JP6358933B2 - Particles containing polysaccharide-peptidoglycan complex - Google Patents

Particles containing polysaccharide-peptidoglycan complex Download PDF

Info

Publication number
JP6358933B2
JP6358933B2 JP2014234585A JP2014234585A JP6358933B2 JP 6358933 B2 JP6358933 B2 JP 6358933B2 JP 2014234585 A JP2014234585 A JP 2014234585A JP 2014234585 A JP2014234585 A JP 2014234585A JP 6358933 B2 JP6358933 B2 JP 6358933B2
Authority
JP
Japan
Prior art keywords
polysaccharide
peptidoglycan complex
added
nanobeads
particulate carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014234585A
Other languages
Japanese (ja)
Other versions
JP2015129114A (en
Inventor
辻 浩和
浩和 辻
薫 森山
薫 森山
寛 志田
寛 志田
勝由 千葉
勝由 千葉
康二 野本
康二 野本
甲元 一也
一也 甲元
宏治 長濱
宏治 長濱
松井 淳
淳 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
KONAN GAKUEN
Original Assignee
Yakult Honsha Co Ltd
KONAN GAKUEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd, KONAN GAKUEN filed Critical Yakult Honsha Co Ltd
Priority to JP2014234585A priority Critical patent/JP6358933B2/en
Publication of JP2015129114A publication Critical patent/JP2015129114A/en
Application granted granted Critical
Publication of JP6358933B2 publication Critical patent/JP6358933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、多糖−ペプチドグリカン複合体含有粒子及びその用途に関する。   The present invention relates to a polysaccharide-peptidoglycan complex-containing particle and use thereof.

多糖−ペプチドグリカン複合体(PS−PG)は、乳酸菌等のグラム陽性菌、大腸菌等のグラム陰性菌の細胞壁に存在する成分であり、近年、炎症性腸疾患や腸炎随伴性ガンの予防効果を有することが明らかになっている(特許文献1、非特許文献1)。PS−PGは、その構造及び性質の点から、グラム陰性菌の細胞壁成分であり、エンドトキシンであるリポ多糖(LPS)とは明確に相違する。また、PS−PGには、分子量の異なるPS−PG1及びPS−PG2の2種類あることが知られ、このうちPS−PG1は、分子量約100万kDa以上、PS−PG2は分子量約30万kDaと推定されており、ラクトバチルス・カゼイ YIT9029におけるこれらの含量の比率はPS−PG1:PS−PG2=約1:8である(非特許文献2)。   Polysaccharide-peptidoglycan complex (PS-PG) is a component present in the cell walls of gram-positive bacteria such as lactic acid bacteria and gram-negative bacteria such as Escherichia coli, and has recently been effective in preventing inflammatory bowel disease and enteritis-associated cancer. (Patent Document 1, Non-Patent Document 1). PS-PG is a cell wall component of Gram-negative bacteria and has a distinct difference from lipopolysaccharide (LPS), which is an endotoxin, in terms of its structure and properties. PS-PG is known to have two types, PS-PG1 and PS-PG2, having different molecular weights. Among them, PS-PG1 has a molecular weight of about 1 million kDa or more, and PS-PG2 has a molecular weight of about 300,000 kDa. The ratio of these contents in Lactobacillus casei YIT9029 is PS-PG1: PS-PG2 = about 1: 8 (Non-patent Document 2).

特開2011−193730号公報JP 2011-193730 A

Immunology, Vol.128, 1 Suppl, e170-e180(2009)Immunology, Vol.128, 1 Suppl, e170-e180 (2009) 「ラクトバチルス カゼイ シロタ株−腸内フローラおよび健康とのかかわり−」、第26−33頁(ヤクルト本社中央研究所、1999年1月1日発行)"Lactobacillus casei Shirota strain-Relationship with intestinal flora and health-" pp. 26-33 (Yakult Central Research Institute, issued January 1, 1999)

しかし、PS−PGは、エンドトキシンであるリポ多糖とは大きく異なり、PS−PGを有する生菌で発現する自然免疫賦活能が、細胞壁から分離し可溶化されたPS−PGでは全く生じない。従って、PS−PGにおいては、生菌を用いることなくPS−PGの特性の変化、構造と生理活性の関係等の研究ができなかった。
従って、本発明の課題は、PS−PGの生理機能を保持したモデル細胞壁系を提供することにある。
However, PS-PG is significantly different from lipopolysaccharide, which is an endotoxin, and the innate immune stimulating ability expressed in live bacteria having PS-PG does not occur at all in PS-PG separated and solubilized from the cell wall. Therefore, in PS-PG, it was not possible to study changes in the characteristics of PS-PG, the relationship between structure and physiological activity, etc. without using live bacteria.
Accordingly, an object of the present invention is to provide a model cell wall system that retains the physiological function of PS-PG.

そこで本発明者らは、生理活性を生じるPS−PGのモデル系を構築すべく種々検討した結果、粒子状担体を用いその表面にPS−PGを担持せしめれば、PS−PG含有粒子が得られ、当該粒子はIL−12産生促進効果を有し、免疫賦活能を有することを見出し、本発明を完成した。   Thus, as a result of various studies to construct a PS-PG model system that generates physiological activity, the present inventors obtained PS-PG-containing particles by using a particulate carrier and supporting PS-PG on the surface thereof. As a result, it was found that the particles had an IL-12 production promoting effect and an immunostimulatory ability, thereby completing the present invention.

すなわち、本発明は、次の〔1〕〜〔13〕を提供するものである。
〔1〕粒子状担体表面上に多糖−ペプチドグリカン複合体(PS−PG)を担持してなるPS−PG含有粒子。
〔2〕PS−PGが、細菌由来である〔1〕記載のPS−PG含有粒子。
〔3〕PS−PGが、乳酸菌由来である〔1〕又は〔2〕記載のPS−PG含有粒子。
〔4〕多糖−ペプチドグリカン複合体が、ラクトバチルス属に属する乳酸菌由来である〔1〕〜〔3〕のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子。
〔5〕PS−PGが、ラクトバチルス・カゼイ及び/又はラクトバチルス・ジョンソニー由来である〔1〕〜〔4〕のいずれかに記載のPS−PG含有粒子。
〔6〕粒子状担体が、ナノ粒子である〔1〕〜〔5〕のいずれかに記載のPS−PG含有粒子。
〔7〕粒子状担体が、ラテックスナノ粒子又はシリカナノ粒子である〔1〕〜〔6〕のいずれかに記載のPS−PG含有粒子。
〔8〕粒子状担体の平均粒子径が、20nm〜3100nmである〔1〕〜〔7〕のいずれかに記載のPS−PG含有粒子。
〔9〕粒子状担体の平均粒子径が、300nm〜2000nmである〔1〕〜〔8〕のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子。
〔10〕1個の粒子状担体へのPS−PGの結合量が0.1〜50amolである〔1〕〜〔9〕のいずれかに記載のPS−PG含有粒子。
〔11〕〔1〕〜〔10〕のいずれかに記載のPS−PG含有粒子を含有する医薬。
〔12〕〔1〕〜〔10〕のいずれかに記載のPS−PG含有粒子を有効成分とする免疫賦活剤。
〔13〕〔1〕〜〔10〕のいずれかに記載のPS−PG含有粒子を有効成分とするインターロイキン12産生促進剤。
That is, the present invention provides the following [1] to [13].
[1] PS-PG-containing particles obtained by supporting a polysaccharide-peptidoglycan complex (PS-PG) on the surface of a particulate carrier.
[2] PS-PG-containing particles according to [1], wherein PS-PG is derived from bacteria.
[3] PS-PG-containing particles according to [1] or [2], wherein PS-PG is derived from lactic acid bacteria.
[4] The polysaccharide-peptidoglycan complex-containing particle according to any one of [1] to [3], wherein the polysaccharide-peptidoglycan complex is derived from a lactic acid bacterium belonging to the genus Lactobacillus.
[5] The PS-PG-containing particles according to any one of [1] to [4], wherein PS-PG is derived from Lactobacillus casei and / or Lactobacillus johnsonii.
[6] The PS-PG-containing particle according to any one of [1] to [5], wherein the particulate carrier is a nanoparticle.
[7] The PS-PG-containing particles according to any one of [1] to [6], wherein the particulate carrier is latex nanoparticles or silica nanoparticles.
[8] The PS-PG-containing particles according to any one of [1] to [7], wherein the average particle diameter of the particulate carrier is 20 nm to 3100 nm.
[9] The polysaccharide-peptidoglycan complex-containing particle according to any one of [1] to [8], wherein the average particle size of the particulate carrier is 300 nm to 2000 nm.
[10] The PS-PG-containing particle according to any one of [1] to [9], wherein the amount of PS-PG bound to one particulate carrier is 0.1 to 50 amol.
[11] A medicament containing the PS-PG-containing particles according to any one of [1] to [10].
[12] An immunostimulant comprising the PS-PG-containing particles according to any one of [1] to [10] as an active ingredient.
[13] An interleukin 12 production promoter comprising the PS-PG-containing particles according to any one of [1] to [10] as an active ingredient.

本発明によれば、生菌の状態でなければ生理活性を示さなかったPS−PGの生理活性を有する人工粒子が提供できる。本発明のPS−PG含有粒子を用いれば、生菌を用いることなく、PS−PGが免疫賦活能を生じるメカニズムの研究等が可能となる。また、本発明のPS−PG含有粒子は免疫賦活剤及びIL−12産生促進剤等の医薬、それらの作用を有する食品等としても有用である。   ADVANTAGE OF THE INVENTION According to this invention, the artificial particle which has the bioactivity of PS-PG which did not show bioactivity unless it was the state of a living microbe can be provided. By using the PS-PG-containing particles of the present invention, it becomes possible to study the mechanism by which PS-PG produces immunostimulatory ability without using viable bacteria. The PS-PG-containing particles of the present invention are also useful as pharmaceuticals such as immunostimulants and IL-12 production promoters, foods having these functions, and the like.

ラクトバチルス・カゼイ由来PS−PG含有粒子の粒子状担体の平均粒子径とIL−12産生誘導能との関係を示す図である。It is a figure which shows the relationship between the average particle diameter of the particulate support | carrier of Lactobacillus casei origin PS-PG containing particle | grains, and IL-12 production induction ability.

本発明のPS−PG含有粒子は、粒子状担体表面上にPS−PGを担持してなる。   The PS-PG-containing particles of the present invention are formed by supporting PS-PG on the surface of a particulate carrier.

