JP6359082B2 - Recycle parts that have been layered - Google Patents

Recycle parts that have been layered Download PDF

Info

Publication number
JP6359082B2
JP6359082B2 JP2016509094A JP2016509094A JP6359082B2 JP 6359082 B2 JP6359082 B2 JP 6359082B2 JP 2016509094 A JP2016509094 A JP 2016509094A JP 2016509094 A JP2016509094 A JP 2016509094A JP 6359082 B2 JP6359082 B2 JP 6359082B2
Authority
JP
Japan
Prior art keywords
shell mold
percent
layered
volume
wrapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016509094A
Other languages
Japanese (ja)
Other versions
JP2016524537A (en
Inventor
マクブライエン,ジョン
キャッスル,リー,ケナード
スパングラー,ブランドン,ダブリュー.
シュー,ジンクァン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JP2016524537A publication Critical patent/JP2016524537A/en
Application granted granted Critical
Publication of JP6359082B2 publication Critical patent/JP6359082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/043Removing the consumable pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/101Permanent cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/108Installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0006Electron-beam welding or cutting specially adapted for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/211Silica
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/607Monocrystallinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Architecture (AREA)
  • Fluid Mechanics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Mold Materials And Core Materials (AREA)
  • Fats And Perfumes (AREA)

Description

[関連出願の相互参照]
本出願は、2013年4月19日に出願された、「Method For Forming Single Crystal Parts Using Additive Manufacturing And Remelt」という名称の米国仮出願第61/813,871号に対する優先権を主張し、その開示が参照により全体として本明細書に組み込まれる。
[Cross-reference of related applications]
This application claims priority to US Provisional Application No. 61 / 813,871, filed Apr. 19, 2013, entitled “Method For Forming Single Crystal Parts Using Additive Manufacturing And Remelt”. Is incorporated herein by reference in its entirety.

本実施形態は、一般に、積層造形の分野に関し、より詳細には、積層造形された部品における欠陥を直すことに関する。   This embodiment relates generally to the field of additive manufacturing, and more particularly to repairing defects in additively manufactured parts.

積層造形は、部品が一層ずつ、その部品の3次元(3D)コンピュータモデルに従って各層を作成するマシンによって作成できる工程である。粉末床積層造形では、粉末の層がプラットフォーム上に拡げられ、選択的な領域が、指向性エネルギー光線によって焼結または溶融することにより結合される。プラットフォームは、割送りで下げられて、粉末の別の層が重ねられ、選択された領域が同様に結合される。その工程が、完成した3D部品が製造されるまで繰り返される。直接堆積積層造形技術では、少量の溶融材料または半固体材料が、部品の3Dモデルに従い、押出し、注入、またはワイヤー供給によってプラットフォームに塗布され、エネルギー光線によって活性化され、材料を接着させて部品を形成する。一般的な積層造形工程は、選択的レーザー焼結、直接レーザー溶融、直接金属レーザー焼結(DMLS)、電子ビーム溶融、レーザー粉末堆積、電子ビームワイヤー堆積、などを含む。   Layered modeling is a process that can be created by a machine that creates each layer, one layer at a time, according to a three-dimensional (3D) computer model of the part. In powder bed additive manufacturing, a layer of powder is spread on a platform and selected areas are joined by sintering or melting with a directed energy beam. The platform is indexed down and another layer of powder is overlaid and the selected areas are similarly bonded. The process is repeated until the finished 3D part is manufactured. In direct stack additive manufacturing technology, a small amount of molten or semi-solid material is applied to the platform by extrusion, injection, or wire feed, and activated by an energy beam according to the 3D model of the part, causing the material to adhere to the part. Form. Typical additive manufacturing processes include selective laser sintering, direct laser melting, direct metal laser sintering (DMLS), electron beam melting, laser powder deposition, electron beam wire deposition, and the like.

積層造形作業では、部品は、連続工程で製造されるので、機械加工、鍛造、溶接、鋳造などの従来の製造工程と関連付けられた特徴が取り除かれて、費用、材料、および時間の節約をもたらし得る。その上、積層造形は、複雑な形状の部品が、従来の製造工程と比較して、比較的容易に形成されるのを可能にする。   In additive manufacturing operations, parts are manufactured in a continuous process, eliminating features associated with traditional manufacturing processes such as machining, forging, welding, and casting, resulting in cost, material, and time savings. obtain. Moreover, additive manufacturing allows complex shaped parts to be formed relatively easily compared to conventional manufacturing processes.

しかし、積層造形に関連した1つの課題は、積み上げて形成される部品の品質管理である。一般に、部品の表面下欠陥は、積層造形工程に内在的である。1つの部品を積み上げて形成するために何十時間(またはそれ以上)もかかり得るが、それにも関わらず、少なくともいくつかの完成した積み上げ形成された部品が、汚れおよびボイド(void)などの、表面下欠陥を有することは免れない。結果として、かかる欠陥品は、これらの部品を形成するためにかなりの資源を費やした後に、はねられる。   However, one problem related to additive manufacturing is quality control of the parts formed by stacking. In general, subsurface defects in parts are inherent in the additive manufacturing process. Although it can take tens of hours (or more) to stack and form a single part, nevertheless, at least some finished stacked parts, such as dirt and voids, It is inevitable to have subsurface defects. As a result, such defective items are bounced after spending considerable resources to form these parts.

一実施形態は、部品を再生する方法を含む。本方法は、完成品に近い形状で、容量で、0パーセントより多いが、約15パーセント未満のボイドを有するように部品を積層造形することを含む。この部品はシェルモールドで包み込まれる。シェルモールドが硬化処理される。包み込まれた部品が炉に入れられて部品が溶融される。部品がシェルモールド内で凝固される。シェルモールドは凝固した部品から取り除かれる。   One embodiment includes a method of recycling a part. The method includes additive fabrication of a part with a shape close to a finished product and having a void volume of greater than 0 percent but less than about 15 percent. This part is encased in a shell mold. The shell mold is cured. The encased part is placed in a furnace and the part is melted. The part is solidified in the shell mold. The shell mold is removed from the solidified part.

別の実施形態は、内部通路をもつ部品を再生する方法を含む。本方法は、完成品に近い形状で、内部通路をもち、容量で、0パーセントより多いが、約15パーセント未満のボイドを有するように部品を積層造形することを含む。内部通路はスラリーで充填される。スラリーが硬化処理されてコアを形成する。この部品はシェルモールドで包み込まれれる。シェルモールドが硬化処理される。包み込まれた部品が炉に入れられて、部品が溶融される。部品がシェルモールド内で凝固される。シェルモールドおよびコアは凝固した部品から取り除かれる。   Another embodiment includes a method for recycling a part having an internal passage. The method includes additive fabrication of a part with a shape close to a finished product, having an internal passage, and having a volume of greater than 0 percent but less than about 15 percent void. The internal passage is filled with slurry. The slurry is cured to form a core. This part is encased in a shell mold. The shell mold is cured. The encased part is placed in a furnace and the part is melted. The part is solidified in the shell mold. The shell mold and core are removed from the solidified part.

さらなる実施形態は、内部通路をもつ中間部品を含む。中間部品は、完成品に近い形状で、内部通路をもつ、固体金属の積層造形された部品を含む。部品は、容量で、0パーセントより多いが、約15パーセント未満のボイド、および完成品に近い形状で、所望の完成した構成と比較して、容量で、最大15パーセントの余分の材料を有する。部品の内部通路内に配置されたセラミックコアおよび、部品の外表面全体が外側のセラミックシェルモールドで覆われるように、部品の全体を包み込んでいる外側のセラミックシェルモールドも含まれている。   Further embodiments include an intermediate piece having an internal passage. The intermediate part includes a solid metal additive-molded part having a shape close to the finished product and having an internal passage. The part has more than 0 percent by volume but less than about 15 percent voids and a shape close to the finished product, with up to 15 percent extra material by volume compared to the desired finished configuration. Also included is a ceramic core disposed within the internal passage of the part and an outer ceramic shell mold enclosing the entire part such that the entire outer surface of the part is covered with the outer ceramic shell mold.

コアおよびシェルモールドを有する、内部通路のある中間部品の断面図である。FIG. 3 is a cross-sectional view of an intermediate part with an internal passage having a core and a shell mold. 積層造形された部品を再生するための方法を示すフローチャートである。It is a flowchart which shows the method for reproducing | regenerating the layered and modeled part.

上記の図は、本発明の1つ以上の実施形態を説明するが、他の実施形態も検討される。いかなる場合でも、本開示は、制限ではなく、代表的なものとして、本発明を提示する。多数の他の修正および実施形態が当業者によって考案され得、それらは、本発明の原理の範囲および精神に含まれることが理解されるべきである。図は、縮尺通りに描かれていない可能性があり、本発明の適用および実施形態は、図に具体的に示されていない特徴および構成要素を含み得る。   While the above figures illustrate one or more embodiments of the invention, other embodiments are also contemplated. In any case, this disclosure presents the present invention by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art and are within the scope and spirit of the principles of the present invention. The figures may not be drawn to scale and applications and embodiments of the present invention may include features and components not specifically shown in the figures.

