CN113560544B - Directional blade and columnar crystal structure optimization method thereof - Google Patents

Directional blade and columnar crystal structure optimization method thereof Download PDF

Info

Publication number
CN113560544B
CN113560544B CN202110717358.6A CN202110717358A CN113560544B CN 113560544 B CN113560544 B CN 113560544B CN 202110717358 A CN202110717358 A CN 202110717358A CN 113560544 B CN113560544 B CN 113560544B
Authority
CN
China
Prior art keywords
blade
directional
columnar crystal
crystal structure
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110717358.6A
Other languages
Chinese (zh)
Other versions
CN113560544A (en
Inventor
赵运兴
马德新
徐维台
皮立波
李重行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Wedge Zhongnan Research Institute Co ltd
Original Assignee
Shenzhen Wedge Zhongnan Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Wedge Zhongnan Research Institute Co ltd filed Critical Shenzhen Wedge Zhongnan Research Institute Co ltd
Priority to CN202110717358.6A priority Critical patent/CN113560544B/en
Publication of CN113560544A publication Critical patent/CN113560544A/en
Application granted granted Critical
Publication of CN113560544B publication Critical patent/CN113560544B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention discloses an oriented blade and a columnar crystal structure optimization method thereof, and aims to optimize the columnar crystal structure of the oriented blade, so that the growth direction of crystal grains is vertical, the quantity of exposed crystals of the blade is reduced, and the qualification rate of the oriented blade is improved. Therefore, according to the directional blade columnar crystal structure optimization method provided by the embodiment of the invention, the original directional blade crystallization section is thickened, so that the crystal grains which are influenced by the transverse temperature gradient and grow and incline are mainly positioned in the thickened area at the outer side, and the crystal grains in the thickened area are ensured not to grow into the casting, so that the crystal grains with the surfaces influenced by the transverse temperature gradient and incline are eliminated, and the straight crystal grains which are not influenced in the middle area of the crystallization section are grown into the casting, so that the directional blade columnar crystal structure optimization is realized.

