JP6361161B2 - 建築物評価システム、建築物評価方法及び建築物評価プログラム - Google Patents

建築物評価システム、建築物評価方法及び建築物評価プログラム Download PDF

Info

Publication number
JP6361161B2
JP6361161B2 JP2014031868A JP2014031868A JP6361161B2 JP 6361161 B2 JP6361161 B2 JP 6361161B2 JP 2014031868 A JP2014031868 A JP 2014031868A JP 2014031868 A JP2014031868 A JP 2014031868A JP 6361161 B2 JP6361161 B2 JP 6361161B2
Authority
JP
Japan
Prior art keywords
solar radiation
amount
building
data storage
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014031868A
Other languages
English (en)
Other versions
JP2015156809A (ja
Inventor
隆志 松原
隆志 松原
清敏 大塚
清敏 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2014031868A priority Critical patent/JP6361161B2/ja
Publication of JP2015156809A publication Critical patent/JP2015156809A/ja
Application granted granted Critical
Publication of JP6361161B2 publication Critical patent/JP6361161B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、スポーツターフを備えたグラウンド等、日射量が評価に影響する建築物を評価する建築物評価システム、建築物評価方法及び建築物評価プログラムに関する。
サッカーや陸上競技等を行なう建築物として、芝(ターフ)を用いたピッチを備えているスタジアムがある。更に、競技規則上の必要性や安全性、又は使用時の感触の点から、天然芝を用いているスタジアムもある。
しかしながら、天然芝は、激しい運動等によって痛みやすく、また育成管理も難しい。
また、周辺への観客騒音に対する配慮や天候に左右されない開催を目的に建設された屋根付きスタジアムを用いる場合もある。この場合には、観客席の上部は雨を防ぐために屋根で覆われており、ピッチが日影になり易く、芝の成長に悪影響を与える。
そこで、芝の生育について評価するための予測システムが検討されている(例えば、特許文献1参照。)。この文献に記載の技術においては、日射量の時系列データを用いて、芝についての光合成シミュレーション及び成長シミュレーションを格子点毎に行ない、芝の生育を予測する。更に、芝の光合成シミュレーション及び成長シミュレーションについては、それぞれ特許文献2,3にも開示されている。
特開2011−223915号公報 特開2011−200208号公報 特開2011−200209号公報
特許文献1に記載された技術においては、特定の日(例えば10日毎)について、太陽の日周運動に対する日影図を作成して日照時間を算出する。そして、この日照時間に晴天日日中の日向及び日影の代表的な照度を合わせることにより、着目する位置での日射量を算出する。
しかしながら、建築物内におけるエリアについての日射量は、全天日射に対する日射の種類(直達日射や散乱日射)や天候(主に雲の量)の影響を受ける。このため、同じ日影であっても、天候や場所によっては明るさが異なることがある。また、屋根付きスタジアム等の建築物内にあるピッチでは、日影ができ易い。従って、日射量を適切に算出することは難しかった。
更に、ピッチを移動可能なスタジアムにおいては、場所により日射量が変化し、芝の生育を予測できなかった。
本発明は、上述の課題に鑑みてなされ、その目的は、日射量等の環境条件を考慮して、建築物の評価を行なうための建築物評価システム、建築物評価方法及び建築物評価プログラムを提供することにある。
上記課題を解決する建築物評価システムは、建築物の形状を表わす各要素の位置を記憶した形状モデルデータ記憶部と、前記建築物における評価対象エリアについて、前記要素毎に、太陽から直接照射された日射量が前記太陽と前記要素との間の要素の透過率によって減少した日射量を算出するための無次元の直達成分の日射量比率と、反射光の日射量を算出するための無次元の散乱成分の日射量比率とを記憶する無次元日射分布データ記憶部と、過去の気象データを記憶した観測気象データ記憶部と、日射量を用いた建築物の評価を行なう制御部とを備える。前記制御部は、前記建築物の設置場所に基づいて、各時刻の太陽位置を特定し、前記建築物の各要素の位置と前記各時刻における太陽の位置とから前記評価対象エリアにおける前記直達成分の日射量比率及び前記散乱成分の日射量比率を算出して、前記無次元日射分布データ記憶部に記録し、前記設置場所に関連する過去の気象データを前記観測気象データ記憶部から取得し、前記気象データを用いて算出した日射量と、前記無次元日射分布データ記憶部に記録された前記直達成分の日射量比率及び前記散乱成分の日射量比率とを用いて、直達成分日射量と散乱成分日射量とを算出し、算出した直達成分日射量と散乱成分日射量とを合計した値を用いて、日射量を算出すること要旨とする。
この構成によれば、建築物の形状を考慮して評価対象エリアに照射される日射量比率を算出し、この日射量比率を過去の気象データを用いて補正するので、建築物の形状及び実際の気象条件を考慮して、建築物の評価を行なうことができる。
の構成によれば、直達成分の日射と散乱成分の日射とを分離して算出するので、より正確に日射量比率を算出することができる。
の構成によれば、反射光を考慮して、日射量を評価できる。
上記建築物評価システムについて、前記建築物はスタジアムであって、前記評価対象エリアは、スタジアム内において天然芝が植えられたピッチであって、前記制御部は、前記直達成分日射量と前記散乱成分日射量とを合計した値を用いて算出した日射量に基づいて、前記ピッチ上の天然芝の成長状況についての芝成長シミュレーションを実行することが好ましい。この構成によれば、日射量を用いてピッチ上の天然芝の成長状況をシミュレーションすることができるので、より正確に芝の成長状況を把握することができる。
