可能な制御装置及び制御方法を提供することを目的とする。   The present invention suppresses the current flowing through each battery from exceeding the allowable current of the corresponding battery even when the currents flowing through the batteries differ from each other due to variations in the internal resistance of the plurality of batteries included in the battery pack. It is an object of the present invention to provide a control device and a control method capable of controlling a current flowing in a pack.

本実施形態の制御装置は、並列接続される複数の電池を有する電池パックに流れる電流を制御する制御装置であって、許容電流取得部と、電流閾値設定部と、電流制御部とを備える。   The control device according to the present embodiment is a control device that controls a current flowing through a battery pack having a plurality of batteries connected in parallel, and includes an allowable current acquisition unit, a current threshold setting unit, and a current control unit.

許容電流取得部は、各電池の許容電流を取得する。
電流閾値設定部は、各電池の許容電流のうちの最小値を閾値に設定する。
電流制御部は、各電池に流れる電流が閾値よりも小さくなるように電池パックに流れる電流を制御する。
The allowable current acquisition unit acquires the allowable current of each battery.
The current threshold setting unit sets the minimum value of the allowable currents of the batteries as the threshold.
The current control unit controls the current flowing through the battery pack so that the current flowing through each battery is smaller than the threshold value.

本発明は、電池パックが有する複数の電池の内部抵抗のバラツキなどにより各電池に流れる電流が互いに異なる場合でも、各電池に流れる電流が、それぞれ対応する電池の許容電流を超えることを抑えて電池パックに流れる電流を制御することができる。   The present invention suppresses the current flowing through each battery from exceeding the allowable current of the corresponding battery even when the currents flowing through the batteries differ from each other due to variations in the internal resistance of the plurality of batteries included in the battery pack. The current flowing through the pack can be controlled.

本実施形態の制御装置の一例を示す図である。It is a figure which shows an example of the control apparatus of this embodiment. 制御部の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a control part. 各電池に流れる電流が、それぞれ対応する電池の許容電流よりも小さくなるように電池パックに流れる電流を制御するときの制御部の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a control part when controlling the electric current which flows into a battery pack so that the electric current which flows through each battery may become smaller than the allowable electric current of a corresponding battery, respectively. 電流検出部により検出される電流をアナログ値からデジタル値に変換するときの制御部の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a control part when converting the electric current detected by an electric current detection part from an analog value to a digital value.

図1は、本実施形態の制御装置の一例を示す図である。
図1に示す制御装置1は、例えば、電動フォークリフトやプラグインハイブリッド車などの車両に搭載され、互いに並列接続される複数の電池2(2−1〜2−n)を有する電池パックに流れる電流を制御する。各電池2は、それぞれ、直列接続される複数の二次電池(例えば、リチウムイオン電池)により構成されている。なお、各電池2は、それぞれ、一つの二次電池により構成されてもよい。
FIG. 1 is a diagram illustrating an example of a control device according to the present embodiment.
The control device 1 shown in FIG. 1 is mounted on a vehicle such as an electric forklift or a plug-in hybrid vehicle, for example, and flows through a battery pack having a plurality of batteries 2 (2-1 to 2-n) connected in parallel to each other. To control. Each battery 2 is composed of a plurality of secondary batteries (for example, lithium ion batteries) connected in series. Each battery 2 may be constituted by one secondary battery.

電池パックの充電時、車両の外部に設けられる外部充電器3は、制御装置1の制御部10から送信される電流指令値Ic1に応じた電力を車両に供給し、車両の内部に設けられる内部充電器4は、外部充電器3から供給される電力を電池パックに供給する。電池パックに供給される電力は、各電池2に供給され、各電池2が充電される。制御部10は、定電流/定電圧充電などを行うための目標電流値It1が電流制限値Ilよりも小さい場合、目標電流値It1を電流指令値Ic1として外部充電器3へ送信し、目標電流値It1が電流制限値Il以上である場合、電流制限値Ilを電流指令値Ic1として外部充電器3へ送信する。また、目標電流値It1が電流制限値Il以上である場合に、電流制限値Ilが小さくなると、電流指令値Ic1が小さくなり、電池パックに流れる電流が小さくなる。電池パックに流れる電流が小さくなると、各電池2に流れる電流も小さくなる。   When charging the battery pack, an external charger 3 provided outside the vehicle supplies electric power according to the current command value Ic1 transmitted from the control unit 10 of the control device 1 to the vehicle, and is provided inside the vehicle. The charger 4 supplies the power supplied from the external charger 3 to the battery pack. The electric power supplied to the battery pack is supplied to each battery 2, and each battery 2 is charged. When the target current value It1 for performing constant current / constant voltage charging or the like is smaller than the current limit value Il, the control unit 10 transmits the target current value It1 to the external charger 3 as the current command value Ic1, and the target current When the value It1 is equal to or greater than the current limit value Il, the current limit value Il is transmitted to the external charger 3 as the current command value Ic1. In addition, when the target current value It1 is equal to or greater than the current limit value Il, when the current limit value Il decreases, the current command value Ic1 decreases and the current flowing through the battery pack decreases. When the current flowing through the battery pack is reduced, the current flowing through each battery 2 is also reduced.

車両の走行時、車両に設けられる電力変換部6は、走行用モータ5が電力を消費する場合、電池パックから供給される直流電力を、制御部10から送信される電流指令値Ic2に応じた交流電力に変換して走行用モータ5に供給する。制御部10は、走行制御部12から送信される目標電流値It2が電流制限値Ilよりも小さい場合、目標電流値It2を電流指令値Ic2として電力変換部6へ送信し、目標電流値It2が電流制限値Il以上である場合、電流制限値Ilを電流指令値Ic2として電力変換部6へ送信する。また、目標電流値It2が電流制限値Il以上である場合に、電流制限値Ilが小さくなると、電力変換部6の出力電流が小さくなり、電池パックに流れる電流が小さくなる。電池パックに流れる電流が小さくなると、各電池2に流れる電流も小さくなる。なお、走行制御部15は、制御部10から送信される電流制限値Ilを受信し、目標電流値It2が電流制限値Ilよりも小さい場合、目標電流値It2を電流指令値Ic2として電力変換部6へ送信し、目標電流値It2が電流制限値Il以上である場合、電流制限値Ilを電流指令値Ic2として電力変換部6に送信するように構成してもよい。このように構成する場合、制御部10は、目標電流値It2と電流制限値Ilとの大小比較を行わずに電流制限値Ilを求めるだけでよい。   When the vehicle travels, the power conversion unit 6 provided in the vehicle responds to the current command value Ic2 transmitted from the control unit 10 with the DC power supplied from the battery pack when the travel motor 5 consumes power. It is converted into AC power and supplied to the traveling motor 5. When the target current value It2 transmitted from the travel control unit 12 is smaller than the current limit value Il, the control unit 10 transmits the target current value It2 to the power conversion unit 6 as the current command value Ic2, and the target current value It2 is When the current limit value Il is equal to or greater than the current limit value Il, the current limit value Il is transmitted to the power conversion unit 6 as the current command value Ic2. Further, when the target current value It2 is equal to or greater than the current limit value Il and the current limit value Il is small, the output current of the power conversion unit 6 is small and the current flowing through the battery pack is small. When the current flowing through the battery pack is reduced, the current flowing through each battery 2 is also reduced. The traveling control unit 15 receives the current limit value Il transmitted from the control unit 10, and when the target current value It2 is smaller than the current limit value Il, the power conversion unit 15 uses the target current value It2 as the current command value Ic2. When the target current value It2 is equal to or greater than the current limit value Il, the current limit value Il may be transmitted to the power conversion unit 6 as the current command value Ic2. In the case of such a configuration, the control unit 10 only needs to obtain the current limit value Il without performing a size comparison between the target current value It2 and the current limit value Il.