Description

Directional blade and columnar crystal structure optimization method thereof
Technical Field
The invention belongs to the technical field of high-temperature alloy preparation, and particularly relates to a directional blade and a columnar crystal structure optimization method thereof.
Background
For the high-temperature alloy directional blade, in the directional solidification process of the blade, besides the vertical temperature gradient from bottom to top, the blade also has the temperature gradient in the transverse direction from outside to inside, and the existence of the transverse temperature gradient enables the growth of crystal grains in a region with a certain thickness on the surface of the directional blade in the solidification process to be influenced, so that the directional blade inclines inwards, and the inclined crystal grains with a certain thickness on the surface grow into the casting to become inclined crystal grains and often expose to form exposed crystals. For the high-temperature alloy directional blade, the deviation of grain growth and outcrop have great influence on the service performance of the blade, and especially outcrop crystals which have great influence on the performance of the blade often cause the scrapping of the blade, thereby greatly reducing the service performance and the qualification rate of the blade. However, the problems that the surface crystal grains of a blade casting are large, the crystal grain growth is inclined, the number of outcrop crystals is large and the like still exist in the directional blade prepared under the existing casting process conditions.
Disclosure of Invention
The invention mainly aims to provide an oriented blade and a columnar crystal structure optimization method thereof, aiming at optimizing the columnar crystal structure of the oriented blade, enabling the growth direction of crystal grains to be vertical, reducing the quantity of outcrop crystals of the blade and improving the qualification rate of the oriented blade.
Therefore, according to the directional blade columnar crystal structure optimization method provided by the embodiment of the invention, the crystallization starting section of the original directional blade is thickened, so that the crystal grains which are influenced by the transverse temperature gradient and grow to be inclined are mainly positioned in the thickened area at the outer side, and the crystal grains in the thickened area are ensured not to grow into the casting, so that the crystal grains with the surfaces influenced by the transverse temperature gradient and inclined are eliminated, and the straight crystal grains which are not influenced in the middle area of the crystallization starting section grow into the casting, so that the directional blade columnar crystal structure optimization is realized.
Specifically, the orthographic projection of the blade body of the directional blade on the crystallization segment completely coincides with the middle area of the crystallization segment.
Specifically, the thickness of the thickened area is equal.
Specifically, when the directional blade mold is designed, the crystallization section of the blade is designed according to the blade structure, the shape and the size of the crystallization section are ensured to be matched with the blade structure, and the directional blade and the crystallization section are directly pressed out together during wax pressing.
Specifically, the height of the thickened area is smaller than that of the crystallization segment, and the bottom end of the thickened area is flush with the crystallization segment.
Specifically, the height of the thickened area is controlled to be 10-40 mm.
Specifically, the thickness of the thickened area is controlled to be 1 mm-4 mm.
The embodiment of the invention also provides a directional blade obtained by optimizing the directional blade columnar crystal structure optimization method.
Principle analysis
According to the method, a thickening layer with a certain height is added on the outer side of the crystallization section of the directional blade, crystal grains in a thickening area are influenced by a transverse temperature gradient to grow to be inclined but cannot grow into the casting, so that inclined crystal grains with the influenced surfaces are eliminated, the crystal grains are prevented from growing into the casting, straight crystal grains which are not influenced in the middle area of the crystallization section are grown into the casting, and the columnar crystal structure of the directional blade is optimized.
Compared with the prior art, at least one embodiment of the invention has the following beneficial effects: 1) The change point is only the oriented blade crystallization section, the original process and structure are not required to be changed too much, and the method has the advantages of easy operation and low cost; 2) The columnar crystal structure of the directional blade can be obviously optimized, the quantity of the exposed crystals of the blade is reduced, and the qualification rate of the directional blade is improved.
Drawings
In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings needed to be used in the description of the embodiments will be briefly introduced below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings based on these drawings without creative efforts.
FIG. 1 is a front view of a crystallization segment according to an embodiment of the present invention;
FIG. 2 isbase:Sub>A sectional view taken along line A-A of FIG. 1;
FIG. 3 is a surface grain topography of a blade body after the directional blade manufactured by the original process is corroded;
FIG. 4 is a surface grain topography of a blade body after erosion of a directional blade fabricated in accordance with an embodiment of the present invention;
wherein: 1. a thickened region; 2. a middle region.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
In the description of the present invention, it is to be understood that the terms "central," "longitudinal," "lateral," "length," "width," "thickness," "upper," "lower," "front," "rear," "left," "right," "vertical," "horizontal," "top," "bottom," "inner," "outer," "clockwise," "counterclockwise," "axial," "radial," "circumferential," and the like are used in the orientations and positional relationships indicated in the drawings for convenience in describing the invention and to simplify the description, and are not intended to indicate or imply that the referenced devices or elements must have a particular orientation, be constructed and operated in a particular orientation, and are therefore not to be considered limiting of the invention.
Furthermore, the terms "first", "second" and "first" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as "first" or "second" may explicitly or implicitly include one or more of that feature. In the description of the present invention, "a plurality" means two or more unless specifically defined otherwise.
Referring to fig. 1 and fig. 2, a method for optimizing the columnar crystal structure of the directional blade is characterized in that a crystallization starting section of an original directional blade is thickened, so that crystal grains which grow and incline under the influence of a transverse temperature gradient are mainly located in a thickening area 1 on the outer side, and the crystal grains in the thickening area 1 are ensured not to grow into a casting, so that the crystal grains with surfaces inclined under the influence of the transverse temperature gradient are eliminated, straight crystal grains which are not influenced in a middle area 2 of the crystallization starting section grow into the casting, and the columnar crystal structure optimization of the directional blade is realized.