PS−PGは、細菌の細胞壁由来のもの及び人工的に作製されたものが含まれる。このうち、生理活性の点で細菌の細胞壁由来のものが好ましい。ここで、細菌としては、乳酸菌、ビフィズス菌、クロストリジウム等のグラム陽性菌、大腸菌、バクテロイデス等のグラム陰性菌が挙げられるが、取り扱い性、安全性、生理活性の点から乳酸菌、ビフィズス菌が好ましく、乳酸菌がより好ましい。乳酸菌としては、ラクトバチルス属、ストレプトコッカス属、ラクトコッカス属、ロイコノストック属、ペディオコッカス属等に属する乳酸菌が好ましく、より具体的には、ラクトバチルス・カゼイ、ラクトバチルス・ジョンソニー、ラクトバチルス・アシドフィルス、ラクトバチルス・サリバリウス、ラクトバチルス・ガセリ、ラクトバチルス・ファーメンタム、ラクトバチルス・ヘルベティカス、ラクトバチルス・ユーグルティ、ラクトバチルス・デルブルッキー サブスピシーズ.ブルガリカス、ストレプトコッカス・サーモフィルス、ラクトコッカス・ラクチス サブスピーシーズ.ラクチス、ラクトコッカス・ラクチス サブスピーシーズ.クレモリス、ロイコノストック・メセンテロイデス、ペディオコッカス・ペントサセウス等が挙げられる。このうち、ラクトバチルス属に属する乳酸菌が好ましく、ラクトバチルス・カゼイ及びラクトバチルス・ジョンソニーがより好ましく、特にラクトバチルス・カゼイが好ましい。ラクトバチルス・カゼイとしては、ラクトバチルス・カゼイ YIT 9029(FERM BP−1366)が好ましく、ラクトバチルス・ジョンソニーとしては、ラクトバチルス・ジョンソニー YIT 0219T(JCM 2012T)が好ましい。 PS-PG includes those derived from bacterial cell walls and artificially produced. Of these, those derived from bacterial cell walls are preferred in terms of physiological activity. Here, the bacteria include gram-positive bacteria such as lactic acid bacteria, bifidobacteria and Clostridium, and gram-negative bacteria such as Escherichia coli and bacteroides, but lactic acid bacteria and bifidobacteria are preferable from the viewpoint of handleability, safety and physiological activity. Lactic acid bacteria are more preferred. As the lactic acid bacteria, lactic acid bacteria belonging to the genus Lactobacillus, Streptococcus, Lactococcus, Leuconostoc, Pediococcus, etc. are preferred, and more specifically, Lactobacillus casei, Lactobacillus johnsonii, Lactobacillus Acidophilus, Lactobacillus salivaius, Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus euglety, Lactobacillus delbruecki Subspices. Bulgaricus, Streptococcus thermophilus, Lactococcus lactis Subspecies. Lactis, Lactococcus lactis Subspecies. Cremoris, Leuconostoc mesenteroides, Pediococcus pentosaceus and the like. Of these, lactic acid bacteria belonging to the genus Lactobacillus are preferred, Lactobacillus casei and Lactobacillus johnsonii are more preferred, and Lactobacillus casei is particularly preferred. As Lactobacillus casei, Lactobacillus casei YIT 9029 (FERM BP-1366) is preferable, and as Lactobacillus johnsonii, Lactobacillus johnsonii YIT 0219 T (JCM 2012 T ) is preferable.

これらの細菌から、PS−PGを分離するには、例えば特許文献1及び非特許文献2の記載に従えばよい。
PS−PGとしては、PS−PG1及び/又はPS−PG2を含有するもの(細菌の細胞壁由来のもの、人工的に作製されたもの等)であれば特に限定されず、さらには、例えば各種クロマトグラフィーによる分離や密度勾配遠心法などの分離・精製処理をさらに行ったものも含まれる。
To separate PS-PG from these bacteria, for example, the description in Patent Document 1 and Non-Patent Document 2 may be followed.
PS-PG is not particularly limited as long as it contains PS-PG1 and / or PS-PG2 (derived from a bacterial cell wall, artificially produced, etc.). It includes those that have been further subjected to separation / purification such as separation by chromatography and density gradient centrifugation.

粒子状担体としては、ナノ粒子であることが生理活性を発揮させる点から好ましい。その具体的な平均粒子径としては、1nm〜3100nmが好ましく、20nm〜3100nmがより好ましく、100nm〜3100nmがさらに好ましく、300nm〜2000nmがさらに好ましく、500nm〜2000nmがさらに好ましく、1000nmが特に好ましい。   As the particulate carrier, nanoparticles are preferable from the viewpoint of exerting physiological activity. The specific average particle diameter is preferably 1 nm to 3100 nm, more preferably 20 nm to 3100 nm, further preferably 100 nm to 3100 nm, further preferably 300 nm to 2000 nm, further preferably 500 nm to 2000 nm, and particularly preferably 1000 nm.

粒子状担体の形状は、特に限定されないが、球状又は略球状であることが、PS−PGの結合量、担持率、生理活性の点で好ましい。   The shape of the particulate carrier is not particularly limited, but a spherical or substantially spherical shape is preferable from the viewpoint of the amount of PS-PG bound, the loading rate, and physiological activity.

粒子状担体としては、スチレン・ジビニルベンゼン共重合体ビーズ等のポリスチレンビーズ、ラテックスビーズ、デンドリマー、シリカビーズや酸化チタンビーズ、アルミナビーズのような無機ナノビーズ、カーボンナノ材料、金ナノ粒子や銀ナノ粒子のような金属ナノ粒子(ナノロッドも含む)、セレン化カドミウムのような半導体ナノ粒子、リポソームやミセルなどの自己組織化会合体粒子等が挙げられるが、粒子径の小さく安定なナノ粒子が得られる点から、ラテックスナノ粒子、シリカナノ粒子が好ましい。ラテックスナノ粒子としては、ポリスチレン系ラテックスナノ粒子が好ましい。
また、これらの粒子状担体表面は、PS−PGを担持するため、アミノ基、アミノオキシ基、ヒドラジド基、アジド基、カルボニル基、α,β−不飽和カルボニル基、ホルミル基、カルボキシル基、スルホン酸基、チオール基、ジスルフィド基、アルキニル基等で修飾されているのが好ましい。これらの修飾基としては、脂肪族又は芳香族等の修飾基が挙げられ、例えば、脂肪族アミノ基、芳香族アミノ基等が挙げられる。また、ヒスチジンオリゴマー、ビピリジン、ジピコリルアミン、イミノ二酢酸等のような金属イオンと配位結合を形成する配位子で修飾されていてもよい。
Examples of particulate carriers include polystyrene beads such as styrene / divinylbenzene copolymer beads, latex beads, dendrimers, silica beads, titanium oxide beads, inorganic nano beads such as alumina beads, carbon nano materials, gold nanoparticles, and silver nanoparticles. Metal nanoparticles (including nanorods), semiconductor nanoparticles such as cadmium selenide, self-assembled aggregate particles such as liposomes and micelles, etc., but stable nanoparticles with small particle diameters can be obtained From the viewpoint, latex nanoparticles and silica nanoparticles are preferable. As the latex nanoparticles, polystyrene latex nanoparticles are preferable.
Moreover, since these particulate carrier surfaces carry PS-PG, they are amino groups, aminooxy groups, hydrazide groups, azide groups, carbonyl groups, α, β-unsaturated carbonyl groups, formyl groups, carboxyl groups, sulfones. It is preferably modified with an acid group, a thiol group, a disulfide group, an alkynyl group or the like. Examples of these modifying groups include aliphatic and aromatic modifying groups such as aliphatic amino groups and aromatic amino groups. Further, it may be modified with a ligand that forms a coordinate bond with a metal ion such as histidine oligomer, bipyridine, dipicolylamine, iminodiacetic acid and the like.

粒子状担体表面上へのPS−PGの担持形態は、吸着、イオン結合、共有結合、金属結合、ファンデルワールス結合等のいずれでもよいが、PS−PG含有粒子の安定性、生理活性等の点から共有結合が好ましい。より好ましくは、PS−PGと粒子状担体表面上に修飾されたホルミル基又はアミノ基とがシッフ塩基形成、還元アミノ化を経て共有結合している形態である。   The support form of PS-PG on the surface of the particulate carrier may be any of adsorption, ionic bond, covalent bond, metal bond, van der Waals bond, etc., but stability of PS-PG-containing particles, physiological activity, etc. From the viewpoint, a covalent bond is preferable. More preferably, PS-PG and the formyl group or amino group modified on the surface of the particulate carrier are covalently bonded through Schiff base formation and reductive amination.

粒子状担体へのPS−PGの結合量は、特に制限されないが、1個の粒子状担体表面に結合したPS−PG量(モル数)として、0.1〜250amolが好ましく、0.1〜50amolがより好ましく、1〜50amolがさらに好ましく、10〜50amolが特に好ましい。ここで、結合量は後記実施例に示すように、1個の粒子状担体表面に結合したPS−PG重量をX(pg)、PS−PGの重量平均分子量をY(g/mol)として、X/Y(amol)によって算出することができる。   The amount of PS-PG bound to the particulate carrier is not particularly limited, but the amount of PS-PG bound to the surface of one particulate carrier (number of moles) is preferably 0.1 to 250 amol, 0.1 to 50 amol is more preferable, 1 to 50 amol is more preferable, and 10 to 50 amol is particularly preferable. Here, as shown in the examples described later, the amount of PS-PG bound to one particulate carrier surface is X (pg), and the weight average molecular weight of PS-PG is Y (g / mol). It can be calculated by X / Y (amol).

粒子状担体へのPS−PGの担持率は、特に制限されないが、粒子状担体表面のアミノ基モル数に対して0.1〜100%が好ましく、0.1〜20%がより好ましく、1〜20%がさらに好ましく、10〜20%が特に好ましい。ここで、担持率は、後記実施例に示すように、1個の粒子状担体表面のアミノ基モル数をZ(amol)として、(X/Y)/Z×100(%)によって算出することができる。   The support rate of PS-PG on the particulate carrier is not particularly limited, but is preferably 0.1 to 100%, more preferably 0.1 to 20%, more preferably 1 to 20%, based on the number of moles of amino groups on the surface of the particulate carrier. -20% is more preferable, and 10-20% is particularly preferable. Here, the loading ratio is calculated by (X / Y) / Z × 100 (%), where Z (amol) is the number of moles of amino groups on the surface of one particulate carrier, as shown in the Examples below. Can do.

粒子状担体表面へのPS−PGの担持方法としては、前述の如く吸着、イオン結合、共有結合、金属結合、ファンデルワールス結合等の形成方法が挙げられるが、アミノ基修飾された粒子状担体表面にPS−PGの糖鎖を還元条件下で反応させる還元アミノ化反応を用いるのが好ましい。より具体的には、PS−PGのアミノ酸に含まれるアミノ基をアセチル化等により保護し、シアノ水素化ホウ素ナトリウム等の還元剤の存在下に、アミノ基又は脂肪族アミノ基修飾粒子状担体を反応させるのが好ましい。   Examples of the method for supporting PS-PG on the surface of the particulate carrier include formation methods such as adsorption, ionic bond, covalent bond, metal bond and van der Waals bond as described above. It is preferable to use a reductive amination reaction in which the sugar chain of PS-PG is reacted on the surface under reducing conditions. More specifically, the amino group contained in the amino acid of PS-PG is protected by acetylation or the like, and in the presence of a reducing agent such as sodium cyanoborohydride, the amino group or aliphatic amino group modified particulate carrier is used. It is preferable to react.