上記建築物評価システムについて、前記制御部は、前記芝成長シミュレーションにおける時間刻み幅が、前記観測気象データ記憶部に記憶されている気象データの観測時間間隔よりも短い場合には、前記観測気象データ記憶部に記憶されている気象データを、前記時間刻み幅の気象データに変換し、前記変換した気象データを前記芝成長シミュレーションに供給することが好ましい。この構成によれば、実際に観測された気象データの観測間隔よりも短い時間刻み幅で芝成長シミュレーションを行なうことができる。
上記建築物評価システムについて、前記評価対象エリアの位置が水平方向に移動可能な場合に、前記建築物における前記評価対象エリアの位置を変更し、前記変更された位置における前記日射量を算出することが好ましい。この構成によれば、評価対象エリアの位置を変更した日射量を比べることにより、適切な評価対象エリアの位置を把握することができる。
本発明によれば、日射量等の環境条件を考慮して建築物の評価を行なうことができる。
実施形態における建築物評価システムの構成を説明する説明図。 実施形態における環境データ算出処理の処理手順を説明する流れ図。 実施形態における無次元日射分布算出処理の処理手順を説明する流れ図。 ピッチ位置の最適化処理の処理手順を説明する流れ図。 ピッチ位置の最適化処理の処理手順を説明する流れ図。
以下、図1〜図3に従って、本発明を具体化した建築物評価システム、建築物評価方法及び建築物評価プログラムの一実施形態を説明する。本実施形態においては、天然芝が植えられたピッチを備えたスタジアム(建築物)について、ピッチ(評価対象エリア)上の日射量に基づく評価を行なう建築物評価システムとして説明する。なお、ピッチは、スタジアムのグラウンド内に配置されている。
この建築物評価システムに用いられる評価サーバ20は、ユーザ端末10に接続されている。ユーザ端末10は、評価サーバ20の入出力手段として機能する。ユーザ端末10は、スタジアム形状や計算条件等の入力データを入力するための入力部を備えている。この入力部は、外部媒体ポート、キーボードやポインティングデバイスなどにより構成される。更に、ユーザ端末10は、評価サーバ20において用いるデータや評価結果等を出力する出力部を備えている。この出力部は、ディスプレイにより構成される。
評価サーバ20は、制御部21、スタジアム形状データ記憶部22、計算条件データ記憶部23、気象台データ記憶部24、無次元日射分布データ記憶部25及び時系列データ記憶部26を備える。ここで、スタジアム形状データ記憶部22は、形状モデルデータ記憶部、気象台データ記憶部24は、観測気象データ記憶部として機能する。
制御部21は、CPU、RAM及びROM等からなり、建築物評価プログラムを実行することにより、環境評価部210、日射量比率算出部211及び芝成長評価部212として機能する。
環境評価部210は、建築物評価に用いる環境データを算出する処理を実行する。本実施形態では、環境データとしてピッチ上の日射分布を算出する。ここで、各ピッチの日射量は、太陽から直接到達した直達成分(直達日射量)と、大気分子や建築物に反射して散乱した散乱成分(散乱日射量)とを合計した値として算出される。散乱成分には、天空からの大気分子の散乱による散乱成分(第1の散乱日射量)と、直達日射の反射による散乱成分(第2の散乱日射量)とが含まれる。環境評価部210は、日射量比率算出部211が算出した無次元の日射量と、全天日射量及び地上到達直達日射量とを用いて、ピッチ上の有次元日射分布を算出する。この有次元日射分布は、太陽高度や雲量を考慮した時系列の日射分布である。
このため、環境評価部210は、以下の地上到達直達日射量の算出式を記憶している。
Sp=S0・(1−AH2O−R)・F(c)
ここで、Spは、地上到達直達日射量(W・m−2)、S0は、大気による減衰を受ける前の全日射量である。AH2O、Rは、それぞれ水蒸気による吸収、大気の分子散乱による日射の減衰であり、太陽の位置に応じて特定される値である。また、F(c)は、雲による減衰である。
すなわち、地上到達直達日射量は、太陽の位置から決まる大気上端での太陽放射のエネルギー流量密度(1368W/m)から、大気中の通過距離に応じた水蒸気の吸収減衰の影響を考慮されて算出される。大気中の通過距離は光路長に相当し、太陽高度が低いときは太陽光が大気圏を通過する距離が長くなり、大気中の水蒸気の吸収減衰の影響が大きくなる。また、水蒸気の量として、平均的な水蒸気の分布量、すなわち地上から上空にかけての湿度の分布量で評価する。この水蒸気減衰の評価には気象学の既往の研究の水蒸気による日射減衰式を用いる。
また、地上到達直達日射量は、雲の存在によっても減衰するため、雲による直達日射の減衰の影響も考慮して算出する。雲量による直達日射量の減衰の関係式F(c)は、複数の観測地点で観測した雲量を用いて算出した雲量と直達日射量減衰量との経験的な式である。本実施形態では、雲量に応じて4つに分類されたクラス毎の関係式F(c)が環境評価部210に記憶されている。
そして、環境評価部210は、算出した地上到達直達日射量を、無次元日射分布データの直達成分に乗じることにより、次元を持った直達日射量を算出する。更に、環境評価部210は、算出した地上到達直達日射量を、無次元日射分布データの第2の散乱成分に乗じることにより、次元を持った第2の散乱日射量を算出する。
更に、環境評価部210は、全天日射量から、算出した地上到達直達日射量を減算した値を、無次元日射分布データの第1の散乱成分に乗じることにより、次元を持った第1の散乱日射量を算出する。これは、天空の散乱日射の入力を1とし、それに起源するピッチ上の相対分布が得られているためである。
そして、環境評価部210は、有次元化された直達日射量と散乱日射量とを合計することにより、ピッチ上の各格子点に注がれる全日射量を算出する。
更に、環境評価部210は、芝成長シミュレーションに用いる計算時間間隔(時間刻み幅)において実際に観測された気象データ(観測気象データ)が、気象台データ記憶部24に記憶されていない場合には、補間法を用いた算出式を用いて、計算時間間隔の各時刻(計算対象時刻)の気象データを算出する。このため、環境評価部210は、算出する計算対象時刻に近い時刻における観測気象データを用いて、計算対象時刻の気象データを補間法により算出する気象データ算出式を記憶している。
日射量比率算出部211は、入射日射の強度を「1」とおいて、ピッチ上の各要素における無次元の日射量(日射量比率)を算出する処理を実行する。本実施形態では、直達成分と散乱成分とを分離して、解析期間における計算対象時刻毎に算出する。このため、日射量比率算出部211は、日射量を算出するために、緯度・経度を用いて、日の出及び日の入の時刻、日中の各時刻における太陽の位置(方位角及び高度角)を天文学的に計算する太陽位置算出式を記憶している。日射量比率算出部211は、強さ「1」の日射(直達日射、散乱日射)に対するピッチ上における日射量の比率(無次元化日射量)の分布データを算出する。
日射量比率算出部211は、後述するように日向の格子点における直達成分を算出する直達成分算出式を記憶している。この直達成分算出式は、日向の格子点に対する法線方向と、太陽の方位角及び高度角と関係から算出される式である。
