JP6365210B2 - Steel sheet excellent in high temperature strength and toughness and method for producing the same - Google Patents

Steel sheet excellent in high temperature strength and toughness and method for producing the same Download PDF

Info

Publication number
JP6365210B2
JP6365210B2 JP2014209168A JP2014209168A JP6365210B2 JP 6365210 B2 JP6365210 B2 JP 6365210B2 JP 2014209168 A JP2014209168 A JP 2014209168A JP 2014209168 A JP2014209168 A JP 2014209168A JP 6365210 B2 JP6365210 B2 JP 6365210B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel
mass
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014209168A
Other languages
Japanese (ja)
Other versions
JP2016079426A (en
Inventor
仁志 古谷
仁志 古谷
洋志 熊谷
洋志 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014209168A priority Critical patent/JP6365210B2/en
Publication of JP2016079426A publication Critical patent/JP2016079426A/en
Application granted granted Critical
Publication of JP6365210B2 publication Critical patent/JP6365210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高温強度および靭性に優れた鋼板およびその製法に関するものである。この製法で製造した鋼板は、造船、橋梁、建築、海洋構造物、圧力容器、タンク、ラインパイプなどの溶接構造物一般に用いることができるが、特にPWHT(Post Weld Heat Treatment)と呼ばれる溶接後熱処理後の鋼板の中央部において,452℃で470MPa以上の引張強さと,−40℃で150J以上のシャルピー衝撃吸収エネルギーが必要とされるような圧力容器での使用において有効である。   The present invention relates to a steel plate excellent in high-temperature strength and toughness and a method for producing the same. The steel plate manufactured by this manufacturing method can be used in general for welded structures such as shipbuilding, bridges, buildings, marine structures, pressure vessels, tanks, line pipes, etc. In particular, post-weld heat treatment called PWHT (Post Weld Heat Treatment). It is effective for use in a pressure vessel that requires a tensile strength of 470 MPa or more at 452 ° C. and a Charpy impact absorption energy of 150 J or more at −40 ° C. at the center of the later steel plate.

原油精製プロセスの脱硫塔などに用いられる圧力容器は,生産性向上のため大型化の傾向にあり,板厚の大きい鋼板,例えば板厚100〜200mmの鋼板が使用されることがある。このような圧力容器用鋼板には,高温強度と低温靭性が求められる。生産効率を高めるため,高温強度要求は高まる傾向にあり,たとえば454℃の引張強さで470MPa以上が必要とされることが多くなっている。ここでの高温強度とはPWHT後の鋼板の高温強度性を指す。また一方では,低温靭性に対する要求も高まっており,たとえば−40℃のシャルピー衝撃吸収エネルギーで150J以上が必要とされることが多くなっている。ここでの靭性とはPWHT後の鋼板の靭性をさす。一般的に,鋼板の板厚が大きくなるにしたがって,板厚中心部の高温強度と靭性は低下することから,板厚中央部において,PWHT後の高温強度と低温靭性に優れる鋼板を提供することは困難である。   A pressure vessel used in a desulfurization tower of a crude oil refining process tends to be large for improving productivity, and a steel plate having a large thickness, for example, a steel plate having a thickness of 100 to 200 mm may be used. Such steel plates for pressure vessels are required to have high temperature strength and low temperature toughness. In order to increase production efficiency, the demand for high-temperature strength tends to increase. For example, 470 MPa or more is often required at a tensile strength of 454 ° C. The high temperature strength here refers to the high temperature strength of the steel sheet after PWHT. On the other hand, the demand for low-temperature toughness is also increasing. For example, 150 J or more is often required with a Charpy impact absorption energy of −40 ° C. The toughness here refers to the toughness of the steel sheet after PWHT. Generally, as the plate thickness of a steel plate increases, the high-temperature strength and toughness at the center of the plate thickness decrease, so that a steel plate having excellent high-temperature strength and low-temperature toughness after PWHT is provided at the center of the plate thickness. It is difficult.

このような課題に対して,圧力容器用鋼板の靭性を改善する技術が提示されている。特許文献1には,Vの添加により高温強度を確保した発明が示されている。しかし,この方法では板厚の大きい鋼板では十分な靭性が得られない。   In response to such problems, techniques for improving the toughness of steel plates for pressure vessels have been proposed. Patent Document 1 discloses an invention in which high-temperature strength is ensured by adding V. However, with this method, sufficient toughness cannot be obtained with a thick steel plate.

また,特許文献2には,組織をベイナイト,焼戻しマルテンサイトとするとともに微細化し,さらに炭化物の粗大化を抑制することで靭性を改善した発明が提案されている。しかし,この技術では,十分な高温強度を得ることができない。   Patent Document 2 proposes an invention in which the structure is made bainite and tempered martensite and refined, and the toughness is improved by suppressing the coarsening of carbides. However, this technology cannot provide sufficient high-temperature strength.

つまり、現在の技術では、板厚が大きく,PWHT後の板厚中央部における高温強度と靭性に優れる鋼板を提供することはできない。   In other words, with the current technology, it is not possible to provide a steel plate having a large plate thickness and excellent in high-temperature strength and toughness in the central portion of the plate thickness after PWHT.

特開平4−183842号公報JP-A-4-183842 特開2014−95130号公報JP 2014-95130 A

本発明の目的は、板厚が大きく,PWHT後の板厚中央部における高温強度と靭性に優れる鋼板およびその製造方法を提供することである。   An object of the present invention is to provide a steel plate having a large plate thickness and excellent in high-temperature strength and toughness in a plate thickness central portion after PWHT and a method for producing the same.