In the embodiment, the thickening layer with a certain height is added on the outer side of the crystal pulling section of the original directional blade, so that the crystal pulling section of the directional blade is thickened, the change point of the whole invention is only on the crystal pulling section of the directional blade, the columnar crystal structure of the directional blade is obviously optimized, the quantity of the exposed crystals of the blade is reduced, the qualified rate of the directional blade is improved, the original process and structure do not need to be changed too much, and the method has the advantages of easiness in operation and low cost.
In some embodiments, the blade crystallization section may be designed as a crystallization-following section, which means that the shape of the crystallization-following section middle area 2 is consistent with the shape of the blade body of the orientation blade, that is, the orthographic projection of the blade body of the orientation blade on the crystallization section is completely coincident with the crystallization-following section middle area 2. Such design structure can guarantee on the one hand that the crystalline grain can not grow into inside the foundry goods in thickening region 1, and on the other hand the crystallization section is along with the type design can guarantee the more excellent growth route of crystalline grain, avoids because of the interference that the shape difference brought, and the columnar crystal tissue can obtain further optimization.
It can be understood that, in practical application, when the directional blade mold is designed, the crystallization segment of the blade is designed according to the blade structure, the crystallization segment is connected with the root of the blade body of the directional blade, the shape and the size of the crystallization segment are ensured to be adapted to the blade structure, and the directional blade and the crystallization segment are directly pressed out together during wax pressing. In this embodiment, directional blade and seeding section integrated into one piece, not only directional blade is high with seeding section connection accuracy, can effectively avoid the connection defect that the concatenation formula structure brought moreover.
Referring to fig. 1, in some embodiments, both ends of the thickened region 1 may be designed to be flush with the central region 2, but such a design may risk that the thickened region 1 contacts other parts of the blade, such as the tip shroud, so that the grains grown obliquely in the thickened region 1 grow into the blade from other parts of the blade, such as the tip shroud. Therefore, in actual design, the height of the thickening region 1 is smaller than that of the seeding section, and the bottom end is flush with the bottom of the seeding section, so that the thickening region 1 can be completely separated from each part of the blade, and the problem that the obliquely-grown crystal grains grow into the blade from other parts such as the blade crown of the blade can be solved.
In the actual design, the crystallization section of the original directional blade can be uniformly thickened, namely the thickness of each part of the thickened area 1 is equal; specifically, the height of the thickened region 1 can be controlled to be 10 mm-40 mm, and the thickness of the thickened region can be controlled to be 1 mm-4 mm.
The present invention will be further described with reference to specific examples.
Examples
This example uses a nickel-base-oriented superalloy DZ125 with the alloy composition shown in Table 1.
TABLE 1 weight percents of alloying elements
Figure BDA0003135490160000041
In the embodiment, a directional superalloy blade crystallization segment for an aviation turbine engine is taken as an example, and molten paraffin is injected into a directional blade metal mold containing a crystallization segment with an optimized structure through a paraffin injection machine, so that a blade wax mold with an optimized crystallization segment structure is extruded. And simultaneously, extruding the directional blade wax mold with the crystal pulling section structure which is not optimized by the same method. Forming a wax pattern by the two blade wax patterns, coating the combined wax pattern with slurry, spraying sand, drying, coating the slurry for multiple times to ensure that the thickness of the wax pattern is 7-9mm, and then dewaxing and sintering to prepare the corundum mould shell. And (3) performing directional solidification in a vacuum directional furnace to prepare the high-temperature alloy directional blade, wherein the heating temperature of an upper area is 1515 ℃, the heating temperature of a lower area is 1515 ℃, and the directional solidification is performed under the condition that the pulling speed is 5mm/min, after the directional solidification is finished, the structure and the appearance of the directional columnar crystal of the directional blade of which the crystal pulling section structure is not optimized are shown in figure 3, and the structure and the appearance of the directional columnar crystal of the directional blade of which the crystal pulling section is optimized are shown in figure 4.
From fig. 3, it can be found that the blade body of the directional blade prepared by the original process has coarse grains, the grain growth is inclined, and more outcrop crystals exist. After the blade crystallization section is optimized by adopting the method, the crystal grains of the blade body of the oriented blade are obviously refined, the crystal grains grow straightly, and the quantity of outcrop crystals is also obviously reduced, which is shown in figure 4.
Any embodiment disclosed herein above is meant to disclose, unless otherwise indicated, all numerical ranges disclosed as being preferred, and any person skilled in the art would understand that: the preferred ranges are merely those values which are obvious or representative of the technical effect which can be achieved. Since the numerical values are too numerous to be exhaustive, some of the numerical values are disclosed in the present invention to illustrate the technical solutions of the present invention, and the above-mentioned numerical values should not be construed as limiting the scope of the present invention.
Meanwhile, if the invention as described above discloses or relates to parts or structural members fixedly connected to each other, the fixedly connected parts can be understood as follows, unless otherwise stated: a detachable fixed connection (for example using bolts or screws) is also understood as: non-detachable fixed connections (e.g. riveting, welding), but of course, fixed connections to each other may also be replaced by one-piece structures (e.g. manufactured integrally using a casting process) (unless it is obviously impossible to use an integral forming process).
In addition, terms used in any technical solutions disclosed in the present invention to indicate positional relationships or shapes include approximate, similar or approximate states or shapes unless otherwise stated. Any part provided by the invention can be assembled by a plurality of independent components or can be manufactured by an integral forming process.
The above examples are merely illustrative for clearly illustrating the present invention and are not intended to limit the embodiments. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. Nor is it intended to be exhaustive of all embodiments. And obvious variations or modifications are intended to be within the scope of the present invention.

