JP5116194B2 - Inflammatory bowel disease preventive and therapeutic agent - Google Patents

Inflammatory bowel disease preventive and therapeutic agent Download PDF

Info

Publication number
JP5116194B2
JP5116194B2 JP2001267482A JP2001267482A JP5116194B2 JP 5116194 B2 JP5116194 B2 JP 5116194B2 JP 2001267482 A JP2001267482 A JP 2001267482A JP 2001267482 A JP2001267482 A JP 2001267482A JP 5116194 B2 JP5116194 B2 JP 5116194B2
Authority
JP
Japan
Prior art keywords
cells
inflammatory bowel
bowel disease
production
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001267482A
Other languages
Japanese (ja)
Other versions
JP2003073286A (en
Inventor
敏 松本
正人 長岡
慶一 光山
通夫 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
Original Assignee
Yakult Honsha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd filed Critical Yakult Honsha Co Ltd
Priority to JP2001267482A priority Critical patent/JP5116194B2/en
Publication of JP2003073286A publication Critical patent/JP2003073286A/en
Application granted granted Critical
Publication of JP5116194B2 publication Critical patent/JP5116194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は安全かつ有効な炎症性腸疾患予防治療剤に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
炎症性腸疾患(Inflammatory Bowel Disease:IBD)は、近年発症が増加している。この炎症性腸疾患は、潰瘍性大腸炎(UC)とクローン病(CD)に分けられる。
【0003】
これらの炎症性腸疾患の病態は、腸管の粘膜にび爛や潰瘍が形成されるものであり、体重減少、下痢、血便等の症状が現れる。この発症原因は、腸粘膜免疫応答系の破綻に伴ったサイトカイン産生応答異常にあるとされているが、その詳細については解明されていない。このように炎症性腸疾患は、胃潰瘍や十二指腸潰瘍とは、その病態及び発症原因ともに全く異なる疾患である。
【0004】
従って、炎症性腸疾患の発症原因の解明と安全かつ有効な予防治療剤の開発が望まれている。
【0005】
【課題を解決するための手段】
そこで本発明者は、潰瘍性大腸動物モデル及びクローン病動物モデルを用いて炎症性腸疾患の発症原因について検討してきたところ、炎症性腸疾患においてはIL−6生産が顕著に増加しており、IL−6が発症原因の一つであることを見出した。
IL−6は、炎症反応時、単球/マクロファージによって分泌される可溶性IL−6受容体(IL−6R)と複合体を形成する。複合体化したIL−6/IL−6Rは、非リンパ系細胞を含めたほぼすべての細胞に発現するgp130分子に結合することで、IL−6Rを発現していない細胞系へもIL−6シグナルを伝達し(トランスシグナリング)、炎症反応を誘導することが知られている。そこで、本発明者は、炎症性腸疾患動物モデルにおけるIL−6/STAT−3リン酸化応答についても検討したところ、炎症性腸疾患ではこれも顕著に亢進していることを見出した。
そこで本発明者は、安全性の高い食用菌類に着目して炎症性腸疾患治療剤を見出すべく、検討したところ、全く意外にもラクトバチルス属細菌がIL−6産生抑制作用を有し、その結果IL−6/STAT3リン酸化応答を抑制することを見出しさらに炎症性腸疾患に対する予防治療効果があることをも見出し本発明を完成するに至った。また、これらの作用がラクトバチルス属細菌の菌体由来多糖画分において特に優れていることも併せて見出した。
【0006】
すなわち、本発明は、ラクトバチルス属細菌又はその菌体由来多糖画分を有効成分とする炎症性腸疾患予防治療剤を提供するものである。
また本発明は、ラクトバチルス属細菌又はその菌体由来多糖画分を有効成分とするIL−6産生抑制剤を提供するものである。
さらに、本発明は、ラクトバチルス属細菌又はその菌体由来多糖画分を有効成分とするIL−6/STAT3リン酸化応答抑制剤を提供するものである。
【0007】
【発明の実施の形態】
本発明に用いられるラクトバチルス属細菌としては、ラクトバチルス・カゼイ、ラクトバチルス・アシドフィルス、ラクトバチルス・ガッセリ、ラクトバチルス・ロイテリ等が挙げられるが、このうちラクトバチルス・カゼイ及びラクトバチルス・ガッセリが好ましい。ラクトバチルス・カゼイとしては、ラクトバチルス・カゼイ YIT9029、(FERM BP−1366)、YIT9018(FERM BP−665)が挙げられる。またラクトバチルス・ガッセリとしては、ラクトバチルス・ガッセリ YIT0168(JCM 5813;旧分類ではラクトバチルス・アシドフィルス)が挙げられる。
【0008】
本発明においてラクトバチルス属細菌は、生菌及び死菌体のいずれでもよいが菌体としては生菌を使用するのが好ましい。
【0009】
ラクトバチルス属細菌の菌体由来多糖画分としては、例えば特開平4−5236号公報又はJ. Biochem., 108, 568-571(1990)記載の方法により得られる、ポリサッカライド−ポリペプチドグリカン複合体を含む画分(以下、PS−PGということがある)が好ましい。この画分は、例えば次の如くして得ることができる。まず菌体を等張液に懸濁して細胞壁溶解酵素、例えばN−アセチルムラミデースで処理する。この処理に先立って、超音波処理やフレンチプレス等により菌体を破砕しておいてもよい。酵素処理後の菌体懸濁液から固形の細胞質を遠心分離して除去し、上清を核酸分解酵素で処理し、さらにトリプシンやプロナーゼで処理して蛋白質を分解し、最後に蒸留水で透析して低分子画分を除去し、多糖画分を採取し、必要に応じて凍結乾燥する。
【0010】
ラクトバチルス属細菌又はその菌体由来多糖画分は、炎症性腸疾患モデル及び炎症性腸疾患症例の腸粘膜のIL−6産生を抑制し、その結果IL−6/STAT−3リン酸化応答をも顕著に抑制する。さらに、炎症性腸疾患モデルに対し強力な予防治療効果を有する。従って、ラクトバチルス属細菌又はその菌体由来多糖画分は、炎症性腸疾患、すなわち潰瘍性大腸炎及びクローン病の予防治療剤として有用である。
【0011】
また、ラクトバチルス属細菌由来の多糖画分は、ラクトバチルス属細菌の菌体に比べて顕著に優れたIL−6産生抑制作用を有し、菌体中の主な有効成分である可能性が高い。さらに、当該ラクトバチルス属細菌菌体由来の多糖画分のIL−6産生抑制作用は、ビフィドバクテリウム属細菌菌体由来の多糖画分の作用に比べて極めて強力である。特にラクトバチルス・カゼイ由来の多糖画分は効果が高く、更にラクトバチルス・カゼイ YIT9029又はYIT9018(FERM BP−665)由来のものが好ましい。
【0012】
本発明の炎症性腸疾患予防治療剤は、その有効成分がラクトバチルス属細菌の菌体又は菌体由来多糖画分であり、その安全性は確立されているのでそのまま経口投与してもよいが、必要に応じて当該菌体又は画分に賦形剤、結合剤、崩壊剤、滑沢剤、被覆剤、乳化剤、分散剤、溶剤、安定化剤などを適宜添加して、錠剤、顆粒剤、散剤、粉末剤、カプセル剤等に製剤して使用してもよい。成人1日当たりの投与量は、生菌で1×106個以上、特に1×106〜1×1013個に相当する量の菌体又は菌体由来多糖画分を投与するのが好ましいが、症状により適宜増減可能である。
本発明の炎症性腸疾患予防治療剤はそのまま経口投与するほか、任意の飲食品に添加して日常的に摂取させることもできる。
【0013】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
〔1〕材料と方法
【0014】
(A)動物:SPF Balb/cマウス(雌、6週齢)、SPF SAMP1/Yit系統(雄、10及び20週齢)を実験に用いた。
【0015】
(B)腸炎モデル
潰瘍性大腸炎(UC)モデル:DSS大腸炎モデルマウス(Gastroenterology(1990)107, p1643)を用いた。
クローン病(CD)モデル:SAMP1/Yit系統(Gut(1998)43, p78, J.Clin. Inuest.(2001)142, p243)を用いた。
【0016】
(C)IBDモデル及びIBD症例の腸粘膜におけるリン酸化STAT検出
各モデルマウス及び手術材料より得られたヒトIBD腸粘膜を脱リン酸化酵素阻害剤並びに蛋白分解酵素阻害剤を加えたlysisバッファーでホモゲナイズした(J. Exp. Med. (2001)193, p471)。大腸ガン摘出腸管の非病変部を対照とした。20,000g,10分の遠心分離で得られた上清の蛋白量を測定した。10μgの蛋白を8%SDSゲルで電気泳動したのち、ナイロンメンブラン上に転写した。ナイロンメンブランを3%スキムミルク/PBS溶液で一晩ブロッキングした。翌日、各リン酸化STAT分子の特異抗体で反応させ、化学発光系で反応物を検出した。
【0017】
(D)リン酸化STAT3分子の免疫組織化学的検出
SAMP1/Yit strainの回腸病変部の凍結切片を作製した。リン酸化STAT3分子に対する特異抗体(Biocource)を用い、常法に従って免疫染色を行った。
免疫染色後、ヘマトキシリンで核染色し、顕微鏡下で観察した。
【0018】
(E)IBDマウスの腸粘膜におけるIL−6産生能の検討
DSS大腸炎誘導後のBalb/cマウス及びSPF Balb/cマウスより、既知の方法で大腸粘膜固有層細胞(LPLs)を単離した(ENBO J. (1998)17, p1006)。2.0×106個のLPLsを固相化TCRβ鎖抗体(H57-597:10μg/mL)/液相化CD28抗体(2μg/mL)で刺激した。培養48時間後の培養上清を採取し、IL−6産生量をELISA法で検出した。また、SAMP1/Yit strainの回腸部分より粘膜固有層細胞を分離後、常法にしたがってRNAを抽出した。G3PDH,IL−6特異的プライマーを用いたRT−PCR法でIL−6 mRNAの発現を調べた。
【0019】
(F)ラクトバチルス・カゼイ YIT9029株による腸炎抑制の検証
加熱死菌化したYIT9029株含有飼料(0.05%)投与群(L群)と対照群(通常飼料:C群)をDSS大腸炎誘導2週間前よりマウスに与えた。常法に従い慢性DSS大腸炎を誘導し、Gに示した各項目で腸炎の状態を評価した。
【0020】
(G)腸炎の評価
(ア)マウスの死亡率
(イ)Disease activity index(腸炎臨床スコア,Lab Invest(1993)vol 69 p 238-249)
(ウ)FACS解析
(エ)サイトカイン産生
【0021】
(H)脾臓細胞からのNK細胞の調製とNK活性の測定
脾臓細胞を調整後、マウスNK細胞特異的抗体を用いてNK細胞をMACS法で単離した。常法にしたがって、Yac−1細胞をターゲットとして細胞障害活性を測定した。
【0022】
(I)統計解析
t−検定で統計学的処理を行った。
【0023】
〔2〕結果
(1)IBDモデルマウス腸粘膜のリン酸化STAT分子群の発現
UC及びCDモデルマウスの腸粘膜のリン酸化STAT分子の発現をイムノブロット法で検出した。結果を図1に示す。UCモデル(DSS誘導大腸炎)においては、STAT3分子のリン酸化反応が顕著であった(図1A)。また、大腸炎非誘導マウスにおいては、STAT分子群のリン酸化反応は認められなかった。一方、CDモデルマウス(SAMP1/Yit系統)の腸粘膜では、活動期(10週齢)における炎症部位の腸粘膜において、STAT1,STAT3,STAT6分子のリン酸化(図中、PYで示す)が認められたが、STAT3リン酸化反応が最も顕著であった(図1B)。また、非活動期(20週齢)の炎症においては、STAT3のリン酸化反応のみが認められた。STAT5のリン酸化反応は、病変部・非病変部の違いに関わらず認められた(図1B)。
【0024】