制御装置1は、複数の電圧検出部7(7−1〜7−n)と、複数の電流検出部8(8−1〜8−n)と、複数の温度検出部9(9−1〜9−n)と、制御部10と、記憶部11とを備える。例えば、電圧検出部7は電圧センサを有し、電流検出部8は電流センサを有し、温度検出部9は温度センサを有する。また、制御部10や走行制御部15はCPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)により構成される。また、記憶部11は、RAM(Random Access Memory)やROM(Read Only Memory)などにより構成される。   The control device 1 includes a plurality of voltage detection units 7 (7-1 to 7-n), a plurality of current detection units 8 (8-1 to 8-n), and a plurality of temperature detection units 9 (9-1 to 9-1). 9-n), a control unit 10, and a storage unit 11. For example, the voltage detection unit 7 includes a voltage sensor, the current detection unit 8 includes a current sensor, and the temperature detection unit 9 includes a temperature sensor. Further, the control unit 10 and the travel control unit 15 are configured by a CPU (Central Processing Unit), a multi-core CPU, and programmable devices (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device), etc.). The storage unit 11 includes a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.

電圧検出部7−1は電池2−1の電圧V1を検出する。電圧検出部7−2は電池2−2の電圧V2を検出する。また、電圧検出部7−nは電池2−nの電圧Vnを検出する。
電流検出部8−1は電池2−1に流れる電流I1を検出する。電流検出部8−2は電池2−2に流れる電流I2を検出する。また、電流検出部8−nは電池2−nに流れる電流Inを検出する。
The voltage detector 7-1 detects the voltage V1 of the battery 2-1. The voltage detector 7-2 detects the voltage V2 of the battery 2-2. Further, the voltage detection unit 7-n detects the voltage Vn of the battery 2-n.
The current detector 8-1 detects the current I1 flowing through the battery 2-1. The current detection unit 8-2 detects the current I2 flowing through the battery 2-2. Further, the current detection unit 8-n detects the current In flowing through the battery 2-n.

温度検出部9−1は電池2−1の温度T1を検出する。温度検出部9−2は電池2−2の温度T2を検出する。また、温度検出部9−nは電池2−nの温度Tnを検出する。
制御部10は、電池2−1〜2−nに流れる電流I1〜Inが閾値Ithよりも小さくなるように電池パックに流れる電流を制御する。
The temperature detector 9-1 detects the temperature T1 of the battery 2-1. The temperature detector 9-2 detects the temperature T2 of the battery 2-2. Further, the temperature detection unit 9-n detects the temperature Tn of the battery 2-n.
The control unit 10 controls the current flowing through the battery pack so that the currents I1 through In flowing through the batteries 2-1 through 2-n are smaller than the threshold value Ith.

制御部10は、許容電流取得部101と、電流閾値設定部102と、電流制御部103とを備える。許容電流取得部101、電流閾値設定部102、及び電流制御部103は、例えば、CPUなどが記憶部11に記憶されているプログラムを読み出し実行することによって実現される。   The control unit 10 includes an allowable current acquisition unit 101, a current threshold setting unit 102, and a current control unit 103. The allowable current acquisition unit 101, the current threshold setting unit 102, and the current control unit 103 are realized by, for example, a CPU or the like reading and executing a program stored in the storage unit 11.

許容電流取得部101は、電圧検出部7−1〜7−nにより検出される電圧V1〜Vn、電流検出部8−1〜8−nにより検出される電流I1〜In、及び温度検出部9−1〜9−nにより検出される温度T1〜Tnに基づいて、電池2−1〜2−nにそれぞれ対応する許容電流Ia1〜Ianを取得する。   The allowable current acquisition unit 101 includes voltages V1 to Vn detected by the voltage detection units 7-1 to 7-n, currents I1 to In detected by the current detection units 8-1 to 8-n, and a temperature detection unit 9. Based on the temperatures T1 to Tn detected by -1 to 9-n, the allowable currents Ia1 to Ian corresponding to the batteries 2-1 to 2-n are obtained.

電流閾値設定部102は、許容電流取得部101により取得された許容電流Ia1〜Ianのうちの最小値を閾値Ithに設定する。
電流制御部103は、電流I1〜Inのうちの少なくとも一つが許容電流Ia1〜Ianのうちの最小値である閾値Ith以上になると、電流I1〜Inすべてが閾値Ithよりも小さくなるまで、電流制限値Ilを下げる。これにより、電池パックの充電時又は車両の走行時、各電池2に流れる電流が各電池2の許容電流のうちの最小値よりも小さくなるように電池パックに流れる電流を制御することができる。
The current threshold setting unit 102 sets the minimum value of the allowable currents Ia1 to Ian acquired by the allowable current acquisition unit 101 as the threshold Ith.
When at least one of the currents I1 to In becomes equal to or greater than a threshold value Ith that is the minimum value of the allowable currents Ia1 to Ian, the current control unit 103 limits the current until all of the currents I1 to In become smaller than the threshold value Ith. Decrease value Il. Thus, the current flowing through the battery pack can be controlled so that the current flowing through each battery 2 is smaller than the minimum value of the allowable current of each battery 2 when the battery pack is charged or the vehicle is traveling.

図2は、制御部10の動作の一例を示すフローチャートである。
まず、車両の走行又は電池パックの充電が開始されると、許容電流取得部101は、電池2−1〜2−nの許容電流Ia1〜Ianを取得する(S21)。
FIG. 2 is a flowchart illustrating an example of the operation of the control unit 10.
First, when running of the vehicle or charging of the battery pack is started, the allowable current acquisition unit 101 acquires the allowable currents Ia1 to Ian of the batteries 2-1 to 2-n (S21).