一般に、本実施形態は、部品が、はねられる必要がなく、意図した通りに使用できるように、欠陥を直すために、欠陥(例えば、表面下欠陥)のある、積層造形された部品を製造ないし再生するために提供される。積層造形された部品における欠陥は、従来のインベストメント鋳造法におけるシェルモールドと同様に、その部品を、シェルモールドを作るための原型として使用することにより、直される。部品は、シェルモールドで完全に包み込まれて、溶融され、次いで、凝固されて、同じ、潜在的に複雑な形状の実質的に欠陥のない部品を製造することができる。添付の図を含め、本開示の全体を見ると、他の特徴および利益が認識されよう。   In general, this embodiment produces a layered part that has a defect (eg, a subsurface defect) to correct the defect so that the part does not need to be bounced and can be used as intended. Or provided to play. Defects in layered parts are corrected by using the part as a prototype for making a shell mold, similar to a shell mold in conventional investment casting. The part can be fully encapsulated in a shell mold, melted and then solidified to produce a substantially defect-free part of the same, potentially complex shape. Other features and benefits will be appreciated when viewed throughout the disclosure, including the attached figures.

図1は、積層造形された中間部品10の概略断面図である。中間部品10は、翼12、プラットフォーム14、付け根部16、および内部通路18を含む、タービンブレードであり得る。図1に示すような中間部品10は、制限ではなく、例として提供された、一例に過ぎない。積層造形された部品10は、積層造形されるのが可能な任意の部品であり得、例えば、燃料ノズルまたはタービンブレードまたはベーンを含み得る。中間部品10に含まれていて、図1に示されているのは、内側のコア20および外側のシェルモールド22である。図1に示すような一例では、コア20はセラミックコアであり、シェルモールド22は、セラミックシェルモールドである。他のコア20およびシェルモールド22の材料も検討される。   FIG. 1 is a schematic cross-sectional view of an intermediate part 10 that has been layered. The intermediate piece 10 can be a turbine blade that includes a blade 12, a platform 14, a root 16, and an internal passage 18. The intermediate piece 10 as shown in FIG. 1 is merely an example, provided as an example, not a limitation. The layered and shaped part 10 can be any part that can be layered and can include, for example, a fuel nozzle or turbine blade or vane. Included in the intermediate part 10 and shown in FIG. 1 are an inner core 20 and an outer shell mold 22. In an example as shown in FIG. 1, the core 20 is a ceramic core, and the shell mold 22 is a ceramic shell mold. Other core 20 and shell mold 22 materials are also contemplated.

中間部品10は、完成品に近い形状に積層造形されて、翼12、プラットフォーム14、付け根部16および内部通路18が、部品10として一体化されている。しかし、セラミックコア20およびセラミックシェルモールド22は、積層造形工程中に、部品10の一部として形成されるものではない。部品10は、選択的レーザー焼結、選択的レーザー溶融、直接金属堆積、直接金属レーザー焼結(DMLS)、直接金属レーザー溶融、電子ビーム溶融、電子ビームワイヤー溶融および当技術分野で知られたその他を含むが、それらに制限されない、多層構造を利用する、任意のタイプの積層造形工程を使用して、積層造形できる。部品10は、完成品に近い形状で(すなわち、図1に示すような中間部品10)、部品10の所望の完成した構成(すなわち、実質的に表面下欠陥がなくなるように再生された後の部品10)と比較して、容量で、最大15パーセントの余分の材料を有するように積層造形される。部品10のいずれの余分の材料も、余分の材料の機械加工が可能な任意の位置に配置することができる。一例では、余分の材料は、付け根部16および/または翼12の先端に配置することができる。さらに、部品10は、ニッケル基超合金、コバルト基超合金、鉄基超合金、およびその混合物などの、金属によって積層造形できる。   The intermediate part 10 is layered and shaped in a shape close to a finished product, and the wing 12, the platform 14, the base part 16, and the internal passage 18 are integrated as a part 10. However, the ceramic core 20 and the ceramic shell mold 22 are not formed as part of the component 10 during the additive manufacturing process. Component 10 includes selective laser sintering, selective laser melting, direct metal deposition, direct metal laser sintering (DMLS), direct metal laser melting, electron beam melting, electron beam wire melting, and others known in the art. Any type of additive manufacturing process that utilizes a multilayer structure, including but not limited to, can be additively manufactured. The part 10 has a shape close to that of the finished product (ie, the intermediate part 10 as shown in FIG. 1) and the desired finished configuration of the part 10 (ie, after being regenerated to substantially eliminate subsurface defects). Compared to part 10), it is layered to have up to 15 percent extra material in volume. Any extra material of the part 10 can be placed in any position where the extra material can be machined. In one example, excess material can be placed at the root 16 and / or the tip of the wing 12. Furthermore, the component 10 can be layered with a metal, such as a nickel-base superalloy, a cobalt-base superalloy, an iron-base superalloy, and mixtures thereof.

積層造形された結果として、部品10は、表面下欠陥を有し得る。表面下欠陥は、汚れおよび/またはボイドなどの、望ましくない欠陥を含み得る。ボイドは、例えば、孔および/または亀裂を含み得る。例えば、部品10は、容量で、0パーセントより多いが、約15パーセント未満のボイドを有し得る。多くの場合、部品10は、容量で、0パーセントより多いが、約1パーセント未満のボイドを有し得、さらにいくつかの場合には、容量で、約0.1パーセント未満のボイドしか有していない。部品10は、望ましくないレベルのボイドを含む場合、意図した通りの使用に適していないと考えられ得るが、それは、多くの用途では、容量でほんのわずかな割合であり得る。このため、部品10は、表面下欠陥を直すために再生できる。   As a result of the additive manufacturing, the component 10 may have subsurface defects. Subsurface defects can include undesirable defects such as dirt and / or voids. Voids can include, for example, holes and / or cracks. For example, part 10 may have a void volume of greater than 0 percent but less than about 15 percent by volume. In many cases, the component 10 may have more than 0 percent but less than about 1 percent void by volume, and in some cases, less than about 0.1 percent void by volume. Not. If the part 10 contains undesirable levels of voids, it may be considered unsuitable for intended use, but for many applications it may be only a small percentage by volume. Thus, the part 10 can be regenerated to correct the subsurface defects.

実質的に表面下欠陥がなくなるように部品10を再生するための工程の一部として、部品10は、部品10が積層造形された後に、部品10に付加されたセラミックコア20およびセラミックシェルモールド22を有する。他の実施形態では、部品10は、セラミック以外の材料のコア20およびシェルモールド22を有し得る。セラミックコア20が実質的に内部通路18の形状に一致するように、セラミックコア20は、内部通路18内に形成される。セラミックコア20は、内部通路18をセラミックスラリーで充填することにより形成でき、その結果、内部通路18の容積がセラミックスラリーで占められる。セラミックスラリーは、インベストメント鋳造のコア材料として一般に使用されるセラミック、例えば、シリカ、アルミナ、ジルコン、コバルト、ムライト、カオリン、およびそれらの混合物など、であり得る。内部通路18がセラミックスラリーで充填されるか、または実質的に充填されると、セラミックスラリーが硬化処理され(一般に固体で剛性の特性を有する)セラミックコア20が形成される。部品が積層造形されていて、内部通路18を有していない、他の実施形態では、部品は、セラミックコア20を使用することなく、欠陥を実質的に直すために再生できる。   As part of the process for regenerating the component 10 so that there are substantially no subsurface defects, the component 10 is made up of the ceramic core 20 and the ceramic shell mold 22 added to the component 10 after the component 10 is layered. Have In other embodiments, the component 10 may have a core 20 and a shell mold 22 of a material other than ceramic. The ceramic core 20 is formed in the internal passage 18 such that the ceramic core 20 substantially matches the shape of the internal passage 18. The ceramic core 20 can be formed by filling the internal passage 18 with a ceramic slurry, so that the volume of the internal passage 18 is occupied by the ceramic slurry. The ceramic slurry can be a ceramic commonly used as a core material for investment casting, such as silica, alumina, zircon, cobalt, mullite, kaolin, and mixtures thereof. When the internal passage 18 is filled or substantially filled with a ceramic slurry, the ceramic slurry is hardened to form a ceramic core 20 (generally solid and rigid). In other embodiments, where the part is layered and does not have an internal passage 18, the part can be regenerated to substantially repair the defect without using the ceramic core 20.