本発明のPS−PG含有粒子は、後記実施例に示すように、マクロファージにおける強いIL−12産生作用を有し、免疫賦活剤として有用である。また、従来、PS−PGは菌体から分離した状態では生理活性を示さなかったが、本発明のPS−PG含有粒子は、人工粒子であるにもかかわらず、生理活性を示すことから、PS−PGの生理活性の作用機序等の研究試薬としても有用である。
従って、本発明のPS−PG含有粒子は、IL−12産生促進剤、免疫賦活剤等として医薬、食品、化粧品、試薬等の分野で使用可能である。
The PS-PG-containing particles of the present invention have a strong IL-12 production action in macrophages and are useful as an immunostimulant, as shown in Examples below. Conventionally, PS-PG did not show physiological activity in a state separated from cells, but the PS-PG-containing particles of the present invention show physiological activity despite being artificial particles. -It is also useful as a research reagent for the mechanism of action of physiological activity of PG.
Therefore, the PS-PG-containing particles of the present invention can be used in the fields of pharmaceuticals, foods, cosmetics, reagents and the like as IL-12 production promoters, immunostimulators and the like.

本発明の医薬は経口投与又は非経口投与のいずれも使用できるが、経口投与が望ましい。投与に関しては、有効成分であるPS−PG含有粒子を投与方法に適した固体又は液体の医薬用無毒性担体と混合して、慣用の医薬品製剤の形態で投与することができる。   The pharmaceutical of the present invention can be used either orally or parenterally, but oral administration is desirable. Regarding administration, PS-PG-containing particles as an active ingredient can be mixed with a solid or liquid nontoxic pharmaceutical carrier suitable for the administration method and administered in the form of a conventional pharmaceutical preparation.

本発明の有効成分であるPS−PG含有粒子を使用する際の投与量に厳格な制限はない。対象者や適用疾患等の様々な使用態様によって得られる効果が異なるため、適宜投与量を設定することが望ましいが、その好適な投与量はPS−PG含有粒子として1回あたり1×107個以上が好ましく、1×107個〜1×1013個がより好ましく、1×109個〜1×1013個がさらに好ましく、1×1011個〜1×1013個が特に好ましい。 There is no strict limitation on the dosage when using PS-PG-containing particles which are the active ingredients of the present invention. Since the effect obtained varies depending on various use modes such as the subject and applicable disease, it is desirable to set the dose as appropriate, but the preferred dose is 1 × 10 7 particles per time as PS-PG-containing particles. The above is preferable, 1 × 10 7 to 1 × 10 13 is more preferable, 1 × 10 9 to 1 × 10 13 is further preferable, and 1 × 10 11 to 1 × 10 13 is particularly preferable.

医薬品とする場合の製剤としては、例えば、錠剤、顆粒剤、散剤、カプセル剤等の固体剤、溶液剤、懸濁剤、乳剤等の液剤、凍結乾燥剤等が挙げられる。これらの製剤は製剤上の常套手段により調製することができる。上記の医薬用無毒性担体としては、例えば、澱粉、デキストリン、脂肪酸グリセリド、ポリエチレングリコール、ヒドロキシエチルデンプン、エチレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、アミノ酸、ゼラチン、アルブミン、水、生理食塩水等が挙げられる。また、必要に応じて、安定化剤、湿潤剤、乳化剤、結合剤、等張化剤、賦形剤等の慣用の添加剤を適宜添加することもできる。   Examples of the preparation in the case of a pharmaceutical product include solid agents such as tablets, granules, powders and capsules, solutions such as solutions, suspensions and emulsions, and freeze-dried agents. These preparations can be prepared by conventional means on the preparation. Examples of the non-toxic pharmaceutical carrier include starch, dextrin, fatty acid glyceride, polyethylene glycol, hydroxyethyl starch, ethylene glycol, polyoxyethylene sorbitan fatty acid ester, amino acid, gelatin, albumin, water, and physiological saline. It is done. If necessary, conventional additives such as a stabilizer, a wetting agent, an emulsifier, a binder, an isotonic agent, and an excipient can be appropriately added.

また、本発明の免疫賦活剤及びIL−12産生促進剤は、上記のような医薬品製剤として用いるだけでなく、飲食品等として用いることもできる。この場合には、本発明のPS−PG含有粒子をそのまま、又は種々の栄養成分を加えて、飲食品中に含有せしめればよい。この飲食品は、免疫能の改善、IL−12の産生不足による疾患、例えば感染症、腫瘍、アレルギー等の予防・治療等に有用な保健用食品又は食品素材として利用でき、これらの飲食品又はその容器には、前記の効果を有する旨の表示を付してもよい。具体的に本発明の免疫賦活剤又はIL−12産生促進剤を飲食品に配合する場合は、飲食品として使用可能な添加剤を適宜使用し、慣用の手段を用いて食用に適した形態、例えば、顆粒状、粒状、錠剤、カプセル、ペースト等に成形してもよく、また種々の食品、例えば、ハム、ソーセージ等の食肉加工品、かまぼこ、ちくわ等の水産加工品、パン、菓子、バター、粉乳、発酵飲食品に添加して使用したり、水、果汁、牛乳、清涼飲料、茶飲料等の飲料に添加して使用してもよい。なお、飲食品には動物の飼料も含まれる。
これらの医薬品、食品等に使用する場合の、本発明PS−PG含有粒子の濃度は1×107個/g以上が好ましく、1×107個/g〜1×1013個/gがより好ましく、1×109個/g〜1×1013個/gがさらに好ましく、1×1011個/g〜1×1013個/gが特に好ましい。
Moreover, the immunostimulant and IL-12 production promoter of the present invention can be used not only as a pharmaceutical preparation as described above but also as a food or drink. In this case, the PS-PG-containing particles of the present invention may be contained in food or drink as they are or with various nutritional components added. This food and drink can be used as a health food or food material useful for the prevention and treatment of immunity improvement, diseases caused by insufficient production of IL-12, such as infections, tumors, and allergies. The container may be marked with the effect described above. Specifically, when the immunostimulant or IL-12 production promoter of the present invention is blended in a food or drink, an additive that can be used as a food or drink is appropriately used, and a form suitable for food using conventional means, For example, it may be formed into granules, granules, tablets, capsules, pastes, etc., and various foods such as processed meat products such as ham and sausage, processed fishery products such as kamaboko and chikuwa, bread, confectionery and butter In addition, it may be used by adding to milk powder, fermented food or drink, or may be used by adding to beverages such as water, fruit juice, milk, soft drinks and tea drinks. The food and drink includes animal feed.
These drugs, when used in foods, etc., the concentration of the present invention PS-PG-containing particles is preferably not less than 1 × 10 7 cells / g, 1 × 10 7 cells / g to 1 × 10 13 cells / g Gayori Preferably, 1 × 10 9 pieces / g to 1 × 10 13 pieces / g are more preferable, and 1 × 10 11 pieces / g to 1 × 10 13 pieces / g are particularly preferable.

次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to this.

実施例1
(1)PS−PGの分離
Lactobacillus casei YIT 9029(FERM BP−1366)の培養菌体を90℃にて30分間加熱し、凍結乾燥を行った。この加熱死菌体凍結乾燥物500mgを5mM Tris-maleate buffer(pH6.4)30mLに懸濁し、Mutanolysin(SIGMA)を添加して37℃、24時間、反応させた。反応液を遠心分離して得られた上清について、10mM リン酸buffer(pH6.0)/0.25M NaClを外液として、20時間、4℃にて透析した。透析内液を凍結乾燥し、凍結乾燥物を終濃度5mg/mLとなるように注射用蒸留水(扶桑薬品)に溶解した。これをセファクリル S−200 HR(GEヘルスケア、カラムサイズ:5×60cm)にアプライし、ゲル濾過を行った(流速:1mL/min、温度:4℃)。得られたフラクションについて、フェノール・硫酸法にてPS−PG画分を検出した。PS−PG画分を回収し、注射用蒸留水を外液として、20時間、4℃にて透析した。これを凍結乾燥し、73mgの精製PS−PGを得た。
Example 1
(1) Separation of PS-PG
The cultured cells of Lactobacillus casei YIT 9029 (FERM BP-1366) were heated at 90 ° C. for 30 minutes and freeze-dried. 500 mg of this freeze-dried microbial cell freeze-dried product was suspended in 30 mL of 5 mM Tris-maleate buffer (pH 6.4), Mutanolysin (SIGMA) was added and reacted at 37 ° C. for 24 hours. The supernatant obtained by centrifuging the reaction solution was dialyzed at 4 ° C. for 20 hours using 10 mM phosphate buffer (pH 6.0) /0.25 M NaCl as an external solution. The dialysis internal solution was freeze-dried, and the freeze-dried product was dissolved in distilled water for injection (Fuso Yakuhin) to a final concentration of 5 mg / mL. This was applied to Sephacryl S-200 HR (GE Healthcare, column size: 5 × 60 cm), and gel filtration was performed (flow rate: 1 mL / min, temperature: 4 ° C.). About the obtained fraction, PS-PG fraction was detected by the phenol-sulfuric acid method. The PS-PG fraction was collected and dialyzed at 4 ° C. for 20 hours using distilled water for injection as an external solution. This was freeze-dried to obtain 73 mg of purified PS-PG.

(2)PS−PGのアミノ基の保護
1.5mLのマイクロチューブに、PS−PG3mgを加え、ミリQ水500μLに溶解させた。調製したPS−PG水溶液に、アミノ基の脱プロトン化が起こるよう、50mMリン酸緩衝液(pH8.5)50μLと無水酢酸20μLを加え、アセチル化反応を開始した。反応溶液は室温で静置し、15分おきにボルテックスで攪拌した。また、すべてのアミノ基をブロックするために反応開始後1時間毎に、無水酢酸を20μLずつ追加した。この操作を5時間続けた。5時間後、反応溶液を透析膜(フナコシ製(スペクトロポア)、分画分子量3500)に入れ、蒸留水で1日透析した。透析によって若干白濁した溶液を200mLナス型フラスコに移し、凍結乾燥を行った。凍結乾燥後のアセチル化PS−PGの収量は1.6mg(回収率53%)であった。
(2) Protection of the amino group of PS-PG 3 mg of PS-PG was added to a 1.5 mL microtube and dissolved in 500 μL of milli-Q water. To the prepared PS-PG aqueous solution, 50 μL of 50 mM phosphate buffer (pH 8.5) and 20 μL of acetic anhydride were added so that deprotonation of the amino group occurred, and acetylation reaction was started. The reaction solution was allowed to stand at room temperature and vortexed every 15 minutes. Further, 20 μL of acetic anhydride was added every hour after the start of the reaction in order to block all amino groups. This operation was continued for 5 hours. After 5 hours, the reaction solution was put into a dialysis membrane (manufactured by Funakoshi (Spectropore), molecular weight cut off 3500), and dialyzed against distilled water for 1 day. The solution slightly turbid by dialysis was transferred to a 200 mL eggplant-shaped flask and lyophilized. The yield of acetylated PS-PG after lyophilization was 1.6 mg (53% recovery).