次に、電流閾値設定部102は、許容電流取得部101により取得された許容電流Ia1〜Ianのうちの最小値を閾値Ithに設定し、閾値Ith×(接続される電池2の並列数n)を電流制限値Ilに設定する(S22)。   Next, the current threshold value setting unit 102 sets the minimum value among the allowable currents Ia1 to Ian acquired by the allowable current acquisition unit 101 as the threshold value Ith, and the threshold value Ith × (the number n of parallel batteries 2 to be connected). Is set to the current limit value Il (S22).

次に、電流制御部103は、電流検出部8−1〜8−nにより検出される電流I1〜Inのうちの少なくとも一つが閾値Ith以上であるか否かを判断する(S23)。
電流制御部103は、電流I1〜Inのうちの少なくとも一つの電流Iが閾値Ith以上であると判断すると(S23:Yes)、電流制限値Ilを一定値分下げ(S24)、車両の走行又は電池パックの充電が終了したか否かを判断する(S25)。
Next, the current control unit 103 determines whether or not at least one of the currents I1 to In detected by the current detection units 8-1 to 8-n is equal to or greater than the threshold value Ith (S23).
If the current control unit 103 determines that at least one of the currents I1 to In is equal to or greater than the threshold value Ith (S23: Yes), the current limit value Il is decreased by a certain value (S24), and the vehicle running or It is determined whether charging of the battery pack is completed (S25).

また、電流制御部103は、電流I1〜Inすべてが閾値Ithよりも小さいと判断すると(S23:No)、車両の走行又は電池パックの充電が終了したか否かを判断する(S25)。   Further, when the current control unit 103 determines that all of the currents I1 to In are smaller than the threshold value Ith (S23: No), the current control unit 103 determines whether traveling of the vehicle or charging of the battery pack is completed (S25).

次に、車両の走行又は電池パックの充電が終了していないと判断されると(S25:No)、許容電流取得部101は、許容電流Ia1〜Ianを取得し(S26)、電流閾値設定部102は、許容電流Ia1〜Ianのうちの最小値を閾値Ithに設定し(S27)、S23に戻る。   Next, when it is determined that driving of the vehicle or charging of the battery pack has not ended (S25: No), the allowable current acquisition unit 101 acquires the allowable currents Ia1 to Ian (S26), and a current threshold setting unit. 102 sets the minimum value of the allowable currents Ia1 to Ian to the threshold value Ith (S27), and returns to S23.

また、車両の走行又は電池パックの充電が終了したと判断されると(S25:Yes)、電池パックに流れる電流の制御処理を終了する。
これにより、実施形態の制御装置1は、電池パックの充電時又は車両の走行時、各電池2に流れる電流が各電池2の許容電流のうちの最小値よりも小さくなるように電池パックに流れる電流を制御することができるため、各電池2の内部抵抗のバラツキなどにより各電池2に流れる電流が互いに異なる場合でも、各電池2に流れる電流が、それぞれ対応する電池2の許容電流を超えることを抑えて電池パックに流れる電流を制御することができる。
Further, when it is determined that the vehicle travels or the battery pack has been charged (S25: Yes), the control process for the current flowing through the battery pack is terminated.
Thereby, the control device 1 of the embodiment flows through the battery pack so that the current flowing through each battery 2 is smaller than the minimum value of the allowable current of each battery 2 when the battery pack is charged or when the vehicle is running. Since the current can be controlled, even when the currents flowing through the batteries 2 are different from each other due to variations in internal resistance of the batteries 2, the currents flowing through the batteries 2 exceed the allowable currents of the corresponding batteries 2, respectively. It is possible to control the current flowing in the battery pack while suppressing the above.

なお、制御部10は、電流I1〜Inが、それぞれ対応する許容電流Ia1〜Ianよりも小さくなるように電池パックに流れる電流を制御するように構成してもよい。
図3は、電流I1〜Inが、それぞれ対応する許容電流Ia1〜Ianよりも小さくなるように電池パックに流れる電流を制御するときの制御部10の動作の一例を示すフローチャートである。
The control unit 10 may be configured to control the current flowing through the battery pack such that the currents I1 to In are smaller than the corresponding allowable currents Ia1 to Ian.
FIG. 3 is a flowchart illustrating an example of the operation of the control unit 10 when controlling the current flowing through the battery pack so that the currents I1 to In are smaller than the corresponding allowable currents Ia1 to Ian.

まず、車両の走行又は電池パックの充電が開始されると、許容電流取得部101は、電池2−1〜2−nの許容電流Ia1〜Ianを取得する(S31)。
次に、電流閾値設定部102は、許容電流取得部101により取得された許容電流Ia1〜Ianのうちの最小値を求め、その最小値×(接続される電池2の並列数n)を電流制限値Ilに設定する(S32)。
First, when driving of the vehicle or charging of the battery pack is started, the allowable current acquisition unit 101 acquires the allowable currents Ia1 to Ian of the batteries 2-1 to 2-n (S31).
Next, the current threshold setting unit 102 obtains the minimum value of the allowable currents Ia1 to Ian acquired by the allowable current acquisition unit 101, and limits the minimum value × (the number n of parallel connected batteries 2) as a current limit. The value Il is set (S32).

次に、電流制御部103は、電流検出部8−1〜8−nにより検出される電流I1〜Inが、それぞれ対応する許容電流Ia1〜Ian以上であるか否かを判断する(S33)。すなわち、電流制御部103は、電流検出部8−1により検出される電流I1が許容電流Ia1以上であるか否かを判断し、・・・、電流検出部8−nにより検出される電流Inが許容電流Ian以上であるか否かを判断する。   Next, the current control unit 103 determines whether or not the currents I1 to In detected by the current detection units 8-1 to 8-n are equal to or more than the corresponding allowable currents Ia1 to Ian (S33). That is, the current control unit 103 determines whether or not the current I1 detected by the current detection unit 8-1 is greater than or equal to the allowable current Ia1, and the current In detected by the current detection unit 8-n. Is greater than or equal to the allowable current Ian.

電流制御部103は、電流I1〜Inのうちの少なくとも一つの電流Iが、その電流Iに対応する許容電流Ia以上であると判断すると(S33:Yes)、電流制限値Ilを一定値分下げ(S34)、車両の走行又は電池パックの充電が終了したか否かを判断する(S35)。   When the current control unit 103 determines that at least one of the currents I1 to In is equal to or larger than the allowable current Ia corresponding to the current I (S33: Yes), the current control value Il is decreased by a certain value. (S34), it is determined whether traveling of the vehicle or charging of the battery pack is completed (S35).

また、電流制御部103は、電流I1〜Inが、それぞれ対応する許容電流Ia1〜Ianよりも小さいと判断すると(S33:No)、車両の走行又は電池パックの充電が終了したか否かを判断する(S35)。   Further, when the current control unit 103 determines that the currents I1 to In are smaller than the corresponding allowable currents Ia1 to Ian (S33: No), the current control unit 103 determines whether the vehicle travels or the battery pack is completely charged. (S35).