セラミックシェルモールド22も、部品10に付加される。部品10の外表面全体がセラミックシェルモールド22によって覆われて、セラミックシェルモールド22が実質的に部品10の形状に一致するように、セラミックシェルモールド22は、部品10の全体を包み込むことができる。部品10は完成品に近い形状を有しているので、中間部品10は、セラミックシェルモールド22を作るための原型として役立つ。セラミックシェルモールド22は、部品10の全体をセラミックスラリーに浸して、部品10の全体の上に未硬化の(すなわち、硬化処理されていない)セラミックシェルモールドの層を形成することにより、部品10を包み込むように形成できる。層は乾燥され、そして、十分な厚さの未硬化のセラミックシェルモールドを形成するのに必要な回数だけ、部品が繰り返し、浸されて乾燥される。未硬化のセラミックシェルモールドの厚さは、約5mm〜約32mmに及び得る。未硬化のセラミックシェルモールドは次いで、硬化処理されて、(一般に固体で剛性の特性を有する)セラミックシェルモールド22を形成する。セラミックスラリー、および従って、セラミックシェルモールド22は、例えば、シリカ、アルミナ、ジルコン、コバルト、ムライト、カオリン、およびそれらの混合物など、であり得る。代替として、一例では、セラミックシェルモールド22およびセラミックコア20は、セラミックシェルモールド22が部品10の外表面全体を包むとともにセラミックコア20が内部通路18の表面全体を包むように、同時に形成できる。   A ceramic shell mold 22 is also added to the part 10. The ceramic shell mold 22 can envelop the entire part 10 such that the entire outer surface of the part 10 is covered by the ceramic shell mold 22 so that the ceramic shell mold 22 substantially matches the shape of the part 10. Since the part 10 has a shape close to the finished product, the intermediate part 10 serves as a prototype for making the ceramic shell mold 22. The ceramic shell mold 22 immerses the entire part 10 in a ceramic slurry to form an uncured (ie, uncured) ceramic shell mold layer on the entire part 10 to thereby form the part 10. Can be formed to wrap. The layer is dried and the part is repeatedly dipped and dried as many times as necessary to form a sufficiently thick uncured ceramic shell mold. The thickness of the uncured ceramic shell mold can range from about 5 mm to about 32 mm. The uncured ceramic shell mold is then cured to form a ceramic shell mold 22 (generally having solid and rigid properties). The ceramic slurry, and thus the ceramic shell mold 22, can be, for example, silica, alumina, zircon, cobalt, mullite, kaolin, and mixtures thereof. Alternatively, in one example, the ceramic shell mold 22 and the ceramic core 20 can be formed simultaneously such that the ceramic shell mold 22 wraps the entire outer surface of the component 10 and the ceramic core 20 wraps the entire surface of the internal passage 18.

図2は、積層造形された部品の再生方法30の一実施形態を示すフローチャートである。方法30は、部品10が要望通りに使用できて、はねられる必要がないように、表面下欠陥のある部品10を直すために使用できる。   FIG. 2 is a flowchart illustrating an embodiment of a method 30 for regenerating a layered component. The method 30 can be used to repair a subsurface defective part 10 so that the part 10 can be used as desired and does not need to be rebounded.

まず、任意選択的に内部通路18を含み得る、中間部品10が、完成品に近い形状に積層造形される(ステップ32)。選択的レーザー焼結、選択的レーザー溶融、直接金属堆積、直接金属レーザー焼結、直接金属レーザー溶融、電子ビーム溶融、電子ビームワイヤー溶融、および当技術分野で知られたその他を含むが、それらに制限されない、任意のタイプの積層造形工程が、部品10を積層造形するために使用できる。さらに、部品10は、ニッケル基超合金、コバルト基超合金、鉄基超合金、およびその混合物などの、金属のものとして積層造形できる。積層造形された部品10は、望ましくない欠陥を有し、この欠陥は、容量で、0パーセントより多いが、約15パーセント未満のボイド(例えば、孔および/または亀裂)を有し得る(他の望ましくない欠陥としては汚れを含み得る)。一実施形態では、部品10は、容量で、0パーセントより多いが、約1パーセント未満、さらには、容量で、約0.1パーセント未満の、望ましくないボイドを有し得る。その上、部品10は、完成品に近い形状で、所望の完成した構成と比較して、容量で、最大15パーセントの余分の材料を有するように積層造形され得る。これは、積み上げて形成された部品10が、所望の完成した構成を形成するために必要なものを超えた、余分の材料を含み得ることを意味する。この余分の材料は、余分の材料の機械加工が可能な任意の位置で、部品10上に配置することができる。一例では、余分の材料は、別々の湯口位置などの、付け根部16および/または翼12の先端に配置することができる。一実施形態では、部品10は、積層造形工程の時間の節約のために、中空部分(例えば、所望のサイズ、形状の孔に似た中空部分など)を意図的に含むように積層造形される。   First, the intermediate part 10, which may optionally include the internal passage 18, is layered to a shape close to the finished product (step 32). Including, but not limited to, selective laser sintering, selective laser melting, direct metal deposition, direct metal laser sintering, direct metal laser melting, electron beam melting, electron beam wire melting, and others known in the art Any type of additive manufacturing process, which is not limited, can be used to additively mold the part 10. Furthermore, the component 10 can be layered as a metal such as a nickel-base superalloy, a cobalt-base superalloy, an iron-base superalloy, and mixtures thereof. The layered shaped part 10 has an undesirable defect that can have more than 0 percent but less than about 15 percent voids (eg, holes and / or cracks) in volume (other Undesirable defects may include dirt). In one embodiment, part 10 may have undesirable voids that are greater than 0 percent by volume, but less than about 1 percent, and even less than about 0.1 percent by volume. Moreover, the part 10 can be layered to have up to 15 percent extra material in volume compared to the desired finished configuration in a shape close to the finished product. This means that the stacked and formed parts 10 may contain extra material beyond what is needed to form the desired finished configuration. This extra material can be placed on the part 10 at any location where the extra material can be machined. In one example, excess material can be placed at the root 16 and / or the tip of the wing 12, such as a separate gate position. In one embodiment, the component 10 is additively shaped to intentionally include a hollow portion (eg, a hollow portion resembling a hole of a desired size, shape, etc.) to save time in the additive manufacturing process. .

次に、少なくとも1つの内部通路18が存在する場合は、セラミックスラリーまたは他の適切なコア材料で充填できる(ステップ34)。内部通路18をスラリーで充填すると、内部通路18の容積がスラリーによって占められる結果となる。各々の内部通路18がスラリーで充填できる。スラリーは、シリカ、アルミナ、ジルコン、コバルト、ムライト、およびカオリンを含むが、それらに制限されない、従来の鋳造工程でコア材料として一般に使用されるセラミック材料であり得る。   Next, if at least one internal passage 18 is present, it can be filled with a ceramic slurry or other suitable core material (step 34). Filling the internal passage 18 with the slurry results in the volume of the internal passage 18 being occupied by the slurry. Each internal passage 18 can be filled with slurry. The slurry can be a ceramic material commonly used as a core material in conventional casting processes, including but not limited to silica, alumina, zircon, cobalt, mullite, and kaolin.

内部通路18がセラミックスラリーで充填されると、セラミックスラリーは硬化処理され、内側のコア20が形成される(ステップ36)。スラリーは、適切な熱処理によって部品10内でその場で硬化できる。コア20は、コア20が部品10の内部通路18の形状に実質的に一致するように、内部通路18を占有する。ステップ34および36は、内部通路18が存在しない場合には、省略できる。   When the internal passage 18 is filled with the ceramic slurry, the ceramic slurry is cured to form the inner core 20 (step 36). The slurry can be cured in situ within the component 10 by a suitable heat treatment. The core 20 occupies the internal passage 18 such that the core 20 substantially matches the shape of the internal passage 18 of the component 10. Steps 34 and 36 can be omitted if the internal passage 18 is not present.