(3)反応用糖鎖ストック溶液の調製
i)デキストランストック溶液の調製
0.5mLのマイクロチューブに、デキストラン5mgを加え、ミリQ水50μLに溶解させた(0.1mg/μL)。デキストランの修飾率を変化させるために、先に調製した0.1mg/μLを10倍ずつ希釈したストック溶液系列(最大1025倍希釈:1×10-1〜1×10-26mg/μL)を調製した。調製法は、ストック溶液を10μLとり、0.5mLのマイクロチューブに加え、ミリQ水90μLを加え、混合することで希釈溶液を調製した。
(3) Preparation of sugar chain stock solution for reaction i) Preparation of dextran stock solution To a 0.5 mL microtube, 5 mg of dextran was added and dissolved in 50 μL of milli-Q water (0.1 mg / μL). In order to change the modification rate of dextran, a stock solution series in which 0.1 mg / μL prepared previously was diluted 10-fold (maximum 10 25- fold dilution: 1 × 10 −1 to 1 × 10 −26 mg / μL) Was prepared. In the preparation method, 10 μL of the stock solution was taken, added to a 0.5 mL microtube, 90 μL of milli-Q water was added and mixed to prepare a diluted solution.

ii)PS−PGストック溶液の調製
0.5mLのマイクロチューブにアセチル化したPS−PG0.8mgを加え、ミリQ水40μLに溶解させた(0.02mg/μL)。PS−PGの修飾率を変化させるために、先に調製した0.02mg/μLを10倍ずつ希釈したストック溶液系列(最大1010倍希釈:2×10-2〜2×10-12mg/μL)を調製した。調製法は、ストック溶液を10μLとり、0.5mLのマイクロチューブに加え、ミリQ水90μLを加え、混合することで希釈溶液を調製した。
ii) Preparation of PS-PG stock solution 0.8 mg of acetylated PS-PG was added to a 0.5 mL microtube and dissolved in 40 μL of milli-Q water (0.02 mg / μL). In order to change the modification rate of PS-PG, a stock solution series in which 0.02 mg / μL prepared previously was diluted 10-fold (maximum 10 10- fold dilution: 2 × 10 −2 to 2 × 10 −12 mg / μL) was prepared. In the preparation method, 10 μL of the stock solution was taken, added to a 0.5 mL microtube, 90 μL of milli-Q water was added and mixed to prepare a diluted solution.

実施例1において合成した糖鎖修飾ナノビーズを表1及び表2にまとめ、これら糖鎖修飾ナノビーズの合成法を以下に詳述する。   The sugar chain-modified nanobeads synthesized in Example 1 are summarized in Tables 1 and 2, and a method for synthesizing these sugar chain-modified nanobeads will be described in detail below.

iii)ナノビーズへの糖鎖の修飾
ナノビーズとして、脂肪族アミノ基修飾ラテックスナノビーズ(粒径24±3nm:Molecular Probe社)(20LA−NH2)、脂肪族アミノ基修飾ラテックスナノビーズ(粒径110±5nm:Molecular Probe社)(100LA−NH2)、脂肪族アミノ基修飾ラテックスビーズ(粒径3.1μm:Molecular Probe社)(NP3000)、アミノ基修飾シリカナノビーズ(粒径100nm:Micromod Partikeltechnologie GmbH社)(100SI−NH2)、アミノ基修飾シリカナノビーズ(粒径500nm:Micromod Partikeltechnologie GmbH社)(500SI−NH2)を用いた。デキストランは、分子量40,000(和光純薬社)のものを用いた。
ア.シリカナノビーズへのデキストランの修飾
0.5mLのマイクロチューブに、50mMリン酸緩衝液(pH8.5)20μL、シリカナノビーズ(100SI−NH2、もしくは500SI−NH2)20μL、100mMシアノ水素化ホウ素ナトリウム水溶液30μLを加え、デキストランストック溶液20μLを加えた。溶液をボルテックスで攪拌した後、45℃で1日加熱した。反応溶液を遠心分離(9,000rpm、5min、25℃)し、シリカナノビーズを沈殿させた。ビーズを吸い込まないように上澄みを取り除き、ナノビーズから反応溶液を洗浄するためにマイクロチューブにミリQ水70μLを加え、ボルテックスで攪拌した。再度、遠心分離(9,000rpm、5min、25℃)した後、上澄みを取り除き、ミリQ水70μLを加え、ボルテックスで攪拌した。この操作を2回繰り返した。
ここで、100SI−NH2にデキストランを1×10-1〜1×10-26mg/μL用いて被覆したビーズを、100SD−1乃至100SD−26とし、500SI−NH2にデキストランを1×10-1〜1×10-26mg/μL用いて被覆したビーズを、500SD−1乃至500SD−26とした。
イ.シリカナノビーズへのPS−PGの修飾
0.5mLのマイクロチューブに、50mMリン酸緩衝液(pH8.5)20μL、シリカナノビーズ(100SI−NH2、もしくは500SI−NH2)20μL、100mMシアノ水素化ホウ素ナトリウム水溶液30μLを加え、PS−PGストック溶液20μLを加えた。溶液をボルテックスで攪拌した後、45℃で3日加熱した。反応溶液を遠心分離(9,000rpm、5min、25℃)し、シリカナノビーズを沈殿させた。ビーズを吸い込まないように上澄みを取り除き、ナノビーズから反応溶液を洗浄するためにマイクロチューブにミリQ水70μLを加え、ボルテックスで攪拌した。再度、遠心分離(9,000rpm、5min、25℃)した後、上澄みを取り除き、ミリQ水70μLを加え、ボルテックスで攪拌した。この操作を4回繰り返した。
ここで、100SI−NH2にPS−PGを2×10-2〜2×10-12mg/μL用いて被覆したビーズを、100SP−2乃至100SP−12とし、500SI−NH2にPS−PGを2×10-2〜2×10-12mg/μL用いて被覆したビーズを、500SP−2乃至500SP−12とした。
iii) Modification of sugar chain to nanobeads As nanobeads, aliphatic amino group-modified latex nanobeads (particle size: 24 ± 3 nm: Molecular Probe) (20LA-NH 2 ), aliphatic amino group-modified latex nanobeads (particle size: 110 ± 5 nm) : Molecular Probe) (100LA-NH 2 ), aliphatic amino group modified latex beads (particle size 3.1 μm: Molecular Probe) (NP 3000 ), amino group modified silica nano beads (particle size 100 nm: Micromod Partikeltechnologie GmbH) (100SI-NH 2 ) and amino group-modified silica nano beads (particle size 500 nm: Micromod Partikeltechnologie GmbH) (500SI-NH 2 ) were used. Dextran having a molecular weight of 40,000 (Wako Pure Chemical Industries) was used.
A. Modification of dextran to silica nanobeads In a 0.5 mL microtube, 20 μL of 50 mM phosphate buffer (pH 8.5), 20 μL of silica nanobeads (100SI-NH 2 or 500SI-NH 2 ), 100 mM sodium cyanoborohydride aqueous solution 30 μL was added and 20 μL of dextran stock solution was added. The solution was vortexed and then heated at 45 ° C. for 1 day. The reaction solution was centrifuged (9,000 rpm, 5 min, 25 ° C.) to precipitate silica nanobeads. The supernatant was removed so as not to suck the beads, and 70 μL of milli-Q water was added to the microtube to wash the reaction solution from the nanobeads, and vortexed. After centrifugation again (9,000 rpm, 5 min, 25 ° C.), the supernatant was removed, 70 μL of milli-Q water was added, and the mixture was vortexed. This operation was repeated twice.
Here, the coated beads 100 SI-NH 2 in the dextran used 1 × 10 -1 ~1 × 10 -26 mg / μL, and 100SD-1 to 100SD-26, 1 × 10 dextran in 500SI-NH 2 −1 to 1 × 10 −26 mg / μL coated beads were designated as 500SD-1 to 500SD-26.
A. Modification of PS-PG to silica nanobeads In a 0.5 mL microtube, 20 μL of 50 mM phosphate buffer (pH 8.5), 20 μL of silica nanobeads (100SI-NH 2 or 500SI-NH 2 ), 100 mM cyanoborohydride 30 μL of aqueous sodium solution was added, and 20 μL of PS-PG stock solution was added. The solution was vortexed and then heated at 45 ° C. for 3 days. The reaction solution was centrifuged (9,000 rpm, 5 min, 25 ° C.) to precipitate silica nanobeads. The supernatant was removed so as not to suck the beads, and 70 μL of milli-Q water was added to the microtube to wash the reaction solution from the nanobeads, and vortexed. After centrifugation again (9,000 rpm, 5 min, 25 ° C.), the supernatant was removed, 70 μL of milli-Q water was added, and the mixture was vortexed. This operation was repeated 4 times.
Here, the beads were coated with PS-PG 2 × 10 -2 ~2 × 10 -12 mg / μL in 100 SI-NH 2, and 100SP-2 to 100SP-12, the 500SI-NH 2 PS-PG The beads coated with 2 × 10 −2 to 2 × 10 −12 mg / μL were designated as 500SP-2 to 500SP-12.

ウ.ラテックスナノビーズへのデキストランの修飾
0.5mLのマイクロチューブに、50mMリン酸緩衝液(pH8.5)20μL、ラテックスナノビーズ20μL、100mMシアノ水素化ホウ素ナトリウム水溶液30μLを加え、デキストランストック溶液20μLを加えた。溶液をボルテックスで攪拌した後、45℃で1日加熱した。反応溶液を遠心分離(10,000rpm、15min、25℃)し、ラテックスナノビーズを沈殿させた。ビーズを吸い込まないように上澄みを取り除き、ナノビーズから反応溶液を洗浄するためにマイクロチューブにミリQ水70μLを加え、ボルテックスで攪拌した。再度、遠心分離(10,000rpm、15min、25℃)した後、上澄みを取り除き、ミリQ水70μLを加え、ボルテックスで攪拌した。この操作を2回繰り返した。
ここで、20LA−NH2にデキストランを1×10-1〜1×10-26mg/μL用いて被覆したビーズを、20LD−1乃至20LD−26とし、100LA−NH2にデキストランを1×10-1〜1×10-26mg/μL用いて被覆したビーズを、100LD−1乃至100LD−26とした。
C. Modification of dextran to latex nanobeads To a 0.5 mL microtube, 20 μL of 50 mM phosphate buffer (pH 8.5), 20 μL of latex nanobeads, 30 μL of 100 mM sodium cyanoborohydride aqueous solution were added, and 20 μL of dextran stock solution was added. The solution was vortexed and then heated at 45 ° C. for 1 day. The reaction solution was centrifuged (10,000 rpm, 15 min, 25 ° C.) to precipitate latex nanobeads. The supernatant was removed so as not to suck the beads, and 70 μL of milli-Q water was added to the microtube to wash the reaction solution from the nanobeads, and vortexed. After centrifugation again (10,000 rpm, 15 min, 25 ° C.), the supernatant was removed, 70 μL of milli-Q water was added, and the mixture was vortexed. This operation was repeated twice.
Here, beads coated with 20 LA-NH 2 using 1 × 10 −1 to 1 × 10 −26 mg / μL of dextran are designated as 20LD-1 to 20LD-26, and dextran is added to 100LA-NH 2 with 1 × 10 −1 to 1 × 10 −26 mg / μL of beads were used as 100LD-1 to 100LD-26.