次に、車両の走行又は電池パックの充電が終了していないと判断されると(S35:No)、許容電流Ia1〜Ianを取得し(S36)、S33に戻る。
また、車両の走行又は電池パックの充電が終了したと判断されると(S35:Yes)、電池パックに流れる電流の制御処理を終了する。
Next, when it is determined that the vehicle is not running or the battery pack is not charged (S35: No), the allowable currents Ia1 to Ian are acquired (S36), and the process returns to S33.
Further, when it is determined that the vehicle travels or the battery pack is completely charged (S35: Yes), the control process for the current flowing through the battery pack is terminated.

これにより、電池パックの充電時又は車両の走行時、各電池2に流れる電流が、それぞれ対応する電池2の許容電流よりも小さくなるように電池パックに流れる電流を制御することができるため、各電池2の内部抵抗のバラツキなどにより各電池2に流れる電流が互いに異なる場合でも、各電池2に流れる電流が、それぞれ対応する電池2の許容電流を超えることを抑えて電池パックに流れる電流を制御することができる。   Thereby, when charging the battery pack or driving the vehicle, the current flowing through each battery 2 can be controlled so that the current flowing through each battery 2 becomes smaller than the allowable current of the corresponding battery 2. Even when the currents flowing through the batteries 2 are different from each other due to variations in the internal resistance of the batteries 2, the currents flowing through the batteries 2 are controlled so as not to exceed the allowable currents of the corresponding batteries 2. can do.

図4は、電流検出部8により検出される電流をアナログ値からデジタル値に変換するときの制御部10の動作の一例を示すフローチャートである。
まず、制御部10は、電池パックが充電中であるか否かを判断する(S41)。
FIG. 4 is a flowchart illustrating an example of the operation of the control unit 10 when the current detected by the current detection unit 8 is converted from an analog value to a digital value.
First, the control unit 10 determines whether or not the battery pack is being charged (S41).

次に、制御部10は、電池パックが充電中であると判断すると(S41:Yes)、車両の走行中に比べて、電流検出部8−1〜8−nにより検出される電流I1〜Inをアナログ値からデジタル値に変換(AD変換)するときの入力レンジを狭くする(S42)。   Next, when the control unit 10 determines that the battery pack is being charged (S41: Yes), the currents I1 to In detected by the current detection units 8-1 to 8-n are compared to when the vehicle is traveling. The input range when converting the analog value into the digital value (AD conversion) is narrowed (S42).

また、制御部10は、車両が走行中であると判断すると(S41:No)、電流I1〜Inをアナログ値からデジタル値に変換するときの入力レンジを変更しない。
これにより、電池パックの充電中では、車両の走行中に比べて、電流I1〜Inをアナログ値からデジタル値に変換するときのLSB(Least Significant Bit)を小さくすることができるため、電流I1〜Inを高精度に検出することができ、電池パックに流れる電流の制御処理をより精度良く行うことができる。
Moreover, if the control part 10 judges that the vehicle is drive | working (S41: No), it will not change the input range when converting the electric currents I1-In from an analog value into a digital value.
Thereby, during charging of the battery pack, LSB (Least Significant Bit) when converting the currents I1 to In from an analog value to a digital value can be made smaller than when the vehicle is running. In can be detected with high accuracy, and control processing of the current flowing through the battery pack can be performed with higher accuracy.

<許容電流取得部101及び電流閾値設定部102の例>
例えば、許容電流取得部101は、要素1〜要素4にそれぞれ対応する第1〜第4の許容電流取得部を備える。
<Example of Allowable Current Acquisition Unit 101 and Current Threshold Setting Unit 102>
For example, the allowable current acquisition unit 101 includes first to fourth allowable current acquisition units corresponding to the elements 1 to 4, respectively.

第1の許容電流取得部は、電池2のSOC(State Of Charge:電池2の満容量を基準とする現在の電池2の容量の比率)及び温度(要素1)に基づいて、「電池2−1の許容電流Ia11」〜「電池2−nの許容電流Ia1n」を取得する。   The first allowable current acquisition unit is configured based on the SOC (State Of Charge: the ratio of the current capacity of the battery 2 based on the full capacity of the battery 2) and the temperature (element 1). 1 allowable current Ia11 ”to“ allowable current Ia1n of battery 2-n ”.

例えば、第1の許容電流取得部は、電池2の電圧とSOCとの対応関係が示される「電圧−SOCマップ」を参照して、電圧検出部7−1により検出される電圧V1に対応するSOCを電池2−1のSOC1として取得する。また、第1の許容電流取得部は、「電圧−SOCマップ」を参照して、「電圧V2に対応する電池2−2のSOC2」〜「電圧Vnに対応する電池2−nのSOCn」を取得する。次に、第1の許容電流取得部は、所定温度(例えば、40℃、25℃、0℃、−10℃)毎に、電池2のSOCと許容電流との対応関係が示される「SOC−許容電流マップ」のうち、温度検出部9−1により検出される温度T1に対応する「SOC−許容電流マップ」を参照して、SOC1に対応する許容電流を電池2−1の許容電流Ia1として取得する。また、第1の許容電流取得部は、温度T2〜Tnに対応する各「SOC−許容電流マップ」を参照して、「SOC2に対応する電池2−2の許容電流Ia2」〜「SOCnに対応する電池2−nの許容電流Ian」を取得する。   For example, the first allowable current acquisition unit corresponds to the voltage V1 detected by the voltage detection unit 7-1 with reference to the “voltage-SOC map” indicating the correspondence between the voltage of the battery 2 and the SOC. The SOC is acquired as the SOC1 of the battery 2-1. The first allowable current acquisition unit refers to the “voltage-SOC map” and obtains “SOC2 of the battery 2-2 corresponding to the voltage V2” to “SOCn of the battery 2-n corresponding to the voltage Vn”. get. Next, the first allowable current acquisition unit displays the correspondence relationship between the SOC of the battery 2 and the allowable current for each predetermined temperature (for example, 40 ° C., 25 ° C., 0 ° C., −10 ° C.). Of the “allowable current map”, referring to the “SOC-allowable current map” corresponding to the temperature T1 detected by the temperature detector 9-1, the allowable current corresponding to SOC1 is set as the allowable current Ia1 of the battery 2-1. get. The first allowable current acquisition unit refers to each “SOC-allowable current map” corresponding to the temperatures T2 to Tn, and corresponds to “allowable current Ia2 of the battery 2-2 corresponding to SOC2” to “SOCn”. To obtain the allowable current Ian of the battery 2-n.

第2の許容電流取得部は、電池2の過充放電抑制に関する情報(要素2)に基づいて、「電池2−1の許容電流Ia21」〜「電池2−nの許容電流Ia2n」を取得する。
例えば、第2の許容電流取得部は、正常時(電池2−1〜2−nが過充電状態又は過放電状態でないとき)、予め決められている許容電流Ia21〜Ia2nを記憶部11から取得する。また、第2の許容電流取得部は、電圧検出部7−1により検出される電圧V1が閾値Vth以下になり電池2−1が過放電状態であると判断すると、電池2−1の許容電流Ia21を小さくする。また、第2の許容電流取得部は、電圧検出部7−1により検出される電圧V1が閾値Vthよりも大きくなり電池2−1が過放電状態でなくなったと判断すると、電池2−1の許容電流Ia21を元の値に戻す。また、第2の許容電流取得部は、電池2−2〜2−nの過充放電状態に応じて許容電流Ia22〜Ia2nを変化させる。
The second allowable current acquisition unit acquires “allowable current Ia21 of battery 2-1” to “allowable current Ia2n of battery 2-n” based on information (element 2) relating to overcharge / discharge suppression of battery 2. .
For example, the second allowable current acquisition unit acquires predetermined allowable currents Ia21 to Ia2n from the storage unit 11 when normal (when the batteries 2-1 to 2-n are not in an overcharged state or an overdischarged state). To do. Further, when the second allowable current acquisition unit determines that the voltage V1 detected by the voltage detection unit 7-1 is equal to or lower than the threshold value Vth and the battery 2-1 is in an overdischarged state, the allowable current of the battery 2-1 Ia21 is reduced. When the second allowable current acquisition unit determines that the voltage V1 detected by the voltage detection unit 7-1 is greater than the threshold value Vth and the battery 2-1 is no longer in an overdischarged state, the second allowable current acquisition unit The current Ia21 is returned to the original value. Further, the second allowable current acquisition unit changes the allowable currents Ia22 to Ia2n according to the overcharge / discharge states of the batteries 2-2 to 2-n.

第3の許容電流取得部は、電池2の異常レベル(要素3)に基づいて、「電池2−1の許容電流Ia31」〜「電池2−nの許容電流Ia3n」を取得する。
例えば、第3の許容電流取得部は、正常時(電池2−1〜2−nに異常が発生していないとき)、予め決められている許容電流Ia31〜Ia3nを記憶部11から取得する。また、第3の許容電流取得部は、電池2−1にレベル1の異常(例えば、温度T1が閾値Tth1以上になる異常)が発生すると、許容電流Ia31を小さくする。また、第3の許容電流取得部は、電池2−1にレベル2の異常(例えば、温度T1が閾値Tth1よりも大きい閾値Tth2以上になる異常)が発生すると、レベル1に比べてさらに許容電流Ia31を小さくする。また、第3の許容電流取得部は、電池2−2〜2−nに異常が発生すると、異常レベルに応じて許容電流Ia32〜Ia3nを変化させる。
The third allowable current acquisition unit acquires “allowable current Ia31 of battery 2-1” to “allowable current Ia3n of battery 2-n” based on the abnormal level (element 3) of battery 2.
For example, the third allowable current acquisition unit acquires predetermined allowable currents Ia31 to Ia3n from the storage unit 11 when normal (when no abnormality occurs in the batteries 2-1 to 2-n). Further, the third allowable current acquisition unit decreases the allowable current Ia31 when a level 1 abnormality (for example, an abnormality in which the temperature T1 becomes equal to or higher than the threshold Tth1) occurs in the battery 2-1. Further, the third allowable current acquisition unit further increases the allowable current compared to level 1 when a level 2 abnormality (for example, an abnormality in which the temperature T1 is greater than or equal to the threshold value Tth2) occurs in the battery 2-1. Ia31 is reduced. In addition, when an abnormality occurs in the batteries 2-2 to 2-n, the third allowable current acquisition unit changes the allowable currents Ia32 to Ia3n according to the abnormality level.

第4の許容電流取得部は、電池2の析出抑制に関する情報(要素4)に基づいて、「電池2−1の許容電流Ia41」〜「電池2−nの許容電流Ia4n」を取得する。
例えば、第4の許容電流取得部は、電池2の劣化度(例えば、電池2の過去の内部抵抗を基準とする現在の内部抵抗の比率や電池2の過去の容量を基準とする現在の容量の比率)毎に、電池2の析出が抑制されているときの電池2の電圧と温度と許容電流との対応関係が示される「電圧−温度−許容電流マップ」のうち、電池2−1の劣化度に対応する「電圧−温度−許容電流マップ」を参照して、電圧検出部7−1により検出される電圧V1及び温度検出部9−1により検出される温度T1に対応する許容電流を電池2−1の許容電流Ia41として取得する。また、第4の許容電流取得部は、電池2−2〜2−nの劣化度に対応する各「電圧−温度−許容電流マップ」を参照して、「電圧検出部7−2により検出される電圧V2及び温度検出部9−2により検出される温度T2に対応する許容電流Ia42」〜「電圧検出部7−nにより検出される電圧Nn及び温度検出部9−nにより検出される温度Tnに対応する許容電流Ia4n」を取得する。
The fourth allowable current acquisition unit acquires “allowable current Ia41 of battery 2-1” to “allowable current Ia4n of battery 2-n” based on information (element 4) related to suppression of deposition of battery 2.
For example, the fourth allowable current acquisition unit may calculate the degree of deterioration of the battery 2 (for example, the current internal resistance ratio based on the past internal resistance of the battery 2 or the current capacity based on the past capacity of the battery 2. In the “Voltage-Temperature-Allowable Current Map” in which the correspondence relationship between the voltage, the temperature, and the allowable current of the battery 2 when the deposition of the battery 2 is suppressed is shown for each ratio) of the battery 2-1. With reference to the “voltage-temperature-allowable current map” corresponding to the degree of deterioration, the allowable current corresponding to the voltage V1 detected by the voltage detector 7-1 and the temperature T1 detected by the temperature detector 9-1 is obtained. Obtained as the allowable current Ia41 of the battery 2-1. Further, the fourth allowable current acquisition unit refers to each “voltage-temperature-allowable current map” corresponding to the degree of deterioration of the batteries 2-2 to 2-n, and is detected by the “voltage detection unit 7-2”. Voltage V2 and allowable current Ia42 corresponding to temperature T2 detected by temperature detector 9-2 "to" voltage Nn detected by voltage detector 7-n and temperature Tn detected by temperature detector 9-n " The allowable current Ia4n corresponding to “is acquired.