(2)ヒトIBD症例の腸粘膜におけるリン酸化STAT分子群の発現
上記(1)の結果から、CD、UC両モデル腸粘膜において、病態の発現に伴いSTAT3分子のリン酸化反応が亢進していることが解った。そこで、ヒトIBD症例の腸粘膜で同様の反応が亢進しているかを確かめた。その結果を図2に示す。UC(2症例)及びCD(1症例)ともにマウスモデルと同様にSTAT3分子のリン酸化反応が顕著であった(図2)。大腸ガン症例由来正常腸組織(図中のNor)においては、STAT3分子のリン酸化反応は認められなかった(図2)。
【0025】
(3)リン酸化STAT3分子の免疫組織学的検出
SAMP1/Yit系統の回腸病変部におけるリン酸化STAT3分子の組織学的局在を免疫組織化学的に検出した。その結果を図3に示す。リン酸化STAT3分子は、粘膜固有層、粘膜下組織に分布した細胞核内に局在を示した(図3A、矢印)。また、一部の腸絨毛先端部分の上皮細胞核内においても認められた(図3B、矢印)。
【0026】
(4)IBDマウスの腸粘膜におけるIL−6産生能の検討
UCモデル(DSS大腸炎)より単離したLPLs細胞のIL−6産生能は、正常マウスに対して著しく高かった(図4A)。また、腸炎活動期のCDモデル(SAMP1/Yit系統)マウス病変部より単離したLPLsのIL−6 mRNAは、非活動期に比べ増加していた(図4B)。
【0027】
(5)ラクトバチルス・カゼイ YIT9029株の腸炎抑制能に関する検討
マウス腸炎モデル及びヒトIBD症例の腸粘膜において亢進していたIL−6/STAT3リン酸化応答の抑制が腸炎抑制につながるかどうかを検証するため、加熱死菌化したYIT9029株をDSS慢性大腸炎誘導マウスへ投与し、対照群と腸炎の状態を比較した。慢性DSS大腸炎誘導後、対照群において約半分のマウスが死亡したが、YIT9029株投与群では、マウスの死亡は認められなかった(図5)。マウスの体重減少、下痢及び血便を指標とした腸炎臨床スコアにおいてもYIT9029株群において腸炎に対する改善効果が認められた(図6)。マウスを解剖後、両群の大腸LPLsにおけるIL−6産生応答を比較した。その結果、YIT9029株投与群においてIL−6の産生抑制が認められた(図7)。また、YIT9029株投与群では、腸炎誘導後に認められるLPLs細胞の増加(αβTCR T細胞、B220細胞)が抑制された(図8)。腸炎誘導マウスにおいては、脾臓細胞中のNK細胞が著しく減少し、かつNK細胞レベルの細胞障害活性も低下していた(図9、図10)。一方、YIT9029株投与群では、NK細胞の減少並びに細胞レベルの細胞障害活性の低下が抑制されていた(図9、図10)。
【0028】
実施例2
〔1〕材料と方法
動物:Balb/c(雌性、8週齢)を実験に用いた。
【0029】
慢性大腸炎
4%(v/w)デキストラン硫酸ナトリウム(DSS:ICN社)水道水を1週間マウスに投与し、1週間投与を休止するサイクルを4サイクル行って慢性大腸炎を誘導した(Gastroenterology (1990)102, p43)。
【0030】
大腸粘膜固有層細胞(LI−LPLs)の分離
常法にしたがって、LI−LPLsを分離した(Microbial Ecology in Health and Disease(2000)12, p102)。
【0031】
LI−LPLsのIL−6産生応答系
新鮮分離したLI−LPLs細胞2.0×105個に大腸菌由来のリポポリサッカライド(LPS;10μg/mL)を加え48時間培養した。培養上清中のIL−6量をELISA法で検出した。
【0032】
LI−LPLsのIL−6産生応答系に対する乳酸菌の影響
加熱死菌化したラクトバチルス・カゼイ YIT9029株及びラクトバチルス・ガッセリ YIT0168株を作成し、種々の濃度を上記培養系へ添加した。培養48時間後のIL−6量をELISA法で調べた。生菌(加熱死菌化未処理実用菌株)についても同様の検討を行った。また、マウス・マクロファージ細胞株RAW264.7株を用いて同様の実験を行った。
【0033】
〔2〕結果
マウス慢性大腸炎由来LI−LPLs培養系に対するLPS刺激後のIL−6産生応答
慢性大腸炎誘導マウス由来のLI−LPLs培養系にLPSを添加するとIL−6産生応答が認められた(図11)。
【0034】
LPS刺激後のIL−6産生応答系に対する加熱死菌化株の影響
上記培養系に種々の濃度で加熱死菌化菌株(YIT9029,YIT0168)を添加し、IL−6産生応答を調べた。その結果、各菌株とも、LPS刺激後のIL−6産生を抑制した。各菌株において1μg/mL−0.5mg/mL前後が最もIL−6産生抑制効果が高く、抑制率は約40%であった(図12)。
【0035】
マウス・マクロファージ由来細胞株であるRAW241細胞を用いて同様の実験を行った。RAW細胞培養系にLPSを添加するとIL−6産生応答が認められた(図13)。また、本アッセイ系に加熱死菌化ラクトバチルス・カゼイ YIT9029株を添加すると慢性大腸炎由来LI−LPLs細胞を用いた場合と同様、菌体添加量に反比例してIL−6産生が抑制された(図13)。
【0036】
IL−6産生抑制能を生菌(非加熱処理菌体)と加熱死菌体で比較した。慢性大腸炎由来LI−LPLs細胞のIL−6産生抑制は生菌でも認められ、その活性は加熱死菌体を用いた場合と変わらなかった(図14)。
【0037】
製造例1(PS−PGの調製)
ラクトバチルス・カゼイ YIT9029菌体をILS培地にて定常期まで培養し、遠心分離にて集菌し、脱イオン水を用いて洗浄した。洗浄菌体を脱イオン水に懸濁し100℃、30分加熱し、遠心分離にて集菌した後、菌体を脱イオン水で洗浄し凍結乾燥した。
こうして得られた菌体(60g)を3リットルの5mM、Tris-malate buffer(pH6.5,2mM CaCl2を含む)に懸濁し、50mg(10mg×5本)のN-acetylmuramidase(生化学工業、10mg)を加え、42℃にて40時間、振盪し、8500rpmで1時間遠心分離した。遠心後、上清を集め、上清にBenzon nuclease(関東化学、GradeI:10000U)、1vial加え、37℃にて20時間、振盪し、プロナーゼ(ロシュ・ダイアグノステックス社製、50mg/5mLをろ過したもの)を加え、37℃にて20時間反応を行った。これを遠心分離(8500rpm、60分)後、上清を集め、カットオフ300000の限外ろ過膜にて濃縮し、内液を集め、透析し、凍結乾燥した。
乾燥物をSephacryl S-300にてゲルろ過処理し、透析、凍結乾燥してPS−PG画分とした。
【0038】
実施例3
潰瘍性大腸炎患者由来の末梢血単核球(PMNC)におけるIL−6産生能に対するラクトバチルス・カゼイ YIT9029株及び当該株由来の多糖画分(製造例1で得たPS−PG)の作用を検討した。すなわち、潰瘍性大腸炎患者から採取したPMNC細胞1.5×105個をLPS存在下で48時間培養した。この培養系にYIT9029株菌体又はその多糖画分を種々の濃度で添加した。
培養上清中のIL−6量をELISA法で検出した。
【0039】
その結果、図15に示すように、YIT9029株の菌体はIL−6産生抑制作用を示したが、その菌体由来多糖画分(PS−PG)は、菌よりもさらに強力なIL−6産生抑制作用を示した。
【0040】
実施例4
潰瘍性大腸疾患患者由来の末梢血単核球(PMNC)をリポポリカッカライドで刺激した場合のIL−6産生応答系に対するラクトバチルス・カゼイ由来の多糖画分とビフィドバクテリウム・ビフィダム由来の多糖画分の作用を検討した。すなわち、潰瘍性大腸炎患者から採取したPMNC細胞1.5×105個にリポポリサッカライド(LPS:10μg/mL)を加え48時間培養した。この培養系にラクトバチルス・カゼイ YIT9029株由来の多糖画分(実施例3と同じ画分)又はビフィドバクテリウム・ビフィダム YIT4007株由来の多糖画分(実施例3のYIT9029株と同様にして分画)を種々の濃度で添加した。
【0041】
その結果、図16に示すように、ラクトバチルス・カゼイ由来の多糖画分は、ビフィドバクテリウム・ビフィダム由来の多糖画分に比べて、極めて強力なIL−6産生抑制作用を示した。
【0042】
【発明の効果】
乳酸菌又はその菌体由来多糖画分は炎症性腸疾患予防治療効果が高く、かつその作用機序はIL−6/STAT3リン酸化応答抑制に基づくIL−6産生抑制作用によるものである。
【図面の簡単な説明】
【図1】IBDモデルマウス腸粘膜のリン酸化STAT分子群の発現を調べたウエスタンブロットの結果を示す図である(A:DSS誘導大腸炎、B:SAMP1/Yitマウス)。
【図2】ヒトUC(2例)、ヒトCD(1例)及び正常(Nor)の腸組織におけるリン酸化STAT分子群の発現を調べたウエスタンブロットの結果を示す図である。
【図3】SAMP1/Yit系統の回腸病変部におけるリン酸化STAT3分子の免疫組織学的検出結果を示す図である(A:粘膜固有層及び粘膜下組織、B:腸絨毛先端部の上皮細胞)。
【図4】IBDマウスの腸粘膜におけるIL−6産生能の検討結果を示す図である(A:DSS大腸炎、B:SAMP1/Yit系統)。
【図5】ラクトバチルス・カゼイ YIT9029株のDSS大腸炎に対する延命効果を示す図である。
【図6】DSS大腸炎マウスの腸炎臨床スコアに対するラクトバチルス・カゼイ YIT9029株の効果を示す図である。
【図7】DSS大腸炎マウスに対するラクトバチルス・カゼイ YIT9029株のIL−6産生抑制効果を示す図である。
【図8】DSS腸炎マウスにおけるLPLs細胞の増加に対するラクトバチルス・カゼイ YIT9029株の効果を示す図である。
【図9】DSS大腸炎マウスにおけるNK細胞数の減少に対するラクトバチルス・カゼイ YIT9029株の効果を示す図である。
【図10】DSS大腸炎マウスにおけるNK細胞レベルの細胞障害活性の低下に対するラクトバチルス・カゼイ YIT9029株の効果を示す図である。
【図11】慢性大腸炎マウス由来のLI−LPLs培養系に対するLPS刺激後のIL−6産生応答を示す図である。
【図12】LPS刺激後のIL−6産生応答系に対する乳酸菌の影響を示す図である。
【図13】RAW264.7細胞培養系にLPSを添加した時のIL−6産生応答及びこれに対する乳酸菌の影響を示す図である。
【図14】RAW264.7細胞培養系にLPSを添加したときのIL−6産生応答に対する乳酸菌の加熱死菌体及び生菌の影響を示す図である。
【図15】潰瘍性大腸炎患者由来のPMNC細胞培養系におけるIL−6産生能に対する乳酸菌及び菌体由来多糖画分の影響を示す図である。
【図16】潰瘍性大腸炎患者由来のPMNC細胞培養系にLPSを添加したときのIL−6産生応答に対する乳酸菌由来多糖画分及びビフィドバクテリウム属細菌由来多糖画分の影響を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a safe and effective agent for preventing and treating inflammatory bowel disease.
[0002]
[Prior art and problems to be solved by the invention]
Inflammatory Bowel Disease (IBD) has been increasing in recent years. This inflammatory bowel disease is divided into ulcerative colitis (UC) and Crohn's disease (CD).
[0003]
The pathological conditions of these inflammatory bowel diseases are those in which intestinal mucous membrane erosions and ulcers are formed, and symptoms such as weight loss, diarrhea, and bloody stool appear. The cause of this onset is attributed to abnormal cytokine production associated with the breakdown of the intestinal mucosal immune response system, but the details have not been elucidated. Thus, inflammatory bowel disease is completely different from gastric ulcer and duodenal ulcer both in its pathological condition and onset cause.
[0004]
Therefore, elucidation of the onset cause of inflammatory bowel disease and development of a safe and effective preventive / therapeutic agent are desired.
[0005]
[Means for Solving the Problems]
Therefore, the present inventor has examined the cause of the onset of inflammatory bowel disease using an ulcerative large intestine animal model and Crohn's disease animal model, and IL-6 production is significantly increased in inflammatory bowel disease, It was found that IL-6 is one of the causes of the onset.
IL-6 forms a complex with the soluble IL-6 receptor (IL-6R) secreted by monocytes / macrophages during the inflammatory response. The complexed IL-6 / IL-6R binds to gp130 molecules expressed in almost all cells including non-lymphoid cells, so that IL-6 can also be expressed in cell lines that do not express IL-6R. It is known to transduce signals (transsignaling) and induce inflammatory responses. Therefore, the present inventor also examined the IL-6 / STAT-3 phosphorylation response in an animal model of inflammatory bowel disease, and found that this was also significantly enhanced in inflammatory bowel disease.
Therefore, the present inventor studied to find a therapeutic agent for inflammatory bowel disease by paying attention to highly safe edible fungi, and surprisingly, the Lactobacillus bacterium has an IL-6 production inhibitory action, As a result, it was found that the IL-6 / STAT3 phosphorylation response was suppressed, and further that it had a preventive and therapeutic effect against inflammatory bowel disease, and the present invention was completed. It was also found that these actions are particularly excellent in the polysaccharide fraction derived from the cells of the genus Lactobacillus.
[0006]
That is, the present invention provides a prophylactic and therapeutic agent for inflammatory bowel disease comprising a Lactobacillus bacterium or a polysaccharide fraction derived therefrom as an active ingredient.
Moreover, this invention provides the IL-6 production inhibitor which uses the Lactobacillus genus bacterium or its cell-derived polysaccharide fraction as an active ingredient.
Furthermore, this invention provides the IL-6 / STAT3 phosphorylation response inhibitor which uses a Lactobacillus genus bacterium or its cell-derived polysaccharide fraction as an active ingredient.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the genus Lactobacillus used in the present invention include Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus gasseri, Lactobacillus reuteri, among which Lactobacillus casei and Lactobacillus gasseri are preferred. . Examples of Lactobacillus casei include Lactobacillus casei YIT9029, (FERM BP-1366), and YIT9018 (FERM BP-665). Examples of Lactobacillus gasseri include Lactobacillus gasseri YIT0168 (JCM 5813; Lactobacillus acidophilus in the old classification).
[0008]
In the present invention, the bacterium belonging to the genus Lactobacillus may be either a live cell or a dead cell, but it is preferable to use a live cell as the cell.
[0009]
Examples of the polysaccharide fraction derived from bacterial cells of the genus Lactobacillus include polysaccharide-polypeptide glycan complexes obtained by the method described in JP-A-4-5236 or J. Biochem., 108, 568-571 (1990), for example. The fraction containing (hereinafter sometimes referred to as PS-PG) is preferred. This fraction can be obtained, for example, as follows. First, the cells are suspended in an isotonic solution and treated with a cell wall lytic enzyme, such as N-acetylmuramidase. Prior to this treatment, the cells may be crushed by ultrasonic treatment, French press, or the like. Solid cytoplasm is removed from the cell suspension after enzyme treatment by centrifugation, the supernatant is treated with nucleolytic enzyme, the protein is further digested with trypsin or pronase, and finally dialyzed with distilled water. The low molecular fraction is removed, and the polysaccharide fraction is collected and lyophilized as necessary.
[0010]
Lactobacillus genus bacteria or polysaccharide fraction derived from the same suppresses IL-6 production in the intestinal mucosa of inflammatory bowel disease models and inflammatory bowel disease cases, resulting in an IL-6 / STAT-3 phosphorylation response. Is also significantly suppressed. Furthermore, it has a powerful preventive and therapeutic effect on inflammatory bowel disease models. Therefore, the Lactobacillus genus bacteria or polysaccharide-derived polysaccharide fraction is useful as a prophylactic / therapeutic agent for inflammatory bowel disease, that is, ulcerative colitis and Crohn's disease.
[0011]
In addition, the polysaccharide fraction derived from Lactobacillus bacteria has a significantly superior IL-6 production inhibitory action compared to Lactobacillus bacteria, and may be the main active ingredient in the bacteria high. Furthermore, the IL-6 production inhibitory action of the polysaccharide fraction derived from the Lactobacillus bacterium cell body is extremely strong compared to the action of the polysaccharide fraction derived from the Bifidobacterium bacterium cell body. In particular, the polysaccharide fraction derived from Lactobacillus casei is highly effective, and those derived from Lactobacillus casei YIT9029 or YIT9018 (FERM BP-665) are preferred.
[0012]
In the inflammatory bowel disease preventive and therapeutic agent of the present invention, the active ingredient is a bacterial body of Lactobacillus bacteria or a polysaccharide-derived polysaccharide fraction, and its safety has been established, so it may be administered orally as it is. If necessary, excipients, binders, disintegrants, lubricants, coating agents, emulsifiers, dispersants, solvents, stabilizers, etc. are appropriately added to the cells or fractions, and tablets, granules , Powders, powders, capsules, etc. may be used. The dose per day for an adult is preferably 1 × 10 6 or more, more preferably 1 × 10 6 to 1 × 10 13 cells of living bacteria or a polysaccharide-derived polysaccharide fraction. The dose can be adjusted according to symptoms.
The inflammatory bowel disease preventive / therapeutic agent of the present invention can be administered orally as it is, or can be added to any food or drink and taken daily.
[0013]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
Example 1
[1] Materials and methods [0014]
(A) Animals: SPF Balb / c mice (female, 6 weeks old), SPF SAMP1 / Yit strains (male, 10 and 20 weeks old) were used in the experiment.
[0015]
(B) Enteritis model Ulcerative colitis (UC) model: DSS colitis model mice (Gastroenterology (1990) 107, p1643) were used.
Crohn's disease (CD) model: SAMP1 / Yit strain (Gut (1998) 43, p78, J. Clin. Inuest. (2001) 142, p243) was used.
[0016]
(C) Detection of phosphorylated STAT in intestinal mucosa of IBD model and IBD case Homogenizing human IBD intestinal mucosa obtained from each model mouse and surgical material with lysis buffer with added dephosphorylating enzyme inhibitor and protease inhibitor (J. Exp. Med. (2001) 193, p471). The non-lesional part of the intestinal tract from which colorectal cancer was removed was used as a control. The amount of protein in the supernatant obtained by centrifugation at 20,000 g for 10 minutes was measured. 10 μg of protein was electrophoresed on an 8% SDS gel and then transferred onto a nylon membrane. The nylon membrane was blocked overnight with 3% skim milk / PBS solution. The next day, each phosphorylated STAT molecule was reacted with a specific antibody, and the reaction product was detected by a chemiluminescence system.
[0017]
(D) Immunohistochemical detection of phosphorylated STAT3 molecule A frozen section of the ileal lesion of SAMP1 / Yit strain was prepared. Using a specific antibody (Biocource) against phosphorylated STAT3 molecule, immunostaining was performed according to a conventional method.
After immunostaining, the cells were stained with hematoxylin and observed under a microscope.
[0018]
(E) Examination of IL-6 production ability in intestinal mucosa of IBD mouse Colonic lamina propria cells (LPLs) were isolated by a known method from Balb / c mouse and SPF Balb / c mouse after induction of DSS colitis (ENBO J. (1998) 17, p1006). 2.0 × 10 6 LPLs were stimulated with an immobilized TCR β chain antibody (H57-597: 10 μg / mL) / liquid phase CD28 antibody (2 μg / mL). The culture supernatant after 48 hours of culture was collected, and the amount of IL-6 produced was detected by ELISA. In addition, lamina propria cells were separated from the ileal part of SAMP1 / Yit strain, and RNA was extracted according to a conventional method. The expression of IL-6 mRNA was examined by RT-PCR using G3PDH and IL-6 specific primers.
[0019]
(F) Verification of enteritis control by Lactobacillus casei YIT9029 strain YIT9029 strain-containing feed (0.05%) administration group (L group) and control group (ordinary feed: C group) induced by heat-killed bacteria were induced with DSS colitis Mice were given 2 weeks ago. Chronic DSS colitis was induced according to a conventional method, and enteritis status was evaluated for each item shown in G.
[0020]
(G) Evaluation of enteritis (A) Mortality rate of mice (I) Disease activity index (enteritis clinical score, Lab Invest (1993) vol 69 p 238-249)
(C) FACS analysis (d) Cytokine production
(H) Preparation of NK cells from spleen cells and measurement of NK activity After adjusting spleen cells, NK cells were isolated by the MACS method using a mouse NK cell-specific antibody. According to a conventional method, cytotoxic activity was measured using Yac-1 cells as a target.
[0022]
(I) Statistical analysis Statistical analysis was performed by t-test.
[0023]
[2] Results (1) Expression of phosphorylated STAT molecule group in intestinal mucosa of IBD model mouse Expression of phosphorylated STAT molecule in intestinal mucosa of CD model mouse was detected by immunoblotting. The results are shown in FIG. In the UC model (DSS-induced colitis), the STAT3 molecule phosphorylation was prominent (FIG. 1A). Further, in the non-colitis mouse, phosphorylation of the STAT molecule group was not observed. On the other hand, in the intestinal mucosa of CD model mice (SAMP1 / Yit strain), phosphorylation of STAT1, STAT3 and STAT6 molecules (indicated by PY in the figure) was observed in the intestinal mucosa at the inflamed site in the active phase (10 weeks of age). However, STAT3 phosphorylation was most prominent (FIG. 1B). In addition, in the inactive period (20 weeks of age), only STAT3 phosphorylation was observed. The phosphorylation reaction of STAT5 was observed regardless of the difference between the lesioned part and the non-lesioned part (FIG. 1B).
[0024]
(2) Expression of phosphorylated STAT molecule group in intestinal mucosa of human IBD case From the result of (1) above, in both CD and UC model intestinal mucosa, phosphorylation of STAT3 molecule is accompanied by the development of pathological condition. It turns out that it is increasing. Therefore, it was confirmed whether the similar reaction was enhanced in the intestinal mucosa of human IBD cases. The result is shown in FIG. In both UC (2 cases) and CD (1 case), the phosphorylation of the STAT3 molecule was remarkable as in the mouse model (FIG. 2). In normal intestinal tissue derived from colorectal cancer cases (Nor in the figure), STAT3 molecule phosphorylation was not observed (FIG. 2).
[0025]
(3) Immunohistochemical detection of phosphorylated STAT3 molecule The histological localization of phosphorylated STAT3 molecule in the ileal lesion of the SAMP1 / Yit strain was detected immunohistochemically. The result is shown in FIG. The phosphorylated STAT3 molecule was localized in the cell nucleus distributed in the lamina propria and submucosa (FIG. 3A, arrow). Moreover, it was recognized also in the epithelial cell nucleus of a part of intestinal villi tip part (FIG. 3B, arrow).
[0026]
(4) Examination of IL-6 production ability in intestinal mucosa of IBD mice The IL-6 production ability of LPLs cells isolated from the UC model (DSS colitis) was significantly higher than that of normal mice (FIG. 4A). In addition, IL-6 mRNA of LPLs isolated from lesions in CD models (SAMP1 / Yit strain) mice during the enteritis active phase increased compared to the inactive phase (FIG. 4B).
[0027]
(5) Lactobacillus casei Examination of YIT9029 strain for enteritis suppression Does inhibition of IL-6 / STAT3 phosphorylation response, which was enhanced in the intestinal mucosa of mouse enteritis model and human IBD case, lead to enteritis suppression? In order to verify whether or not, heat-killed YIT9029 strain was administered to DSS chronic colitis-induced mice, and the state of enteritis was compared with the control group. After induction of chronic DSS colitis, about half of the mice died in the control group, but no mouse death was observed in the YIT9029 strain administration group (FIG. 5). The YIT9029 strain group also showed an improvement effect on enteritis in the colitis clinical score using mouse weight loss, diarrhea and bloody stool as indices (FIG. 6). After the mice were dissected, the IL-6 production response in both groups of large intestine LPLs was compared. As a result, suppression of IL-6 production was observed in the YIT9029 strain administration group (FIG. 7). In the YIT9029 strain administration group, the increase in LPLs cells (αβTCRT T cells, B220 cells) observed after induction of enteritis was suppressed (FIG. 8). In enteritis-induced mice, NK cells in spleen cells were significantly reduced, and cytotoxic activity at the NK cell level was also reduced (FIGS. 9 and 10). On the other hand, in the YIT9029 strain administration group, the decrease in NK cells and the decrease in cytotoxic activity at the cellular level were suppressed (FIGS. 9 and 10).
[0028]
Example 2
[1] Materials and methods
Animals : Balb / c (female, 8 weeks old) was used in the experiment.
[0029]
Chronic colitis 4% (v / w) dextran sulfate sodium (DSS: ICN) tap water was administered to mice for 1 week, and 4 cycles of suspending the administration for 1 week were performed to induce chronic colitis (Gastroenterology ( 1990) 102, p43).
[0030]
Separation of colonic lamina propria lamina propria cells (LI-LPLs) LI-LPLs were isolated according to a conventional method (Microbial Ecology in Health and Disease (2000) 12, p102).
[0031]
IL-6 production response system of LI-LPLs Lipopolysaccharide (LPS; 10 μg / mL) derived from E. coli was added to 2.0 × 10 5 freshly isolated LI-LPLs cells and cultured for 48 hours. The amount of IL-6 in the culture supernatant was detected by ELISA.
[0032]
Effect of lactic acid bacteria on IL-6 production response system of LI-LPLs Heat-killed Lactobacillus casei YIT9029 strain and Lactobacillus gasseri YIT0168 strain were prepared, and various concentrations were added to the culture system. . The amount of IL-6 after 48 hours of culture was examined by ELISA. The same study was performed on live bacteria (heat-killed and untreated practical strains). The same experiment was performed using the mouse macrophage cell line RAW264.7.
[0033]
[2] Results
IL-6 production response after LPS stimulation to LI-LPLs culture system derived from mouse chronic colitis IL-6 production response was observed when LPS was added to LI-LPLs culture system derived from chronic colitis-induced mice (FIG. 11).
[0034]
Effects of heat-killed strains on IL-6 production response system after LPS stimulation Heat-killed strains (YIT9029, YIT0168) were added to the above culture system at various concentrations, and IL-6 production response was obtained. Examined. As a result, each strain suppressed IL-6 production after LPS stimulation. In each strain, the IL-6 production inhibitory effect was highest at around 1 μg / mL-0.5 mg / mL, and the inhibition rate was about 40% (FIG. 12).
[0035]
A similar experiment was performed using RAW241 cells, a mouse macrophage-derived cell line. When LPS was added to the RAW cell culture system, an IL-6 production response was observed (FIG. 13). Moreover, when heat-killed Lactobacillus casei YIT9029 strain was added to this assay system, IL-6 production was suppressed in inverse proportion to the amount of added bacterial cells, as in the case of using LI-LPLs cells derived from chronic colitis. (FIG. 13).
[0036]
The ability to suppress IL-6 production was compared between live cells (non-heat-treated cells) and heat-killed cells. Inhibition of IL-6 production by LI-LPLs cells derived from chronic colitis was also observed in live cells, and the activity was not different from that in the case of using heat-killed cells (FIG. 14).
[0037]
Production Example 1 (Preparation of PS-PG)
Lactobacillus casei YIT9029 cells were cultured in ILS medium until stationary phase, collected by centrifugation, and washed with deionized water. The washed cells were suspended in deionized water, heated at 100 ° C. for 30 minutes, and collected by centrifugation. The cells were washed with deionized water and lyophilized.
The bacterial cells (60 g) thus obtained were suspended in 3 liters of 5 mM Tris-malate buffer (containing pH 6.5, 2 mM CaCl 2 ), and 50 mg (10 mg × 5) N-acetylmuramidase (Seikagaku Corporation, 10 mg), shaken at 42 ° C. for 40 hours, and centrifuged at 8500 rpm for 1 hour. After centrifugation, the supernatant was collected, Benzon nuclease (Kanto Chemical Co., Grade I: 10000 U), 1 vial was added, shaken at 37 ° C. for 20 hours, and pronase (Roche Diagnostics, 50 mg / 5 mL) was filtered. The reaction was carried out at 37 ° C. for 20 hours. After centrifugation (8500 rpm, 60 minutes), the supernatant was collected and concentrated with an ultrafiltration membrane with a cutoff of 300,000, and the internal solution was collected, dialyzed, and lyophilized.
The dried product was subjected to gel filtration with Sephacryl S-300, dialyzed and freeze-dried to obtain a PS-PG fraction.
[0038]
Example 3
Effects of Lactobacillus casei YIT9029 strain and polysaccharide fraction derived from the strain (PS-PG obtained in Production Example 1) on IL-6 production ability in peripheral blood mononuclear cells (PMNC) derived from ulcerative colitis patients investigated. That is, 1.5 × 10 5 PMNC cells collected from a patient with ulcerative colitis were cultured for 48 hours in the presence of LPS. The YIT9029 strain or its polysaccharide fraction was added to this culture system at various concentrations.
The amount of IL-6 in the culture supernatant was detected by ELISA.
[0039]
As a result, as shown in FIG. 15, the cells of YIT9029 strain showed IL-6 production inhibitory action, but the cell-derived polysaccharide fraction (PS-PG) was more potent than IL-6. Production inhibition effect was shown.
[0040]
Example 4
Polysaccharide fraction derived from Lactobacillus casei and Bifidobacterium bifidum derived from IL-6 production response system when peripheral blood mononuclear cells (PMNC) derived from patients with ulcerative colorectal disease are stimulated with lipopolysaccharide The action of the polysaccharide fraction was examined. That is, lipopolysaccharide (LPS: 10 μg / mL) was added to 1.5 × 10 5 PMNC cells collected from a patient with ulcerative colitis and cultured for 48 hours. In this culture system, a polysaccharide fraction derived from Lactobacillus casei YIT9029 strain (the same fraction as in Example 3) or a polysaccharide fraction derived from Bifidobacterium bifidum YIT4007 strain (separated in the same manner as the YIT9029 strain in Example 3). Were added at various concentrations.
[0041]
As a result, as shown in FIG. 16, the polysaccharide fraction derived from Lactobacillus casei exhibited an extremely strong IL-6 production inhibitory action compared to the polysaccharide fraction derived from Bifidobacterium bifidum.
[0042]
【Effect of the invention】
Lactic acid bacteria or a bacterial cell-derived polysaccharide fraction has a high effect of preventing and treating inflammatory bowel disease, and its mechanism of action is due to an IL-6 production inhibitory action based on suppression of IL-6 / STAT3 phosphorylation response.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows the results of Western blotting for examining the expression of phosphorylated STAT molecules in the intestinal mucosa of IBD model mice (A: DSS-induced colitis, B: SAMP1 / Yit mouse).
FIG. 2 is a diagram showing the results of Western blotting in which the expression of phosphorylated STAT molecule groups in human UC (2 cases), human CD (1 case) and normal (Nor) intestinal tissues was examined.
FIG. 3 shows the results of immunohistochemical detection of phosphorylated STAT3 molecules in the ileal lesion of the SAMP1 / Yit strain (A: lamina propria and submucosa, B: epithelial cells at the tip of the intestinal villi) .
FIG. 4 is a diagram showing the results of examining IL-6 production ability in the intestinal mucosa of IBD mice (A: DSS colitis, B: SAMP1 / Yit strain).
FIG. 5 is a graph showing the life-prolonging effect of Lactobacillus casei YIT9029 strain on DSS colitis.
FIG. 6 is a graph showing the effect of Lactobacillus casei YIT9029 strain on enterocolitis clinical scores in DSS colitis mice.
FIG. 7 is a graph showing the IL-6 production inhibitory effect of Lactobacillus casei YIT9029 strain on DSS colitis mice.
FIG. 8 is a graph showing the effect of Lactobacillus casei YIT9029 strain on the increase of LPLs cells in DSS enteritis mice.
FIG. 9 is a graph showing the effect of Lactobacillus casei YIT9029 strain on the decrease in the number of NK cells in DSS colitis mice.
FIG. 10 is a graph showing the effect of Lactobacillus casei YIT9029 strain on the reduction of NK cell level cytotoxic activity in DSS colitis mice.
FIG. 11 is a diagram showing an IL-6 production response after LPS stimulation with respect to a LI-LPLs culture system derived from a chronic colitis mouse.
FIG. 12 is a diagram showing the influence of lactic acid bacteria on the IL-6 production response system after LPS stimulation.
FIG. 13 shows IL-6 production response when LPS is added to a RAW264.7 cell culture system and the effect of lactic acid bacteria on this.
FIG. 14 is a diagram showing the influence of heat-killed lactic acid bacteria and live bacteria on IL-6 production response when LPS is added to the RAW 264.7 cell culture system.
FIG. 15 is a diagram showing the influence of lactic acid bacteria and the bacterial cell-derived polysaccharide fraction on IL-6 production ability in PMNC cell culture systems derived from ulcerative colitis patients.
FIG. 16 is a diagram showing the influence of a lactic acid bacteria-derived polysaccharide fraction and a Bifidobacterium-derived polysaccharide fraction on IL-6 production response when LPS is added to a PMNC cell culture system derived from a patient with ulcerative colitis. is there.