エ.ラテックスナノビーズへのPS−PGの修飾
0.5mLのマイクロチューブに、50mMリン酸緩衝液(pH8.5)20μL、ラテックスナノビーズ20μL、100mMシアノ水素化ホウ素ナトリウム水溶液30μLを加え、PS−PGストック溶液20μLを加えた。溶液をボルテックスで攪拌した後、45℃で3日加熱した。反応溶液を遠心分離(10,000rpm、15min、25℃)し、ラテックスナノビーズを沈殿させた。ビーズを吸い込まないように上澄みを取り除き、ナノビーズから反応溶液を洗浄するためにマイクロチューブにミリQ水70μLを加え、ボルテックスで攪拌した。再度、遠心分離(10,000rpm、15min、25℃)した後、上澄みを取り除き、ミリQ水70μLを加え、ボルテックスで攪拌した。この操作を4回繰り返した。
ここで、20LA−NH2にPS−PGを2×10-2〜2×10-12mg/μL用いて被覆したビーズを、20LP−2乃至20LP−12とし、100LA−NH2にPS−PGを2×10-2〜2×10-12mg/μL用いて被覆したビーズを、100LP−2乃至100LP−12とした。
オ.ナノビーズ表面へのPS−PG結合量の定量
i)材料
NP 3000 について
脂肪族アミノ基修飾ラテックスナノビーズ(Molecular Probe社製)
粒子直径=3.1μm(Molecular Probe社公表データ)
粒子表面のアミノ基占有面積=21Å2=0.21×10-6μm2(Molecular Probe社公表データ)
粒子の表面積=4×(×(3.1/2)2=30.2μm2
粒子表面のアミノ基数=30.2μm2/0.21×10-6μm2=143,692,380
粒子表面のアミノ基モル数=143,692,380/6.02×1023mol-1=24.3×10-17mol=243amol
D. Modification of PS-PG to latex nanobeads To a 0.5 mL microtube, 20 μL of 50 mM phosphate buffer (pH 8.5), 20 μL of latex nanobeads, 30 μL of 100 mM sodium cyanoborohydride aqueous solution were added, and 20 μL of PS-PG stock solution was added. Was added. The solution was vortexed and then heated at 45 ° C. for 3 days. The reaction solution was centrifuged (10,000 rpm, 15 min, 25 ° C.) to precipitate latex nanobeads. The supernatant was removed so as not to suck the beads, and 70 μL of milli-Q water was added to the microtube to wash the reaction solution from the nanobeads, and vortexed. After centrifugation again (10,000 rpm, 15 min, 25 ° C.), the supernatant was removed, 70 μL of milli-Q water was added, and the mixture was vortexed. This operation was repeated 4 times.
Here, beads coated with 20 LA-NH 2 using 2 × 10 −2 to 2 × 10 −12 mg / μL of PS-PG are designated as 20LP-2 to 20LP-12, and 100LA-NH 2 is treated with PS-PG. The beads coated with 2 × 10 −2 to 2 × 10 −12 mg / μL were designated as 100LP-2 to 100LP-12.
E. Determination of PS-PG binding amount to nanobead surface i) Material
About NP 3000 Aliphatic amino group-modified latex nanobeads (Molecular Probe)
Particle diameter = 3.1 μm (data published by Molecular Probe)
Amino-occupied area of particle surface = 21Å 2 = 0.21 × 10 −6 μm 2 (Data published by Molecular Probe)
Particle surface area = 4 × (× (3.1 / 2) 2 = 30.2 μm 2
Amino groups on the particle surface = 30.2μm 2 /0.21×10 -6 μm 2 = 143,692,380
Number of moles of amino groups on the particle surface = 143,692,380 / 6.02 × 10 23 mol −1 = 24.3 × 10 -17 mol = 243 amol

ii)NP 3000 −8PSPGの合成
マイクロチューブに150μLのPBS(50mM,pH8.5)、75μLのアセチル化PS−PG水溶液(2.0mg/75μL:ビーズ表面のアミノ基に対して8等量のアセチル化PS−PG(モル数))、25μLのNP3000水溶液(3.75×107個,0.230mg)、75μLのシアノ水素化ホウ素ナトリウム水溶液(100mM)を加えた。マイクロチューブを室温にて静置し、30分ごとにボルテックスにより撹拌した。これを8回繰り返した後,250rpmで撹拌しながら45℃にて72時間インキュベートした。
反応溶液を遠心分離し(11,000rpm,15min,4℃)、NP3000成分を沈殿させ、上清を除去した。200μLの超純水を用いた洗浄操作を7回繰り返し、ペレットとしてPS−PG結合NP3000(NP3000−8PSPG)を得た。ビーズ表面のアミノ基に対して添加するアセチル化PS−PGのモル数(1等量,2等量,4等量,6等量)を変化させたこと以外は、上記と同じ方法により、NP3000−PSPG、NP3000−2PSPG、NP3000−4PSPG、NP3000−6PSPGを得た。
ii) Synthesis of NP 3000 -8 PSPG In a microtube, 150 μL of PBS (50 mM, pH 8.5), 75 μL of an acetylated PS-PG aqueous solution (2.0 mg / 75 μL: 8 equivalents of acetyl to the amino group on the bead surface) PS-PG (in moles)), 25 μL of NP 3000 aqueous solution (3.75 × 10 7 , 0.230 mg), and 75 μL of sodium cyanoborohydride aqueous solution (100 mM) were added. The microtube was allowed to stand at room temperature and stirred by vortex every 30 minutes. This was repeated 8 times and then incubated at 45 ° C. for 72 hours with stirring at 250 rpm.
The reaction solution was centrifuged (11,000 rpm, 15 min, 4 ° C.) to precipitate the NP 3000 component, and the supernatant was removed. The washing operation using 200 μL of ultrapure water was repeated 7 times to obtain PS-PG-bonded NP 3000 (NP 3000 -8PSPG) as a pellet. In the same way as above, except that the number of moles of acetylated PS-PG added to the amino group on the bead surface (1 equivalent, 2 equivalents, 4 equivalents, 6 equivalents) was changed, NP 3000 -PSPG, NP 3000 -2PSPG, NP 3000 -4PSPG, to give the NP 3000 -6PSPG.

iii)1個のNP 3000 に結合したPS−PG量の算出方法
ペレットとして得られた各PS−PG結合NP3000を凍結乾燥し、精密電子天秤により各PS−PG結合NP3000の重量を測定した。各反応前後で増加した重量はナノビーズに結合したPS−PGによるものとし,1個のNP3000に結合したPS−PG量を算出した。以下はその一例として、NP3000−8PSPGの算出過程を示す。
反応前のNP3000(3.75×107個)の重量は0.230mgであった。NP3000−8PSPGの場合、反応、精製後の重量は0.284mgであった。これより、3.75×107個のNP3000に54μgのPS−PGが結合したことが分かった。また、1個のNP3000に結合したPS−PG重量は1.44pgと算出され(54μg/3.75×107個)、PS−PGの重量平均分子量30,000(g/mol)を用いると、1個のNP3000に結合したPS−PGのモル数は48amolと算出された(1.44pg/30,000g・mol-1)。NP3000表面のアミノ基モル数は243amolであることより、NP3000−8PSPGの場合、NP3000表面に提示されたアミノ基の19.8%がPS−PGとの結合に用いられたことが分かった。
iii) Each PS-PG bond NP 3000 obtained as a single PS-PG amount calculation method pellets bound to NP 3000 of lyophilized to measure the weight of each PS-PG bond NP 3000 with a precision electronic balance . The weight increased before and after each reaction was attributed to PS-PG bound to nanobeads, and the amount of PS-PG bound to one NP 3000 was calculated. The following is an example of the calculation process of NP 3000 -8PSPG.
The weight of NP 3000 (3.75 × 10 7 pieces) before the reaction was 0.230 mg. In the case of NP 3000 -8PSPG, the weight after reaction and purification was 0.284 mg. From this, it was found that 54 μg of PS-PG was bound to 3.75 × 10 7 NP 3000 . Further, the weight of PS-PG bound to one NP 3000 is calculated as 1.44 pg (54 μg / 3.75 × 10 7 ), and the weight average molecular weight of PS-PG is 30,000 (g / mol). The number of moles of PS-PG bound to one NP 3000 was calculated to be 48 amol (1.44 pg / 30,000 g · mol −1 ). From the fact that the number of moles of amino groups on the surface of NP 3000 is 243 amol, it can be seen that in the case of NP 3000 -8PSPG, 19.8% of the amino groups presented on the surface of NP 3000 were used for binding to PS-PG. It was.

iv)NP 3000 へのPS−PG結合量の定量
1個のナノビーズ表面に結合したPS−PG量(モル数)を表3にまとめる。PS−PG添加量の増加に伴い,ナノビーズ1個に結合したPS−PG量は増加した。PS−PG添加量とPS−PG結合量とは正比例の関係にはなく、PS−PG1モル等量と2モル等量で結合量は同程度であった。4モル等量では2モル等量の約2倍の結合量が得られた。6モル等量では2モル等量の約14倍の結合量,8モル等量では2モル等量の約43倍の結合量が得られた。
iv) Quantification of the amount of PS-PG bound to NP 3000 Table 3 summarizes the amount of PS-PG bound to the surface of one nanobead (number of moles). As the amount of PS-PG added increased, the amount of PS-PG bound to one nanobead increased. The amount of PS-PG added and the amount of PS-PG binding were not in direct proportion, and the amount of binding was the same at 1 mol equivalent of PS-PG and 2 mol equivalent. At 4 molar equivalents, a binding amount approximately twice that of 2 molar equivalents was obtained. With 6 molar equivalents, a binding amount of about 14 times the 2 molar equivalents was obtained, and with 8 molar equivalents, a binding amount of about 43 times the 2 molar equivalents was obtained.

試験例1
(マウス由来マクロファージ細胞を用いたサイトカイン産生評価)
(1)細胞の培養、継代
10cmディッシュで培養したJ774.1細胞(マウスマクロファージ様株化細胞)は、ピペッティングおよびトリプシン処理によりディッシュ底面からはがし、その細胞懸濁液を遠心分離(1000rpm、3min)することにより、遠沈チューブ内に回収した。上清を吸引除去した後、そこに新鮮培地(10%非働化ウシ胎児血清、100U/mLペニシリン、100μg/mLストレプトマイシン、0.05mM 2−メルカプトエタノール含有RPMI−1640培地)を加え、ピペッティングによりJ774.1細胞を培地中に懸濁させた。得られたJ774.1細胞懸濁液を新しい10cmディッシュ内に注ぎ(2.0×105cells/mL、8mL)、37℃、5%CO2インキュベーター内で培養した。これらの操作を3日毎に繰り返し、継代を行った。
Test example 1
(Evaluation of cytokine production using mouse-derived macrophage cells)
(1) Cell culture and passage J774.1 cells (mouse macrophage-like cell line) cultured in a 10 cm dish are peeled off from the bottom of the dish by pipetting and trypsin treatment, and the cell suspension is centrifuged (1000 rpm, 3 min), the sample was collected in a centrifuge tube. After removing the supernatant by aspiration, a fresh medium (10% inactivated fetal bovine serum, 100 U / mL penicillin, 100 μg / mL streptomycin, 0.05 mM 2-mercaptoethanol-containing RPMI-1640 medium) was added thereto, and pipetting was performed. J774.1 cells were suspended in the medium. The obtained J774.1 cell suspension was poured into a new 10 cm dish (2.0 × 10 5 cells / mL, 8 mL) and cultured in a 37 ° C., 5% CO 2 incubator. These operations were repeated every 3 days to perform subculture.