本発明は、板厚が大きく,PWHT後の板厚中央部における高温強度と靭性に優れる鋼板およびその製造方法を提供するものであり、その要旨とするところは以下の通りである。
(1)鋼が、質量%で、C:0.13%以上0.15%以下、Si:0.02%以上0.10%以下、Mn:0.40%以上0.60%以下、P:0.0010%以上0.0150%以下、S:0.0001%以上0.0035%以下、Cu:0.00%以上0.20%以下,Ni:0.01%以上0.25%以下,Cr:2.00%以上2.50%以下,Mo:0.90%以上1.10%以下,Nb:0.005%以上0.070%以下,V:0.295%以上0.350%以下,Ti:0.005%以上0.030%以下,Al:0.020%以上0.080%以下,B:0.0005%以上0.0020%以下,N:0.0005%以上0.0090%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成であり,下記式(A)で表されるXが22.6以上であり,応力除去焼鈍後の454℃における引張強さが470MPa以上であり,有効結晶粒径の平方根の逆数が8.5mm−1/2以上で,応力除去焼鈍後の鋼板の−40℃におけるシャルピー衝撃吸収エネルギーが150J以上であることを特徴とする、高温強度と靭性に優れた鋼板。
X=4Cr+11Mo+10V (A)
ここでCr:Crの質量%,Mo:Moの質量%,V:Vの質量%である。
The present invention provides a steel plate having a large plate thickness and excellent in high-temperature strength and toughness in the plate thickness central portion after PWHT, and a method for producing the same, and the gist thereof is as follows.
(1) Steel is in mass%, C: 0.13% to 0.15%, Si: 0.02% to 0.10%, Mn: 0.40% to 0.60%, P : 0.0010% to 0.0150%, S: 0.0001% to 0.0035%, Cu: 0.00% to 0.20%, Ni: 0.01% to 0.25% , Cr: 2.00% to 2.50%, Mo: 0.90% to 1.10%, Nb: 0.005% to 0.070%, V: 0.295% to 0.350 %: Ti: 0.005% to 0.030%, Al: 0.020% to 0.080%, B: 0.0005% to 0.0020%, N: 0.0005% to 0 .0090% or less, the balance being a steel composition consisting of Fe and inevitable impurities, In represented by X is not less 22.6 or more, a tensile strength at 454 ° C. after stress relief annealing is 470MPa or more, the reciprocal of the square root of the effective crystal grain size of 8.5 mm -1/2 or more, the stress A steel sheet excellent in high-temperature strength and toughness, wherein the steel sheet after removal annealing has a Charpy impact absorption energy at -40 ° C of 150 J or more.
X = 4Cr + 11Mo + 10V (A)
Here, Cr: mass% of Cr, Mo: mass% of Mo, and V: mass% of V.

(2)さらに質量%で、Ca:0.0003%以上0.0040%以下、Mg:0.0003%以上0.0040%以下、REM:0.0003%以上0.0040%以下のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする前記(1)に記載の高温強度と靭性に優れた鋼板。 (2) Further, by mass%, Ca: 0.0003% or more and 0.0040% or less, Mg: 0.0003% or more and 0.0040% or less, REM: 0.0003% or more and 0.0040% or less The steel sheet excellent in high-temperature strength and toughness as described in (1) above, wherein the steel composition contains a seed or more, and the balance is Fe and inevitable impurities.

(3)鋼が、質量%で、C :0.13%以上0.15%以下、Si:0.02%以上0.10%以下、Mn:0.40%以上0.60%以下、P:0.0010%以上0.0150%以下、S:0.0001%以上0.0035%以下、Cu:0.00%以上0.20%以下,Ni:0.01%以上0.25%以下,Cr:2.00%以上2.50%以下,Mo:0.90%以上1.10%以下,Nb:0.005%以上0.070%以下,V:0.295%以上0.350%以下,Ti:0.005%以上0.030%以下,Al:0.020%以上0.080%以下,B:0.0005%以上0.0020%以下,N:0.0005%以上0.0090%以下を含有し、残部がFe及び不可避的不純物からなり、下記式(A)で表されるXを22.6以上としてなる鋼組成のスラブを1100℃以上1280℃以下に加熱して,圧下比が1.5以上となる粗圧延を行い,粗圧延の終了から仕上圧延の開始までの時間を100秒以下として,圧下比が1.3以上で仕上1パス前温度が800℃以上となる仕上圧延を行い,その後,880℃以上1040℃以下に再加熱したのちに水冷する焼入れを行い,その後670℃以上770℃以下に加熱したのちに空冷を行う焼戻しを行い、応力除去焼鈍後の454℃における引張強さが470MPa以上であり,有効結晶粒径の平方根の逆数が8.5mm −1/2 以上で,応力除去焼鈍後の鋼板の−40℃におけるシャルピー衝撃吸収エネルギーが150J以上である鋼板を得ることを特徴とする,高温強度と靭性に優れた鋼板の製造方法。
X=4Cr+11Mo+10V (A)
ここでCr:Crの質量%,Mo:Moの質量%,V:Vの質量%である。
(3) Steel is mass%, C: 0.13% to 0.15%, Si: 0.02% to 0.10%, Mn: 0.40% to 0.60%, P : 0.0010% to 0.0150%, S: 0.0001% to 0.0035%, Cu: 0.00% to 0.20%, Ni: 0.01% to 0.25% , Cr: 2.00% to 2.50%, Mo: 0.90% to 1.10%, Nb: 0.005% to 0.070%, V: 0.295% to 0.350 %: Ti: 0.005% to 0.030%, Al: 0.020% to 0.080%, B: 0.0005% to 0.0020%, N: 0.0005% to 0 .0090% or less, the balance being Fe and inevitable impurities, represented by the following formula (A) A slab having a steel composition with X of 22.6 or more is heated to 1100 ° C. or more and 1280 ° C. or less to perform rough rolling with a reduction ratio of 1.5 or more, and the time from the end of rough rolling to the start of finish rolling Is 100 seconds or less, finish rolling is performed such that the reduction ratio is 1.3 or more and the temperature before the first pass is 800 ° C. or more, and then re-heated to 880 ° C. or more and 1040 ° C. or less, and then quenched with water. then have line tempering for performing air cooling after heating to 670 ° C. or higher 770 ° C. or less, and a tensile strength at 454 ° C. after stress relief annealing is 470MPa or more, the inverse of the square root of the effective crystal grain size of 8.5 mm - A method for producing a steel sheet excellent in high-temperature strength and toughness, characterized by obtaining a steel sheet having a Charpy impact absorption energy at -40 ° C. of 150 J or more at −40 ° C. Law.
X = 4Cr + 11Mo + 10V (A)
Here, Cr: mass% of Cr, Mo: mass% of Mo, and V: mass% of V.