次いで、部品10が未硬化の(硬化処理されていない)シェルモールドで包み込まれる(ステップ38)。部品10の外表面全体が未硬化のシェルモールドによって覆われて、未硬化のシェルモールドが実質的に部品10の形状に一致するように、未硬化のシェルモールドは、部品10の全体を包み込むことができる(すなわち、実質的に部品10を密封する)。コア20が部品10の外表面またはその近くにあって、コア20がシェルモールド22の一部を形成し、その結果、コア20の部分の上のシェルモールド22内に間隙が生じる状況があり得る。未硬化のシェルモールドは、部品10の全体をセラミックスラリーに浸して、部品10の全体の上に未硬化のセラミックシェルモールドの層を形成することにより、部品10を包み込むように形成できる。層は乾燥され、そして、十分な厚さの未硬化のシェルモールドを形成するのに必要な回数だけ、部品が繰り返し、浸されて乾燥される。部品10をセラミックスラリーに浸すことに代わる一代替手段として、セラミックスラリーを、部品10上にかけて、乾燥することもできる。未硬化のシェルモールドの許容可能な厚さは、約5mm〜約32mmに及び得る。未硬化のシェルモールドは、中間温度で加熱されて、セラミックを部分的に焼結し、未硬化のシェルモールド内のいずれのバインダー剤も熱して除き得る。   The part 10 is then wrapped in an uncured (uncured) shell mold (step 38). The uncured shell mold envelops the entire part 10 so that the entire outer surface of the part 10 is covered by the uncured shell mold so that the uncured shell mold substantially matches the shape of the part 10. (I.e., substantially seal the component 10). There may be situations where the core 20 is at or near the outer surface of the component 10 and the core 20 forms part of the shell mold 22 resulting in a gap in the shell mold 22 above the portion of the core 20. . The uncured shell mold can be formed to wrap the part 10 by immersing the entire part 10 in a ceramic slurry to form a layer of uncured ceramic shell mold on the entire part 10. The layer is dried and the part is repeatedly dipped and dried as many times as necessary to form a sufficiently thick uncured shell mold. As an alternative to immersing the part 10 in the ceramic slurry, the ceramic slurry can be dried over the part 10 and dried. The acceptable thickness of the uncured shell mold can range from about 5 mm to about 32 mm. The uncured shell mold can be heated at an intermediate temperature to partially sinter the ceramic and heat off any binder in the uncured shell mold.

未硬化のシェルモールドは、次いで、硬化処理されて、外側のシェルモールド22を形成する(ステップ40)。シェルモールド22は、例えば、シリカ、アルミナ、ジルコン、コバルト、ムライト、カオリン、およびそれらの混合物であり得る。セラミックシェルモールド22は、約649°C(1200°F)〜約982°C(1800°F)の間の範囲の温度で、約10〜約120分間、硬化処理されて、セラミックシェルモールド22を完全な密度に硬化できる。未硬化のセラミックシェルモールドが部品10の全体を包み込んで実質的に部品10の形状に一致するので、部品10は、セラミックシェルモールド22内の原型としての役割を(従来のインベストメント鋳造工程で使用されるろう型の代わりに)果たす。   The uncured shell mold is then cured to form the outer shell mold 22 (step 40). The shell mold 22 can be, for example, silica, alumina, zircon, cobalt, mullite, kaolin, and mixtures thereof. The ceramic shell mold 22 is cured at a temperature in the range of about 649 ° C. (1200 ° F.) to about 982 ° C. (1800 ° F.) for about 10 to about 120 minutes to form the ceramic shell mold 22. Can be cured to full density. Since the uncured ceramic shell mold envelops the entire part 10 and substantially matches the shape of the part 10, the part 10 serves as a prototype in the ceramic shell mold 22 (used in conventional investment casting processes). Play)

次に、望ましくない欠陥のある部品10が、今や部品10の原型を有する、セラミックシェルモールド22内で溶融される(ステップ42)。セラミックシェルモールド22内で部品10を溶融する一方法は、部品10の少なくとも一部を炉に入れることである。しかし、部品10がセラミックシェルモールド22内で溶融されるように熱を加える他の手段が使用できる。例えば、二重チルブロックおよび炉組立体が使用できる。部品10が作られる材料は、一般に、コア20およびシェルモールド22を形成する材料の溶融点より低い溶融点を有する。これにより、部品10の材料をセラミックコア20および/またはセラミックシェルモールド22の材料で汚すことなく、部品10が、セラミックシェルモールド20の内部で溶融するのを可能にできる。セラミックシェルモールド22内で部品10を溶融すると、部品10の材料が、重力または他の手段の助けを受けて、高密度となり、部品10内に元々存在した望ましくないボイドを実質的に取り除くことを可能にする。部品10が、容量で、最大15%の余分な材料を有するように積層造形された場合、この余分な材料も溶融されて、部品10内の孔および/または亀裂を充填する(それにより、部品10内の孔および/または亀裂を充填した余分な材料は、元々あった場所にもはや存在しなくなる)。シェルモールド22内で部品10を溶融すると、部品10から汚れを取り除くのにも役立ち得、汚れは、一般に、固相の部品10よりも液相の部品10における方が溶解しやすい。   Next, the undesirably defective part 10 is melted in a ceramic shell mold 22 now having a prototype of the part 10 (step 42). One way to melt the part 10 in the ceramic shell mold 22 is to place at least a portion of the part 10 in a furnace. However, other means of applying heat so that the part 10 is melted in the ceramic shell mold 22 can be used. For example, a double chill block and furnace assembly can be used. The material from which the part 10 is made generally has a melting point that is lower than the melting point of the material forming the core 20 and shell mold 22. This allows the component 10 to melt inside the ceramic shell mold 20 without contaminating the material of the component 10 with the material of the ceramic core 20 and / or the ceramic shell mold 22. Melting the part 10 in the ceramic shell mold 22 causes the material of the part 10 to become dense with the aid of gravity or other means to substantially remove unwanted voids originally present in the part 10. to enable. If part 10 is layered to have up to 15% extra material by volume, this extra material is also melted to fill the holes and / or cracks in part 10 (so that the part The extra material filling the holes and / or cracks in 10 no longer exists where it was originally). Melting the part 10 in the shell mold 22 can also help remove dirt from the part 10, which is generally easier to dissolve in the liquid part 10 than in the solid part 10.

部品10が、セラミックシェルモールド22の内部で溶融された後、部品10は、セラミックシェルモールド22内で凝固される(ステップ44)。部品10は、部品10が凝固できる温度まで部品10を冷却するチルブロックや任意の他の手段を使用して、凝固できる。セラミックシェルモールド22内で凝固した部品10は、元々積層造形された部品10と同じ形状に部品10を形成するが、今や、部品10は、密度が高まって、ボイドや他の欠陥が減っているか、または実質的に取り除き(すなわち、所望の完成した構成に)されている。部品10が、スターターシードまたは粒子セレクタを使用して指向性凝固される場合には、部品10内の汚れは、凝固界面により、部品10の共通の領域に押し出されるか、または集められるので、その後、除去および廃棄できる。   After the part 10 is melted inside the ceramic shell mold 22, the part 10 is solidified in the ceramic shell mold 22 (step 44). The part 10 can be solidified using a chill block or any other means that cools the part 10 to a temperature at which the part 10 can be solidified. The part 10 solidified in the ceramic shell mold 22 forms the part 10 in the same shape as the part 10 that was originally layered, but now the part 10 has increased density and reduced voids and other defects? Or substantially removed (ie, in the desired finished configuration). If the part 10 is directional solidified using a starter seed or particle selector, then the dirt in the part 10 is pushed or collected by the solidification interface into a common area of the part 10 and thereafter Can be removed and discarded.

最後に、セラミックコア20およびセラミックシェルモールド22が凝固した部品10から取り除かれる(ステップ46)。例えば、セラミックコア20は、腐食性の溶出(caustic leaching)により、エッチアウト(etched out)ないし除去することができ、また、セラミックシェルモールド22は、叩いて壊すことができる。完成した部品10は、ボイドなどの望ましくない欠陥が減っているか、または実質的に取り除かれていて、完成した部品10が積層造形された部品10と同じ形状を有することを確認するために、検査することもできる。方法30は、次いで、必要に応じて、繰り返すことができる。   Finally, the ceramic core 20 and the ceramic shell mold 22 are removed from the solidified part 10 (step 46). For example, the ceramic core 20 can be etched out or removed by caustic leaching, and the ceramic shell mold 22 can be struck and broken. The finished part 10 is inspected to ensure that undesirable defects such as voids are reduced or substantially eliminated and that the finished part 10 has the same shape as the layered part 10. You can also The method 30 can then be repeated as necessary.

部品が積層造形されていて、内部通路18を有していない場合、その部品は、方法30に対して説明したものに類似した、表面下欠陥を実質的に直すために再生できる。しかし、内部通路18がないので、ステップ34および36は実行する必要がない。   If the part is layered and does not have an internal passage 18, the part can be regenerated to substantially repair subsurface defects similar to those described for method 30. However, because there is no internal passage 18, steps 34 and 36 need not be performed.

[考えられる実施形態の説明]
以下は、本発明の考えられる実施形態の非排他的な記述である。
[Description of possible embodiments]
The following is a non-exclusive description of possible embodiments of the invention.

部品を再生するための方法であって、その方法は、完成品に近い形状で、容量で、0パーセントより多いが、約15パーセント未満のボイドを有するように部品を積層造形すること;部品をシェルモールドで包み込むこと;シェルモールドを硬化処理すること;包み込まれた部品を炉に入れて、部品を溶融すること;部品をシェルモールド内で凝固すること;およびシェルモールドを凝固した部品から取り除くこと;を含む。   A method for reclaiming a part, wherein the part is additively shaped to have a shape close to a finished product and having a volume greater than 0 percent but less than about 15 percent void; Wrapping the shell mold; curing the shell mold; placing the wrapped part in a furnace to melt the part; solidifying the part in the shell mold; and removing the shell mold from the solidified part ;including.

前項の方法が、任意選択で、追加および/または代替として、以下の技術、ステップ、特徴および/または構成のいずれか1つ以上を含み得る:
部品が、容量で、0パーセントより多いが、約1パーセント未満のボイドを有するように積層造形される。
The method of the preceding paragraph may optionally include, as an addition and / or alternative, any one or more of the following techniques, steps, features and / or configurations:
The part is layered to have a void volume of greater than 0 percent but less than about 1 percent.

部品が、完成品に近い形状で、所望の完成した構成と比較して、容量で、最大15パーセントの余分の材料を有するように積層造形される。   The part is layered with a shape close to the finished product and up to 15 percent extra material in volume compared to the desired finished configuration.

部品が、ブレードまたはベーンであり、容量で、最大15パーセントの余分の材料が、部品の付け根部または翼の先端に配置される。   The part is a blade or vane and by volume up to 15 percent extra material is placed at the root of the part or the tip of the wing.

部品をシェルモールドで包み込むことが、部品の外表面全体がシェルモールドによって覆われるように、部品の全体をシェルモールドで包み込むことを含む。   Wrapping the part with a shell mold includes wrapping the whole part with the shell mold so that the entire outer surface of the part is covered by the shell mold.

部品をシェルモールドで包み込むことが、(a)部品の全体をスラリーに浸して、部品全体の上にシェルモールドの層を形成すること;(b)シェルモールドの層を乾燥すること;ならびに、(c)部品の全体を包み込むために、許容可能なシェルモールドの厚さが形成されるまでステップ(a)および(b)を繰り返すこと;の工程を含む。   Wrapping the part in a shell mold includes: (a) immersing the entire part in a slurry to form a shell mold layer over the entire part; (b) drying the shell mold layer; c) repeating steps (a) and (b) until an acceptable shell mold thickness is formed to envelop the entire part.

部品が、選択的レーザー焼結、選択的レーザー溶融、直接金属堆積、直接金属レーザー焼結、直接金属レーザー溶融、および電子ビーム溶融のうちの少なくとも1つを使用して、積層造形される。   The component is layered using at least one of selective laser sintering, selective laser melting, direct metal deposition, direct metal laser sintering, direct metal laser melting, and electron beam melting.

部品が、ニッケル基超合金、コバルト基超合金、鉄基超合金、およびその混合物から成る群から選択された金属のものとなるように積層造形される。   The component is layered to be of a metal selected from the group consisting of nickel-base superalloy, cobalt-base superalloy, iron-base superalloy, and mixtures thereof.

内部通路をもつ部品を再生する方法であって、その方法は、完成品に近い形状で、内部通路をもち、容量で、0パーセントより多いが、約15パーセント未満のボイドを有するように部品を積層造形すること;内部通路をスラリーで充填すること;スラリーを硬化処理してコアを形成すること;部品をシェルモールドで包み込むこと;シェルモールドを硬化処理すること;包み込まれた部品を炉に入れて、部品を溶融すること;部品をシェルモールド内で凝固すること;ならびにシェルモールドおよびコアを凝固した部品から取り除くこと;を含む。   A method of reclaiming a part having an internal passage, wherein the part has a shape close to a finished product, has an internal passage, and has a volume of more than 0 percent but less than about 15 percent void. Additive manufacturing; filling internal passages with slurry; curing slurry to form core; wrapping parts with shell mold; curing shell mold; putting encased parts into furnace Melting the part; solidifying the part in a shell mold; and removing the shell mold and core from the solidified part.

前項の方法が、任意選択で、追加および/または代替として、以下の技術、ステップ、特徴および/または構成のいずれか1つ以上を含み得る:
コアが、実質的に部品の内部通路の形状に一致し、シェルモールドが、実質的に部品の形状に一致する。
The method of the preceding paragraph may optionally include, as an addition and / or alternative, any one or more of the following techniques, steps, features and / or configurations:
The core substantially matches the shape of the internal passage of the part, and the shell mold substantially matches the shape of the part.

部品が、容量で、0パーセントより多いが、約1パーセント未満のボイドを有するように積層造形される。   The part is layered to have a void volume of greater than 0 percent but less than about 1 percent.

部品が、完成品に近い形状で、所望の完成した構成と比較して、容量で、最大15パーセントの余分の材料を有するように積層造形される。   The part is layered with a shape close to the finished product and up to 15 percent extra material in volume compared to the desired finished configuration.

部品が、ブレードまたはベーンであり、かつ容量で、最大15パーセントの余分の材料が、部品の付け根部または翼の先端に配置される。   The part is a blade or vane and by volume up to 15 percent extra material is placed at the root of the part or the tip of the wing.

部品が、選択的レーザー焼結、選択的レーザー溶融、直接金属堆積、直接金属レーザー焼結、直接金属レーザー溶融、および電子ビーム溶融のうちの少なくとも1つを使用して、積層造形される。   The component is layered using at least one of selective laser sintering, selective laser melting, direct metal deposition, direct metal laser sintering, direct metal laser melting, and electron beam melting.

部品が、ニッケル基超合金、コバルト基超合金、鉄基超合金、およびその混合物から成る群から選択された金属のものとなるように積層造形される。   The component is layered to be of a metal selected from the group consisting of nickel-base superalloy, cobalt-base superalloy, iron-base superalloy, and mixtures thereof.

スラリーが、シリカ、アルミナ、ジルコン、コバルト、ムライト、およびカオリンから成る群から選択される。   The slurry is selected from the group consisting of silica, alumina, zircon, cobalt, mullite, and kaolin.

シェルモールドが、シリカ、アルミナ、ジルコン、コバルト、ムライト、カオリンおよびそれらの混合物から成る群から選択される。   The shell mold is selected from the group consisting of silica, alumina, zircon, cobalt, mullite, kaolin and mixtures thereof.

部品をシェルモールドで包みこむことが、部品の外表面全体がシェルモールドによって包まれるように、部品の全体をシェルモールドで包み込むことを含む。   Encapsulating the part with the shell mold includes wrapping the entire part with the shell mold so that the entire outer surface of the part is wrapped with the shell mold.

部品をシェルモールドで包み込むことが、(a)部品の全体をスラリーに浸して、部品の全体の上にシェルモールドの層を形成すること、(b)シェルモールドの層を乾燥すること、ならびに(c)部品の全体を包み込むために、許容可能なシェルモールドの厚さが形成されるまで、ステップ(a)および(b)を繰り返すこと:の工程を含む。   Wrapping the part in a shell mold includes (a) immersing the entire part in a slurry to form a layer of the shell mold over the entire part, (b) drying the layer of the shell mold, and ( c) repeating steps (a) and (b) until an acceptable shell mold thickness is formed to envelop the entire part.

内部通路をもつ中間部品であって、この中間部品は、完成品に近い形状で、内部通路をもつ、固体金属の積層造形された部品であって、部品が、容量で、0パーセントより多いが、約15パーセント未満のボイド、および完成品に近い形状で、所望の完成した構成と比較して、容量で、最大15パーセントの余分の材料を有する、固体金属の積層造形された部品;部品の内部通路内に配置されたセラミックコア;ならびに、部品の外表面全体が外側のセラミックシェルモールドで包まれるように、部品の全体を包み込んでいる外側のセラミックシェルモールドを含む。   An intermediate part with an internal passage, which is a solid metal layered part with an internal passage in a shape close to the finished product, the part being greater than 0 percent in capacity A solid metal additive-molded part having less than about 15 percent voids, and a shape close to the finished product, with up to 15 percent extra material in volume compared to the desired finished configuration; A ceramic core disposed within the interior passage; and an outer ceramic shell mold enclosing the entire part such that the entire outer surface of the part is encased in the outer ceramic shell mold.

「一般に」、「実質的に」、「約」、および同様のものなどの、本明細書で使用される任意の相対語または程度の語は、本明細書に明記された任意の当てはまる定義または制限に従って解釈され、その対象となるべきである。いかなる場合でも、本明細書で使用される任意の相対語または程度の語は、通常の製作公差の変動、偶発的な配置の変動、動作条件によって引き起こされた一時的な配置または形状の変動、および同様のものを包含するためなど、任意の関連する開示された実施形態、ならびに、当業者により本開示の全体を考慮して理解され得るような範囲または変動を、広く包含すると解釈されるべきである。   Any relative or degree terms used herein, such as “generally”, “substantially”, “about”, and the like, are defined by any applicable definition or It should be interpreted and subject to restrictions. In any case, any relative or degree word used herein is a variation of normal manufacturing tolerances, accidental placement variations, temporary placement or shape variations caused by operating conditions, Any and all disclosed embodiments as well as ranges or variations as would be understood by one of ordinary skill in the art in view of the entirety of the present disclosure, etc. It is.