(2)細胞毒性試験
J774.1細胞懸濁液を細胞培養用96wellプレートに100μL/wellずつ分注し(1.0×105cells/well)、37℃、5%CO2インキュベーター内で2時間インキュベートした。その後、使用培地に懸濁した各種PS−PG結合ナノビーズおよびコントロール(20LD−1、100LD−1、500SD−1、20LA−NH2、100LA−NH2、500SI−NH2)を100μLずつ添加し、37℃、5%CO2インキュベーター内で24時間培養した。その後、各wellにWST−1アッセイ溶液(WST−1/1−methoxy PMSの9/1混合水溶液)を10μL添加し、37℃、5%CO2インキュベーター内で2時間呈色反応させた。その後、マイクロプレートリーダーで450nmおよび620nmの吸光度を測定した。
(2) Cytotoxicity test J774.1 cell suspension was dispensed into a 96-well plate for cell culture at 100 μL / well (1.0 × 10 5 cells / well), and 2 in a 37 ° C., 5% CO 2 incubator. Incubated for hours. Thereafter, various PS-PG bound nano-beads were suspended in use media and control (20LD-1,100LD-1,500SD-1,20LA -NH 2, 100LA-NH 2, 500SI-NH 2) was added in 100 [mu] L, The cells were cultured for 24 hours in a 37 ° C., 5% CO 2 incubator. Thereafter, WST-1 assay solution to each well (the 9/1 mixed aqueous solution of WST-1/1-methoxy PMS ) was added 10 [mu] L, 37 ° C., was 2 hours color reaction in a 5% CO 2 incubator. Thereafter, absorbance at 450 nm and 620 nm was measured with a microplate reader.

(3)IL−12産生誘導実験
J774.1細胞懸濁液を細胞培養用96wellプレートに100μL/wellずつ分注し(1.0×105cells/well)、37℃、5%CO2インキュベーター内で2時間インキュベートした。その後、使用培地にて懸濁した各種PS−PG結合ナノビーズおよびコントロール(20LD−1、100LD−1、500SD−1、20LA−NH2、100LA−NH2、500SI−NH2)を100μLずつ添加し、37℃、5%CO2インキュベーター内で24時間培養した。その後、培養上清を0.22μmフィルターでろ過し、得られたろ液を−30℃で保存した。Purified rat anti−mouse IL−12 p40/p70をNa2CO3緩衝液(pH9.6)で希釈し、ELISA用96wellプレートに50μLずつ添加し、4℃で一晩インキュベートした。各wellを0.05%Tween20を含むPBS(pH7.4)で洗浄後、1%BSAを含むNa2CO3緩衝液を100μLずつ添加し、37℃で90分間インキュベートした。各wellをPBSで洗浄後、サンプルおよび0.03%NaN3を含むPBSで所定の濃度になるよう希釈したrecombinant mouse IL−12 p70を50μLずつ添加し、室温で90分間反応させた。各wellをPBSで洗浄した後、1%BSAを含むPBSで希釈したbiotin rat anti−mouse IL−12 p40/p70を50μLずつ添加し、室温で90分間反応させた。各wellをPBSで洗浄後、1%BSAを含むPBSで20000倍に希釈したペルオキシダーゼ標識ストレプトアビジンを50μLずつ添加し、暗中室温で30分間反応させた。各wellをPBSで洗浄後、TMB(3,3’,5,5’-テトラメチルベンジジン)基質溶液を50μLずつ添加し、暗中室温で20分間反応させた。各wellに1M H2SO4を50μLずつ添加して発色反応を停止させ、マイクロプレートリーダーで450nmおよび620nmの吸光度を測定した。
(3) IL-12 production induction experiment The J774.1 cell suspension was dispensed into a 96-well plate for cell culture at 100 μL / well (1.0 × 10 5 cells / well), 37 ° C., 5% CO 2 incubator. Incubated for 2 hours. Thereafter, various PS-PG binding nanobeads and controls were suspended in spent medium (20LD-1,100LD-1,500SD-1,20LA -NH 2, 100LA-NH 2, 500SI-NH 2) was added in 100μL The cells were cultured at 37 ° C. in a 5% CO 2 incubator for 24 hours. Thereafter, the culture supernatant was filtered with a 0.22 μm filter, and the obtained filtrate was stored at −30 ° C. Purified rat anti-mouse IL-12 p40 / p70 was diluted with Na 2 CO 3 buffer (pH 9.6), 50 μL was added to a 96-well plate for ELISA, and incubated at 4 ° C. overnight. After washing each well with PBS (pH 7.4) containing 0.05% Tween 20, 100 μL of Na 2 CO 3 buffer containing 1% BSA was added and incubated at 37 ° C. for 90 minutes. After washing each well with PBS, 50 μL of the sample and recombinant mouse IL-12 p70 diluted to a predetermined concentration with PBS containing 0.03% NaN 3 were added and reacted at room temperature for 90 minutes. After washing each well with PBS, 50 μL of biotin rat anti-mouse IL-12 p40 / p70 diluted with PBS containing 1% BSA was added and reacted at room temperature for 90 minutes. After washing each well with PBS, 50 μL of peroxidase-labeled streptavidin diluted 20000 times with PBS containing 1% BSA was added and reacted at room temperature in the dark for 30 minutes. After washing each well with PBS, 50 μL of TMB (3,3 ′, 5,5′-tetramethylbenzidine) substrate solution was added and reacted at room temperature in the dark for 20 minutes. The coloring reaction was stopped by adding 50 μL of 1 MH 2 SO 4 to each well, and the absorbance at 450 nm and 620 nm was measured with a microplate reader.

(4)細胞毒性
ナノビーズ表面をPS−PGで修飾すると、ナノビーズのJ774.1細胞に対するサイズ依存的な毒性は軽減されることが分かった。
(4) Cytotoxicity It was found that modification of the nanobead surface with PS-PG reduces the size-dependent toxicity of nanobeads to J774.1 cells.

(5)IL−12産生誘導効果
i)PS−PG修飾ラテックスナノビーズ(20LP−2)について
20LP−2を用いてIL−12産生誘導実験を行ったところ、粒子濃度1.0×1013個/mLで、IL−12発現量は28,878pg/mLに達した。
(5) IL-12 production induction effect i) When an IL-12 production induction experiment was conducted using PS-PG modified latex nanobeads (20LP-2) using 20LP-2, a particle concentration of 1.0 × 10 13 particles / In mL, the expression level of IL-12 reached 28,878 pg / mL.

ii)PS−PG修飾ラテックスナノビーズ(100LP−2)について
100LP−2を用いてIL−12産生誘導実験を行ったところ、粒子濃度が1.0×101〜1.0×109個/mLでは、IL−12発現量は濃度上昇に伴い251pg/mL〜512pg/mLの濃度範囲で変化していた。しかし、粒子濃度が1.0×1011個/mLに達するとIL−12の生産量が5,026pg/mLまで急激に上昇した。
ii) When an experiment of inducing IL-12 production using 100LP-2 was performed on the PS-PG modified latex nanobeads (100LP-2) , the particle concentration was 1.0 × 10 1 to 1.0 × 10 9 particles / mL. In this case, the expression level of IL-12 was changed in the concentration range of 251 pg / mL to 512 pg / mL as the concentration increased. However, when the particle concentration reached 1.0 × 10 11 particles / mL, IL-12 production increased rapidly to 5,026 pg / mL.

iii)PS−PG修飾シリカナノビーズ(500SP−2)について
500SP−2を用いてIL−12産生誘導実験を行ったところ、粒子濃度が1.0×101〜1.0×107個/mLでは、IL−12発現量は濃度上昇に伴い257pg/mL〜751pg/mLの濃度範囲で変化していたが、粒子濃度が1.0×109個/mLに達するとIL−12の産生量が892pg/mLまで急激に上昇した。
iii) When the IL-12 production induction experiment was conducted using 500SP-2 for the PS-PG modified silica nanobeads (500SP-2) , the particle concentration was 1.0 × 10 1 to 1.0 × 10 7 particles / mL. Then, the expression level of IL-12 was changed in the concentration range of 257 pg / mL to 751 pg / mL as the concentration increased, but when the particle concentration reached 1.0 × 10 9 particles / mL, the production amount of IL-12 Increased rapidly to 892 pg / mL.

iv)PS−PG修飾ラテックスナノビーズ(NP 3000 −8PSPG)について
NP3000−8PSPGを用いてIL−12産生誘導実験を行ったところ、粒子濃度が1.0×107個/mLで、IL−12産生量が921pg/mLまで急激に上昇した。約20nmのナノビーズでは1.0×1013個/mL、約100nmのナノビーズでは1.0×1011個/mL、約500nmのナノビーズでは1.0×109個/mLという粒子濃度に閾値(IL−12産生量が急激に上昇する粒子濃度)があったことから考えると、粒子径が大きくなるほど閾値となる粒子濃度が低下することが明らかとなった。
なお、前記NP3000−8PSPGに相当する量の可溶化PS−PG(細胞壁から分離し可溶化されたPS−PGをビーズに被覆しない状態で添加)を用いてIL−12産生誘導実験を行ったところ、前記NP3000−8PSPGの粒子濃度に相当する濃度域においてIL−12の産生は誘導されず、IL−12の発現量に顕著な差はなかった。
iv) When an IL-12 production induction experiment was conducted using NP 3000 -8PSPG for PS-PG modified latex nanobeads (NP 3000 -8PSPG) , the particle concentration was 1.0 × 10 7 particles / mL, and IL-12 The production increased rapidly to 921 pg / mL. Threshold values (1.0 × 10 13 particles / mL for nanobeads of about 20 nm, 1.0 × 10 11 particles / mL for nanobeads of about 100 nm, and 1.0 × 10 9 particles / mL for nanobeads of about 500 nm) Considering that there was a particle concentration at which the amount of IL-12 production increased rapidly), it became clear that the particle concentration serving as the threshold decreased as the particle diameter increased.
In addition, IL-12 production induction experiments were performed using solubilized PS-PG in an amount corresponding to the NP 3000 -8PSPG (added in a state where the solubilized PS-PG separated from the cell wall was not coated on the beads). However, IL-12 production was not induced in the concentration range corresponding to the particle concentration of NP 3000 -8PSPG, and there was no significant difference in the expression level of IL-12.

v)デキストラン修飾ラテックスナノビーズ(20LD−1)について
20LD−1を用いたものに関しては、粒子濃度が1.0×101〜1.0×1013個/mLの範囲でIL−12の産生は誘導されず、IL−12の発現量に顕著な差はなかった。
v) Regarding the dextran modified latex nanobeads (20LD-1) using 20LD-1, the production of IL-12 is not observed when the particle concentration is in the range of 1.0 × 10 1 to 1.0 × 10 13 particles / mL. There was no significant difference in the expression level of IL-12.