Claims (3)

炎症性腸疾患の腸粘膜のIL−6産生抑制作用を有するラクトバチルス・カゼイ YIT9029(FERM BP−1366)若しくはラクトバチルス・ガッセリ YIT0168(JCM 5813)又はその菌体由来多糖画分を有効成分とする炎症性腸疾患予防治療剤。Lactobacillus casei YIT9029 (FERM BP-1366) or Lactobacillus gasseri YIT0168 (JCM 5813) or its cell-derived polysaccharide fraction having an inhibitory action on IL-6 production in the intestinal mucosa of inflammatory bowel disease Inflammatory bowel disease preventive and therapeutic agent. ラクトバチルス・カゼイ YIT9029(FERM BP−1366)若しくはラクトバチルス・ガッセリ YIT0168(JCM 5813)又はその菌体由来多糖画分を有効成分とする炎症性腸疾患の腸粘膜のIL−6産生抑制剤。An inhibitor of IL-6 production in the intestinal mucosa of inflammatory bowel disease, comprising as an active ingredient Lactobacillus casei YIT9029 (FERM BP-1366) or Lactobacillus gasseri YIT0168 (JCM 5813) or a polysaccharide fraction thereof. ラクトバチルス・カゼイ YIT9029(FERM BP−1366)若しくはラクトバチルス・ガッセリ YIT0168(JCM 5813)又はその菌体由来多糖画分を有効成分とする炎症性腸疾患の腸粘膜のIL−6/STAT3リン酸化応答抑制剤。IL-6 / STAT3 phosphorylation response of intestinal mucosa of inflammatory bowel disease containing Lactobacillus casei YIT9029 (FERM BP-1366) or Lactobacillus gasseri YIT0168 (JCM 5813) or its polysaccharide-derived polysaccharide fraction as an active ingredient Inhibitor.
JP2001267482A 2001-09-04 2001-09-04 Inflammatory bowel disease preventive and therapeutic agent Expired - Lifetime JP5116194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001267482A JP5116194B2 (en) 2001-09-04 2001-09-04 Inflammatory bowel disease preventive and therapeutic agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001267482A JP5116194B2 (en) 2001-09-04 2001-09-04 Inflammatory bowel disease preventive and therapeutic agent