(4)さらに質量%で、Ca:0.0003%以上0.0040%以下、Mg:0.0003%以上0.0040%以下、REM:0.0003%以上0.0040%以下のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする前記(3)に記載の高温強度と靭性に優れた鋼板の製造方法。 (4) Further, by mass%, Ca: 0.0003% or more and 0.0040% or less, Mg: 0.0003% or more and 0.0040% or less, REM: 0.0003% or more and 0.0040% or less The method for producing a steel sheet having excellent high-temperature strength and toughness as described in (3) above, wherein the steel composition contains at least a seed and the balance is Fe and inevitable impurities.

本発明によれば、板厚が大きく,高温強度に優れ,かつ板厚中心部の靭性に優れる鋼板およびその製造方法を提供することが可能であり、産業上の価値の高い発明であるといえる。   According to the present invention, it is possible to provide a steel plate having a large plate thickness, excellent high-temperature strength, and excellent toughness at the central portion of the plate thickness, and a method for producing the same. .

454℃における引張強さとXとの関係を示すグラフである。It is a graph which shows the relationship between the tensile strength in 454 degreeC, and X. FIG. 有効結晶粒径の平方根の逆数と靱性との関係を示すラフである。It is a rough showing the relationship between the inverse of the square root of the effective crystal grain size and toughness. 有効結晶粒径の平方根の逆数と移送時間との関係を示すグラフである。It is a graph which shows the relationship between the reciprocal number of the square root of an effective crystal grain size, and transfer time.

本発明を詳細に説明する。
発明者らは、ASTM,ASMEでA542D−4A,SA542D−4Aと呼称される鋼板,すなわちCrを2.25%程度,Moを1.0%程度含有して,200〜550℃程度での高温強度に優れる鋼板のうち,板厚が100〜200mm程度と大きい鋼板について, PWHT後の鋼板の高温強度と靭性を改善するための方法を種々検討した。
高温強度については,454℃の引張強さが470MPa以上という条件を満たすための合金成分について種々検討を行った結果,図1に示すように,下記式(A)
X=4Cr+11Mo+10V (A)
ここでCr:Crの質量%,Mo:Moの質量%,V:Vの質量%
であらわされるXの値が22.6以上の時に条件を満足することを知見した。よって,本発明におけるXの値を22.6以上と規定する。なお,Xの値に特に上限は設けないが,Cr,Mo,Vの添加量の上限から,Xの上限は25.6となる。
The present invention will be described in detail.
The inventors have steel plates called A542D-4A and SA542D-4A by ASTM and ASME, that is, containing about 2.25% of Cr and about 1.0% of Mo, at a high temperature of about 200 to 550 ° C. Among steel plates with excellent strength, various methods for improving the high-temperature strength and toughness of the steel plates after PWHT were investigated for steel plates having a large thickness of about 100 to 200 mm.
As for the high-temperature strength, as a result of various investigations on alloy components for satisfying the condition that the tensile strength at 454 ° C. is 470 MPa or more, as shown in FIG.
X = 4Cr + 11Mo + 10V (A)
Here, Cr: mass% of Cr, Mo: mass% of Mo, V: mass% of V
It was found that the condition was satisfied when the value of X expressed by Therefore, the value of X in the present invention is defined as 22.6 or more. Although there is no particular upper limit for the value of X, the upper limit of X is 25.6 due to the upper limit of the amount of Cr, Mo, V added.

靭性については,試験温度−40℃でのシャルピー衝撃吸収エネルギーが150J以上という条件を満たすための製造条件について種々検討を行った。その結果,焼入れ焼戻しで鋼板を製造する場合でも,焼入れ前の組織の微細化が重要であり,熱間圧延時の再結晶により変態前のオーステナイトを極力微細化しておくことが有効であることを知見した。本発明における粗圧延・仕上圧延の温度域は板厚が大きいこともあり大半が再結晶温度域のため,極力再結晶を進行させてオーステナイトを微細化することで,最終的な有効結晶粒径を小さくして靭性を改善できる。   Regarding toughness, various investigations were made on manufacturing conditions for satisfying the condition that Charpy impact absorption energy at a test temperature of −40 ° C. is 150 J or more. As a result, even when steel sheets are produced by quenching and tempering, it is important to refine the structure before quenching, and it is effective to refine austenite before transformation as much as possible by recrystallization during hot rolling. I found out. The temperature range of rough rolling and finish rolling in the present invention is mostly the recrystallization temperature range because the plate thickness may be large. By refining as much as possible to refine the austenite, the final effective grain size Can reduce toughness.

発明者は,粗圧延と仕上圧延の間の移送時間の影響を調査した。その結果,図2および図3に示すように,移送時間を短くすることで移送時の回復を抑制して,粗圧延と仕上圧延で導入された歪を効果的に再結晶に活用し,有効結晶粒径微細化を通じて靭性改善できることを見いだした。図2に示すように,移送時間を100秒以下とすることで,有効結晶粒径の平方根の逆数d−1/2が8.5mm−1/2以上となり,図3に示すように,−40℃におけるシャルピー衝撃吸収エネルギーを150J以上とすることができる。よって,本発明における移送時間を100秒以下と規定する。なお,ここで移送時間とは粗圧延の最終パスの噛み込み時を起点として,仕上圧延の第1パスの噛み込みを終点とした際の所要時間を指す。 The inventor investigated the influence of the transfer time between rough rolling and finish rolling. As a result, as shown in Fig. 2 and Fig. 3, the transfer time is shortened to suppress recovery during transfer, and the strain introduced in rough rolling and finish rolling is effectively utilized for recrystallization. It has been found that toughness can be improved through refinement of crystal grain size. As shown in FIG. 2, by setting the transfer time to 100 seconds or less, the reciprocal d −1/2 of the square root of the effective crystal grain size becomes 8.5 mm −1/2 or more, and as shown in FIG. The Charpy impact absorption energy at 40 ° C. can be 150 J or more. Therefore, the transfer time in the present invention is defined as 100 seconds or less. Here, the transfer time indicates the time required when the final pass of rough rolling is used as the starting point and the first pass of finish rolling is used as the end point.