実施例2
(PS−PG修飾ナノビーズの粒径とIL-12産生量の相関)
(i)PS−PG修飾ラテックスナノビーズの合成
0.5μLのマイクロチューブに50mMリン酸緩衝液(pH8.5)20.0μL、各サイズ(直径:200、300、1000、2000、3000nm)のNP(ラテックスナノビーズ)懸濁液20μL、100mMシアノ水素化ホウ素ナトリウム水溶液30.0μL、各サイズのNP表面に存在するアミノ基に対して8モル当量になるようにミリQ水で濃度調整したラクトバチルス・カゼイ由来PS−PG溶液を20μL加えた。その後、溶液をボルテックスにて撹拌し、45℃で72時間加熱した。その後、反応溶液を遠心し(11,000rpm、15min、4℃)ナノビーズを沈殿させた。ナノビーズ反応溶液の上清を取り除き、ミリQ水を加えボルテックスで撹拌した。再度、遠心分離(11,000rpm 15min 4℃)した後に上清を取り除き、ナノビーズにミリQ水を加えボルテックスで撹拌した。この操作を7回繰り返した。
Example 2
(Correlation between particle size of PS-PG modified nanobeads and IL-12 production)
(I) Synthesis of PS-PG-modified latex nanobeads In a 0.5 μL microtube, 20.0 μL of 50 mM phosphate buffer (pH 8.5), NP (diameter: 200, 300, 1000, 2000, 3000 nm) Latex nanobeads) Suspension 20 μL, 100 mM sodium cyanoborohydride aqueous solution 30.0 μL, Lactobacillus casei adjusted with MilliQ water to 8 molar equivalents with respect to amino groups present on the surface of each NP 20 μL of the derived PS-PG solution was added. The solution was then vortexed and heated at 45 ° C. for 72 hours. Thereafter, the reaction solution was centrifuged (11,000 rpm, 15 min, 4 ° C.) to precipitate nanobeads. The supernatant of the nanobead reaction solution was removed, Milli-Q water was added, and the mixture was vortexed. Again, after centrifugation (11,000 rpm, 15 min, 4 ° C.), the supernatant was removed, milliQ water was added to the nanobeads, and the mixture was vortexed. This operation was repeated 7 times.

(ii)ELISAによるIL−12濃度の定量
J774.1細胞(マウスマクロファージ様株化細胞)を96wellプレートに1×10cells/wellで分注し(100μL)、37℃5%COで2時間インキュベートした。その後、濃度調整した(1.0×10個/mL)各サイズのPS−PG修飾ラテックスビーズ溶液を各wellに100μLずつ添加し、37℃5%COで24時間インキュベートした。24時間後、培養上清を0.45μmフィルターにて濾過回収後、ELISA用サンプルとして−20℃で保存した。ELISA用96wellプレートにpurified rat anti−mouse IL−12 p40/p70(pH9.6のNaCO緩衝液で10μg/mLに希釈)を50μL添加し、4℃で一晩インキュベートしプレートへ固層化した。その後、0.05%Tween20−PBSにて5回洗浄し、1%BSA−NaCO緩衝液を100μL添加し4℃下で24時間インキュベートした。各wellをPBSにて4回洗浄し、サンプルおよび1%BSA−PBSで(4000pg/mL、2000pg/mL、1000pg/mL、500pg/mL、250pg/mL、125pg/mL、62.5pg/mL、0pg/mL)となるよう希釈したrecombinant mouse IL−12 p70を50μL添加し、室温で90分間反応した。各wellをPBSにて4回洗浄し、1%BSA−PBSで希釈したbiotin rat anti−mouse IL12 p40/p70(1.0μg/mL)を50μL添加し室温で90分間反応した。PBSにて4回洗浄後、1%BSA−PBSで20000倍希釈したペルオキシターゼ標識ストレプトアビジン溶液50μLを添加し、暗中室温下で30分間反応させた。PBSにて4回洗浄し、TMB(3,3’,5,5’-テトラメチルベンジジン)基質溶液50μLを添加し、暗中室温下で20分反応させマイクロプレートリーダーにて620nmの吸光度を測定した。その後、1M HSOを50μL添加し反応を停止させ、マイクロプレートリーダーにて450nmおよび620nmの吸光度を測定した。
(Ii) Determination of IL-12 concentration by ELISA J774.1 cells (mouse macrophage-like cell line) were dispensed at 1 × 10 5 cells / well in a 96-well plate (100 μL), and 2 at 37 ° C. with 5% CO 2 . Incubated for hours. Thereafter, 100 μL each of PS-PG modified latex bead solution of each size adjusted (1.0 × 10 9 cells / mL) was added to each well and incubated at 37 ° C. and 5% CO 2 for 24 hours. After 24 hours, the culture supernatant was collected by filtration through a 0.45 μm filter and stored at −20 ° C. as a sample for ELISA. 50 μL of purified rat anti-mouse IL-12 p40 / p70 (diluted to 10 μg / mL with Na 2 CO 3 buffer at pH 9.6) was added to the 96-well plate for ELISA, and the plate was incubated overnight at 4 ° C. Turned into. Thereafter, the plate was washed 5 times with 0.05% Tween20-PBS, 100 μL of 1% BSA-Na 2 CO 3 buffer was added and incubated at 4 ° C. for 24 hours. Each well was washed 4 times with PBS, and the sample and 1% BSA-PBS (4000 pg / mL, 2000 pg / mL, 1000 pg / mL, 500 pg / mL, 250 pg / mL, 125 pg / mL, 62.5 pg / mL, 50 μL of recombinant mouse IL-12 p70 diluted to 0 pg / mL) was added and reacted at room temperature for 90 minutes. Each well was washed 4 times with PBS, 50 μL of biotin rat anti-mouse IL12 p40 / p70 (1.0 μg / mL) diluted with 1% BSA-PBS was added and reacted at room temperature for 90 minutes. After washing 4 times with PBS, 50 μL of a peroxidase-labeled streptavidin solution diluted 20000 times with 1% BSA-PBS was added and allowed to react for 30 minutes at room temperature in the dark. The plate was washed 4 times with PBS, 50 μL of TMB (3,3 ′, 5,5′-tetramethylbenzidine) substrate solution was added, and the mixture was reacted at room temperature for 20 minutes in the dark. The absorbance at 620 nm was measured with a microplate reader. . Thereafter, 50 μL of 1 MH 2 SO 4 was added to stop the reaction, and absorbance at 450 nm and 620 nm was measured with a microplate reader.

(iii)結果
PS−PG修飾ラテックスナノビーズの担体の粒子径(200nm〜3000nm)とIL−12産生作用との関係を図1に示す。
図1から明らかなように、粒子状担体の平均粒子径が300nm〜2000nmであるPS−PG含有粒子のIL−12産生誘導能が特に優れていることがわかる。
(Iii) Results FIG. 1 shows the relationship between the particle size (200 nm to 3000 nm) of the PS-PG modified latex nanobead carrier and the IL-12 producing action.
As is apparent from FIG. 1, it can be seen that the ability to induce IL-12 production of PS-PG-containing particles having an average particle diameter of the particulate carrier of 300 nm to 2000 nm is particularly excellent.

実施例3
ラクトバチルス・ジョンソニー由来PS−PG含有粒子のIL−12産生誘導能)
(i)ラクトバチルス・ジョンソニー由来PS−PG修飾ラテックスナノビーズの合成
ラクトバチルス・ジョンソニー YIT 0219T(JCM 2012T)由来PS−PG溶液の調製は、実施例1のラクトバチルス・カゼイ由来由来PS−PG溶液の調製方法と同様の方法により行った。
0.5μLのマイクロチューブに50mMリン酸緩衝液(pH8.5)20.0μL、直径:1μmのNP(ラテックスナノビーズ)懸濁液20μL、100mMシアノ水素化ホウ素ナトリウム水溶液30.0μL、NP表面に存在するアミノ基に対して8モル当量になるようにミリQ水で濃度調整したラクトバチルス・ジョンソニー由来PS−PG溶液を20μL加えた。その後、溶液をボルテックスにて撹拌し、45℃で72時間加熱した。その後、反応溶液を遠心し(11,000rpm、15min、4℃)ナノビーズを沈殿させた。ナノビーズ反応溶液の上清を取り除き、ミリQ水を加えボルテックスで撹拌した。再度、遠心分離(11,000rpm、15min、4℃)した後に上清を取り除き、ナノビーズにミリQ水を加えボルテックスで撹拌した。この操作を7回繰り返した。
(ii)ELISAによるIL−12濃度の定量
J774.1細胞を96wellプレートに1×10cells/wellで分注し(100μL)、37℃、5%COで2時間インキュベートした。その後、濃度調整した各サイズのPS−PG修飾ラテックスビーズ溶液を各wellに100μLずつ添加し、37℃、5%COで24時間インキュベートした。24時間後、培養上清を0.45μmフィルターにて濾過回収後、ELISA用サンプルとして−20℃で保存した。ELISA用96wellプレートにpurified rat anti−mouse IL−12 p40/p70(pH9.6のNaCO緩衝液で10μg/mLに希釈)を50μL添加し、4℃で一晩インキュベートしプレートへ固層化した。その後、0.05%Tween20−PBSにて5回洗浄し、1%BSA−NaCO緩衝液を100μL添加し4℃下で24時間インキュベートした。各wellをPBSにて4回洗浄し、サンプルおよび1%BSA−PBSで(4000pg/mL、2000pg/mL、1000pg/mL、500pg/mL、250pg/mL、125pg/mL、62.5pg/mL、0pg/mL)となるよう希釈したrecombinant mouse IL−12 p70を50μL添加し、室温で90分間反応した。各wellをPBSにて4回洗浄し、1%BSA−PBSで希釈したbiotin rat anti−mouse IL12 p40/p70(1.0μg/mL)を50μL添加し室温で90分間反応した。PBSにて4回洗浄後、1%BSA−PBSで20000倍希釈したペルオキシターゼ標識ストレプトアビジン溶液50μLを添加し、暗中室温下で30分間反応させた。PBSにて4回洗浄し、TMB(3,3’,5,5’-テトラメチルベンジジン)基質溶液50μLを添加し、暗中室温下で20分反応させマイクロプレートリーダーにて620nmの吸光度を測定した。その後、1M HSOを50μL添加し反応を停止させ、マイクロプレートリーダーにて450nmおよび620nmの吸光度を測定した。
Example 3
(IL-12 production inducing ability of PS-PG-containing particles derived from Lactobacillus johnsonii )
(I) Synthesis of Lactobacillus johnsonii -derived PS-PG-modified latex nanobeads Lactobacillus johnsonii YIT 0219 T (JCM 2012 T ) -derived PS-PG solution was prepared from Lactobacillus casei-derived PS of Example 1. -Performed by the same method as the method for preparing the PG solution.
In a 0.5 μL microtube, 20.0 μL of 50 mM phosphate buffer (pH 8.5), 20 μL of a 1 μm diameter NP (latex nanobead) suspension, 30.0 μL of 100 mM sodium cyanoborohydride aqueous solution, present on the NP surface 20 μL of a Lactobacillus johnsonii- derived PS-PG solution whose concentration was adjusted with milli-Q water so as to be 8 molar equivalents relative to the amino group to be added. The solution was then vortexed and heated at 45 ° C. for 72 hours. Thereafter, the reaction solution was centrifuged (11,000 rpm, 15 min, 4 ° C.) to precipitate nanobeads. The supernatant of the nanobead reaction solution was removed, Milli-Q water was added, and the mixture was vortexed. Again, after centrifugation (11,000 rpm, 15 min, 4 ° C.), the supernatant was removed, milliQ water was added to the nanobeads, and the mixture was vortexed. This operation was repeated 7 times.
(Ii) Determination of IL-12 concentration by ELISA J774.1 cells were dispensed into 96-well plates at 1 × 10 5 cells / well (100 μL) and incubated at 37 ° C. and 5% CO 2 for 2 hours. Thereafter, 100 μL of each size-adjusted PS-PG modified latex bead solution was added to each well and incubated at 37 ° C., 5% CO 2 for 24 hours. After 24 hours, the culture supernatant was collected by filtration through a 0.45 μm filter and stored at −20 ° C. as a sample for ELISA. 50 μL of purified rat anti-mouse IL-12 p40 / p70 (diluted to 10 μg / mL with Na 2 CO 3 buffer at pH 9.6) was added to the 96-well plate for ELISA, and the plate was incubated overnight at 4 ° C. Turned into. Thereafter, the plate was washed 5 times with 0.05% Tween20-PBS, 100 μL of 1% BSA-Na 2 CO 3 buffer was added and incubated at 4 ° C. for 24 hours. Each well was washed 4 times with PBS, and the sample and 1% BSA-PBS (4000 pg / mL, 2000 pg / mL, 1000 pg / mL, 500 pg / mL, 250 pg / mL, 125 pg / mL, 62.5 pg / mL, 50 μL of recombinant mouse IL-12 p70 diluted to 0 pg / mL) was added and reacted at room temperature for 90 minutes. Each well was washed 4 times with PBS, 50 μL of biotin rat anti-mouse IL12 p40 / p70 (1.0 μg / mL) diluted with 1% BSA-PBS was added and reacted at room temperature for 90 minutes. After washing 4 times with PBS, 50 μL of a peroxidase-labeled streptavidin solution diluted 20000 times with 1% BSA-PBS was added and allowed to react for 30 minutes at room temperature in the dark. The plate was washed 4 times with PBS, 50 μL of TMB (3,3 ′, 5,5′-tetramethylbenzidine) substrate solution was added, and the mixture was reacted at room temperature for 20 minutes in the dark. The absorbance at 620 nm was measured with a microplate reader. . Thereafter, 50 μL of 1 MH 2 SO 4 was added to stop the reaction, and absorbance at 450 nm and 620 nm was measured with a microplate reader.