本発明は好ましい実施形態を参照して説明されているが、当業者は、形式および詳細における変更が、本発明の精神および範囲から逸脱することなく、行われ得ることを理解するであろう。   Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes in form and detail may be made without departing from the spirit and scope of the invention.

Claims (19)

部品を再生するための方法であって、前記方法は、
ニアネットシェイプで、容量で、0パーセントより多いが、15パーセント未満のボイドを有するように部品を積層造形すること、
前記部品をシェルモールドで包み込むこと、
前記シェルモールドを硬化処理すること、
前記包み込まれた部品を炉に入れて、前記部品を溶融すること、
溶融物を前記シェルモールド内で再度凝固させること、
前記シェルモールドを前記凝固した部品から取り除くこと、
を含む、部品を再生するための方法。
A method for recycling a part, the method comprising:
In near net shape, by volume, 0 is greater than percent by lamination molding parts so as to have a void of less than 1 5 percent,
Wrapping the part in a shell mold,
Curing the shell mold;
Placing the encased parts in a furnace and melting the parts;
Letting again solidify the melt within the shell mold,
Removing the shell mold from the solidified part;
A method for recycling a part, including:
前記部品が、容量で、0パーセントより多いが、1パーセント未満のボイドを有するように積層造形される、請求項1に記載の方法。 The method of claim 1, wherein the part is layered to have a void volume of greater than 0 percent but less than 1 percent. 前記部品が、前記ニアネットシェイプで、所望の完成した構成と比較して、容量で、最大15パーセントの余分の材料を有するように積層造形される、請求項1に記載の方法。 The method of claim 1, wherein the part is layered in the near net shape to have up to 15 percent extra material in volume compared to the desired finished configuration. 前記部品が、ブレードまたはベーンであり、かつ容量で、前記最大15パーセントの余分の材料が、前記部品の付け根部または翼の先端に配置される、請求項3に記載の方法。   The method of claim 3, wherein the part is a blade or vane and, by volume, the up to 15 percent extra material is placed at the root of the part or at the tip of a wing. 前記部品をシェルモールドで包み込むことが、前記部品の外表面全体が前記シェルモールドによって覆われるように、前記部品の全体を前記シェルモールドで包み込むことを含む、請求項1に記載の方法。   The method of claim 1, wherein wrapping the part with a shell mold comprises wrapping the entire part with the shell mold such that the entire outer surface of the part is covered by the shell mold. 前記部品を前記シェルモールドで包み込むことが、
(a)前記部品の前記全体をスラリーに浸して、前記部品の前記全体の上に前記シェルモールドの層を形成すること、
(b)前記シェルモールドの前記層を乾燥すること、
(c)前記部品の前記全体を包み込むために、許容可能なシェルモールドの厚さが形成されるまで、ステップ(a)および(b)を繰り返すこと、
の工程を含む、請求項5に記載の方法。
Wrapping the part in the shell mold,
(A) immersing the whole of the part in a slurry to form a layer of the shell mold on the whole of the part;
(B) drying the layer of the shell mold;
(C) repeating steps (a) and (b) until an acceptable shell mold thickness is formed to wrap the whole of the part;
The method of Claim 5 including the process of these.
前記部品が、選択的レーザー焼結、選択的レーザー溶融、直接金属堆積、直接金属レーザー焼結、直接金属レーザー溶融、および電子ビーム溶融のうちの少なくとも1つを使用して、積層造形される、請求項1に記載の方法。   The component is layered using at least one of selective laser sintering, selective laser melting, direct metal deposition, direct metal laser sintering, direct metal laser melting, and electron beam melting; The method of claim 1. 前記部品が、ニッケル基超合金、コバルト基超合金、鉄基超合金、およびその混合物から成る群から選択された金属のものとなるように積層造形される、請求項7に記載の方法。   8. The method of claim 7, wherein the component is layered to be of a metal selected from the group consisting of nickel-base superalloy, cobalt-base superalloy, iron-base superalloy, and mixtures thereof. 内部通路をもつ部品を再生する方法であって、前記方法は、
ニアネットシェイプで、内部通路をもち、容量で、0パーセントより多いが、15パーセント未満のボイドを有するように前記部品を積層造形すること、
前記内部通路をスラリーで充填すること、
前記スラリーを硬化処理してコアを形成すること、
前記部品をシェルモールドで包み込むこと、
前記シェルモールドを硬化処理すること、
前記包み込まれた部品を炉に入れて、前記部品を溶融すること、
溶融物を前記シェルモールド内で再度凝固させること、
前記シェルモールドおよびコアを前記凝固した部品から取り除くこと、
を含む、内部通路をもつ部品を再生する方法。
A method of reclaiming a part having an internal passage, the method comprising:
In near-net-shape, has an internal passage, by volume, 0 is greater than percent by lamination molding the component so as to have a void of less than 1 5 percent,
Filling the internal passage with slurry;
Curing the slurry to form a core;
Wrapping the part in a shell mold,
Curing the shell mold;
Placing the encased parts in a furnace and melting the parts;
Letting again solidify the melt within the shell mold,
Removing the shell mold and core from the solidified part;
A method of recycling a part having an internal passage.
前記コアが、前記部品の前記内部通路の形状に一致し、かつ前記シェルモールドが、前記部品の形状に一致する、請求項9に記載の方法。 Said core, it conforms to the shape of the internal passage of the previous SL components, and the shell mold, which conforms to the shape of the prior SL component, The method of claim 9. 前記部品が、容量で、0パーセントより多いが、1パーセント未満のボイドを有するように積層造形される、請求項9に記載の方法。 The method of claim 9, wherein the part is layered to have a void volume of greater than 0 percent but less than 1 percent. 前記部品が、前記ニアネットシェイプで、所望の完成した構成と比較して、容量で、最大15パーセントの余分の材料を有するように積層造形される、請求項9に記載の方法。 10. The method of claim 9, wherein the part is layered to have up to 15 percent extra material in volume compared to the desired finished configuration in the near net shape . 前記部品が、ブレードまたはベーンであり、かつ容量で、前記最大15パーセントの余分の材料が、前記部品の付け根部または翼の先端に配置される、請求項12に記載の方法。   The method of claim 12, wherein the part is a blade or vane and, by volume, up to 15 percent of excess material is placed at the root of the part or the tip of a wing. 前記部品が、選択的レーザー焼結、選択的レーザー溶融、直接金属堆積、直接金属レーザー焼結、直接金属レーザー溶融、および電子ビーム溶融のうちの少なくとも1つを使用して、積層造形される、請求項9に記載の方法。   The component is layered using at least one of selective laser sintering, selective laser melting, direct metal deposition, direct metal laser sintering, direct metal laser melting, and electron beam melting; The method of claim 9. 前記部品が、ニッケル基超合金、コバルト基超合金、鉄基超合金、およびその混合物から成る群から選択された金属のものとなるように積層造形される、請求項14に記載の方法。   15. The method of claim 14, wherein the component is layered to be of a metal selected from the group consisting of nickel-base superalloy, cobalt-base superalloy, iron-base superalloy, and mixtures thereof. 前記スラリーが、シリカ、アルミナ、ジルコン、コバルト、ムライト、およびカオリンから成る群から選択される、請求項9に記載の方法。   The method of claim 9, wherein the slurry is selected from the group consisting of silica, alumina, zircon, cobalt, mullite, and kaolin. 前記シェルモールドが、シリカ、アルミナ、ジルコン、コバルト、ムライト、カオリンおよびそれらの混合物から成る群から選択される、請求項9に記載の方法。   The method of claim 9, wherein the shell mold is selected from the group consisting of silica, alumina, zircon, cobalt, mullite, kaolin and mixtures thereof. 前記部品をシェルモールドで包み込むことが、前記部品の外表面全体が前記シェルモールドによって覆われるように、前記部品の全体を前記シェルモールドで包み込むことを含む、請求項9に記載の方法。   The method of claim 9, wherein wrapping the part with a shell mold comprises wrapping the entire part with the shell mold such that an entire outer surface of the part is covered by the shell mold. 前記部品をシェルモールドで包み込むことが、
(a)前記部品の前記全体をスラリーに浸して、前記部品の前記全体の上に前記シェルモールドの層を形成すること、
(b)前記シェルモールドの前記層を乾燥すること、
(c)前記部品の前記全体を包み込むために、許容可能なシェルモールドの厚さが形成されるまで、ステップ(a)および(b)を繰り返すこと、
の工程を含む、請求項18に記載の方法。
Wrapping the part with a shell mold,
(A) immersing the whole of the part in a slurry to form a layer of the shell mold on the whole of the part;
(B) drying the layer of the shell mold;
(C) repeating steps (a) and (b) until an acceptable shell mold thickness is formed to wrap the whole of the part;
The method according to claim 18, comprising the steps of:
JP2016509094A 2013-04-19 2014-04-17 Recycle parts that have been layered Active JP6359082B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361813871P 2013-04-19 2013-04-19
US61/813,871 2013-04-19
PCT/US2014/034455 WO2014204570A2 (en) 2013-04-19 2014-04-17 Regenerating an additively manufactured component