また、日射量比率算出部211は、直達日射の反射計算処理を実行する。直達日射の反射は、日向に位置するピッチ及びスタンドにおいて生じる。ここで、この反射した直達日射は、散乱日射としてそのままピッチに入射するものもあれば(1回反射)、スタンドや屋根裏面に当たって、再度反射が生じるものもある(多重反射)。本実施形態では、直達日射が最大で2回の反射を経て、ピッチに達した無次元の散乱日射量(第2の散乱成分)を算出する。ここで、反射光による日射量は、入射した光のエネルギーの一定の割合(反射率)が反射し、反射光の強さはどの方向も同じであると仮定して計算する(等方反射の仮定)。
更に、日射量比率算出部211は、天空からの大気分子の散乱による散乱成分(第1の散乱成分)の計算処理を実行する。ここでは、ピッチ表面には、まず、太陽以外の天空の部分のあらゆる方向から等しい強度の散乱日射が入ってくると仮定する。そして、直達成分の反射と同様に、散乱日射もピッチやスタンドに照射されるとそこで反射が起こると考え、直達日射と同様に一定の反射率による等方反射を仮定し、最大で2回までの反射を経た散乱日射を考慮して算出する。
芝成長評価部212は、解析期間における計算対象時刻毎の有次元の日射量と、気象データ(風速や気温等)とを用いて、ピッチ上の芝の成長を評価する処理を実行する。本実施形態では、上述した特許文献1に開示されている予測方法を用いて、芝の成長を評価する。この場合、芝成長評価部212は、時系列データ記憶部26に記録された時系列データ(有次元に変換された日射分布データと気象データ)を用いて、芝の葉及び根の現存量を時系列に算出することにより、ピッチに植えられた芝の成長状態を評価する。
スタジアム形状データ記憶部22には、スタジアム形状を三角形状の要素で表した各格子点に関するデータが、形状ファイル名とともに記憶されている。これは、スタジアムの形状情報(屋根、外壁、スタンド、グラウンド)を用いて、スタジアムをモデル化したデータである。本実施形態では、ピッチの位置を、水平方向、垂直方向に変更できるものとし、それぞれ別個のスタジアムとしてモデル化し、各ファイル名を付与する。
形状ファイル名データ領域には、スタジアムの各形状を特定するための識別子に関するデータが含まれる。
各格子点データ領域には、格子点の位置及び属性に関するデータが含まれる。
位置データ領域には、この格子点の位置を示す座標(x,y,z)データが記録される。
属性データ領域には、この格子点に付与された属性に関するデータが記録される。本実施形態では、属性として、この格子点における材料に応じた反射率及び透過率を用いる。
計算条件データ記憶部23には、シミュレーションを行なう場合の計算条件に関するデータが記憶される。本実施形態においては、この計算条件データには、緯度・経度、解析期間、計算時間間隔及び形状ファイル名が含まれる。
緯度・経度データ領域には、評価対象のスタジアムの建設地点(グラウンド中心)の緯度及び経度に関するデータが記録される。
解析期間データ領域には、日射量を計算する期間(開始年月日及び終了年月日)に関するデータが記録される。解析期間が1年の場合には、開始年月日(1月1日)と終了年月日(12月31日)とが記録される。
計算時間間隔データ領域には、日射量を計算する時間間隔(時間刻み幅)に関するデータが記録される。この計算時間間隔は、任意に設定可能である。
形状ファイル名データ領域には、評価対象のスタジアムの形状を特定するための識別子が記録される。この形状ファイル名を介して、スタジアム形状データ記憶部22のスタジアムの各形状が特定される。
気象台データ記憶部24には、気象台において過去に観測された観測気象データが記憶される。観測気象データは、年月日、時刻及び観測地点に関連付けられて記憶される。なお、この観測気象データは、一時間毎の気象データである。この観測気象データには、全天日射量、雲量、風速、気温、降雨量、気圧及び湿度に関するデータが含まれる。
年月日データ領域及び時刻データ領域には、各気象データが観測された年月日及び時刻に関するデータがそれぞれ記録される。
観測地点データ領域には、各気象データが観測された地点(緯度・経度)に関するデータが記録される。
全天日射量データ領域には、この時刻のこの観測地点における全天日射量に関するデータが記録される。
雲量データ領域には、この時刻のこの観測地点における雲量に関するデータが記録される。この雲量は「0」〜「1.0」で表される。本実施形態では、雲量が0の場合には雲なし、1.0の場合は全天が雲で覆われている状態を示している。なお、雲量が0.3未満の場合は快晴、雲量が0.3〜0.7の場合は晴天、0.8〜1.0は雲天である。
風速データ領域、気温データ領域、降雨量データ領域、気圧データ領域及び湿度データ領域には、この時刻のこの観測地点における風速、気温、降雨量、気圧及び湿度に関するデータが、それぞれ記録される。
無次元日射分布データ記憶部25には、無次元化された日射量の分布データが記録される。この無次元日射分布データは、後述する無次元日射分布算出処理によって算出される。無次元日射分布データには、形状ファイル名、年月日、時刻、格子点の位置、直達成分及び散乱成分に関するデータが含まれる。
形状ファイル名データ領域には、評価対象のスタジアムの形状を特定するための識別子が記録される。
年月日データ領域及び時刻データ領域には、算出した無次元日射量の日時を特定するための年月日及び時刻に関するデータが記録される。
格子点の位置データ領域には、算出した無次元日射量のピッチ上における格子点の位置(2次元座標)に関するデータが記録される。
直達成分データ領域及び散乱成分データ領域には、直達成分及び散乱成分の無次元日射量(日射量比率)に関するデータがそれぞれ記録される。ここで、散乱成分データ領域には、第1の散乱成分の無次元日射量と第2の散乱成分の無次元日射量とが記録される。
時系列データ記憶部26には、環境情報に関する時系列データが記憶される。この時系列データとして、解析期間における各計算対象時刻における気象データとピッチ上の有次元日射分布データとが、形状ファイル名に関連付けて記憶される。
気象データには、解析期間における各計算対象時刻における風速、気温、降雨量、気圧及び湿度に関するデータが含まれる。
ピッチ上の有次元日射分布データには、解析期間における各計算対象時刻におけるピッチ上の各格子点における有次元に変換された日射量(直達成分及び散乱成分)データが含まれる。
(環境データ算出処理)
次に、図2を用いて、芝成長シミュレーションに用いる環境データを算出する環境データ算出処理について説明する。本実施形態では、解析期間の各計算対象時刻における気象データ及びピッチ表面の日射量の2次元分布を算出する。