また,本発明において,有効結晶粒径とは,EBSDにより測定された粒径を指す。たとえば,EBSDにおいて,160μm×160μmの面積について,0.2μm/stepの間隔で測定したデータをもとに,方位差15°以上を粒界と定義して,OIM−AnalysisなどEBSDに付属するソフトウェアを用いて算出した各結晶粒の面積のデータをもとに,表計算ソフトを用いてヒストグラムを作成し,区分した各区間の平均面積とその区間の面積の合計が全体に占める割合を掛けて,この値を全区間について足しあわせた値をもとに,円相当直径として算出した値を有効結晶粒径とする。   In the present invention, the effective crystal grain size refers to a particle size measured by EBSD. For example, in EBSD, software attached to EBSD, such as OIM-Analysis, is defined as grain boundaries where the orientation difference is 15 ° or more based on data measured at an interval of 0.2 μm / step for an area of 160 μm × 160 μm. A histogram is created using spreadsheet software based on the data of the area of each crystal grain calculated using, and the average area of each section is multiplied by the percentage of the total area. Based on the sum of these values for all sections, the value calculated as the equivalent circle diameter is the effective crystal grain size.

以下に鋼板の合金元素の範囲を規定する。
Cは、強度確保に必須の元素であるため、その添加量を0.13%以上とする。しかし、一方でC量の増大は粗大析出物の生成による靱性の低下を招くため,その上限を0.15%とする。
The range of alloy elements of the steel sheet is specified below.
Since C is an element essential for ensuring strength, its addition amount is set to 0.13% or more. However, on the other hand, an increase in the amount of C causes a decrease in toughness due to the formation of coarse precipitates, so the upper limit is made 0.15%.

Siは、強度確保に必須の元素であるため、その添加量を0.02%以上とする。しかし、一方で0.10%超のSi添加は靭性や溶接性の低下を招くためその上限を0.10%とする。   Since Si is an element essential for ensuring strength, its addition amount is set to 0.02% or more. However, on the other hand, addition of Si exceeding 0.10% causes a decrease in toughness and weldability, so the upper limit is made 0.10%.

Mnは、強度増大に有効な元素であり、最低でも0.40%以上の添加が必要となるが、逆に0.60%を超えて添加すると焼戻し脆化感受性が高くなって靭性が低下する。よって、Mnの添加量を0.40%以上0.60%以下と規定する。   Mn is an element effective for increasing the strength, and at least 0.40% or more must be added. Conversely, if added over 0.60%, temper embrittlement susceptibility increases and toughness decreases. . Therefore, the amount of Mn added is defined as 0.40% or more and 0.60% or less.

Pは、0.0010%未満とするには精錬負荷の増大により生産性が大幅に低下し、好ましくない。また0.0150%を超えると焼戻し脆化により靭性が低下する。よって、Pの添加量を0.0010%以上0.0150%以下と規定する。   If P is less than 0.0010%, the productivity is greatly reduced due to an increase in the refining load, which is not preferable. Moreover, when it exceeds 0.0150%, toughness will fall by temper embrittlement. Therefore, the addition amount of P is defined as 0.0010% or more and 0.0150% or less.

Sは、0.0001%未満では精錬負荷の増大により生産性が大幅に低下し、好ましくない。また0.0035%を超えると靱性が低下する。よって、Sの添加量を0.0001%以上0.0035%以下と規定する。   If S is less than 0.0001%, productivity is greatly reduced due to an increase in the refining load, which is not preferable. Moreover, when it exceeds 0.0035%, toughness will fall. Therefore, the addition amount of S is defined as 0.0001% or more and 0.0035% or less.

Cuは,0.20%を超えると靭性が低下する。よって,Cuの添加量を0.20%以下と規定する。下限は特に規定せず、0.00%でも構わないが、強度の確実な確保のため,0.01%以上添加することが好ましい。   When Cu exceeds 0.20%, toughness decreases. Therefore, the addition amount of Cu is specified to be 0.20% or less. The lower limit is not particularly specified and may be 0.00%. However, it is preferable to add 0.01% or more in order to ensure the strength.

Niは,靭性確保のため,最低でも0.01%以上の添加が必要となるが,0.25%を超えると製造コストが大幅に増大する。よって,Niの添加量を0.01%以上0.25%以下と規定する。   Ni needs to be added in an amount of 0.01% or more in order to ensure toughness, but if it exceeds 0.25%, the manufacturing cost will increase significantly. Therefore, the addition amount of Ni is defined as 0.01% or more and 0.25% or less.

Crは高温での強度と耐酸化性のため2.00%以上の添加が必要となるが,2.50%を超えて添加すると靭性と溶接性が低下する。よって、Crの添加量を2.00%以上2.50%以下と規定する。   Cr needs to be added in an amount of 2.00% or more due to the strength and oxidation resistance at high temperatures, but if added over 2.50%, the toughness and weldability deteriorate. Therefore, the addition amount of Cr is defined as 2.00% or more and 2.50% or less.

Moは高温強度のため0.90%以上の添加が必要となるが,1.10%を超えて添加すると靭性と溶接性が低下する。よって,Moの添加量を0.90%以上1.10%以下と規定する。   Mo needs to be added in an amount of 0.90% or more because of its high temperature strength, but if it exceeds 1.10%, the toughness and weldability are lowered. Therefore, the addition amount of Mo is defined as 0.90% or more and 1.10% or less.