Publications (2)

Publication Number Publication Date
JP2003073286A JP2003073286A (en) 2003-03-12
JP5116194B2 true JP5116194B2 (en) 2013-01-09

Family

ID=19093607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267482A Expired - Lifetime JP5116194B2 (en) 2001-09-04 2001-09-04 Inflammatory bowel disease preventive and therapeutic agent

Country Status (1)

Country Link
JP (1) JP5116194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980850B (en) * 2008-03-31 2013-05-15 本田制锁有限公司 Resin molding method and die device for resin molding

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853986B2 (en) * 2001-09-20 2012-01-11 雪印メグミルク株式会社 Preventive and therapeutic agent for inflammatory bowel disease and irritable bowel syndrome
EP1908819B1 (en) 2005-07-08 2016-10-12 Morishita Jintan Co., Ltd. Polysaccharide produced by microorganism belonging to genus bifidobacterium
EP2075332B1 (en) * 2006-10-27 2014-04-16 Kabushiki Kaisha Yakult Honsha Cytokine production regulator gene and use thereof
JP2009102292A (en) * 2007-04-27 2009-05-14 Chiba Prefecture Stress relieving agent
JP5784327B2 (en) * 2011-02-28 2015-09-24 森永乳業株式会社 Antibacterial agent
DK2959897T3 (en) 2013-02-21 2019-08-12 Univ Kyoto GUT PROTECTION AGENT CONTAINING HYDROXYLATED FAT ACID
JP5715666B2 (en) * 2013-08-23 2015-05-13 株式会社キティー Cosmetic composition
JP6358933B2 (en) * 2013-12-04 2018-07-18 株式会社ヤクルト本社 Particles containing polysaccharide-peptidoglycan complex
KR101825179B1 (en) * 2015-07-17 2018-02-05 한국생명공학연구원 A pharmaceutical composition comprising extract from flower of Rosa rugosa for preventing or treating IL-6-mediated disease
CN109922815A (en) * 2016-10-28 2019-06-21 株式会社益力多本社 Disease-free rate reduces inhibitor
CN113693026A (en) * 2021-09-09 2021-11-26 青岛东海药业有限公司 Method for constructing ulcerative colitis animal model

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517363A (en) * 1991-07-11 1993-01-26 Yakult Honsha Co Ltd Antiphlogistic agent and cosmetic containing the same
WO2000023471A2 (en) * 1998-10-20 2000-04-27 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Use of a cytokine-producing lactococcus strain to treat colitis
ID29150A (en) * 1999-01-15 2001-08-02 Entpr Ireland Cs USE OF LACTOBACILLUS SALIVARIUS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980850B (en) * 2008-03-31 2013-05-15 本田制锁有限公司 Resin molding method and die device for resin molding

Also Published As

Publication number Publication date
JP2003073286A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
KR101826071B1 (en) Composition comprising extracellular vesicles derived from mammals, and use thereof
KR102188020B1 (en) Lactobacillus paracasei and Use thereof
Damaskos et al. Probiotics and prebiotics in inflammatory bowel disease: microflora ‘on the scope’
Herias et al. Probiotic effects of Lactobacillus casei on DSS-induced ulcerative colitis in mice
Amrouche et al. Effects of bifidobacterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production
RU2490019C2 (en) Using selected lactic acid bacilli for relieving atherosclerosis
JP5116194B2 (en) Inflammatory bowel disease preventive and therapeutic agent
JP2003261453A (en) Antitumor agent and radiation-protecting agent consisting of e. faecalis
Seo et al. Anti-colitis effect of Lactobacillus sakei K040706 via suppression of inflammatory responses in the dextran sulfate sodium-induced colitis mice model
Kim et al. Lactobacillus plantarum CBT LP3 ameliorates colitis via modulating T cells in mice
JP2004510740A (en) Use of probiotic lactic acid bacteria to balance the skin's immune system
TW200944215A (en) Lactobacillus isolates having anti-inflammatory activities and uses of the same
JP7434375B2 (en) Novel probiotic compositions for intestinal immunomodulation
JP2010526055A (en) Exopolysaccharide
EP3081227A1 (en) Lactococcus lactis producing tslp or il-25 and their uses as probiotics and therapeutics
CN109758484B (en) Use of microorganisms for the treatment and/or prevention of immune-mediated intestinal diseases
JP7273824B2 (en) Serpin production
Lamine et al. Colonic responses to Lactobacillus farciminis treatment in trinitrobenzene sulphonic acid-induced colitis in rats
JP2021118687A (en) Novel bifidobacterium bifidum strains and polysaccharides derived therefrom
CN115068629B (en) Drug-loaded nanoparticle based on curcumin and cerium oxide as well as preparation method and application thereof
US20140348792A1 (en) Methods to reduce polyposis and colorectal cancer
EP3463385A1 (en) Use of inosine for the treatment of t-reg deficiency
WO2019129807A1 (en) Serpin production
JP2010083881A (en) Intestinal tract protectant
WO2021141066A1 (en) Platelet aggregator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R151 Written notification of patent or utility model registration

Ref document number: 5116194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

EXPY Cancellation because of completion of term