まず、評価サーバ20の制御部21は、スタジアム形状の取得処理を実行する(ステップS1−1)。具体的には、制御部21の環境評価部210は、まず、スタジアムの形状モデルを作成する。環境評価部210は、ユーザ端末10を介して、スタジアムの屋根、外壁、スタンド及びグラウンドの形状や大きさ等を取得する。環境評価部210は、スタジアムの形状を三角形要素から構成される形状モデルで表現する。ここで、スタジアムにおいてピッチの場所を変更(平面移動や昇降移動)させた形状を生成し、各形状モデルを作成する。
次に、環境評価部210は、形状モデルの各三角形要素の各格子点に対して、要素を構成する材料に応じた太陽放射に対する透過率と反射率を属性として特定する。ここで、ガラスなど光を透過する材料で構成される要素に対しては、その材料に応じた透過率が付与される。また、不透明な材料で構成される要素に対しては、透過率「0」が付与される。
そして、環境評価部210は、特定した属性が設定された三角形要素の各格子点から構成されるスタジアムの形状モデルに形状ファイル名を付与して、スタジアム形状データ記憶部22に記憶する。この場合、ピッチ位置が異なる形状モデルについては、それぞれ別の形状ファイル名が付与されて記憶される。
次に、評価サーバ20の制御部21は、計算条件の取得処理を実行する(ステップS1−2)。具体的には、制御部21の環境評価部210は、ユーザ端末10に、計算条件を入力する入力画面を表示する。この入力画面には、スタジアム建設地点の緯度・経度、解析期間、計算時間間隔、計算対象となるスタジアムの形状ファイル名の入力欄と、計算実行ボタンとが含まれる。そして、ユーザは、各入力欄に所望の内容を入力する。ここでは、解析期間として「1年」、計算時間間隔として「30分」を入力する場合を想定する。そして、計算実行ボタンが選択された場合、制御部21の環境評価部210は、入力された計算条件を取得し、計算条件データ記憶部23に記録する。
次に、評価サーバ20の制御部21は、無次元日射分布算出処理を実行する(ステップS1−3)。具体的には、制御部21の日射量比率算出部211は、取得した解析期間における各計算対象時刻で、スタジアムのピッチ表面における無次元の日射分布を計算する。そして、計算結果として、年月日、時刻、ピッチ上の格子点毎に、無次元化された日射量(直達成分及び散乱成分)を無次元日射分布データ記憶部25に記録する。この処理の詳細については、後述する。
次に、評価サーバ20の制御部21は、中間出力処理を実行する(ステップS1−4)。具体的には、制御部21の環境評価部210は、確認画面をユーザ端末10のディスプレイに表示する。この確認画面には、無次元日射分布データ記憶部25に記録された無次元化された日射量と、確認ボタンとを含める。確認ボタンが選択された場合、環境評価部210は、以下の処理を実行する。
次に、評価サーバ20の制御部21は、近隣気象台データの取得処理を実行する(ステップS1−5)。具体的には、制御部21の環境評価部210は、スタジアム建設地点近辺における観測気象データを気象台データ記憶部24から取得する。具体的には、環境評価部210は、解析期間における、スタジアム建設地点の緯度・経度に最も近い観測地点の気象データを気象台データ記憶部24から取得する。ここでは、気象データとして、解析期間における全天日射量、雲量、風速、気温、降雨量、気圧及び湿度に関するデータを取得する。
次に、評価サーバ20の制御部21は、計算時間間隔毎の気象データへの変換処理を実行する(ステップS1−6)。具体的には、制御部21の環境評価部210は、取得した観測気象データを用いて、計算時間間隔の気象データを生成する。ここで、解析期間における計算対象時刻の観測気象データをすべて取得できた場合には、この観測気象データを用いる。また、観測気象データを取得できない計算対象時刻がある場合には、環境評価部210は、計算対象時刻に近い前後の時刻の観測気象データを、気象データ算出式に代入して、各計算対象時刻の気象データを算出する。
次に、評価サーバ20の制御部21は、日射量の有次元への変換処理を実行する(ステップS1−7)。具体的には、制御部21の環境評価部210は、雲量に応じて雲による減衰関係式F(c)を算出し、太陽の位置に応じて特定される日射量の減衰AH2O,Rを算出する。環境評価部210は、算出した日射量の減衰AH2O,R及び減衰関係式F(c)を地上到達直達日射量の算出式に代入して、地上到達直達日射量を算出する。そして、環境評価部210は、無次元日射分布データの直達成分に、算出した地上到達直達日射量を乗算して、ピッチ上の各格子点における有次元(W・m−2)の直達日射量を算出する。更に、地上到達直達日射量を、直達日射の反射による無次元の散乱日射量(第2の散乱成分)に乗算して、第2の散乱日射量を算出する。また、環境評価部210は、各計算対象時刻の気象データの全天日射量から地上到達直達日射量を減算した値を、無次元日射分布データの散乱成分に乗じることにより、有次元の散乱日射量(第1の散乱日射量)を算出する。そして、環境評価部210は、有次元の直達日射量と散乱日射量(第1の散乱日射量及び第2の散乱日射量)とを合計することにより、ピッチ上の各格子点における全日射量を算出する。
次に、評価サーバ20の制御部21は、時系列データの出力処理を実行する(ステップS1−8)。具体的には、制御部21の環境評価部210は、ピッチ上の有次元に変換された有次元日射分布データと気象データとを、時系列データ記憶部26に記憶する。
次に、評価サーバ20の制御部21は、芝成長シミュレーション処理を実行する。具体的には、制御部21の環境評価部210は、芝成長シミュレーション開始画面をユーザ端末10の表示部に表示する。この開始画面には、時系列データの算出処理が終了した旨と、芝成長シミュレーションを実行する実行開始ボタンとが含まれる。ユーザ端末10において、実行開始ボタンが指定された場合、制御部21の芝成長評価部212は、時系列データ記憶部26から、計算条件データ記憶部23に記憶された形状ファイル名の時系列データを取得する。そして、芝成長評価部212は、この時系列データを用いて、芝成長のシミュレーションを実行する。そして、芝成長評価部212は、シミュレーション結果をユーザ端末10の表示部に表示する。シミュレーション結果としては、例えば、芝の葉及び根の現存量についての時系列変化を出力する。
(無次元日射分布算出処理)
次に、図3を用いて無次元日射分布算出処理(ステップS1−3)について詳述する。ここでは、取得した解析期間の日毎で計算時間間隔(30分)毎の各時刻(計算対象時刻)について、以下の処理を実行する。
まず、制御部21の日射量比率算出部211は、太陽の位置の計算処理を実行する(ステップS2−1)。具体的には、日射量比率算出部211は、スタジアムの建設地点の緯度・経度を、太陽位置計算式に代入して、日の出及び日の入の時刻、日中の各計算対象時刻における太陽の位置(方位角及び高度角)を算出する。
次に、制御部21の日射量比率算出部211は、ピッチ上の無次元日射分布の計算処理を実行する(ステップS2−2)。
ここで、まず、日射量比率算出部211は、ピッチ表面の各格子点が日向にあるか日影にあるかの判断を行なう。具体的には、日射量比率算出部211は、太陽の位置とピッチ表面の各格子点の位置とを用いて、これらの間にスタジアムの構成要素が存在するか否かによって判断する。
そして、太陽の位置と格子点の位置との間に、スタジアムの構成要素が存在しない場合には、日射量比率算出部211は、格子点は日向に存在すると判断する。格子点が日向に存在すると判断した場合、日射量比率算出部211は、この格子点における法線方向と、このときの太陽の方位角及び高度角とを、算出式に代入して、太陽から直接照射された日射量を算出する。また、太陽の位置と格子点の位置との間にスタジアムの構成要素が存在すると判定した場合、日射量比率算出部211は、その構成要素の透過率が「0」かどうかを判定する。ここで、透過率が「0」の場合には、日射量比率算出部211は、格子点が日影に存在し、この格子点における太陽から直接照射された日射量は「0」と算出する。更に、透過率が「0」でない場合には、日射量比率算出部211は、透過率に応じて減少された日射量を算出し、この日射量が太陽から直接照射された無次元の日射量と特定する。以上により、日射量比率算出部211は、直達成分を取得する。
次に、日射量比率算出部211は、直達日射の反射計算処理を実行する。具体的には、日射量比率算出部211は、ピッチ以外で日向にあるスタジアムの格子点を、太陽の位置と各格子点との位置関係から特定する。そして、日射量比率算出部211は、日向にある格子点のうち、反射率が「0」でない格子点を特定する。
次に、日射量比率算出部211は、特定した格子点に注がれる日射量を、格子点の位置及び太陽の位置を算出式に代入して算出する。そして、日射量比率算出部211は、格子点に付与されている反射率に、算出した日射量を乗算することにより、反射による日射量を算出する。
また、日射量比率算出部211は、格子点の位置及び太陽の位置から、反射した日射量の方向を特定し、この反射した日射量が照射される位置を特定する。次に、日射量比率算出部211は、この反射光が照射された位置(格子点)のうち、反射率が「0」でない格子点を特定する。次に、日射量比率算出部211は、照射された反射光が再反射された反射光の日射量及び照射位置を、反射率及び反射光の入射角度を用いて算出する。
そして、日射量比率算出部211は、反射光が照射された格子点においては、直達日射が1回又は2回の反射によって到達した散乱日射量を合計することにより、この格子点における無次元の第2の散乱成分を算出する。
次に、日射量比率算出部211は、第1の散乱成分の算出処理を実行する。この場合、スタジアムの各格子点においては、太陽以外の天空から同じ強度の日射量が照射されると特定する。そして、日射量比率算出部211は、各格子点のうち、反射率が「0」でない格子点を特定する。そして、日射量比率算出部211は、この反射率に、照射された日射量を乗算して反射による日射量を算出する。
更に、日射量比率算出部211は、この反射光が照射されたピッチ上の位置(格子点の座標)のうち、反射率が「0」でない位置(格子点の座標)を特定する。次に、日射量比率算出部211は、照射された反射光が再反射された反射光の日射量及び照射位置を、反射率及び反射光の入射角度を用いて算出する。
そして、日射量比率算出部211は、反射光が照射された格子点においては、散乱光と、この散乱光の反射光による日射量を合計することにより、第1の散乱成分を算出する。
そして、制御部21の日射量比率算出部211は、計算結果の記録処理を実行する(ステップS2−3)。具体的には、日射量比率算出部211は、各計算対象日時における各ピッチ位置における、算出した直達成分、散乱成分を、計算条件データ記憶部23に記憶した形状ファイル名とともに、無次元日射分布データ記憶部25に記憶する。
本実施形態によれば、以下のような効果を得ることができる。
(1)本実施形態では、評価サーバ20の制御部21は、スタジアム形状及び計算条件を用いて無次元日射分布算出処理を実行する(ステップS1−3)。制御部21は、取得した観測気象データを用いて、算出した無次元日射分布の日射量の有次元への変換処理を実行し(ステップS1−7)、時系列データ記憶部26に記憶する。制御部21は、時系列データ記憶部26に記憶された時系列データを用いて、芝成長のシミュレーションを実行する。これにより、スタジアムの形状及び過去の実際の気象条件を考慮して、ピッチに植えられた芝の生育状態を、より正確に把握することができるので、より適正にスタジアムの評価を行なうことができる。
(2)本実施形態では、評価サーバ20の制御部21は、直達成分と散乱成分とに分離して日射量を算出する。これにより、日射量であっても、性質の異なる直達成分と散乱成分を分離して算出するので、より正確に日射量を算出することができる。
(3)本実施形態では、評価サーバ20の制御部21は、スタジアム内において反射した反射光を含めて日射量を算出する。これにより、スタジアム内における反射光を考慮して日射量を算出することができる。
(4)本実施形態では、評価サーバ20の制御部21は、計算時間間隔毎の気象データへの変換処理を実行し(ステップS1−6)、この気象データを時系列データ記憶部26に記憶する。このため、芝成長シミュレーションにおける計算時間間隔が、実際に観測された観測気象データの時間間隔よりも短い場合であっても、スムーズに芝成長シミュレーションを実行することができる。
また、上記実施形態は、以下のように変更してもよい。
・上記実施形態においては、評価サーバ20の制御部21は、近隣気象台データの取得処理(ステップS1−5)において、スタジアム建設地点近辺における観測気象データを取得した。気象データを取得できれば、近隣気象台からのデータに限定されるものではない。例えば、スタジアム建設地点における観測気象データがある場合には、これを用いてもよい。
・上記実施形態においては、評価サーバ20の制御部21は、スタジアム形状の取得処理(ステップS1−1)において、スタジアム形状モデルを作成した。スタジアム形状モデルは、予め作成してスタジアム形状データ記憶部22に記憶させておいてもよい。この場合には、評価開始時に、スタジアムの形状ファイル名を指定させる。ここで、複数のスタジアム形状モデルを、同時に評価するようにしてもよい。例えば、ピッチの位置を変更した複数のスタジアムの形状ファイル名を取得する。そして、評価サーバ20の制御部21は、無次元日射分布算出処理(ステップS1−7)において、太陽の位置の計算処理(ステップS2−1)を実行した後、ピッチ上の無次元日射分布の計算処理(ステップS2−2)を、スタジアムの形状ファイル毎に実行してもよい。そして、制御部21は、指定された複数のスタジアムの形状に応じた有次元の日射量を用いて芝成長シミュレーションを実行し、その結果をユーザ端末10に並べて表示する。これにより、ピッチの位置を変更したスタジアムの評価を把握することができるので、適切なピッチの位置を備えたスタジアム形状を選択することができる。
・上記実施形態においては、評価対象のスタジアムにおいてはピッチ位置を固定した。これに代えて、スタジアムにおいてピッチを水平方向に移動可能としてもよい。この場合には、時間毎に最適なピッチの位置(移動可能な範囲で日射量が多い位置)を特定し、この位置における評価を行なう。例えば、評価サーバ20の制御部21は、1日における計算対象時刻毎に、ピッチ移動可能範囲に照射される日射量を計算する。そして、計算対象時刻毎に、ピッチ面積に照射される日射量が最も高くなるピッチ位置(スタジアム形状)を特定する。これにより、より多くの日射量が照射される時間毎のピッチ位置を特定し、この時間に合わせてピッチの位置を変更させてもよい。
・上記実施形態においては、スタジアムの形状を用いて評価を行なった。これに加えて、スタジアムの利用状況を考慮して評価してもよい。ここでは、スタジアムにおいて実行されるイベントスケジュールを特定し、このイベントスケジュールに応じて、ピッチ位置を変更し、ピッチ位置の最適化処理を行なってもよい。この場合、評価サーバ20の制御部21は、予定されているイベントスケジュールを記憶したスケジュール記憶部に接続する。このイベントスケジュールデータには、使用日時(使用開始日時及び終了開始日時)、イベント内容及びスタジアム内における使用箇所に関するデータが含まれる。
図4に示すピッチ位置の最適化処理において、まず、評価サーバ20の制御部21は、イベント予定の取得処理を実行する(ステップS3−1)。具体的には、評価サーバ20の制御部21は、スケジュール記憶部からイベントスケジュールデータを取得する。
次に、評価サーバ20の制御部21は、イベント予定に基づくピッチ位置の特定処理を実行する(ステップS3−2)。具体的には、制御部21は、イベントの使用日時において、イベント種別に応じて、ピッチ位置を決定する。ここでは、ピッチの垂直方向(例えば、最も低い位置)及び水平方向(例えば、中央)を決定する。
次に、評価サーバ20の制御部21は、イベント予定がない時間帯についてピッチにおける日射量の総量が最大となるようにピッチの可動計画処理を実行する(ステップS3−3)。具体的には、制御部21は、イベントの予定がない時間帯(解析期間)の長さを特定する。次に、制御部21は、ピッチの移動させるために必要な時間(移動所要時間)より長い解析期間を特定する。次に、制御部21は、特定した解析期間について、所定の計算対象時刻毎に、ピッチの位置が異なる各スタジアムについてのピッチ上の日射分布データを算出して、時系列データ記憶部26に記憶する。制御部21は、時系列データ記憶部26の日射分布データを用いて、各スタジアムの各計算対象時刻において、ピッチ上の合計日射量が最大となるとピッチの位置を備えたスタジアム形状を特定する。そして、制御部21は、時系列にスタジアム形状を表示した可動計画をユーザ端末10の表示部に表示する。これにより、イベントを考慮した可動計画に基づいて日射量を大きくすることができる。
・上記実施形態においては、日射量に基づいてスタジアムを評価した。これに加えて、ピッチを移動させたときの建築物への負荷を考慮して評価してもよい。この場合、建築物への負荷としては、建築物への荷重負荷や費用負荷がある。具体的には、評価サーバ20は、ピッチの位置(高さ)に応じた負荷値に関するデータを記憶した負荷値記憶部を備えている。また、制御部21は、負荷基準値に関するデータを記憶している。
図5に示すように、評価サーバ20の制御部21は、ステップS3−1,S3−2と同様に、イベント予定の取得処理(ステップS4−1)及びイベント予定に基づくピッチ位置の特定処理(ステップS4−2)を実行する。そして、評価サーバ20の制御部21は、イベント予定がない時間帯について負荷値が基準以下でピッチにおける日射量の総量が最大となるようにピッチの可動計画処理を実行する(ステップS4−3)。具体的には、制御部21は、イベントの予定がない時間帯(解析期間)において、計算対象時刻毎に、ピッチの位置に対応した負荷値を、負荷値記憶部から特定する。制御部21は、取得した負荷値が負荷基準値以下であるピッチの位置を特定する。次に、制御部21は、特定した解析期間について、所定の計算対象時刻毎に、ピッチの位置が異なる各スタジアムについてのピッチ上の日射分布データを算出して、時系列データ記憶部26に記憶する。制御部21は、時系列データ記憶部26の日射分布データを用いて、各スタジアムの各計算対象時刻において、ピッチ上の合計日射量が最大となるピッチの位置を備えたスタジアム形状を特定する。そして、制御部21は、時系列にスタジアム形状を表示した可動計画をユーザ端末10の表示部に表示する。これにより、イベントを考慮して、負荷が基準以下であって、日射量を最大とする建築物の評価を行なうことができる。
・上記他の実施形態(図4、図5)において、評価サーバ20の制御部21は、イベント予定の取得処理(ステップS3−1,S4−1)において、スケジュール記憶部に記憶されたイベントスケジュールを用いて、ピッチの可動計画処理を実行した(ステップS3−3,S4−3)。イベントの予定が未定である期間におけるピッチの可動計画処理を実行してもよい。具体的には、評価サーバ20の制御部21は、過去のイベント実績を記録したイベント実施データ記憶部に接続されている。制御部21は、イベント実施データ記憶部から、スタジアムが使用された日時を取得し、この日時に応じて開催時期や開催頻度を予測し、この予測したイベントスケジュールを用いて、ピッチの可動計画処理を実行してもよい。
・上記実施形態においては、ピッチの位置が変更するスタジアムを評価した。評価するスタジアムの形状はこれに限らず、例えば、スタンド等、スタジアムを構成する部分の位置が変更するスタジアムの評価を行なうことができる。この場合、反射率の高い材質でスタンドを構成した場合には、スタンドに反射した光によって多くの日射量がピッチ上に照射するように、スタンドを移動させてもよい。
・上記実施形態においては、芝成長シミュレーションに用いる環境データを算出し、天然芝が植えられたピッチを備えたスタジアムについての評価を行なった。日射量に基づいて評価が行われる建築物の評価であれば、スタジアムの評価に限られない。例えば、地面を覆うための植物(いわゆるグラウンドカバー)や緑化のための植物等の成長シミュレーションや太陽電池パネルを備えた住宅等における発電シミュレーション等、日射量に基づいて評価を行なう建築物に適用することができる。
10…ユーザ端末、20…評価サーバ、21…制御部、22…スタジアム形状データ記憶部、23…計算条件データ記憶部、24…気象台データ記憶部、25…無次元日射分布データ記憶部、26…時系列データ記憶部、210…環境評価部、211…日射量比率算出部、212…芝成長評価部。

Claims (6)

  1. 建築物の形状を表わす各要素の位置を記憶した形状モデルデータ記憶部と、
    前記建築物における評価対象エリアについて、前記要素毎に、太陽から直接照射された日射量が前記太陽と前記要素との間の要素の透過率によって減少した日射量を算出するための無次元の直達成分の日射量比率と、反射光の日射量を算出するための無次元の散乱成分の日射量比率とを記憶する無次元日射分布データ記憶部と、
    過去の気象データを記憶した観測気象データ記憶部と、
    日射量を用いた建築物の評価を行なう制御部とを備えた建築物評価システムであって、
    前記制御部は、
    前記建築物の設置場所に基づいて、各時刻の太陽位置を特定し、
    前記建築物の各要素の位置と前記各時刻における太陽の位置とから前記評価対象エリアにおける前記直達成分の日射量比率及び前記散乱成分の日射量比率を算出して、前記無次元日射分布データ記憶部に記録し、
    前記設置場所に関連する過去の気象データを前記観測気象データ記憶部から取得し、前記気象データを用いて算出した日射量と、前記無次元日射分布データ記憶部に記録された前記直達成分の日射量比率及び前記散乱成分の日射量比率とを用いて、直達成分日射量と散乱成分日射量とを算出し、算出した直達成分日射量と散乱成分日射量とを合計した値を用いて、日射量を算出することを特徴とする建築物評価システム。
  2. 前記建築物はスタジアムであって、前記評価対象エリアは、スタジアム内において天然芝が植えられたピッチであって、
    前記制御部は、前記直達成分日射量と前記散乱成分日射量とを合計した値を用いて算出した日射量に基づいて、前記ピッチ上の天然芝の成長状況についての芝成長シミュレーションを実行することを特徴とする請求項1に記載の建築物評価システム。
  3. 前記制御部は、前記芝成長シミュレーションにおける時間刻み幅が、前記観測気象データ記憶部に記憶されている気象データの観測時間間隔よりも短い場合には、前記観測気象データ記憶部に記憶されている気象データを、前記時間刻み幅の気象データに変換し、前記変換した気象データを前記芝成長シミュレーションに供給することを特徴とする請求項に記載の建築物評価システム。
  4. 前記評価対象エリアの位置が水平方向に移動可能な場合に、
    前記建築物における前記評価対象エリアの位置を変更し、前記変更された位置における前記日射量を算出することを特徴とする請求項1〜のいずれか1項に記載の建築物評価システム。
  5. 建築物の形状を表わす各要素の位置を記憶した形状モデルデータ記憶部と、
    前記建築物における評価対象エリアについて、前記要素毎に、太陽から直接照射された日射量が前記太陽と前記要素との間の要素の透過率によって減少した日射量を算出するための無次元の直達成分の日射量比率と、反射光の日射量を算出するための無次元の散乱成分の日射量比率とを記憶する無次元日射分布データ記憶部と、
    過去の気象データを記憶した観測気象データ記憶部と、
    制御部とを備えた建築物評価システムを用いて、日射量を用いた建築物の評価を行なう方法であって、
    前記制御部は、
    前記建築物の設置場所に基づいて、各時刻の太陽位置を特定し、
    前記建築物の各要素の位置と前記各時刻における太陽の位置とから前記評価対象エリアにおける前記直達成分の日射量比率及び前記散乱成分の日射量比率を算出して、前記無次元日射分布データ記憶部に記録し、
    前記設置場所に関連する過去の気象データを前記観測気象データ記憶部から取得し、前記気象データを用いて算出した日射量と、前記無次元日射分布データ記憶部に記録された前記直達成分の日射量比率及び前記散乱成分の日射量比率とを用いて、直達成分日射量と散乱成分日射量とを算出し、算出した直達成分日射量と散乱成分日射量とを合計した値を用いて、日射量を算出することを特徴とする建築物評価方法。
  6. 建築物の形状を表わす各要素の位置を記憶した形状モデルデータ記憶部と、
    前記建築物における評価対象エリアについて、前記要素毎に、太陽から直接照射された日射量が前記太陽と前記要素との間の要素の透過率によって減少した日射量を算出するための無次元の直達成分の日射量比率と、反射光の日射量を算出するための無次元の散乱成分の日射量比率とを記憶する無次元日射分布データ記憶部と、
    過去の気象データを記憶した観測気象データ記憶部と、
    制御部とを備えた建築物評価システムを用いて、日射量を用いた建築物の評価を行なうためのプログラムであって、
    前記制御部を、
    前記建築物の設置場所に基づいて、各時刻の太陽位置を特定し、
    前記建築物の各要素の位置と前記各時刻における太陽の位置とから前記評価対象エリアにおける前記直達成分の日射量比率及び前記散乱成分の日射量比率を算出して、前記無次元日射分布データ記憶部に記録し、
    前記設置場所に関連する過去の気象データを前記観測気象データ記憶部から取得し、前記気象データを用いて算出した日射量と、前記無次元日射分布データ記憶部に記録された前記直達成分の日射量比率及び前記散乱成分の日射量比率とを用いて、直達成分日射量と散乱成分日射量とを算出し、算出した直達成分日射量と散乱成分日射量とを合計した値を用いて、日射量を算出する手段として機能させることを特徴とする建築物評価プログラム。
JP2014031868A 2014-02-21 2014-02-21 建築物評価システム、建築物評価方法及び建築物評価プログラム Active JP6361161B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014031868A JP6361161B2 (ja) 2014-02-21 2014-02-21 建築物評価システム、建築物評価方法及び建築物評価プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014031868A JP6361161B2 (ja) 2014-02-21 2014-02-21 建築物評価システム、建築物評価方法及び建築物評価プログラム