Publications (2)

Publication Number Publication Date
JP2016524537A JP2016524537A (en) 2016-08-18
JP6359082B2 true JP6359082B2 (en) 2018-07-18

Family

ID=50479127

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016509093A Expired - Fee Related JP6483088B2 (en) 2013-04-19 2014-04-17 Re-formation of additional manufactured parts to correct defects and alter microstructure
JP2016509094A Active JP6359082B2 (en) 2013-04-19 2014-04-17 Recycle parts that have been layered

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016509093A Expired - Fee Related JP6483088B2 (en) 2013-04-19 2014-04-17 Re-formation of additional manufactured parts to correct defects and alter microstructure

Country Status (5)

Country Link
US (5) US9415438B2 (en)
EP (5) EP2792771B1 (en)
JP (2) JP6483088B2 (en)
CN (2) CN105121712B (en)
WO (2) WO2014204570A2 (en)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9415438B2 (en) * 2013-04-19 2016-08-16 United Technologies Corporation Method for forming single crystal parts using additive manufacturing and remelt
ES2692969T3 (en) * 2013-11-21 2018-12-05 Airbus Operations Gmbh Passenger door corner component and manufacturing procedure for passenger door corner component of aircraft or spacecraft
EP3096911B1 (en) * 2014-01-21 2019-12-25 United Technologies Corporation Method for forming single crystal components using additive manufacturing and re-melt
US9452474B2 (en) * 2014-05-09 2016-09-27 United Technologies Corporation Method for forming a directionally solidified replacement body for a component using additive manufacturing
US10935241B2 (en) 2014-05-09 2021-03-02 Raytheon Technologies Corporation Additively manufactured hotspot portion of a turbine engine component having heat resistant properties and method of manufacture
US9718127B2 (en) * 2014-05-09 2017-08-01 United Technologies Corporation Method for forming components using additive manufacturing and re-melt
US9925724B2 (en) 2014-07-03 2018-03-27 United Technologies Corporation Additive manufacturing system and method of additive manufacture utilizing layer-by-layer thermo-mechanical analysis
US9938834B2 (en) 2015-04-30 2018-04-10 Honeywell International Inc. Bladed gas turbine engine rotors having deposited transition rings and methods for the manufacture thereof
US10294804B2 (en) 2015-08-11 2019-05-21 Honeywell International Inc. Dual alloy gas turbine engine rotors and methods for the manufacture thereof
US10036254B2 (en) 2015-11-12 2018-07-31 Honeywell International Inc. Dual alloy bladed rotors suitable for usage in gas turbine engines and methods for the manufacture thereof
US10378087B2 (en) 2015-12-09 2019-08-13 General Electric Company Nickel base super alloys and methods of making the same
US10174617B2 (en) * 2015-12-10 2019-01-08 General Electric Company Systems and methods for deep tip crack repair
US9987677B2 (en) 2015-12-17 2018-06-05 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US9579714B1 (en) 2015-12-17 2017-02-28 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US10046389B2 (en) 2015-12-17 2018-08-14 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10099283B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10099276B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10150158B2 (en) 2015-12-17 2018-12-11 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10118217B2 (en) 2015-12-17 2018-11-06 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US9968991B2 (en) 2015-12-17 2018-05-15 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US10099284B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having a catalyzed internal passage defined therein
US10137499B2 (en) 2015-12-17 2018-11-27 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10343218B2 (en) * 2016-02-29 2019-07-09 General Electric Company Casting with a second metal component formed around a first metal component using hot isostactic pressing
CN107234197B (en) * 2016-03-29 2019-11-05 通用电气公司 Near net-shaped manufacturing method
US10286450B2 (en) 2016-04-27 2019-05-14 General Electric Company Method and assembly for forming components using a jacketed core
US10335853B2 (en) 2016-04-27 2019-07-02 General Electric Company Method and assembly for forming components using a jacketed core
FR3052773B1 (en) * 2016-06-15 2020-10-30 Snecma PROCESS FOR MANUFACTURING A TURBOMACHINE PART
US20180036796A1 (en) * 2016-08-08 2018-02-08 Honeywell International Inc. System and method for forming directionally solidified part from additively manufactured article
CN106425022B (en) * 2016-11-18 2019-01-18 南京理工大学 A kind of method of CMT increasing material manufacturing composite element
US10800108B2 (en) 2016-12-02 2020-10-13 Markforged, Inc. Sinterable separation material in additive manufacturing
EP3548214B1 (en) * 2016-12-02 2023-02-01 Markforged, Inc. Method for building a part with a deposition-based additive manufacturing system
US10000011B1 (en) 2016-12-02 2018-06-19 Markforged, Inc. Supports for sintering additively manufactured parts
JP6908705B2 (en) 2016-12-06 2021-07-28 マークフォージド,インコーポレーテッド Addition manufacturing by supplying heat bending material
US20180161853A1 (en) * 2016-12-13 2018-06-14 General Electric Company Integrated casting core-shell structure with floating tip plenum
US20180161854A1 (en) * 2016-12-13 2018-06-14 General Electric Company Integrated casting core-shell structure
US20180161866A1 (en) 2016-12-13 2018-06-14 General Electric Company Multi-piece integrated core-shell structure for making cast component
US11813669B2 (en) 2016-12-13 2023-11-14 General Electric Company Method for making an integrated core-shell structure
US10807154B2 (en) * 2016-12-13 2020-10-20 General Electric Company Integrated casting core-shell structure for making cast component with cooling holes in inaccessible locations
US20180161859A1 (en) * 2016-12-13 2018-06-14 General Electric Company Integrated casting core-shell structure for making cast component with non-linear holes
CN106813263A (en) * 2017-01-11 2017-06-09 南方科技大学 A kind of aero-engine fuel nozzle reproducing method based on increasing material design
US10625342B2 (en) * 2017-02-22 2020-04-21 General Electric Company Method of repairing turbine component
US10533747B2 (en) 2017-03-30 2020-01-14 General Electric Company Additively manufactured mechanical fastener with cooling fluid passageways
US10589370B2 (en) 2017-05-08 2020-03-17 General Electric Company Automatic blocked hole identification
CN107199311A (en) * 2017-06-08 2017-09-26 西安工业大学 A kind of combination is towards turbo blade rapid shaping and the molten mistake fusible pattern method of model casting
US10710159B2 (en) 2017-09-06 2020-07-14 General Electric Company Apparatus and method for additive manufacturing with real-time and in-situ adjustment of growth parameters
US11130170B2 (en) 2018-02-02 2021-09-28 General Electric Company Integrated casting core-shell structure for making cast component with novel cooling hole architecture
CN108817356B (en) * 2018-07-25 2020-04-07 广东嘉铭智能科技有限公司 Casting equipment
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11229952B2 (en) 2018-08-20 2022-01-25 Honeywell International Inc. System and method for forming part from rapidly manufactured article
US11865641B1 (en) 2018-10-04 2024-01-09 Hrl Laboratories, Llc Additively manufactured single-crystal metallic components, and methods for producing the same
EP3873691B1 (en) 2018-10-29 2023-07-26 Cartridge Limited Thermally enhanced exhaust port liner
KR102116502B1 (en) * 2018-12-03 2020-05-28 두산중공업 주식회사 Method for manufacturing Wing element and method for manufacturing blade
KR102116503B1 (en) * 2018-12-03 2020-05-28 두산중공업 주식회사 Method for repairing Wing element and method for repairing blade
US10577679B1 (en) 2018-12-04 2020-03-03 General Electric Company Gamma prime strengthened nickel superalloy for additive manufacturing
FR3096595B1 (en) * 2019-05-29 2021-05-14 Safran Manufacturing process of a single crystal metal turbine blade
FR3096594B1 (en) * 2019-05-29 2021-06-11 Safran Manufacturing process of a single crystal metal turbine blade
CN114555310A (en) 2019-07-22 2022-05-27 铸造实验室有限公司 Casting mould
US11312053B2 (en) * 2019-08-13 2022-04-26 Honeywell International Inc. Internal relief void arrangement for casting system
CN111331077A (en) * 2020-04-27 2020-06-26 泰州市金鹰精密铸造有限公司 Size control method for casting high-silicon light hypereutectic aluminum-silicon alloy product
EP3907018B1 (en) * 2020-05-08 2023-03-29 Hamilton Sundstrand Corporation Thermal management in lost wax casting
CN112139648B (en) * 2020-09-02 2022-11-04 南京理工大学 Titanium-aluminum intermetallic compound in-situ additive directional solidification method
US11759875B2 (en) 2020-09-23 2023-09-19 International Business Machines Corporation Autonomous robotic thread for repairing structures
WO2022214630A1 (en) * 2021-04-10 2022-10-13 Dadbakhsh Sasan System and method for forming single crystal components using additive manufacturing tooling
CN113560544B (en) * 2021-06-28 2022-10-25 深圳市万泽中南研究院有限公司 Directional blade and columnar crystal structure optimization method thereof
CN114484257B (en) * 2021-12-28 2024-03-08 深圳市华阳新材料科技有限公司 3D printed integrated spherical pressure vessel and processing method
DE102022201013A1 (en) 2022-02-01 2023-08-03 Siemens Energy Global GmbH & Co. KG Process for the production of a complex component from a non-weldable or difficult-to-weld alloy with a lost pattern
US11746546B1 (en) * 2023-01-19 2023-09-05 Mohammad Reza Ehsani External onsite-manufactured continuous structural sleeve

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574451A (en) 1982-12-22 1986-03-11 General Electric Company Method for producing an article with a fluid passage
JPS6418561A (en) * 1987-07-14 1989-01-23 Mitsubishi Metal Corp Production of active metal having unidirectional solidified structure and its alloy casting
DE4039807C1 (en) * 1990-12-13 1991-10-02 Mtu Muenchen Gmbh
JPH04294857A (en) * 1991-03-22 1992-10-19 Daido Steel Co Ltd Method and device for casting aluminum
JPH04294858A (en) * 1991-03-22 1992-10-19 Daido Steel Co Ltd Method and device for casting aluminum
US5296308A (en) * 1992-08-10 1994-03-22 Howmet Corporation Investment casting using core with integral wall thickness control means
DE19516972C1 (en) 1995-05-09 1996-12-12 Eos Electro Optical Syst Device for producing a three-dimensional object by means of laser sintering
GB9601910D0 (en) * 1996-01-31 1996-04-03 Rolls Royce Plc A method of investment casting and a method of making an investment casting mould
US5743322A (en) 1996-06-27 1998-04-28 General Electric Company Method for forming an article extension by casting using a ceramic mold
DE19710253A1 (en) * 1997-03-13 1998-09-17 Mann & Hummel Filter Process for the production of plastic bodies
EP0895974A1 (en) * 1997-08-04 1999-02-10 Lockheed Martin Corporation Direct coating hot isostatic pressing encapsulation method
JPH1157984A (en) * 1997-08-18 1999-03-02 Mitsubishi Heavy Ind Ltd Method for directively solidifying precision casting
EP2359958B1 (en) * 1998-11-20 2017-06-07 Rolls-Royce Corporation Method for production of a ceramic casting mold system
US6932145B2 (en) * 1998-11-20 2005-08-23 Rolls-Royce Corporation Method and apparatus for production of a cast component
US6766850B2 (en) * 2001-12-27 2004-07-27 Caterpillar Inc Pressure casting using a supported shell mold
EP1340583A1 (en) 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article
ATE353729T1 (en) 2002-08-20 2007-03-15 Ex One Corp CASTING PROCESS
GB0226559D0 (en) * 2002-11-14 2002-12-18 Rolls Royce Plc Investment moulding process and apparatus
JP2004306044A (en) * 2003-04-02 2004-11-04 Daido Steel Co Ltd Precision casting apparatus and precision casting method using the same
US6932865B2 (en) 2003-04-11 2005-08-23 Lockheed Martin Corporation System and method of making single-crystal structures through free-form fabrication techniques
US20050006047A1 (en) * 2003-07-10 2005-01-13 General Electric Company Investment casting method and cores and dies used therein
US20050211408A1 (en) * 2004-03-25 2005-09-29 Bullied Steven J Single crystal investment cast components and methods of making same
CA2511154C (en) * 2004-07-06 2012-09-18 General Electric Company Synthetic model casting
US7093645B2 (en) * 2004-12-20 2006-08-22 Howmet Research Corporation Ceramic casting core and method
EP1930096A1 (en) * 2006-12-07 2008-06-11 Siemens Aktiengesellschaft Methof of manufacturing casting pattern for investment casting of parts containing at least one hollow portion
US20100025001A1 (en) 2007-06-25 2010-02-04 Ching-Pang Lee Methods for fabricating gas turbine components using an integrated disposable core and shell die
EP2052693B2 (en) 2007-10-26 2021-02-17 Envisiontec GmbH Process and freeform fabrication system for producing a three-dimensional object
FR2923524B1 (en) * 2007-11-12 2013-12-06 Snecma MOLDED METALLIC BLADE AND METHOD OF FABRICATING THE BLADE
RU2365466C1 (en) * 2007-12-20 2009-08-27 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") Method for protection of blade surface
US8327911B2 (en) * 2009-08-09 2012-12-11 Rolls-Royce Corporation Method for forming a cast article
DE102009051479A1 (en) 2009-10-30 2011-05-05 Mtu Aero Engines Gmbh Method and device for producing a component of a turbomachine
EP2319641B1 (en) 2009-10-30 2017-07-19 Ansaldo Energia IP UK Limited Method to apply multiple materials with selective laser melting on a 3D article
US8728388B2 (en) 2009-12-04 2014-05-20 Honeywell International Inc. Method of fabricating turbine components for engines
US20110132562A1 (en) * 2009-12-08 2011-06-09 Merrill Gary B Waxless precision casting process
US8691333B2 (en) * 2011-06-28 2014-04-08 Honeywell International Inc. Methods for manufacturing engine components with structural bridge devices
US8506836B2 (en) * 2011-09-16 2013-08-13 Honeywell International Inc. Methods for manufacturing components from articles formed by additive-manufacturing processes
US9296039B2 (en) * 2012-04-24 2016-03-29 United Technologies Corporation Gas turbine engine airfoil impingement cooling
US9415438B2 (en) * 2013-04-19 2016-08-16 United Technologies Corporation Method for forming single crystal parts using additive manufacturing and remelt
US9463506B2 (en) * 2014-04-15 2016-10-11 United Technologies Corporation Working additively manufactured parts
US9452474B2 (en) * 2014-05-09 2016-09-27 United Technologies Corporation Method for forming a directionally solidified replacement body for a component using additive manufacturing
US9435211B2 (en) * 2014-05-09 2016-09-06 United Technologies Corporation Method for forming components using additive manufacturing and re-melt

Also Published As

Publication number Publication date
EP2986760B1 (en) 2020-05-27
WO2014204570A2 (en) 2014-12-24
EP2792771B1 (en) 2017-12-27
EP3643816A1 (en) 2020-04-29
CN105142852A (en) 2015-12-09
WO2014204570A3 (en) 2015-03-05
EP2986760A4 (en) 2017-02-22
US20160059302A1 (en) 2016-03-03
US9415438B2 (en) 2016-08-16
CN105142852B (en) 2018-01-12
US20140314581A1 (en) 2014-10-23
EP2986414B1 (en) 2019-06-05
EP2986760A2 (en) 2016-02-24
US20160319677A1 (en) 2016-11-03
WO2014204569A2 (en) 2014-12-24
US20160061044A1 (en) 2016-03-03
CN105121712A (en) 2015-12-02
JP2016522750A (en) 2016-08-04
EP2986414A4 (en) 2017-02-22
EP3540099A1 (en) 2019-09-18
US9364888B2 (en) 2016-06-14
US20160273369A1 (en) 2016-09-22
WO2014204569A3 (en) 2015-03-05
US9375782B2 (en) 2016-06-28
US9482103B2 (en) 2016-11-01
CN105121712B (en) 2018-07-17
JP6483088B2 (en) 2019-03-13
EP2986414A2 (en) 2016-02-24
EP3540099B1 (en) 2021-06-02
JP2016524537A (en) 2016-08-18
EP2792771A1 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP6359082B2 (en) Recycle parts that have been layered
US9604280B2 (en) Working additively manufactured parts
US20100025001A1 (en) Methods for fabricating gas turbine components using an integrated disposable core and shell die
US20100304064A1 (en) Method for producing a cast part, casting mould and cast part produced therewith
US20200009646A1 (en) System and method for forming directionally solidified part from additively manufactured article
CN107127301A (en) Utilize the casting of the first hardware and the second hardware
US20100006252A1 (en) Method for rapid generation of multiple investment cast parts such as turbine or compressor wheels
JP2007314879A (en) Method of making metallic composite foam component and preform for metallic composite component
JP6918507B2 (en) Casting using a second metal part formed around the first metal part by the hot isostatic pressing method
GB2465181A (en) Casting turbine components using a shell casting mould having an integral core
US20220126365A1 (en) System and method for forming part from rapidly manufactured article
ITUB20154905A1 (en) METHOD OF PRODUCTION OF TURBINE POLES
GB2550345A (en) Component manufacturing
CA2643279A1 (en) Methods for fabricating gas turbine components using an integrated disposable core and shell die
US11312053B2 (en) Internal relief void arrangement for casting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6359082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250