(iii)結果
ラクトバチルス・ジョンソニー由来PS−PG修飾ナノ粒子のJ774.1細胞に対するIL−12産生誘導能は、粒子濃度1×108粒子/mLで870,000pq/mLに達した。L.Johnsonii由来PS−PGは菌体レベルでIL−12産生誘導能を示さないことが知られていることから、この実験結果は、IL−12産生誘導を示さない乳酸菌由来のPS−PGでも、本発明のように粒子化(粒子状担体表面上に担持)することにより、IL−12産生誘導能を示すようになることを示唆している。
(Iii) Results
The ability to induce IL-12 production for J774.1 cells of PS-PG modified nanoparticles derived from Lactobacillus johnsonii reached 870,000 pq / mL at a particle concentration of 1 × 10 8 particles / mL. L. Since it is known that Johnson-derived PS-PG does not show IL-12 production-inducing ability at the bacterial cell level, this experimental result shows that even PS-PG derived from lactic acid bacteria that do not show IL-12 production induction This suggests that the ability to induce IL-12 production is exhibited by granulating (supporting on the surface of the particulate carrier) as in the invention.

Claims (13)

粒子状担体表面上に多糖−ペプチドグリカン複合体を担持してなる多糖−ペプチドグリカン複合体含有粒子。   A polysaccharide-peptidoglycan complex-containing particle obtained by supporting a polysaccharide-peptidoglycan complex on the surface of a particulate carrier. 多糖−ペプチドグリカン複合体が、細菌由来である請求項1記載の多糖−ペプチドグリカン複合体含有粒子。   The polysaccharide-peptidoglycan complex-containing particle according to claim 1, wherein the polysaccharide-peptidoglycan complex is derived from bacteria. 多糖−ペプチドグリカン複合体が、乳酸菌由来である請求項1又は2記載の多糖−ペプチドグリカン複合体含有粒子。   The polysaccharide-peptidoglycan complex-containing particles according to claim 1 or 2, wherein the polysaccharide-peptidoglycan complex is derived from lactic acid bacteria. 多糖−ペプチドグリカン複合体が、ラクトバチルス属に属する乳酸菌由来である請求項1〜3のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子。   The polysaccharide-peptidoglycan complex-containing particle according to any one of claims 1 to 3, wherein the polysaccharide-peptidoglycan complex is derived from a lactic acid bacterium belonging to the genus Lactobacillus. 多糖−ペプチドグリカン複合体が、ラクトバチルス・カゼイ及び/又はラクトバチルス・ジョンソニー由来である請求項1〜4のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子。   The polysaccharide-peptidoglycan complex-containing particle according to any one of claims 1 to 4, wherein the polysaccharide-peptidoglycan complex is derived from Lactobacillus casei and / or Lactobacillus johnsonii. 粒子状担体が、ナノ粒子である請求項1〜5のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子。   The polysaccharide-peptidoglycan complex-containing particle according to any one of claims 1 to 5, wherein the particulate carrier is a nanoparticle. 粒子状担体が、ラテックスナノ粒子又はシリカナノ粒子である請求項1〜6のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子。   The polysaccharide-peptidoglycan complex-containing particles according to any one of claims 1 to 6, wherein the particulate carrier is latex nanoparticles or silica nanoparticles. 粒子状担体の平均粒子径が、20nm〜3100nmである請求項1〜7のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子。   The polysaccharide-peptidoglycan complex-containing particle according to any one of claims 1 to 7, wherein the average particle diameter of the particulate carrier is 20 nm to 3100 nm. 粒子状担体の平均粒子径が、300nm〜2000nmである請求項1〜8のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子。   The polysaccharide-peptidoglycan complex-containing particles according to any one of claims 1 to 8, wherein the average particle diameter of the particulate carrier is 300 nm to 2000 nm. 1個の粒子状担体への多糖−ペプチドグリカン複合体の結合量が0.1〜50amolである請求項1〜9のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子。   The polysaccharide-peptidoglycan complex-containing particle according to any one of claims 1 to 9, wherein the binding amount of the polysaccharide-peptidoglycan complex to one particulate carrier is 0.1 to 50 amol. 請求項1〜10のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子を含有する医薬。   The pharmaceutical containing the polysaccharide-peptidoglycan complex containing particle | grains in any one of Claims 1-10. 請求項1〜10のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子を有効成分とする免疫賦活剤。   The immunostimulant which uses the polysaccharide-peptidoglycan complex containing particle | grains in any one of Claims 1-10 as an active ingredient. 請求項1〜10のいずれかに記載の多糖−ペプチドグリカン複合体含有粒子を有効成分とするインターロイキン12産生促進剤。   The interleukin 12 production promoter which uses the polysaccharide-peptidoglycan complex containing particle | grains in any one of Claims 1-10 as an active ingredient.
JP2014234585A 2013-12-04 2014-11-19 Particles containing polysaccharide-peptidoglycan complex Active JP6358933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014234585A JP6358933B2 (en) 2013-12-04 2014-11-19 Particles containing polysaccharide-peptidoglycan complex

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013250961 2013-12-04
JP2013250961 2013-12-04
JP2014234585A JP6358933B2 (en) 2013-12-04 2014-11-19 Particles containing polysaccharide-peptidoglycan complex

Publications (2)

Publication Number Publication Date
JP2015129114A JP2015129114A (en) 2015-07-16
JP6358933B2 true JP6358933B2 (en) 2018-07-18

Family

ID=53760182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014234585A Active JP6358933B2 (en) 2013-12-04 2014-11-19 Particles containing polysaccharide-peptidoglycan complex

Country Status (1)

Country Link
JP (1) JP6358933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208403B2 (en) 2001-09-21 2019-02-19 Outlast Technologies, LLC Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3422945B1 (en) * 2016-03-01 2020-12-09 North Carolina State University Enhanced cancer immunotherapy by microneedle patch-assisted delivery
WO2023210722A1 (en) * 2022-04-28 2023-11-02 学校法人帝京大学 Immunoactivator, vaccine adjuvant, and method for inducing immunity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699314B2 (en) * 1986-11-14 1994-12-07 株式会社ヤクルト本社 Macrophage activator
JPH10139674A (en) * 1996-11-11 1998-05-26 Yakult Honsha Co Ltd Production promoter of interleukin 12
JP5116194B2 (en) * 2001-09-04 2013-01-09 株式会社ヤクルト本社 Inflammatory bowel disease preventive and therapeutic agent
JPWO2008053588A1 (en) * 2006-10-27 2010-02-25 株式会社ヤクルト本社 Cytokine production regulatory gene and use thereof
JP2011193730A (en) * 2010-03-17 2011-10-06 Yakult Honsha Co Ltd Method for obtaining lactic acid bacterium having polysaccharide-peptidoglycan complex

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208403B2 (en) 2001-09-21 2019-02-19 Outlast Technologies, LLC Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof

Also Published As

Publication number Publication date
JP2015129114A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
CA2878026C (en) Microparticles for encapsulating probiotics, obtaining said microparticles and uses thereof
Amrouche et al. Effects of bifidobacterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production
JP2005508617A (en) Probiotic Bifidobacterium strains
JP5054687B2 (en) Lactic acid bacteria to improve lactose intolerance
JP6358933B2 (en) Particles containing polysaccharide-peptidoglycan complex
JP2006104439A (en) Beta-1,3-1,6-d-glucan and its use
CN112805020A (en) Antitumor effect potentiator
KR20150127436A (en) Macromolecular polysaccharide binder conjugated Lactobacillus rhamnosus RHT-3201, and use thereof in prevention and treatment of atopic dermatitis
JP7183301B2 (en) Modulation of immune function by Bacillus coagulans
JP6821643B2 (en) Immune disease preventive agent
JP5238166B2 (en) Interleukin 12 production inhibitor
JP6491422B2 (en) Immune disease preventive
JP5571941B2 (en) Regulatory T cell increasing agent
JP5209294B2 (en) Interleukin 12 production promoter
WO2020067422A1 (en) Composition for activating t cells
JPWO2019240218A1 (en) Compositions for facilitating immune checkpoint inhibition therapy
Ascencio et al. Effectiveness of Cyanothece spp. and Cyanospira capsulata exocellular polysaccharides as antiadhesive agents for blocking attachment of Helicobacter pylori to human gastric cells
JPH0892112A (en) Cytokine production promoter
JP6862536B2 (en) Selectively deglycosylated Vitamin D-Binding Protein (GcMAF), Cholecalciferol (Calciol) and Production Method
JP6691275B1 (en) Composition for suppressing FcεRI expression and method for suppressing FcεRI expression
Cotta et al. Evaluation of the intestinal colonizing potential and immunomodulating capacity of lactobacilli microspheres
Balejko et al. Experimental immunology Effect of Lactobacillus rhamnosus GG encapsulation on interleukin 10 release in vitro
RU2503451C1 (en) Combined antibacterial preparation for treating acute intestinal infections
JP2012092044A (en) Peripheral blood monocytic cell activity regulating composition containing papaya fermentation product as active ingredient
Cooka et al. Microencapsulation of a synbiotic into PLGA/alginate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250