Publications (2)

Publication Number Publication Date
JP2015156809A JP2015156809A (ja) 2015-09-03
JP6361161B2 true JP6361161B2 (ja) 2018-07-25

Family

ID=54181405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014031868A Active JP6361161B2 (ja) 2014-02-21 2014-02-21 建築物評価システム、建築物評価方法及び建築物評価プログラム

Country Status (1)

Country Link
JP (1) JP6361161B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075127B2 (ja) * 2019-02-22 2022-05-25 株式会社ナイルワークス 圃場分析方法、圃場分析プログラム、圃場分析装置、ドローンシステムおよびドローン
IT201900020196A1 (it) * 2019-10-31 2021-05-01 Stiga S P A In Breve Anche St S P A Metodo per ottenere almeno un'informazione predittiva relativa ad un tappeto erboso

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589524B2 (ja) * 2010-04-19 2014-09-17 株式会社大林組 芝の生長の予測システムおよび予測方法

Also Published As

Publication number Publication date
JP2015156809A (ja) 2015-09-03

Similar Documents

Publication Publication Date Title
Cossu et al. Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe
Chen et al. A mathematical model of global solar radiation to select the optimal shape and orientation of the greenhouses in southern China
Yin et al. Cooling effect of direct green façades during hot summer days: An observational study in Nanjing, China using TIR and 3DPC data
Redon et al. Implementation of street trees within the solar radiative exchange parameterization of TEB in SURFEX v8. 0
KR102321673B1 (ko) 태양광 발전 시뮬레이션 장치 및 방법
Maragkogiannis et al. Combining terrestrial laser scanning and computational fluid dynamics for the study of the urban thermal environment
Yu et al. A preliminary exploration of the cooling effect of tree shade in urban landscapes
Pioppi et al. Cultural heritage microclimate change: Human-centric approach to experimentally investigate intra-urban overheating and numerically assess foreseen future scenarios impact
Bouyer et al. Mitigating urban heat island effect by urban design: forms and materials
Robledo et al. From video games to solar energy: 3D shading simulation for PV using GPU
Waibel et al. Efficient time-resolved 3D solar potential modelling
CN104915548B (zh) 一种光伏组件除尘策略优化方法
Feng et al. Exploring the effects of the spatial arrangement and leaf area density of trees on building wall temperature
JP6361161B2 (ja) 建築物評価システム、建築物評価方法及び建築物評価プログラム
Chen et al. Performance analysis of radiation and electricity yield in a photovoltaic panel integrated greenhouse using the radiation and thermal models
Zhou et al. Carbon dynamics in woody biomass of forest ecosystem in China with forest management practices under future climate change and rising CO 2 concentration
Castellano et al. Photosynthetic photon flux density distribution inside photovoltaic greenhouses, numerical simulation, and experimental results
Chokhachian et al. PANDO: Parametric tool for simulating soil-plant-atmosphere of tree canopies in grasshopper
Sinsel Advancements and applications of the microclimate model ENVI-met
Makaronidou Assessment on the local climate effects of solar photovoltaic parks
Elmalky et al. Computational procedure of solar irradiation: A new approach for high performance façades with experimental validation
Peronato et al. 3D-modeling of vegetation from LiDAR point clouds and assessment of its impact on façade solar irradiation
KR102326375B1 (ko) 일사량 누락 데이터 생성 장치 및 방법
Park et al. Quantifying the cumulative cooling effects of 3D building and tree shade with high resolution thermal imagery in a hot arid urban climate
Maksoud et al. Generating optimum form for vertical farms skyscrapers in UAE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6361161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150