Nbは強度確保に有効な元素である。0.005%未満の添加では効果が小さく、0.070%超の添加では靱性の低下を招く。よって、Nbの添加量を0.0005%以上0.070%以下と規定する。   Nb is an element effective for securing strength. If the addition is less than 0.005%, the effect is small, and if it exceeds 0.070%, the toughness is lowered. Therefore, the addition amount of Nb is defined as 0.0005% or more and 0.070% or less.

Vは強度確保に有効な元素である。0.295%未満の添加では効果が小さく、0.350%超の添加では靱性と溶接性の低下を招く。よって、Vの添加量を0.295%以上0.350%以下と規定する。   V is an element effective for securing the strength. If the addition is less than 0.295%, the effect is small, and if it exceeds 0.350%, the toughness and weldability are reduced. Therefore, the addition amount of V is defined as 0.295% or more and 0.350% or less.

Tiは靭性改善に有効な元素である。0.005%未満の添加では効果が小さく、0.030%超の添加では靱性の低下を招く。よって、Tiの添加量を0.005%以上0.030%以下と規定する。   Ti is an element effective for improving toughness. If the addition is less than 0.005%, the effect is small, and if it exceeds 0.030%, the toughness is reduced. Therefore, the addition amount of Ti is defined as 0.005% or more and 0.030% or less.

Alは脱酸材として有効であるとともに,窒化物を形成してBの焼入れ性を確保するのに有効な元素である。最低でも0.020%の添加が必要である。逆に0.080%を超えて添加すると,溶鋼再酸化を通じたアルミナクラスター形成を通じて靭性が低下する。よって、Alの添加量を0.020%以上0.080%以下と規定する。   Al is an element that is effective as a deoxidizing material and is effective in forming nitrides and ensuring the hardenability of B. A minimum addition of 0.020% is required. Conversely, if added over 0.080%, the toughness is reduced through the formation of alumina clusters through molten steel reoxidation. Therefore, the addition amount of Al is defined as 0.020% or more and 0.080% or less.

Bは、焼入性を高めるのに重要な元素である。0.0005%未満では焼入性増大の効果が得られないこと,0.0020%を超える添加ではB炭窒化物の形成により靭性が低下する。よって、Bの添加量を0.0005%以上0.0020%以下と規定する。   B is an important element for improving hardenability. If it is less than 0.0005%, the effect of increasing hardenability cannot be obtained, and if it exceeds 0.0020%, the toughness decreases due to the formation of B carbonitride. Therefore, the addition amount of B is defined as 0.0005% or more and 0.0020% or less.

Nは、0.0005%未満では精錬負荷の増大によって生産性が低下し、0.0090%を超える添加では靭性が低下する。よって、Nの添加量を0.0005%以上0.0090%以下と規定する。
なお、本発明では、さらに以下の元素を添加することができる。
If N is less than 0.0005%, the productivity decreases due to an increase in the refining load, and if it exceeds 0.0090%, the toughness decreases. Therefore, the addition amount of N is defined as 0.0005% or more and 0.0090% or less.
In the present invention, the following elements can be further added.

Caは、ノズル閉塞防止に有効な元素である。0.0003%未満の添加ではその効果が小さく、0.0040%超の添加では靭性の低下を招く。よって、Caの添加量を0.0003%以上0.0040%以下と規定する。   Ca is an element effective for preventing nozzle clogging. If the addition is less than 0.0003%, the effect is small, and if the addition exceeds 0.0040%, the toughness is reduced. Therefore, the addition amount of Ca is defined as 0.0003% or more and 0.0040% or less.

Mgは、靱性向上に有効な元素である。0.0003%未満の添加ではその効果が小さく、0.0040%超の添加では靭性の低下を招く。よって、Mgの添加量を0.0003%以上0.0040%以下と規定する。   Mg is an element effective for improving toughness. If the addition is less than 0.0003%, the effect is small, and if the addition exceeds 0.0040%, the toughness is reduced. Therefore, the addition amount of Mg is defined as 0.0003% or more and 0.0040% or less.

REMは、靱性向上に有効な元素である。0.0003%未満の添加ではその効果が小さく、0.0040%超の添加では靭性の低下を招く。よって、REMの添加量を0.0003%以上0.0040%以下と規定する。   REM is an element effective for improving toughness. If the addition is less than 0.0003%, the effect is small, and if the addition exceeds 0.0040%, the toughness is reduced. Therefore, the amount of REM added is specified to be 0.0003% or more and 0.0040% or less.

なお、鋼板および溶接材料を製造する上で、添加合金を含めた使用原料または溶製中に炉材等から溶出する不可避的不純物として混入しうる、Zn、Sn、Sb等も0.002%未満の混入であれば何ら本発明の効果を損なうものではない。   In manufacturing steel sheets and welding materials, Zn, Sn, Sb, etc., which can be mixed as raw materials including additive alloys or unavoidable impurities eluted from furnace materials during melting, are less than 0.002%. If it is mixed, the effect of the present invention is not impaired.

次に本発明の鋼板の製造方法について記載する。鋼板は、連続鋳造で製造されたスラブを熱間圧延したのちに,焼入れ,焼戻し,あるいは焼ならし,焼入れ,焼戻しによって製造される。   Next, the manufacturing method of the steel plate of this invention is described. A steel plate is manufactured by hot rolling a slab manufactured by continuous casting and then quenching, tempering, or normalizing, quenching, and tempering.