そして、電流閾値設定部102は、第1〜第4の許容電流取得部により取得されるすべての許容電流のうちの最小値を閾値Ithに設定する。
なお、許容電流取得部101は、第1〜第4の許容電流取得部のうちの少なくとも二つを備え、電流閾値設定部102は、その少なくとも二つの許容電流取得部で取得される許容電流のうちの最小値を閾値Ithに設定するように構成してもよい。
Then, the current threshold setting unit 102 sets the minimum value among all the allowable currents acquired by the first to fourth allowable current acquisition units as the threshold Ith.
The allowable current acquisition unit 101 includes at least two of the first to fourth allowable current acquisition units, and the current threshold setting unit 102 includes the allowable current acquired by the at least two allowable current acquisition units. Of these, the minimum value may be set to the threshold value Ith.

<許容電流取得部101及び電流閾値設定部102の他の例>
例えば、許容電流取得部101は、電池2−1〜2−nにそれぞれ対応する第1〜第nの許容電流取得部を備える。
<Other Examples of Allowable Current Acquisition Unit 101 and Current Threshold Setting Unit 102>
For example, the allowable current acquisition unit 101 includes first to nth allowable current acquisition units corresponding to the batteries 2-1 to 2-n, respectively.

第1の許容電流取得部は、電池2−1について要素1〜4にそれぞれ対応する許容電流Ia11〜Ia41を取得する。第2の許容電流取得部は、電池2−2について要素1〜4にそれぞれ対応する許容電流Ia12〜Ia42を取得する。また、第nの許容電流取得部は、電池2−nについて要素1〜4にそれぞれ対応する許容電流Ia1n〜Ia4nを取得する。   The first allowable current acquisition unit acquires allowable currents Ia11 to Ia41 corresponding to the elements 1 to 4 for the battery 2-1. The second allowable current acquisition unit acquires allowable currents Ia12 to Ia42 corresponding to the elements 1 to 4 for the battery 2-2, respectively. The nth allowable current acquisition unit acquires allowable currents Ia1n to Ia4n corresponding to the elements 1 to 4 for the battery 2-n.

すなわち、第1の許容電流取得部は、電池2−1のSOC1及び温度T1に基づいて、電池2−1の許容電流Ia11を取得し、電池2−1の過充放電抑制に関する情報に基づいて、電池2−1の許容電流Ia21を取得し、電池2−1の異常レベルに基づいて、電池2−1の許容電流Ia31を取得し、電池2−1の析出抑制に関する情報に基づいて、電池2−1の許容電流Ia41を取得する。第2の許容電流取得部は、電池2−2のSOC2及び温度T2に基づいて、電池2−2の許容電流Ia12を取得し、電池2−2の過充放電抑制に関する情報に基づいて、電池2−2の許容電流Ia22を取得し、電池2−2の異常レベルに基づいて、電池2−2の許容電流Ia32を取得し、電池2−2の析出抑制に関する情報に基づいて、電池2−2の許容電流Ia42を取得する。また、第nの許容電流取得部は、電池2−nのSOCn及び温度Tnに基づいて、電池2−nの許容電流Ia1nを取得し、電池2−nの過充放電抑制に関する情報に基づいて、電池2−nの許容電流Ia2nを取得し、電池2−nの異常レベルに基づいて、電池2−nの許容電流Ia3nを取得し、電池2−nの析出抑制に関する情報に基づいて、電池2−nの許容電流Ia4nを取得する。   That is, the first allowable current acquisition unit acquires the allowable current Ia11 of the battery 2-1 based on the SOC1 and the temperature T1 of the battery 2-1, and based on the information regarding the overcharge / discharge suppression of the battery 2-1. Then, the allowable current Ia21 of the battery 2-1 is acquired, the allowable current Ia31 of the battery 2-1 is acquired based on the abnormal level of the battery 2-1, and the battery is determined based on the information on the deposition suppression of the battery 2-1. The allowable current Ia41 of 2-1 is acquired. The second allowable current acquisition unit acquires the allowable current Ia12 of the battery 2-2 based on the SOC2 and the temperature T2 of the battery 2-2, and determines the battery based on information related to overcharge / discharge suppression of the battery 2-2. The allowable current Ia22 of 2-2 is acquired, the allowable current Ia32 of the battery 2-2 is acquired based on the abnormal level of the battery 2-2, and the battery 2- 2 allowable current Ia42 is acquired. Further, the nth allowable current acquisition unit acquires the allowable current Ia1n of the battery 2-n based on the SOCn and the temperature Tn of the battery 2-n, and based on the information related to the overcharge / discharge suppression of the battery 2-n. Then, the allowable current Ia2n of the battery 2-n is acquired, the allowable current Ia3n of the battery 2-n is acquired based on the abnormal level of the battery 2-n, and the battery is determined based on the information on the deposition suppression of the battery 2-n. The 2-n allowable current Ia4n is acquired.

そして、電流閾値設定部102は、第1〜第nの許容電流取得部により取得されるすべての許容電流のうちの最小値を閾値Ithに設定する。
なお、第1〜第nの許容電流取得部は、それぞれ、要素1〜4のうちの少なくともニつの要素に対応する許容電流を取得し、電流閾値設定部102は、第1〜第nの許容電流取得部で取得される許容電流のうちの最小値を閾値Ithに設定するように構成してもよい。
Then, the current threshold setting unit 102 sets the minimum value of all the allowable currents acquired by the first to nth allowable current acquisition units as the threshold Ith.
Each of the first to nth allowable current acquisition units acquires an allowable current corresponding to at least two of the elements 1 to 4, and the current threshold setting unit 102 includes the first to nth allowable currents. You may comprise so that the minimum value of the allowable current acquired by an electric current acquisition part may be set to the threshold value Ith.

<他の実施形態>
制御部10は、「電池2−1の入出力電力W1」〜「電池2−nの入出力電力Wn」が、「電池2−1の許容電力Wa1」〜「電池2−nの許容電力Wan」のうちの最小値である閾値Wthよりも小さくなるように、電池パックの入出力電力を制御するように構成してもよい。
<Other embodiments>
The control unit 10 sets “input / output power W1 of the battery 2-1” to “input / output power Wn of the battery 2-n” to “allowable power Wa1 of the battery 2-1” to “allowable power Wan of the battery 2-n”. The input / output power of the battery pack may be controlled so as to be smaller than the threshold value Wth which is the minimum value of “”.