Claims (8)

1. A directional blade columnar crystal structure optimization method is characterized by comprising the following steps: the crystallization section of the original directional blade is thickened, so that the crystal grains which are influenced by the transverse temperature gradient and are inclined are located in the thickening area (1) on the outer side, and the crystal grains in the thickening area (1) can not grow into the casting, so that the crystal grains with the inclined surfaces influenced by the transverse temperature gradient are eliminated, the straight crystal grains which are not influenced in the middle area (2) of the crystallization section are grown into the casting, and the columnar crystal texture optimization of the directional blade is realized.
2. The method for optimizing the columnar crystal structure of the directional blade according to claim 1, wherein: the orthographic projection of the blade body of the directional blade on the crystallization section is completely coincided with the middle area (2) of the crystallization section.
3. The method for optimizing the columnar crystal structure of the directional vane according to claim 2, wherein: the thickness of each part of the thickened area (1) is equal.
4. The method for optimizing the columnar crystal structure of the directional vane according to claim 2, wherein: when the directional blade mold is designed, the crystallization section of the blade is designed according to the blade structure, the shape and the size of the crystallization section are ensured to be matched with the blade structure, and the directional blade and the crystallization section are directly extruded together when wax is pressed.
5. The method for optimizing the columnar crystal structure of the directional vane according to any one of claims 1 to 4, wherein: the height of the thickened area (1) is smaller than that of the crystal pulling section, and the bottom end of the thickened area is flush with the crystal pulling section.
6. The method of directional blade columnar crystal texture optimization according to claim 5, wherein: the height of the thickened area (1) is controlled to be 10-40 mm.
7. The method for optimizing the columnar crystal structure of the directional vane according to claim 5, wherein: the thickness of the thickened area (1) is controlled to be 1-4 mm.
8. A directional vane, characterized by: the method is optimized by the directional blade columnar crystal structure optimization method of any one of claims 1 to 7.
CN202110717358.6A 2021-06-28 2021-06-28 Directional blade and columnar crystal structure optimization method thereof Active CN113560544B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110717358.6A CN113560544B (en) 2021-06-28 2021-06-28 Directional blade and columnar crystal structure optimization method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110717358.6A CN113560544B (en) 2021-06-28 2021-06-28 Directional blade and columnar crystal structure optimization method thereof

Publications (2)

Publication Number Publication Date
CN113560544A CN113560544A (en) 2021-10-29
CN113560544B true CN113560544B (en) 2022-10-25

Family

ID=78162967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110717358.6A Active CN113560544B (en) 2021-06-28 2021-06-28 Directional blade and columnar crystal structure optimization method thereof

Country Status (1)

Country Link
CN (1) CN113560544B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990915A (en) * 2005-12-27 2007-07-04 中国科学院金属研究所 Seed crystal method of solidifying orientation origination end and application thereof
CN109773137A (en) * 2019-01-17 2019-05-21 中国科学院金属研究所 A method of preventing the formation of single crystal super alloy guide vane stray crystal defect
CN111496190A (en) * 2020-05-11 2020-08-07 中国航发北京航空材料研究院 Pouring system of triple block casting directional solidification hollow guide vane