最初に,熱間圧延について説明する。熱間圧延の加熱温度を1280℃超にすると、オーステナイトが粗大化して靭性が低下する。また、加熱温度を1100℃未満にすると、生産性が大幅に低下する。よって、熱間圧延時の加熱温度を1100℃以上かつ1280℃以下と規定する。加熱後の保持時間は、特に規定しない。しかしながら、均一加熱と生産性確保との観点から、上記加熱温度での保持時間が、2時間以上かつ10時間以下であることが好ましい。   First, hot rolling will be described. When the heating temperature of hot rolling exceeds 1280 ° C., austenite becomes coarse and toughness decreases. Further, when the heating temperature is lower than 1100 ° C., the productivity is significantly reduced. Therefore, the heating temperature at the time of hot rolling is defined as 1100 ° C. or more and 1280 ° C. or less. The holding time after heating is not particularly defined. However, from the viewpoint of uniform heating and ensuring productivity, the holding time at the heating temperature is preferably 2 hours or more and 10 hours or less.

加熱後は,粗圧延,仕上圧延を行う。粗圧延の圧下比が1.5未満となると,再結晶が十分に進行せず,組織が粗大化して靭性低下する。よって,粗圧延における圧下比を1.5以上と規定する。また前述の様に,有効結晶粒径を小さくして靭性を改善すべく,粗圧延と仕上圧延の間の移送時間を100秒以下とする。これにより図2,3から有効結晶粒径の平方根の逆数d−1/2が8.5mm−1/2以上となり,−40℃におけるシャルピー衝撃吸収エネルギーを150J以上とすることができる。仕上圧延では圧下比が1.3未満となると,再結晶が十分に進行せず,組織が粗大化して靭性低下する。よって,仕上圧延における圧下比を1.3以上と規定する。また,仕上圧延の仕上1パス前温度が800℃未満になると,生産性が大幅に低下するため,仕上1パス前温度は800℃以上が好ましい。なお,ここで圧下比とは,粗圧延,仕上圧延それぞれの圧延において,圧延開始前の板厚を圧延終了後の板厚で除した値である。また,仕上1パス前温度とは,仕上圧延の最終パスの直前に鋼板表面で測定された温度を指す。 After heating, rough rolling and finish rolling are performed. When the rolling reduction ratio of the rough rolling is less than 1.5, recrystallization does not proceed sufficiently, the structure becomes coarse and the toughness decreases. Therefore, the rolling ratio in rough rolling is defined as 1.5 or more. Further, as described above, in order to reduce the effective crystal grain size and improve the toughness, the transfer time between rough rolling and finish rolling is set to 100 seconds or less. 2 and 3, the reciprocal d −1/2 of the square root of the effective crystal grain size is 8.5 mm −1/2 or more, and the Charpy impact absorption energy at −40 ° C. can be 150 J or more. In finish rolling, when the reduction ratio is less than 1.3, recrystallization does not proceed sufficiently, the structure becomes coarse and the toughness decreases. Therefore, the reduction ratio in finish rolling is defined as 1.3 or more. Further, when the temperature before the first pass of finish rolling is less than 800 ° C., the productivity is greatly reduced. Therefore, the temperature before the first pass is preferably 800 ° C. or more. Here, the reduction ratio is a value obtained by dividing the plate thickness before the start of rolling by the plate thickness after the end of rolling in each rolling of rough rolling and finish rolling. Further, the temperature before one finishing pass refers to the temperature measured on the surface of the steel plate immediately before the final pass of finishing rolling.

次に,焼入れについて説明する。焼入れ時の加熱温度は,1040℃超ではオーステナイトの粗大化により,880℃未満では二相域加熱となって靭性低下することから,焼入れ時の加熱温度を880℃以上1040℃以下と規定する。焼入れ時の加熱・保持後は水冷を行う。ここでは100℃以下まで冷却することが好ましい。   Next, quenching will be described. If the heating temperature during quenching exceeds 1040 ° C., the austenite becomes coarse, and if it is less than 880 ° C., two-phase heating occurs and the toughness decreases. Therefore, the heating temperature during quenching is defined as 880 ° C. or more and 1040 ° C. or less. Perform water cooling after heating and holding during quenching. Here, it is preferable to cool to 100 ° C. or lower.

次に、焼き戻しについて説明する。焼き戻し時の加熱温度は770℃超では強度不足となり,670℃未満では靭性低下することから,焼戻し時の加熱温度を670℃以上770℃以下と規定する。焼戻し時の加熱・保持後は空冷する。なお,材質安定化のため,焼入れに先立って焼ならしを行うことができる。この際の加熱温度は900℃以上1000℃以下とすることが好ましい。   Next, tempering will be described. If the heating temperature during tempering exceeds 770 ° C, the strength is insufficient, and if it is less than 670 ° C, the toughness decreases. Air-cool after heating and holding during tempering. In order to stabilize the material, normalization can be performed prior to quenching. The heating temperature at this time is preferably 900 ° C. or higher and 1000 ° C. or lower.

種々の化学成分、製造条件で製造した板厚50、100、200mmの鋼板について、PWHTを想定した熱処理を行った鋼板の高温引張試験およびシャルピー衝撃試験を実施した。鋼板の化学成分,板厚、X,有効結晶粒径の平方根の逆数、製造方法,特性の評価結果を表1に示す。PWHTを想定した熱処理は719℃加熱,1920分保持とした。高温引張試験は,丸棒引張試験片を使用した。試験片は、板厚の1/2だけ鋼板表面から内部に入った部位において,試験片の長手方向が圧延方向と垂直になるように採取した。試験温度454℃で2本の試験を行い、2本の平均値が470MPa以上を合格とした。シャルピー衝撃試験は,2mmVノッチ試験片のフルサイズ試験片を,板厚の1/2だけ鋼板表面から内部に入った部位において,試験片の長手方向が圧延方向と垂直になるように,またノッチの前縁を結ぶ線が板厚方向に平行になるように採取した。試験温度−40℃で3本の試験を行い,3本の平均値が150J以上を合格とした。表1の実施例1〜26に示すように,本発明に規定した成分および製造方法で鋼板を製造することにより,優れた高温強度および靭性の鋼板が得られた。   High-temperature tensile tests and Charpy impact tests were carried out on steel plates having a thickness of 50, 100, and 200 mm manufactured under various chemical components and manufacturing conditions and subjected to heat treatment assuming PWHT. Table 1 shows the evaluation results of the chemical composition, thickness, X, reciprocal of the square root of the effective crystal grain size, production method, and characteristics of the steel sheet. The heat treatment assuming PWHT was performed at 719 ° C. and held for 1920 minutes. A round bar tensile specimen was used for the high temperature tensile test. The test specimens were collected so that the longitudinal direction of the test specimens was perpendicular to the rolling direction at a site that entered the steel sheet surface by a half of the thickness. Two tests were conducted at a test temperature of 454 ° C., and the average value of the two was determined to be 470 MPa or more. The Charpy impact test is performed by placing a full-size test piece of 2 mm V notch test piece in a position where the length of the test piece is perpendicular to the rolling direction, at a site that is half the thickness of the steel sheet. The line connecting the leading edges of the samples was taken so as to be parallel to the thickness direction. Three tests were conducted at a test temperature of −40 ° C., and the average value of the three was determined to be 150 J or more. As shown in Examples 1 to 26 in Table 1, a steel sheet having excellent high-temperature strength and toughness was obtained by manufacturing a steel sheet using the components and manufacturing method defined in the present invention.

以上の実施例から,本発明により製造された鋼材である発明例1〜34の鋼板は,高温強度および靭性に優れた鋼材であることは明白である。   From the above examples, it is clear that the steel plates of Invention Examples 1 to 34, which are steel materials manufactured according to the present invention, are steel materials excellent in high temperature strength and toughness.

Claims (4)

鋼が、質量%で、
C :0.13%以上0.15%以下、
Si:0.02%以上0.10%以下、
Mn:0.40%以上0.60%以下、
P:0.0010%以上0.0150%以下、
S:0.0001%以上0.0035%以下、
Cu:0.00%以上0.20%以下,
Ni:0.01%以上0.25%以下,
Cr:2.00%以上2.50%以下,
Mo:0.90%以上1.10%以下,
Nb:0.005%以上0.070%以下,
V:0.295%以上0.350%以下,
Ti:0.005%以上0.030%以下,
Al:0.020%以上0.080%以下,
B:0.0005%以上0.0020%以下,
N:0.0005%以上0.0090%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成であり,下記式(A)で表されるXが22.6以上であり,応力除去焼鈍後の454℃における引張強さが470MPa以上であり,有効結晶粒径の平方根の逆数が8.5mm−1/2以上で,応力除去焼鈍後の鋼板の−40℃におけるシャルピー衝撃吸収エネルギーが150J以上であることを特徴とする、高温強度と靭性に優れた鋼板。
X=4Cr+11Mo+10V (A)
ここでCr:Crの質量%,Mo:Moの質量%,V:Vの質量%である。
Steel is mass%
C: 0.13% to 0.15%,
Si: 0.02% or more and 0.10% or less,
Mn: 0.40% or more and 0.60% or less,
P: 0.0010% or more and 0.0150% or less,
S: 0.0001% to 0.0035%,
Cu: 0.00% or more and 0.20% or less,
Ni: 0.01% or more and 0.25% or less,
Cr: 2.00% to 2.50%,
Mo: 0.90% to 1.10%,
Nb: 0.005% or more and 0.070% or less,
V: 0.295% or more and 0.350% or less,
Ti: 0.005% or more and 0.030% or less,
Al: 0.020% or more and 0.080% or less,
B: 0.0005% or more and 0.0020% or less,
N: 0.0005% or more and 0.0090% or less, the balance being a steel composition composed of Fe and inevitable impurities, X represented by the following formula (A) is 22.6 or more, and stress relief The tensile strength at 454 ° C. after annealing is 470 MPa or more, the reciprocal of the square root of the effective crystal grain size is 8.5 mm −1/2 or more, and the Charpy impact absorption energy at −40 ° C. of the steel plate after stress relief annealing is A steel sheet excellent in high-temperature strength and toughness, characterized by being 150 J or more.
X = 4Cr + 11Mo + 10V (A)
Here, Cr: mass% of Cr, Mo: mass% of Mo, and V: mass% of V.
さらに質量%で、
Ca:0.0003%以上0.0040%以下、
Mg:0.0003%以上0.0040%以下、
REM:0.0003%以上0.0040%以下
のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする請求項1に記載の高温強度と靭性に優れた鋼板。
In addition,
Ca: 0.0003% or more and 0.0040% or less,
Mg: 0.0003% or more and 0.0040% or less,
REM: High temperature strength and toughness according to claim 1, characterized in that it contains any one or more of 0.0003% or more and 0.0040% or less, and the balance is a steel composition composed of Fe and inevitable impurities. Excellent steel plate.
鋼が、質量%で、
C :0.13%以上0.15%以下、
Si:0.02%以上0.10%以下、
Mn:0.40%以上0.60%以下、
P:0.0010%以上0.0150%以下、
S:0.0001%以上0.0035%以下、
Cu:0.00%以上0.20%以下,
Ni:0.01%以上0.25%以下,
Cr:2.00%以上2.50%以下,
Mo:0.90%以上1.10%以下,
Nb:0.005%以上0.070%以下,
V:0.295%以上0.350%以下,
Ti:0.005%以上0.030%以下,
Al:0.020%以上0.080%以下,
B:0.0005%以上0.0020%以下,
N:0.0005%以上0.0090%以下を含有し、残部がFe及び不可避的不純物からなり、下記式(A)で表されるXを22.6以上としてなる鋼組成のスラブを1100℃以上1280℃以下に加熱して,圧下比が1.5以上となる粗圧延を行い,粗圧延の終了から仕上圧延の開始までの時間を100秒以下として,圧下比が1.3以上で仕上1パス前温度が800℃以上となる仕上圧延を行い,その後,880℃以上1040℃以下に再加熱したのちに水冷する焼入れを行い,その後670℃以上770℃以下に加熱したのちに空冷を行う焼戻しを行い、応力除去焼鈍後の454℃における引張強さが470MPa以上であり,有効結晶粒径の平方根の逆数が8.5mm −1/2 以上で,応力除去焼鈍後の鋼板の−40℃におけるシャルピー衝撃吸収エネルギーが150J以上である鋼板を得ることを特徴とする,高温強度と靭性に優れた鋼板の製造方法。
X=4Cr+11Mo+10V (A)
ここでCr:Crの質量%,Mo:Moの質量%,V:Vの質量%である。
Steel is mass%
C: 0.13% to 0.15%,
Si: 0.02% or more and 0.10% or less,
Mn: 0.40% or more and 0.60% or less,
P: 0.0010% or more and 0.0150% or less,
S: 0.0001% to 0.0035%,
Cu: 0.00% or more and 0.20% or less,
Ni: 0.01% or more and 0.25% or less,
Cr: 2.00% to 2.50%,
Mo: 0.90% to 1.10%,
Nb: 0.005% or more and 0.070% or less,
V: 0.295% or more and 0.350% or less,
Ti: 0.005% or more and 0.030% or less,
Al: 0.020% or more and 0.080% or less,
B: 0.0005% or more and 0.0020% or less,
N: A slab having a steel composition containing 0.0005% or more and 0.0090% or less, the balance being Fe and inevitable impurities, and having X of 22.6 or more represented by the following formula (A) at 1100 ° C. Heating to 1280 ° C. or less, rough rolling to a reduction ratio of 1.5 or more, finishing from the end of the rough rolling to the start of finish rolling to 100 seconds or less, with a reduction ratio of 1.3 or more Perform finish rolling so that the temperature before one pass is 800 ° C or higher, then reheat to 880 ° C or higher and 1040 ° C or lower, quench with water, and then heat to 670 ° C or higher and 770 ° C or lower, and then air-cool There line tempering, and the tensile strength at 454 ° C. after stress relief annealing is 470MPa or more, the inverse of the square root of the effective crystal grain size by 8.5 mm -1/2 or more, the steel sheet after stress relief annealing -40 At ℃ A method for producing a steel sheet excellent in high-temperature strength and toughness, characterized by obtaining a steel sheet having Charpy impact absorption energy of 150 J or more .
X = 4Cr + 11Mo + 10V (A)
Here, Cr: mass% of Cr, Mo: mass% of Mo, and V: mass% of V.
さらに質量%で、
Ca:0.0003%以上0.0040%以下、
Mg:0.0003%以上0.0040%以下、
REM:0.0003%以上0.0040%以下
のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする請求項3に記載の高温強度と靭性に優れた鋼板の製造方法。
In addition,
Ca: 0.0003% or more and 0.0040% or less,
Mg: 0.0003% or more and 0.0040% or less,
REM: High-temperature strength and toughness according to claim 3, characterized in that it contains any one or more of 0.0003% or more and 0.0040% or less, and the balance is a steel composition composed of Fe and inevitable impurities. Steel sheet manufacturing method with excellent performance.
JP2014209168A 2014-10-10 2014-10-10 Steel sheet excellent in high temperature strength and toughness and method for producing the same Active JP6365210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209168A JP6365210B2 (en) 2014-10-10 2014-10-10 Steel sheet excellent in high temperature strength and toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014209168A JP6365210B2 (en) 2014-10-10 2014-10-10 Steel sheet excellent in high temperature strength and toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016079426A JP2016079426A (en) 2016-05-16
JP6365210B2 true JP6365210B2 (en) 2018-08-01

Family

ID=55955845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209168A Active JP6365210B2 (en) 2014-10-10 2014-10-10 Steel sheet excellent in high temperature strength and toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP6365210B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104022A (en) * 1984-10-27 1986-05-22 Nippon Steel Corp Production of structural steel for high temperature use
JPS63241145A (en) * 1987-03-27 1988-10-06 Kawasaki Steel Corp High-strength cr-mo steel excellent in weldability
JPH05339629A (en) * 1992-06-11 1993-12-21 Kawasaki Steel Corp Production of cr-mo steel having excellent strength and toughness
JP3362565B2 (en) * 1995-07-07 2003-01-07 住友金属工業株式会社 Manufacturing method of high strength and high corrosion resistant seamless steel pipe
FR2939340B1 (en) * 2008-12-09 2010-12-31 Air Liquide FLOW AND WIRE FOR SUBMERGED ARC WELDING OF CRMOV STEELS.
JP2012207237A (en) * 2011-03-29 2012-10-25 Jfe Steel Corp 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF

Also Published As

Publication number Publication date
JP2016079426A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
CN107075645B (en) Ni alloy clad steel sheet and method for producing same
JP5418662B2 (en) Base material of high toughness clad steel plate excellent in weld zone toughness and method for producing the clad steel plate
JP6225874B2 (en) Abrasion-resistant steel plate and method for producing the same
JP6700400B2 (en) Steel plate for low temperature pressure vessel having excellent PWHT resistance and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP5849846B2 (en) Refractory steel and manufacturing method thereof
JP6688391B2 (en) Steel sheet for pressure vessel having excellent heat treatment resistance after welding and method for producing the same
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
KR20200081486A (en) Steel sections having a thickness of at least 100 millimeters and methods of making them
JP6984319B2 (en) Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP6242415B2 (en) Cu-containing low alloy steel excellent in strength-low temperature toughness balance and manufacturing method thereof
JP5741454B2 (en) Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof
JP6398576B2 (en) Steel sheet with excellent toughness and method for producing the same
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JP5928175B2 (en) Method for producing austenitic stainless clad steel with excellent seawater corrosion resistance and low temperature toughness
JP5891748B2 (en) High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same
JP6398575B2 (en) Steel sheet with excellent toughness and method for producing the same
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JP6365210B2 (en) Steel sheet excellent in high temperature strength and toughness and method for producing the same
JP6354512B2 (en) Steel sheet excellent in high temperature strength and toughness and method for producing the same
JP6177733B2 (en) Low yield ratio high-strength steel sheet with large work-hardening ability and excellent uniform elongation and weldability, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6365210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350