このように構成する場合、制御部10は、許容電力取得部、電力閾値設定部、及び電力制御部を備える。
許容電力取得部は、電圧検出部7−1〜7−nにより検出される電圧V1〜Vn、電流検出部8−1〜8−nにより検出される電流I1〜In、及び温度検出部9−1〜9−nにより検出される温度T1〜Tnに基づいて、「電池2−1の許容電力Wa1」〜「電池2−nの許容電力Wan」を取得する。例えば、許容電力取得部は、上記許容電流取得部101と同様に、許容電流Ia1〜Ianを取得し、その取得した許容電流Ia1〜Ianにそれぞれ対応する電池2の電圧を乗算することにより、許容電力Wa1〜Wanを求める。
When configured in this manner, the control unit 10 includes an allowable power acquisition unit, a power threshold setting unit, and a power control unit.
The allowable power acquisition unit includes voltages V1 to Vn detected by the voltage detection units 7-1 to 7-n, currents I1 to In detected by the current detection units 8-1 to 8-n, and a temperature detection unit 9-. Based on the temperatures T1 to Tn detected by 1 to 9-n, “allowable power Wa1 of battery 2-1” to “allowable power Wan of battery 2-n” are acquired. For example, similar to the allowable current acquisition unit 101, the allowable power acquisition unit acquires the allowable currents Ia1 to Ian, and multiplies the acquired allowable currents Ia1 to Ian by the voltages of the batteries 2 respectively. The electric power Wa1-Wan is obtained.

電力閾値設定部は、許容電力取得部により取得された許容電力Wa1〜Wanのうちの最小値を閾値Wthに設定する。
電力制御部は、電池パックの充電時又は車両の走行時、入出力電力W1〜Wnのうちの少なくとも一つが閾値Wth以上になると、入出力電力W1〜Wnすべてが閾値Wthよりも小さくなるまで、電流制限値Ilを下げる。
The power threshold setting unit sets the minimum value among the allowable powers Wa1 to Wa acquired by the allowable power acquisition unit as the threshold Wth.
When at least one of the input / output powers W1 to Wn is equal to or greater than the threshold value Wth when the battery pack is charged or the vehicle is running, the input / output power W1 to Wn is reduced to less than the threshold value Wth. Decrease current limit value Il.

これにより、他の実施形態の制御装置1は、電池パックの充電時又は車両の走行時、各電池2の入出力電力が各電池2の許容電力のうちの最小値よりも小さくなるように電池パックの入出力電力を制御することができるため、各電池2の内部抵抗のバラツキなどにより各電池2に流れる電流が互いに異なる場合でも、各電池2の入出力電力が、それぞれ対応する電池2の許容電力を超えることを抑えて電池パックの入出力電力を制御することができる。   As a result, the control device 1 according to another embodiment allows the input / output power of each battery 2 to be smaller than the minimum value of the allowable power of each battery 2 when the battery pack is charged or the vehicle is running. Since the input / output power of the pack can be controlled, the input / output power of each battery 2 is different from that of the corresponding battery 2 even when the currents flowing through the batteries 2 are different from each other due to variations in the internal resistance of each battery 2. The input / output power of the battery pack can be controlled while preventing the allowable power from being exceeded.

1 制御装置
2 電池
3 外部充電器
4 内部充電器
5 走行用モータ
6 電力変換部
7 電圧検出部
8 電流検出部
9 温度検出部
10 制御部
11 記憶部
15 走行制御部
101 許容電流取得部
102 電流閾値設定部
103 電流制御部
DESCRIPTION OF SYMBOLS 1 Control apparatus 2 Battery 3 External charger 4 Internal charger 5 Driving motor 6 Power conversion part 7 Voltage detection part 8 Current detection part 9 Temperature detection part 10 Control part 11 Storage part 15 Traveling control part 101 Allowable current acquisition part 102 Current Threshold setting unit 103 Current control unit

Claims (7)

並列接続される複数の電池を有する電池パックに流れる電流を制御する制御装置であって、
前記各電池の許容電流を取得する許容電流取得部と、
前記各電池の許容電流のうちの最小値を閾値に設定する電流閾値設定部と、
前記各電池に流れる電流が前記閾値よりも小さくなるように前記電池パックに流れる電流を制御する電流制御部と、
を備えることを特徴とする制御装置。
A control device for controlling a current flowing in a battery pack having a plurality of batteries connected in parallel,
An allowable current acquisition unit for acquiring the allowable current of each battery;
A current threshold setting unit that sets a minimum value of the allowable current of each battery as a threshold; and
A current control unit that controls a current flowing through the battery pack so that a current flowing through each battery is smaller than the threshold;
A control device comprising:
請求項1に記載の制御装置であって、
前記電池パックが搭載される車両の走行中に比べて、前記電池パックの充電中における、前記各電池に流れる電流をアナログ値からデジタル値に変換するときの入力レンジを小さくする
ことを特徴とする制御装置。
The control device according to claim 1,
The input range for converting the current flowing through each battery from an analog value to a digital value during charging of the battery pack is smaller than during traveling of a vehicle on which the battery pack is mounted. Control device.
請求項1又は請求項2に記載の制御装置であって、
前記許容電流取得部は、
前記各電池のSOC及び温度に基づいて前記各電池の許容電流を取得する第1の許容電流取得部と、
前記各電池の過充放電抑制に関する情報に基づいて前記各電池の許容電流を取得する第2の許容電流取得部と、
前記各電池の異常レベルに基づいて前記各電池の許容電流を取得する第3の許容電流取得部と、
前記各電池の析出抑制に関する情報に基づいて前記各電池の許容電流を取得する第4の許容電流取得部と、
のうち少なくともニつの許容電流取得部を備え、
前記電流閾値設定部は、前記少なくともニつの許容電流取得部でそれぞれ取得される許容電流のうちの最小値を前記閾値に設定する
ことを特徴とする制御装置。
The control device according to claim 1 or 2,
The allowable current acquisition unit includes:
A first allowable current acquisition unit that acquires the allowable current of each battery based on the SOC and temperature of each battery;
A second allowable current acquisition unit for acquiring an allowable current of each battery based on information on suppression of overcharge / discharge of each battery;
A third allowable current acquisition unit that acquires the allowable current of each battery based on the abnormal level of each battery;
A fourth allowable current acquisition unit that acquires the allowable current of each battery based on information on the deposition suppression of each battery;
Including at least two allowable current acquisition units,
The control device, wherein the current threshold value setting unit sets a minimum value of allowable currents respectively acquired by the at least two allowable current acquisition units as the threshold value.
請求項1又は請求項2に記載の制御装置であって、
前記許容電流取得部は、
前記各電池のうちの第1の電池のSOC及び温度に基づく前記第1の電池の許容電流、前記第1の電池の過充放電抑制に関する情報に基づく前記第1の電池の許容電流、前記第1の電池の異常レベルに基づく前記第1の電池の許容電流、前記第1の電池の析出抑制に関する情報に基づく前記第1の電池の許容電流、のうちの少なくともニつの許容電流を取得する第1の許容電流取得部と、
前記各電池のうちの第2の電池のSOC及び温度に基づく前記第2の電池の許容電流、前記第2の電池の過充放電抑制に関する情報に基づく前記第2の電池の許容電流、前記第2の電池の異常レベルに基づく前記第2の電池の許容電流、前記第2の電池の析出抑制に関する情報に基づく前記第2の電池の許容電流、のうちの少なくともニつの許容電流を取得する第2の許容電流取得部と、
を備え、
前記電流閾値設定部は、前記第1及び第2の許容電流取得部でそれぞれ取得される許容電流のうちの最小値を前記閾値に設定する
ことを特徴とする制御装置。
The control device according to claim 1 or 2,
The allowable current acquisition unit includes:
Among the batteries, the allowable current of the first battery based on the SOC and temperature of the first battery, the allowable current of the first battery based on information related to suppression of overcharge / discharge of the first battery, the first A first current that obtains at least two permissible currents out of the permissible current of the first battery based on the abnormal level of the first battery and the permissible current of the first battery based on information related to the suppression of deposition of the first battery. 1 allowable current acquisition unit;
Among the batteries, an allowable current of the second battery based on the SOC and temperature of the second battery, an allowable current of the second battery based on information on suppression of overcharge / discharge of the second battery, the second The second battery obtains at least two allowable currents out of the allowable current of the second battery based on the abnormal level of the second battery and the allowable current of the second battery based on information related to the suppression of deposition of the second battery. Two allowable current acquisition units;
With
The control unit, wherein the current threshold setting unit sets a minimum value of the allowable currents acquired by the first and second allowable current acquisition units as the threshold.
並列接続される複数の電池を有する電池パックに流れる電流を制御する制御方法であって、
前記各電池の許容電流を取得し、
前記各電池の許容電流のうちの最小値を閾値に設定し、
前記各電池に流れる電流が前記閾値よりも小さくなるように前記電池パックに流れる電流を制御する
ことを特徴とする制御方法。
A control method for controlling a current flowing in a battery pack having a plurality of batteries connected in parallel,
Obtaining the allowable current of each battery,
Set the minimum value of the allowable current of each battery as a threshold,
The control method characterized by controlling the electric current which flows into the said battery pack so that the electric current which flows through each said battery may become smaller than the said threshold value.
並列接続される複数の電池を有する電池パックの入出力電力を制御する制御装置であって、
前記各電池の許容電力を取得する許容電力取得部と、
前記各電池の許容電力のうちの最小値を閾値に設定する電力閾値設定部と、
前記各電池の入出力電力が前記閾値よりも小さくなるように前記電池パックの入出力電力を制御する電力制御部と、
を備えることを特徴とする制御装置。
A control device for controlling input / output power of a battery pack having a plurality of batteries connected in parallel,
An allowable power acquisition unit for acquiring the allowable power of each battery;
A power threshold setting unit that sets a minimum value of the allowable power of each battery as a threshold;
A power control unit for controlling the input / output power of the battery pack so that the input / output power of each battery is smaller than the threshold;
A control device comprising:
並列接続される複数の電池を有する電池パックの入出力電力を制御する制御方法であって、
前記各電池の許容電力を取得し、
前記各電池の許容電力のうちの最小値を閾値に設定し、
前記各電池の入出力電力が前記閾値よりも小さくなるように前記電池パックの入出力電力を制御する
ことを特徴とする制御方法。
A control method for controlling input / output power of a battery pack having a plurality of batteries connected in parallel,
Obtaining the allowable power of each battery,
Set a minimum value of the allowable power of each battery as a threshold,
The control method, wherein the input / output power of the battery pack is controlled so that the input / output power of each battery is smaller than the threshold value.
JP2014213345A 2014-10-20 2014-10-20 Control apparatus and control method Active JP6365222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014213345A JP6365222B2 (en) 2014-10-20 2014-10-20 Control apparatus and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014213345A JP6365222B2 (en) 2014-10-20 2014-10-20 Control apparatus and control method

Publications (2)

Publication Number Publication Date
JP2016082767A JP2016082767A (en) 2016-05-16
JP6365222B2 true JP6365222B2 (en) 2018-08-01

Family

ID=55959438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213345A Active JP6365222B2 (en) 2014-10-20 2014-10-20 Control apparatus and control method

Country Status (1)

Country Link
JP (1) JP6365222B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054828A1 (en) 2018-09-13 2020-03-19 本田技研工業株式会社 Power supply system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872758B2 (en) * 2003-01-08 2007-01-24 株式会社日立製作所 Power control device
JP5089883B2 (en) * 2005-12-16 2012-12-05 日立ビークルエナジー株式会社 Battery management device
JP4745879B2 (en) * 2006-04-06 2011-08-10 日立ビークルエナジー株式会社 Hybrid vehicle control system, hybrid vehicle control method, and vehicle storage battery control system
US8466684B2 (en) * 2006-06-16 2013-06-18 Chevron Technology Ventures Llc Determination of battery predictive power limits
JP4542536B2 (en) * 2006-11-06 2010-09-15 株式会社日立製作所 Power control device
JP2008232645A (en) * 2007-03-16 2008-10-02 Sanyo Electric Co Ltd Electric current detection apparatus of power supply for vehicle
WO2014027389A1 (en) * 2012-08-13 2014-02-20 日立ビークルエナジー株式会社 Cell control device and secondary cell system
JP2014143138A (en) * 2013-01-25 2014-08-07 Toyota Motor Corp Battery system and method for controlling input to nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2016082767A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6380635B2 (en) CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD
JP5715694B2 (en) Battery control device, battery system
JP5454632B2 (en) Charge / discharge control device
EP2757610B1 (en) Battery pack including different kinds of cells and power device including the same
US10459037B2 (en) State-of-charge estimation device and state-of-charge estimation method
US8829854B2 (en) Secondary battery
JP6361545B2 (en) Current control device
WO2015178075A1 (en) Battery control device
JP2013031247A (en) Battery device discharging system
JP5482809B2 (en) Equalization equipment
JP5959566B2 (en) Storage battery control device
JP2013121242A (en) Soc estimation device and battery pack
JP2013195319A (en) Charging equivalent amount calculation device of secondary battery
KR101583946B1 (en) Battery charging method
JP6365222B2 (en) Control apparatus and control method
JPWO2015133401A1 (en) Control unit, storage battery system, battery cell balance method and program
JP2022522342A (en) Battery diagnostic device, battery diagnostic method and energy storage system
JP6164147B2 (en) Battery control system and control method thereof
JP2013188100A (en) Charge/discharge control device of battery pack
JP6311616B2 (en) Charging current control device and charging current control method
JP2019024285A (en) Balance device and battery unit
JP2017108556A (en) Storage Charge Device and Charge Control Method
KR102394113B1 (en) Battery balancing apparatus and method
KR101915183B1 (en) Apparatus and method for setting and operating reference SOC of active cell balancing using common bus
JP2012095388A (en) Battery state monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6365222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151