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314000A (en) * 1993-05-03 1994-05-24 General Electric Company Method of controlling grain size distribution in investment casting
EP1331361B1 (en) * 2002-01-17 2010-05-12 Siemens Aktiengesellschaft Cast turbine stator vane having a hook support
FR2995235B1 (en) * 2012-09-11 2016-12-09 Snecma FOUNDRY MODEL
US9415438B2 (en) * 2013-04-19 2016-08-16 United Technologies Corporation Method for forming single crystal parts using additive manufacturing and remelt
CN105436478A (en) * 2015-12-30 2016-03-30 上海大学 Method for controlling formation of foreign crystals at variable cross section
CN107755637A (en) * 2017-09-18 2018-03-06 东方电气集团东方汽轮机有限公司 A kind of method for eliminating directional solidification castings defect
CN108637175B (en) * 2018-05-25 2019-11-08 保定风帆精密机械科技有限公司 A kind of helix water jet propeller manufacturing method peculiar to vessel
CN108405801B (en) * 2018-05-30 2020-04-07 中国航发动力股份有限公司 Wax mold structure for preventing basin part of precision-cast blade from thickening and manufacturing method thereof
CN110560639A (en) * 2019-10-21 2019-12-13 广西玉柴机器股份有限公司 Ingate structure for preventing shrinkage porosity of cylinder pouring system
CN111036847A (en) * 2019-12-27 2020-04-21 安徽应流航源动力科技有限公司 Method for preventing core deviation of directional blade of heavy gas turbine
CN111318646B (en) * 2020-04-17 2021-07-16 中国航发北京航空材料研究院 Method for controlling grain size of isometric crystal high-temperature alloy turbine blade
CN111570722B (en) * 2020-05-09 2021-04-20 中国航发北京航空材料研究院 Wax module structure for integrally casting large-size duplex single crystal guide blade
CN112157245B (en) * 2020-09-03 2022-03-29 中国科学院金属研究所 Method for controlling oriented columnar crystal grains in process of preparing large-size oriented blade by utilizing LMC (melt-spinning-casting) oriented solidification technology

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990915A (en) * 2005-12-27 2007-07-04 中国科学院金属研究所 Seed crystal method of solidifying orientation origination end and application thereof
CN109773137A (en) * 2019-01-17 2019-05-21 中国科学院金属研究所 A method of preventing the formation of single crystal super alloy guide vane stray crystal defect
CN111496190A (en) * 2020-05-11 2020-08-07 中国航发北京航空材料研究院 Pouring system of triple block casting directional solidification hollow guide vane

Also Published As

Publication number Publication date
CN113560544A (en) 2021-10-29

Similar Documents

Publication Publication Date Title
US9476307B2 (en) Castings, casting cores, and methods
US8201612B2 (en) Process for manufacturing directionally solidified blades
EP2092996B1 (en) Method and apparatus for as-cast seal on turbine blades
US8317475B1 (en) Turbine airfoil with micro cooling channels
US7731481B2 (en) Airfoil cooling with staggered refractory metal core microcircuits
EP2193859A1 (en) Castings, casting cores, and mehtods
CN109604526B (en) Method for preventing formation of mixed crystal defects of single crystal high temperature alloy rotating blade
US8128375B2 (en) Turbomachine blade that is cast with a local fattening of the section of the airfoil
CN109773137B (en) Method for preventing formation of mixed crystal defects of single crystal high temperature alloy guide blade
US9616489B2 (en) Casting pattern
CN113560544B (en) Directional blade and columnar crystal structure optimization method thereof
CN101255606A (en) Method for preparing Ni based single-crystal refractory alloy by employing combination of seed crystal method and screw selecting method
CN109940131B (en) Method for reducing formation of internal porosity defect of single crystal high temperature alloy blade tenon
CN100587135C (en) Method for preparing Ni3Al-based single-crystal refractory alloy by employing combination of seed crystal method and screw selecting method
CN113564716B (en) Single crystal high temperature alloy rotor blade and preparation method thereof
RU123355U1 (en) DEVICE FOR OBTAINING A SHOWER CASTING WITH A SINGLE CRYSTAL STRUCTURE
CN115055641B (en) Single crystal guide vane and investment precision casting method thereof
CN217666220U (en) Directional blade wax matrix structure
US7011141B2 (en) Apparatus and method for producing single crystal metallic objects
RU2325971C1 (en) Device to produce monocrystal turbine blade casting
CN113564715B (en) Crystal selection method of single crystal high-temperature alloy and single crystal high-temperature alloy casting
CN217666228U (en) Single crystal guide blade wax mold structure
CN100587134C (en) Method for preparing Ni3Al based single-crystal high-temperature alloy by employing seed crystal
RU71338U1 (en) DEVICE FOR PRODUCING CASTING WITH DIRECTED CRYSTALLIZATION
CN116372110A (en) Pouring system and method for multi-connected solid guide vane group castings of heavy gas turbine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant