JP6357494B2 - Moored balloon - Google Patents

Moored balloon Download PDF

Info

Publication number
JP6357494B2
JP6357494B2 JP2016047434A JP2016047434A JP6357494B2 JP 6357494 B2 JP6357494 B2 JP 6357494B2 JP 2016047434 A JP2016047434 A JP 2016047434A JP 2016047434 A JP2016047434 A JP 2016047434A JP 6357494 B2 JP6357494 B2 JP 6357494B2
Authority
JP
Japan
Prior art keywords
elastic member
mooring
balloon
state
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016047434A
Other languages
Japanese (ja)
Other versions
JP2017159834A (en
Inventor
藤井 輝也
輝也 藤井
潤一 中島
潤一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SoftBank Corp
Original Assignee
SoftBank Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SoftBank Corp filed Critical SoftBank Corp
Priority to JP2016047434A priority Critical patent/JP6357494B2/en
Publication of JP2017159834A publication Critical patent/JP2017159834A/en
Application granted granted Critical
Publication of JP6357494B2 publication Critical patent/JP6357494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、係留気球に関する。   The present invention relates to a mooring balloon.

気球と、気球を係留するために気球に接続された係留索とを有する係留気球が知られている。係留気球は、風力発電装置等の大型構造物を建設するときの上空の風速調査、風速及び気温等の鉛直分布の調査、及び災害時の被害状況の確認のための映像撮影等に使用されることが知られている。しかしながら、係留気球は、強風を受けると姿勢を維持できないおそれがある。   Mooring balloons having a balloon and a mooring line connected to the balloon for mooring the balloon are known. Moored balloons are used for surveying the wind speed in the sky when constructing large structures such as wind power generators, surveying the vertical distribution of wind speed and temperature, etc., and taking pictures to check the damage situation at the time of disaster It is known. However, the moored balloon may not be able to maintain its posture when subjected to strong winds.

特許文献1には、空中に位置するときに風下に位置する係留索に、伸縮自在な弾性部材と、弾性部材に並列接続された停止索が接続された係留気球が記載される。特許文献1に記載される係留気球は、風下の係留索に伸縮自在な弾性部材が接続されることにより、気球が風上から風を受けたときに、風力に応じて弾性部材が伸びることにより気球の姿勢を維持することができる。また、特許文献1に記載される係留気球では、弾性部材に直列接続された停止索は、弾性部材が伸びる長さを制限するリミッタとして機能して、弾性部材が伸び過ぎることを防止できる。   Patent Document 1 describes a mooring balloon in which a stretchable elastic member and a stop rope connected in parallel to the elastic member are connected to a mooring line that is located leeward when located in the air. The mooring balloon described in Patent Literature 1 is connected to a mooring line on the leeward side by an elastic member that can be expanded and contracted, so that when the balloon receives wind from the windward side, the elastic member extends according to the wind force. The posture of the balloon can be maintained. Moreover, in the mooring balloon described in Patent Document 1, the stop rope connected in series with the elastic member functions as a limiter that limits the length of the elastic member to extend, and the elastic member can be prevented from extending too much.

米国特許第3318553号明細書U.S. Pat. No. 3,318,553

しかしながら、特許文献1に記載される係留気球では、弾性部材のばね定数が均一なので、風速の二乗に比例する弾性体の伸びは、風速の変化に追従しない。特許文献1に記載される係留気球では、弾性体の伸びが風速の変化に追従しないため、ある風速で気球の姿勢を維持するようなばね定数を有する弾性部材では、所定の範囲を超えた風速を有する風を受けたときに、気球が所望の姿勢を維持できないおそれがある。   However, in the moored balloon described in Patent Document 1, since the spring constant of the elastic member is uniform, the elongation of the elastic body proportional to the square of the wind speed does not follow the change in the wind speed. In the mooring balloon described in Patent Document 1, since the elastic body does not follow the change in wind speed, the elastic member having a spring constant that maintains the attitude of the balloon at a certain wind speed, the wind speed exceeding a predetermined range. There is a possibility that the balloon cannot maintain a desired posture when it receives a wind having

例えば、弾性部材のばね定数が比較的小さく、弾性部材が風力によって伸び易い場合、気球は、風力が比較的小さいときは係留気球が受ける風力に応じて姿勢を制御できるものが、風力が大きくなると弾性部材が伸び切って姿勢を制御できないおそれがある。一方、弾性部材のばね定数が比較的大きく、弾性部材が風力によって伸び難い場合、気球は、風力が比較的大きいときは係留気球が受ける風力に応じて姿勢を制御できるものの、風力が小さいときは弾性部材が十分に伸びずに姿勢を制御できないおそれがある。   For example, if the spring constant of the elastic member is relatively small and the elastic member is easily extended by wind force, the balloon can control the attitude according to the wind force received by the mooring balloon when the wind force is relatively small. There is a possibility that the posture cannot be controlled because the elastic member is fully extended. On the other hand, when the elastic member has a relatively large spring constant and the elastic member is difficult to extend by wind force, the balloon can control the attitude according to the wind force received by the mooring balloon when the wind force is relatively large, but when the wind force is small There is a possibility that the posture cannot be controlled without the elastic member extending sufficiently.

本発明は、係留気球が受ける風の風力に応じて気球の姿勢を維持することができる係留気球を提供することを目的とする。   It is an object of the present invention to provide a moored balloon that can maintain the attitude of the balloon according to the wind force of the wind received by the moored balloon.

上記目的を実現するため、本発明に係る係留気球は、内部に気体が充填されたときに扁平形状になる気球と、それぞれの一端が気球の表面に接続された複数の係留索と、複数の係留索の何れか1つに接続された弾性部材群とを有することを特徴とする。   In order to achieve the above object, a mooring balloon according to the present invention includes a balloon that has a flat shape when filled with gas, a plurality of mooring lines each having one end connected to the surface of the balloon, and a plurality of mooring lines. And an elastic member group connected to any one of the mooring lines.

本発明に係る係留気球では、弾性部材群は、並列接続された複数の弾性部材を含むことが好ましい。   In the mooring balloon according to the present invention, the elastic member group preferably includes a plurality of elastic members connected in parallel.

また、本発明に係る係留気球では、弾性部材群は、長さが異なる複数の弾性部材を含むことが好ましい。   In the mooring balloon according to the present invention, the elastic member group preferably includes a plurality of elastic members having different lengths.

本発明に係る係留気球では、弾性部材群は、ばね定数が異なる複数の弾性部材を含むことが好ましい。   In the mooring balloon according to the present invention, the elastic member group preferably includes a plurality of elastic members having different spring constants.

また、本発明に係る係留気球では、複数の弾性部材の長さは、複数の弾性部材のばね定数が大きいほど短くなることが好ましい。   In the mooring balloon according to the present invention, the length of the plurality of elastic members is preferably shorter as the spring constant of the plurality of elastic members is larger.

また、本発明に係る係留気球では、弾性部材群は、直列接続された複数の弾性部材を含むことが好ましい。   In the mooring balloon according to the present invention, the elastic member group preferably includes a plurality of elastic members connected in series.

また、本発明に係る係留気球では、弾性部材群は、ばね定数が異なる複数の弾性部材を含むことが好ましい。   In the mooring balloon according to the present invention, the elastic member group preferably includes a plurality of elastic members having different spring constants.

また、本発明に係る係留気球では、複数の弾性部材のぞれぞれの両端は、係留索に接続されることが好ましい。   In the mooring balloon according to the present invention, it is preferable that both ends of each of the plurality of elastic members are connected to the mooring line.

また、本発明に係る係留気球では、複数の弾性部材のぞれぞれの両端に接続される間の係留索の長さは、複数の弾性部材のばね定数が大きいほど長くなることが好ましい。   Further, in the mooring balloon according to the present invention, it is preferable that the length of the mooring line while being connected to both ends of each of the plurality of elastic members is longer as the spring constant of the plurality of elastic members is larger.

本発明によれば、係留気球が受ける風の風力に応じて気球の姿勢を維持することができる係留気球が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the mooring balloon which can maintain the attitude | position of a balloon according to the wind force of the wind which a mooring balloon receives is provided.

(a)は実施形態に係る係留気球に関連する第1係留気球の第1の状態を示す図であり、(b)は(a)に示す第1係留気球の第2の状態を示す図であり、(c)は実施形態に係る係留気球に関連する第2係留気球の第1の状態を示す図であり、(d)は(c)に示す第2係留気球の第2の状態を示す図である。(A) is a figure which shows the 1st state of the 1st mooring balloon relevant to the mooring balloon which concerns on embodiment, (b) is a figure which shows the 2nd state of the 1st mooring balloon shown to (a). And (c) is a diagram showing a first state of the second mooring balloon related to the mooring balloon according to the embodiment, and (d) is a second state of the second mooring balloon shown in (c). FIG. 係留時に風下に位置する係留副索に弾性部材を接続する係留気球について説明する図であり、(a)は弾性部材が接続された第1構成例を示す図であり、(b)は弾性部材が接続された第2構成例を示す図であり、(c)は弾性部材が接続された第3構成例を示す図であり、(d)は弾性部材が接続された第4構成例を示す図である。It is a figure explaining the mooring balloon which connects an elastic member to the mooring subline located in the leeward at the time of mooring, (a) is a figure which shows the 1st structural example to which the elastic member was connected, (b) is an elastic member. Is a diagram showing a second configuration example in which the elastic members are connected, (c) is a diagram showing a third configuration example in which the elastic members are connected, and (d) is a fourth configuration example in which the elastic members are connected. FIG. (a)は図2(a)の弾性部材が伸びた状態を示す図であり、(b)は図2(b)の弾性部材が伸びた状態を示す図であり、c)は図2(c)の弾性部材が伸びた状態を示す図であり、(d)は図2(a)の弾性部材が伸びた状態を示す図である。(A) is a figure which shows the state which the elastic member of Fig.2 (a) extended, (b) is a figure which shows the state which the elastic member of FIG.2 (b) extended, c) is a figure which shows FIG. It is a figure which shows the state which the elastic member of c) extended, (d) is a figure which shows the state in which the elastic member of Fig.2 (a) was extended. (a)は実施形態に係る係留気球に関連する第3係留気球の第1の状態を示す図であり、(b)は(a)に示す第3係留気球の第2の状態を示す図であり、(c)は(a)に示す状態での第3係留気球の係留副索の長さを示す図であり、(d)は(b)に示す状態での第3係留気球の係留副索及び弾性部材の長さを示す図である。(A) is a figure which shows the 1st state of the 3rd mooring balloon relevant to the mooring balloon which concerns on embodiment, (b) is a figure which shows the 2nd state of the 3rd mooring balloon shown to (a). And (c) is a diagram showing the length of the mooring sub-line of the third mooring balloon in the state shown in (a), and (d) is the mooring depot of the third mooring balloon in the state shown in (b). It is a figure which shows the length of a cable and an elastic member. 図4に示す弾性部材のばね定数が小さく風速の増加に伴う弾性部材の伸び幅が大きい場合の第3係留気球の動作を説明する図であり、(a)は第3係留気球の第1の状態を示す図であり、(b)は第3係留気球の第2の状態を示す図であり(c)は第3係留気球の第3の状態を示す図であり、(d)は第3係留気球の第4の状態を示す図であり、(e)は(a)に示す状第1の態での第3係留気球の係留副索及び弾性部材の長さを示す図であり、(f)は(b)に示す第2の状態での第3係留気球の係留副索及び弾性部材の長さを示す図であり、(g)は(c)及び(d)に示す第3及び第4の状態での第3係留気球の係留副索及び弾性部材の長さを示す図である。It is a figure explaining the operation | movement of the 3rd mooring balloon when the spring constant of the elastic member shown in FIG. 4 is small and the expansion width of the elastic member accompanying the increase in a wind speed is large, (a) is the 1st of the 3rd mooring balloon. It is a figure which shows a state, (b) is a figure which shows the 2nd state of a 3rd mooring balloon, (c) is a figure which shows the 3rd state of a 3rd mooring balloon, (d) is a 3rd It is a figure which shows the 4th state of a mooring balloon, (e) is a figure which shows the length of the mooring sub rope and elastic member of the 3rd mooring balloon in the state 1 state shown to (a), (f) is a figure which shows the length of the mooring sub rope and elastic member of the 3rd mooring balloon in the 2nd state shown to (b), (g) is the 3rd and 3rd shown to (c) and (d). It is a figure which shows the length of the mooring sub rope and elastic member of the 3rd mooring balloon in a 4th state. 図4に示す弾性部材のばね定数が大きく風速の増加に伴う弾性部材の伸び幅が小さい場合の係留気球の動作を説明する図であり、(a)は第3係留気球の第1の状態を示す図であり、(b)は第3係留気球の第2の状態を示す図であり、(c)は第3係留気球の第3の状態を示す図であり、(d)は第3係留気球の第4の状態を示す図である。It is a figure explaining operation | movement of a mooring balloon when the spring constant of the elastic member shown in FIG. 4 is large, and the expansion width of an elastic member with the increase in a wind speed is small, (a) is a 1st state of a 3rd mooring balloon. (B) is a figure which shows the 2nd state of a 3rd mooring balloon, (c) is a figure which shows the 3rd state of a 3rd mooring balloon, (d) is a 3rd mooring figure It is a figure which shows the 4th state of a balloon. 空中に位置する第1実施形態に係る係留気球の斜視図である。It is a perspective view of the mooring balloon which concerns on 1st Embodiment located in the air. (a)は内部に気体が充填された気球の部分断面側面図であり、(b)は内部に気体が充填された気球の底面図である。(A) is a partial cross-sectional side view of a balloon filled with gas, and (b) is a bottom view of the balloon filled with gas. 図7に示すスクープの平面図である。It is a top view of the scoop shown in FIG. (a)は図7に示す第1弾性部材〜第3弾性部材の第1構成例を示す図であり、(b)は図7に示す第1弾性部材〜第3弾性部材の第2構成例を示す図であり、(c)は図7に示す第1弾性部材〜第3弾性部材の第3構成例を示す図であり、(d)は図7に示す第1弾性部材〜第3弾性部材の第4構成例を示す図である。(A) is a figure which shows the 1st structural example of the 1st elastic member-3rd elastic member shown in FIG. 7, (b) is the 2nd structural example of the 1st elastic member-3rd elastic member shown in FIG. (C) is a figure which shows the 3rd structural example of the 1st elastic member-3rd elastic member shown in FIG. 7, (d) is a 1st elastic member-3rd elasticity shown in FIG. It is a figure which shows the 4th structural example of a member. 図7に示す第1係留副索〜第3係留副索及び第1弾性部材〜第3弾性部材の長さを示す図である。It is a figure which shows the length of the 1st mooring subline-3rd mooring subline and the 1st elastic member-the 3rd elastic member which are shown in FIG. 図7に示す係留気球が風を受けたときの姿勢を示す図であり、(a)は第1弾性部材〜第3弾性部材の何れも伸びていない第1の状態を示し、(b)は第1弾性部材のみが伸びる第2の状態を示し、(c)は第1弾性部材及び第2弾性部材が伸びる第3の状態を示し、(d)は第1弾性部材〜第3弾性部材の全てが伸びる第4の状態を示す。FIG. 8 is a view showing a posture when the mooring balloon shown in FIG. 7 receives wind; (a) shows a first state where none of the first elastic member to the third elastic member is extended; Only the 1st elastic member shows the 2nd state which extends, (c) shows the 3rd state where the 1st elastic member and the 2nd elastic member extend, (d) shows the 1st elastic member-the 3rd elastic member. A fourth state in which everything is extended is shown. 図12に示す第1弾性部材〜第3弾性部材を含む部分拡大図であり、(a)は第1弾性部材〜第3弾性部材の何れも伸びていない第1の状態を示し、(b)は第1弾性部材のみが伸びる第2の状態を示し、(c)は第1弾性部材及び第2弾性部材が伸びる第3の状態を示し、(d)は第1弾性部材〜第3弾性部材の全てが伸びる第4の状態を示す。It is the elements on larger scale including the 1st elastic member-the 3rd elastic member shown in Drawing 12, (a) shows the 1st state where none of the 1st elastic member-the 3rd elastic member is extended, (b) Shows a second state in which only the first elastic member extends, (c) shows a third state in which the first elastic member and the second elastic member extend, and (d) shows a first elastic member to a third elastic member. 4 shows a fourth state in which all of are extended. (a)は風速と風力の関係を示す図であり、(b)は風速、風力及び弾性部材の伸びとの関係を示す第1の図であり、(c)は風速、風力及び弾性部材の伸びとの関係を示す第2の図である。(A) is a figure which shows the relationship between a wind speed and a wind force, (b) is a 1st figure which shows the relationship between a wind speed, a wind force, and the expansion | extension of an elastic member, (c) is a wind speed, a wind force, and an elastic member. It is a 2nd figure which shows the relationship with elongation. 空中に位置する第2実施形態に係る係留気球の斜視図である。It is a perspective view of the mooring balloon which concerns on 2nd Embodiment located in the air. (a)は図15に示す第1弾性部材〜第3弾性部材の第1構成例を示す図であり、(b)は図15に示す第1弾性部材〜第3弾性部材の第2構成例を示す図であり、(c)は図15に示す第1弾性部材〜第3弾性部材の第3構成例を示す図であり、(d)は図15に示す第1弾性部材〜第3弾性部材の第4構成例を示す図である。(A) is a figure which shows the 1st structural example of the 1st elastic member-3rd elastic member shown in FIG. 15, (b) is the 2nd structural example of the 1st elastic member-3rd elastic member shown in FIG. (C) is a figure which shows the 3rd structural example of the 1st elastic member-3rd elastic member shown in FIG. 15, (d) is the 1st elastic member-3rd elasticity shown in FIG. It is a figure which shows the 4th structural example of a member. 図15に示す第1係留副索〜第3係留副索及び第1弾性部材〜第3弾性部材の長さを示す図である。It is a figure which shows the length of the 1st mooring subline-3rd mooring subline and the 1st elastic member-the 3rd elastic member which are shown in FIG. 図15に示す係留気球が風を受けたときの姿勢を示す図であり、(a)は第1弾性部材〜第3弾性部材の何れも伸びていない第1の状態を示し、(b)は第1弾性部材が支配的に伸びる第2の状態を示し、(c)は第2弾性部材が支配的に伸びる第3の状態を示し、(d)は第3弾性部材が支配的に伸びる第4の状態を示す。It is a figure which shows the attitude | position when the mooring balloon shown in FIG. 15 received the wind, (a) shows the 1st state which none of the 1st elastic member-the 3rd elastic member are extended, (b) is The second state in which the first elastic member predominantly extends is shown, (c) shows the third state in which the second elastic member predominantly extends, and (d) shows the second state in which the third elastic member predominantly extends. 4 shows the state. 空中に位置する第3実施形態に係る係留気球の斜視図である。It is a perspective view of the mooring balloon which concerns on 3rd Embodiment located in the air. 図19に示す第1係留副索〜第3係留副索及び第1弾性部材〜第3弾性部材の長さを示す図である。It is a figure which shows the length of the 1st mooring subline-3rd mooring subline and the 1st elastic member-the 3rd elastic member which are shown in FIG. 図19に示す係留気球が風を受けたときの姿勢を示す図であり、(a)は第1弾性部材〜第3弾性部材の何れも伸びていない第1の状態を示し、(b)は第1弾性部材が支配的に伸びる第2の状態を示し、(c)は第2弾性部材が支配的に伸びる第3の状態を示し、(d)は第3弾性部材が支配的に伸びる第4の状態を示す。It is a figure which shows the attitude | position when the mooring balloon shown in FIG. 19 received the wind, (a) shows the 1st state which none of the 1st elastic member-the 3rd elastic member are extended, (b) is The second state in which the first elastic member predominantly extends is shown, (c) shows the third state in which the second elastic member predominantly extends, and (d) shows the second state in which the third elastic member predominantly extends. 4 shows the state. ばね定数が異なる複数の弾性部材を含む弾性部材群の形成の例を示す図であり、(a)は第1の例を示し、(b)は第2の例を示し、(c)は第3の例を示す。It is a figure which shows the example of formation of the elastic member group containing several elastic members from which a spring constant differs, (a) shows a 1st example, (b) shows a 2nd example, (c) is a 1st The example of 3 is shown.

以下の図面を参照して、本発明に係る係留気球について説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明との均等物に及ぶ点に留意されたい。   A mooring balloon according to the present invention will be described with reference to the following drawings. However, it should be noted that the technical scope of the present invention is not limited to these embodiments, and extends to equivalents to the invention described in the claims.

(実施形態に係る係留気球の概要)
実施形態に係る係留気球は、内部に気体が充填されたときに扁平形状になる気球の一端に接続された複数の係留索の何れか1つに接続された複数の弾性部材を含む弾性部材群を有する。実施形態に係る係留気球では、弾性部材群に含まれる複数の弾性部材の何れかが、係留気球が受ける風速より生じる風力に応じたばね定数で伸縮するため、気球の姿勢を一定に維持することができる。なお、本明細書で使用する場合、用語「ばね定数」は、金属製ばね、プラスティク性ばね、及びゴム等の弾性部材に印加される張力と弾性部材の伸びの間の比例関係を規定する定数を意味する。すなわち、ばね定数は、フックの法則のkに相当する定数である。
(Outline of the mooring balloon according to the embodiment)
The mooring balloon according to the embodiment includes an elastic member group including a plurality of elastic members connected to any one of a plurality of mooring lines connected to one end of a balloon that becomes flat when the inside is filled with gas. Have In the mooring balloon according to the embodiment, any one of the plurality of elastic members included in the elastic member group expands and contracts with a spring constant corresponding to the wind force generated by the wind speed received by the mooring balloon, so that the attitude of the balloon can be maintained constant. it can. As used herein, the term “spring constant” defines a proportional relationship between tension applied to an elastic member such as a metal spring, a plastic spring, and rubber and the elongation of the elastic member. Means a constant. That is, the spring constant is a constant corresponding to k in Hooke's law.

(関連する係留気球の課題)
実施形態に係る係留気球について説明する前に、実施形態に係る係留気球に関連する係留気球の課題について、簡単に説明する。
(Related mooring balloon issues)
Before describing the mooring balloon according to the embodiment, the problem of the mooring balloon related to the mooring balloon according to the embodiment will be briefly described.

図1(a)は実施形態に係る係留気球に関連する第1係留気球の第1の状態を示す図であり、図1(b)は図1(a)に示す第1係留気球の第2の状態を示す図である。図1(c)は実施形態に係る係留気球に関連する第2係留気球の第1の状態を示す図であり、図1(d)は図1(c)に示す第2係留気球の第2の状態を示す図である。図1では、第1の状態において第1係留気球が受ける風の風速は、第2の状態において第1係留気球が受ける風の風速よりも小さい。   Fig.1 (a) is a figure which shows the 1st state of the 1st mooring balloon relevant to the mooring balloon which concerns on embodiment, FIG.1 (b) is 2nd of the 1st mooring balloon shown to Fig.1 (a). It is a figure which shows the state of. FIG.1 (c) is a figure which shows the 1st state of the 2nd mooring balloon relevant to the mooring balloon which concerns on embodiment, FIG.1 (d) is the 2nd of the 2nd mooring balloon shown in FIG.1 (c). It is a figure which shows the state of. In FIG. 1, the wind speed received by the first mooring balloon in the first state is lower than the wind speed received by the first mooring balloon in the second state.

第1係留気球901及び第2係留気球902のそれぞれは、内部に気体が充填されたときに扁平形状になる気球910と、気球の風下に位置するスクープ920と、気球910と不図示の係留装置とを接続する係留索930とを有する。係留索は、それぞれの一端が気球910に接合された第1係留副索931、第2係留副索932及び第3係留副索933と、第1係留副索931、第2係留副索932及び第3係留副索933に結節点934を介して接続された係留主索935とを有する。不図示の係留装置が係留主索935を巻き出し、又は巻き取ることにより、気球910が係留される位置が決定される。   Each of the first mooring balloon 901 and the second mooring balloon 902 includes a balloon 910 that becomes flat when the inside is filled with a gas, a scoop 920 that is positioned leeward of the balloon, a balloon 910, and a mooring device (not shown). And a mooring line 930 for connecting the two. The mooring lines include a first mooring subline 931, a second mooring subline 932, a third mooring subline 933, a first mooring subline 931, a second mooring subline 932, and one ends of which are joined to the balloon 910. A mooring main line 935 connected to the third mooring subline 933 through a node 934 is provided. A mooring device (not shown) unwinds or winds the mooring main rope 935, whereby the position where the balloon 910 is moored is determined.

第1係留気球901は、図1(a)に示すように、第1係留気球901が受ける風の風速が略ゼロ又は微風のときに気球910の長手方向が水平方向と略平行になるように第1係留副索931、第2係留副索932及び第3係留副索933の長さが規定される。第1係留気球901は、第1係留気球901が受ける風の風速の増加に従って、スクープ920が受ける風圧が増加して、図1(b)に示すように、気球910の長手方向が水平方向に対して傾斜角を有する姿勢になり、気球910の姿勢が不安定になるおそれがある。   As shown in FIG. 1A, the first mooring balloon 901 is arranged such that the longitudinal direction of the balloon 910 is substantially parallel to the horizontal direction when the wind speed of the wind received by the first mooring balloon 901 is substantially zero or light. The lengths of the first mooring subline 931, the second mooring subline 932, and the third mooring subline 933 are defined. In the first mooring balloon 901, as the wind speed of the wind received by the first mooring balloon 901 increases, the wind pressure received by the scoop 920 increases, and as shown in FIG. 1B, the longitudinal direction of the balloon 910 becomes horizontal. On the other hand, the posture has an inclination angle, and the posture of the balloon 910 may become unstable.

一方、第2係留気球902は、第2係留気球902が比較的大きな風速を有する風を受けたときに、気球910の長手方向が水平方向と略平行になるように、第1係留気球901の第3係留副索933よりも長い第3係留副索933が配置される。第2係留気球902は、図1(d)に示すように、第2係留気球902が受ける風の風速が比較的大きいときに気球910の長手方向が水平方向と略平行になるように第1係留副索931、第2係留副索932及び第3係留副索933の長さが規定される。しかしながら、第2係留気球902は、第2係留気球902が受ける風の風速が略ゼロ又は微風のとき、図1(c)に示すように、気球910の長手方向が水平方向に対して傾斜角を有する姿勢になり、気球910の姿勢が不安定になるおそれがある。   On the other hand, when the second mooring balloon 902 receives wind having a relatively large wind speed, the second mooring balloon 902 is arranged such that the longitudinal direction of the balloon 910 is substantially parallel to the horizontal direction. A third mooring subline 933 longer than the third mooring subline 933 is arranged. As shown in FIG. 1 (d), the second mooring balloon 902 is configured so that the longitudinal direction of the balloon 910 is substantially parallel to the horizontal direction when the wind speed of the wind received by the second mooring balloon 902 is relatively high. The lengths of the mooring subline 931, the second mooring subline 932, and the third mooring subline 933 are defined. However, when the wind speed of the wind received by the second mooring balloon 902 is substantially zero or a slight wind, the second mooring balloon 902 has an inclination angle with respect to the horizontal direction of the balloon 910 as shown in FIG. The posture of the balloon 910 may become unstable.

次に、係留時に風下に位置する係留副索に弾性部材を接続する係留気球について説明する。図2(a)は弾性部材が接続された第1構成例を示す図であり、図2(b)は弾性部材が接続された第2構成例を示す図であり、図2(c)は弾性部材が接続された第3構成例を示す図であり、図2(d)は弾性部材が接続された第4構成例を示す図である。図3(a)は図2(a)の弾性部材に張力が印加された状態を示す図であり、図3(b)は図2(b)の弾性部材に張力が印加された状態を示す図である。図3(c)は図2(c)の弾性部材に張力が印加された状態を示す図であり、図3(d)は図2(d)の弾性部材に張力が印加された状態を示す図である。   Next, a mooring balloon in which an elastic member is connected to a mooring subline that is located leeward when mooring will be described. 2A is a diagram showing a first configuration example in which an elastic member is connected, FIG. 2B is a diagram showing a second configuration example in which an elastic member is connected, and FIG. It is a figure which shows the 3rd structural example to which the elastic member was connected, FIG.2 (d) is a figure which shows the 4th structural example to which the elastic member was connected. 3A is a diagram showing a state in which tension is applied to the elastic member in FIG. 2A, and FIG. 3B shows a state in which tension is applied to the elastic member in FIG. 2B. FIG. 3C is a diagram showing a state in which tension is applied to the elastic member in FIG. 2C, and FIG. 3D is a diagram in which tension is applied to the elastic member in FIG. 2D. FIG.

図2(a)及び3(a)に示す第1構成例では、張力が印加される前の弾性部材の長さは、第1係留副索及び第2係留副索の長さと同一である。図2(b)〜2(d)及び3(b)〜3(d)に示す第2構成例〜第4構成例では、張力が印加される前の弾性部材の長さは、第1係留副索及び第2係留副索の長さよりも短い。第2構成例では、弾性部材の一端は第1副係留索〜第3副係留索の結節点に接続され、弾性部材の他端は第3副係留索の他端及びに気球に補助係留索を介して接続される。第3構成例では、弾性部材の一端は第1副係留索〜第3副係留索の結節点に補助係留索を介して接続され、弾性部材の他端は第3副係留索の他端及びに気球に接続される。第4構成例では、弾性部材の一端は第1副係留索〜第3副係留索の結節点に第1補助係留索を介して接続され、弾性部材の他端は第3副係留索の他端及びに気球に第2補助係留索を介して接続される。以下、第4構成例に基づいて、係留時に風下に位置する係留副索に弾性部材を接続する係留気球について説明する。   In the first configuration example shown in FIGS. 2 (a) and 3 (a), the length of the elastic member before the tension is applied is the same as the lengths of the first mooring subline and the second mooring subline. In the second configuration example to the fourth configuration example shown in FIGS. 2B to 2D and 3B to 3D, the length of the elastic member before the tension is applied is the first mooring. It is shorter than the length of the sub rope and the second mooring sub rope. In the second configuration example, one end of the elastic member is connected to the node of the first sub mooring line to the third sub mooring line, and the other end of the elastic member is the auxiliary mooring line to the other end of the third sub mooring line and the balloon. Connected through. In the third configuration example, one end of the elastic member is connected to a node between the first sub mooring line to the third sub mooring line via an auxiliary mooring line, and the other end of the elastic member is the other end of the third sub mooring line and Connected to the balloon. In the fourth configuration example, one end of the elastic member is connected to the node of the first sub mooring line to the third sub mooring line via the first auxiliary mooring line, and the other end of the elastic member is other than the third sub mooring line. Connected to the end and the balloon via a second auxiliary mooring line. Hereinafter, based on the fourth configuration example, a mooring balloon in which an elastic member is connected to a mooring subline positioned in the lee during mooring will be described.

図4(a)は実施形態に係る係留気球に関連する第3係留気球の第1の状態を示す図であり、図4(b)は図4(a)に示す第3係留気球の第2の状態を示す図である。図4(c)は図4(a)に示す状態での第3係留気球の係留副索の長さを示す図であり、図4(d)は図4(b)に示す状態での第3係留気球の係留副索及び弾性部材の長さを示す図である。図4では、図1と同様に、第1の状態において第2係留気球902が受ける風の風速は、第2の状態において第2係留気球902が受ける風の風速よりも小さい。   FIG. 4A is a diagram showing a first state of the third mooring balloon related to the mooring balloon according to the embodiment, and FIG. 4B is a second state of the third mooring balloon shown in FIG. It is a figure which shows the state of. 4 (c) is a diagram showing the length of the mooring sub-line of the third mooring balloon in the state shown in FIG. 4 (a), and FIG. 4 (d) is a diagram showing the length in the state shown in FIG. 4 (b). It is a figure which shows the length of the mooring sub rope of 3 mooring balloons, and an elastic member. In FIG. 4, similarly to FIG. 1, the wind speed received by the second mooring balloon 902 in the first state is smaller than the wind speed of the wind received by the second mooring balloon 902 in the second state.

第3係留気球903は、第3係留副索933に接続された弾性部材950を有することが第1係留気球901及び第2係留気球902と相違する。図4(a)に示すように、第3係留気球903が受ける風の風速が略ゼロ又は微風のとき、弾性部材950に並列に接続される第3係留副索933の長さは、弾性部材950の長さよりも長く、気球910の長手方向が水平方向と略平行になる。第3係留気球903は、第3係留気球903が受ける風の風速の増加に従って長くなる。第3係留気球903は、図4(b)に示すように、第3係留気球903が受ける風の風速の増加に従って弾性部材950の長さが長くなることにより、気球910の長手方向が水平方向と略平行になる。   The third mooring balloon 903 differs from the first mooring balloon 901 and the second mooring balloon 902 in that it has an elastic member 950 connected to the third mooring sub-line 933. As shown in FIG. 4A, when the wind speed of the wind received by the third mooring balloon 903 is substantially zero or light wind, the length of the third mooring subline 933 connected in parallel to the elastic member 950 is the elastic member. Longer than the length of 950, the longitudinal direction of the balloon 910 is substantially parallel to the horizontal direction. The third mooring balloon 903 becomes longer as the wind speed of the wind received by the third mooring balloon 903 increases. As shown in FIG. 4B, the third mooring balloon 903 has a longer length of the elastic member 950 as the wind speed of the wind received by the third mooring balloon 903 increases, so that the longitudinal direction of the balloon 910 is horizontal. And become almost parallel.

しかしながら、第3係留気球903は、弾性部材950のばね定数の選択が容易ではないという課題がある。第3係留気球903は、弾性部材950のばね定数が小さく風速の増加に伴う弾性部材950の伸び幅が大きいとき、弾性部材950が伸び切る風速以上の風を第3係留気球903が受けた場合、気球910の長手方向が水平方向に対して傾斜角を有する姿勢になる。一方、第3係留気球903は、弾性部材950のばね定数が大きく風速の増加に伴う弾性部材950の伸び幅が小さいとき、比較的風速が小さい風を第3係留気球903が受けた場合、気球910の長手方向が水平方向に対して傾斜角を有する姿勢になる。   However, the third mooring balloon 903 has a problem that it is not easy to select the spring constant of the elastic member 950. When the third mooring balloon 903 receives a wind at or above the wind speed at which the elastic member 950 extends when the elastic member 950 has a small spring constant and the elastic member 950 has a large expansion width as the wind speed increases. The longitudinal direction of the balloon 910 has an inclination angle with respect to the horizontal direction. On the other hand, when the third mooring balloon 903 receives a relatively low wind speed when the elastic member 950 has a large spring constant and the elastic member 950 has a small expansion width as the wind speed increases, The longitudinal direction of 910 has an inclination angle with respect to the horizontal direction.

図5は、弾性部材950のばね定数が小さく風速の増加に伴う弾性部材950の伸び幅が大きい場合の係留気球903の動作を説明する図である。図5(a)は第3係留気球の第1の状態を示す図であり、図5(b)は第3係留気球の第2の状態を示す図であり、図5(c)は第3係留気球の第3の状態を示す図であり、図5(d)は第3係留気球の第4の状態を示す図である。図5(e)は図5(a)に示す状第1の態での第3係留気球の係留副索及び弾性部材の長さを示す図であり、図5(f)は図5(b)に示す第2の状態での第3係留気球の係留副索及び弾性部材の長さを示す図である。図5(g)は図5(c)及び5(d)に示す第3及び第4の状態での第3係留気球の係留副索及び弾性部材の長さを示す図である。図5に示す第3係留気球903の弾性部材950のばね定数は比較的小さい。図5(b)に示す第2の状態において第3係留気球903が受ける風の風速は、図5(a)に示す第1の状態において気球910が受ける風の風速よりも大きい。また、図5(c)に示す第3の状態において気球910が受ける風の風速は、図5(b)に示す第2の状態において第3係留気球903が受ける風の風速よりも大きい。そして、図5(d)に示す第4の状態において第3係留気球903が受ける風の風速は、図5(c)に示す第3の状態において第3係留気球903が受ける風の風速よりも大きい。   FIG. 5 is a diagram for explaining the operation of the mooring balloon 903 when the elastic constant of the elastic member 950 is small and the expansion width of the elastic member 950 is large as the wind speed increases. FIG. 5 (a) is a diagram showing a first state of the third mooring balloon, FIG. 5 (b) is a diagram showing a second state of the third mooring balloon, and FIG. 5 (c) is a diagram showing the third state. It is a figure which shows the 3rd state of a mooring balloon, FIG.5 (d) is a figure which shows the 4th state of a 3rd mooring balloon. FIG.5 (e) is a figure which shows the length of the mooring sub rope and elastic member of the 3rd mooring balloon in the 1st state shown to Fig.5 (a), FIG.5 (f) is FIG.5 (b). It is a figure which shows the length of the mooring sub rope and elastic member of the 3rd mooring balloon in the 2nd state shown to). FIG. 5G is a view showing the lengths of the anchoring sub-line and the elastic member of the third anchoring balloon in the third and fourth states shown in FIGS. 5C and 5D. The spring constant of the elastic member 950 of the third mooring balloon 903 shown in FIG. 5 is relatively small. The wind speed received by the third mooring balloon 903 in the second state shown in FIG. 5B is higher than the wind speed received by the balloon 910 in the first state shown in FIG. In addition, the wind speed of the wind received by the balloon 910 in the third state shown in FIG. 5C is larger than the wind speed of the wind received by the third moored balloon 903 in the second state shown in FIG. And the wind speed of the wind which the 3rd mooring balloon 903 receives in the 4th state shown in Drawing 5 (d) is higher than the wind speed of the wind which the 3rd mooring balloon 903 receives in the 3rd state shown in Drawing 5 (c). large.

図5に示す例では、第3係留気球903は、第1の状態から第3の状態までは、風速の増加に応じて弾性部材950の長さが長くなることにより、気球910の長手方向が水平方向と略平行になる姿勢を維持する。しかしながら、第3係留気球903は、第4の状態では、弾性部材950が伸び切る風速以上の風を第3係留気球903が受けることにより、気球910の長手方向が水平方向と略平行になる姿勢を維持できなくなる。   In the example shown in FIG. 5, the third mooring balloon 903 has a longitudinal direction of the balloon 910 that increases from the first state to the third state as the length of the elastic member 950 increases as the wind speed increases. Maintain a posture that is approximately parallel to the horizontal direction. However, in the fourth state, the third mooring balloon 903 is in a posture in which the longitudinal direction of the balloon 910 is substantially parallel to the horizontal direction when the third mooring balloon 903 receives a wind at or above the wind speed at which the elastic member 950 extends. Cannot be maintained.

図6は、弾性部材950のばね定数が大きく風速の増加に伴う弾性部材950の伸び幅が小さい場合の係留気球903の動作を説明する図である。図6(a)は第3係留気球の第1の状態を示す図であり、図6(b)は第3係留気球の第2の状態を示す図であり、図6(c)は第3係留気球の第3の状態を示す図であり、図6(d)は第3係留気球の第4の状態を示す図である。図4に示す第3係留気球903の弾性部材950のばね定数は比較的大きい。図6(a)〜6(d)において、第3係留気球903が受ける風の風速は、図5(a)〜5(d)と同様に、第1の状態が一番小さく、第2の状態、第3の状態及び第4の順で大きくなり、第4の状態が一番大きい。   FIG. 6 is a diagram for explaining the operation of the mooring balloon 903 when the spring constant of the elastic member 950 is large and the expansion width of the elastic member 950 is small as the wind speed increases. 6A is a diagram showing a first state of the third mooring balloon, FIG. 6B is a diagram showing a second state of the third mooring balloon, and FIG. 6C is a diagram showing the third state. It is a figure which shows the 3rd state of a mooring balloon, FIG.6 (d) is a figure which shows the 4th state of a 3rd mooring balloon. The spring constant of the elastic member 950 of the third mooring balloon 903 shown in FIG. 4 is relatively large. 6 (a) to 6 (d), the wind speed of the wind received by the third mooring balloon 903 is the smallest in the first state as in FIGS. 5 (a) to 5 (d). The state increases in the order of the state, the third state, and the fourth state, and the fourth state is the largest.

図6に示す例では、第3係留気球903は、第3係留気球903が受ける風の風速が略ゼロ又は微風の第1の状態及び風速が一番大きい第4の状態では、気球910の長手方向が水平方向と略平行になる姿勢を維持する。しかしながら、第3係留気球903は、第2の状態及び第3の状態では、第3係留気球903が受ける風速に応じた弾性部材910の伸びの長さが十分ではなく、気球910の長手方向が水平方向と略平行になる姿勢を維持することができない。   In the example shown in FIG. 6, the third mooring balloon 903 has the longitudinal direction of the balloon 910 in the first state where the wind speed of the wind received by the third mooring balloon 903 is substantially zero or in the first state where the wind speed is the highest and in the fourth state where the wind speed is the highest. Maintain a posture in which the direction is substantially parallel to the horizontal direction. However, in the second state and the third state, the third mooring balloon 903 has an insufficient length of extension of the elastic member 910 corresponding to the wind speed received by the third mooring balloon 903, and the longitudinal direction of the balloon 910 is A posture that is substantially parallel to the horizontal direction cannot be maintained.

図3〜6を参照して説明されたように、第3係留気球903は、弾性部材950のばね定数の選択が容易ではないという課題を有する。実施形態の係る係留気球は、第3係留気球903の課題を解決するものである。   As described with reference to FIGS. 3 to 6, the third mooring balloon 903 has a problem that it is not easy to select the spring constant of the elastic member 950. The mooring balloon according to the embodiment solves the problem of the third mooring balloon 903.

(第1実施形態に係る係留気球の構成及び機能)
図7は、空中に位置する第1実施形態に係る係留気球の斜視図である。
(Configuration and function of the mooring balloon according to the first embodiment)
FIG. 7 is a perspective view of the mooring balloon according to the first embodiment located in the air.

係留気球1は、気球10と、スクープ20と、係留索30と、中継局40と、弾性部材群50とを有する。係留索30は、第1係留副索31〜第3係留副索33と、結節点34を介して第1係留副索31〜第3係留副索33と接続される係留主索35とを有する。弾性部材群50は、第1弾性部材51〜第3弾性部材53を有する。   The mooring balloon 1 includes a balloon 10, a scoop 20, a mooring line 30, a relay station 40, and an elastic member group 50. The mooring line 30 includes a first mooring line 31 to a third mooring line 33 and a mooring main line 35 connected to the first mooring line 31 to the third mooring line 33 via a node 34. . The elastic member group 50 includes a first elastic member 51 to a third elastic member 53.

図8(a)は内部に気体が充填された気球10の部分断面側面図であり、図8(b)は内部に気体が充填された気球10の底面図である。   FIG. 8A is a partial sectional side view of the balloon 10 filled with gas inside, and FIG. 8B is a bottom view of the balloon 10 filled with gas inside.

気球10は、外袋11と、ヘリウム収納袋12と、空気収納袋13と、ペイロード用ドーム14と、3つの係留索取付け部15とを有する。気球10は、ヘリウム収納袋12及び空気収納袋13と外袋11との二重構造となっているので、外袋11は、ガスバリア性を有する材料で形成される必要はない。外袋11は、合成繊維等の堅固、軽量且つ風を通さない材料で形成される。ヘリウム収納袋12は、ヘリウムを充填する袋であり、外袋11と比較して強度及び耐久性が低く且つ軽量な材料により形成される。例えば、ヘリウム収納袋12は、プラスチックフィルムを溶着することにより形成される。空気収納袋13は、外袋11と比較して強度及び耐久性が低く且つ軽量な材料により形成される。空気収納袋13は、ヘリウム収納袋12と同様に、プラスチックフィルムを溶着することにより形成される。ペイロード用ドーム14は、有底の円筒状の部材であり、底部が空気収納袋13に接するように配置される。ペイロード用ドーム14は、発泡スチロール等の堅固且つ軽量な素材により形成される。ペイロード用ドーム14の凹部には、中継局40が配置される。   The balloon 10 includes an outer bag 11, a helium storage bag 12, an air storage bag 13, a payload dome 14, and three mooring line attachment portions 15. Since the balloon 10 has a double structure of the helium storage bag 12 and the air storage bag 13 and the outer bag 11, the outer bag 11 does not need to be formed of a material having gas barrier properties. The outer bag 11 is formed of a rigid, lightweight and air-tight material such as synthetic fiber. The helium storage bag 12 is a bag filled with helium, and is formed of a material that is lower in strength and durability than the outer bag 11 and is light in weight. For example, the helium storage bag 12 is formed by welding a plastic film. The air storage bag 13 is made of a lightweight material that has lower strength and durability than the outer bag 11. Similar to the helium storage bag 12, the air storage bag 13 is formed by welding a plastic film. The payload dome 14 is a cylindrical member with a bottom, and is arranged so that the bottom is in contact with the air storage bag 13. The payload dome 14 is made of a rigid and lightweight material such as polystyrene foam. A relay station 40 is disposed in the concave portion of the payload dome 14.

気球10は、ヘリウム収納袋12にヘリウムが充填され且つ空気収納袋13に空気が充填されているとき、高さ方向に短軸を有する回転楕円体状の形状を有する。すなわち、内部に気体が充填されているとき、気球10は、円形状の平面形状を有し且つ楕円状の正面形状を有する扁平形状となる。一例では、気球10は、直径4.6[m]の円状の平面形状を有し且つ、長径4.6[m]、短径2.66[m]の楕円状の正面形状を有する。   The balloon 10 has a spheroid shape having a minor axis in the height direction when the helium storage bag 12 is filled with helium and the air storage bag 13 is filled with air. That is, when the inside is filled with gas, the balloon 10 has a flat shape having a circular plane shape and an elliptical front shape. In one example, the balloon 10 has a circular planar shape with a diameter of 4.6 [m], and an elliptical front shape with a major axis of 4.6 [m] and a minor axis of 2.66 [m].

3つの係留索取付け部15は、正面から見たときに長径に沿うように気球10の表面に配置される。3つの係留索取付け部15のそれぞれは、第1係留副索31〜第3係留副索33の何れか1つの一端に接続される。スクープ20が接合される部分に近接する位置に配置される係留索取付け部15には、第3係留副索33の一端が接続され、他の2つの係留索取付け部15には、第1係留副索31及び第2係留副索32の一端がそれぞれ接続される。気球10は、気球10が空中に係留されているとき、スクープ20が風下に位置する姿勢を維持する。気球10が空中で係留されるときにスクープ20が風下に位置する姿勢を維持するため、第3係留副索33は、第1係留副索31及び第2係留副索32の風下に位置する。   The three mooring line attachment portions 15 are arranged on the surface of the balloon 10 so as to follow the long diameter when viewed from the front. Each of the three mooring line attachment portions 15 is connected to one end of any one of the first mooring line 31 to the third mooring line 33. One end of a third mooring sub-line 33 is connected to the mooring line attachment part 15 disposed at a position close to the portion to which the scoop 20 is joined, and the other two mooring line attachment parts 15 are connected to the first mooring line attachment part 15. One ends of the sub rope 31 and the second mooring sub rope 32 are connected to each other. The balloon 10 maintains the posture in which the scoop 20 is located leeward when the balloon 10 is moored in the air. The third mooring subline 33 is positioned leeward of the first mooring subline 31 and the second mooring subline 32 in order to maintain the posture in which the scoop 20 is positioned leeward when the balloon 10 is moored in the air.

図9は、スクープ20の平面図である。   FIG. 9 is a plan view of the scoop 20.

スクープ20は、一方の面から他方の面に空気を透過するように編み込まれたポリエステルにより形成される可とう性の面21を有する膜材である。スクープ20は、姿勢安定膜とも称される。スクープ20は、底辺23と、底辺23の反対に位置する頂角28で一端が接続された第1等辺24及び第2等辺25と、底辺23の両端から第1等辺24及び第2等辺25の他端にそれぞれ伸びる第1切欠辺26及び第2切欠辺27とにより囲まれた形状を有する。第1等辺24及び第2等辺25は互いに長さが等しく、第1切欠辺26及び第2切欠辺27は互いに長さが等しい。すなわち、スクープ20は、底角部分が切欠された二等辺三角形状に形成される。スクープ20の底辺23、第1切欠辺26及び第2切欠辺27のそれぞれの近傍で、気球10に接合される。スクープ20の頂角28には、スクープ20と第3係留副索33とを接続する接続索29が接続される。スクープ20の頂角28と第3係留副索33とが接続索29を介して接続されることにより、留気球10が空中に上げられたときに、ヨットの帆のようにスクープ20が風を受けて、気球10は、スクープ20が風下となるように風見安定する。   The scoop 20 is a film material having a flexible surface 21 formed of polyester woven so as to transmit air from one surface to the other surface. The scoop 20 is also referred to as a posture stabilizing film. The scoop 20 includes a base 23, a first equilateral side 24 and a second equilateral side 25 connected at one end at an apex angle 28 positioned opposite to the base 23, and a first equilateral side 24 and a second equilateral side 25 from both ends of the base 23. It has a shape surrounded by a first cutout side 26 and a second cutout side 27 that extend to the other end. The first equal side 24 and the second equal side 25 are equal in length to each other, and the first cut-out side 26 and the second cut-out side 27 are equal in length to each other. That is, the scoop 20 is formed in an isosceles triangle shape with a base corner portion notched. The scoop 20 is joined to the balloon 10 in the vicinity of the base 23, the first cut-out side 26, and the second cut-out side 27. A connecting line 29 that connects the scoop 20 and the third mooring subline 33 is connected to the apex angle 28 of the scoop 20. By connecting the apex angle 28 of the scoop 20 and the third mooring sub-line 33 via the connection line 29, the scoop 20 winds like a sail of a yacht when the balloon 10 is lifted into the air. In response, the balloon 10 stabilizes the wind so that the scoop 20 becomes leeward.

第1係留副索31〜第3係留副索33のそれぞれは、係留気球1が空中にあるときに受ける風による張力で切断されない材料で形成される。第3係留副索33の一端はスクープ20が接合される部分に近接する位置に配置される係留索取付け部15に接続され、第1係留副索31及び第2係留副索32のそれぞれの一端は他の2つの係留索取付け部15に接続される。第1係留副索31〜第3係留副索33のそれぞれの他端は、結節点34において、係留主索33の一端と接続される。一例では、結節点34における第1係留副索31〜第3係留副索33のそれぞれの他端と係留主索33の一端とは、接続金具を介して接続される。第3係留副索33は、スクープ20の頂角と接続索29を介して接続される。一例では、第3係留副索33と接続索29とは、接続金具を介して接続される。   Each of the 1st mooring subline 31-the 3rd mooring subline 33 is formed with the material which is not cut | disconnected by the tension | tensile_strength by the wind received when the mooring balloon 1 exists in the air. One end of the third mooring subline 33 is connected to the mooring line attaching portion 15 disposed at a position close to the portion where the scoop 20 is joined, and one end of each of the first mooring subline 31 and the second mooring subline 32. Are connected to the other two mooring line attachments 15. The other end of each of the first mooring subline 31 to the third mooring subline 33 is connected to one end of the mooring main line 33 at the node 34. In one example, the other end of each of the first mooring subline 31 to the third mooring subline 33 at the node 34 and one end of the mooring main line 33 are connected via a connection fitting. The third mooring subline 33 is connected to the apex angle of the scoop 20 via the connection line 29. In one example, the third mooring sub-line 33 and the connection line 29 are connected via a connection fitting.

第3係留副索33の長さは、第1係留副索31及び第2係留副索32の長さよりも長く、第1係留副索31及び第2係留副索32の長さは互いに等しい。   The length of the 3rd mooring subline 33 is longer than the length of the 1st mooring subline 31 and the 2nd mooring subline 32, and the length of the 1st mooring subline 31 and the 2nd mooring subline 32 is mutually equal.

係留主索35は、第1係留副索31〜第3係留副索33と同様に、係留気球1が空中にあるときに受ける風による張力で切断されない材料で形成される。係留主索35の他端は、不図示の係留装置に接続される。係留主索35の他端に接続される係留装置から係留主索35が巻き出されるとき、気球10は巻出量に応じて空中に上昇し、係留装置から係留主索35が巻き取られるとき、気球10は巻取量に応じて空中から下降する。   The mooring main rope 35 is formed of a material that is not cut by the tension of the wind received when the mooring balloon 1 is in the air, like the first mooring subline 31 to the third mooring subline 33. The other end of the mooring main rope 35 is connected to a mooring device (not shown). When the mooring main rope 35 is unwound from the mooring device connected to the other end of the mooring main rope 35, the balloon 10 rises in the air according to the unwinding amount, and when the mooring main rope 35 is taken up from the mooring device. The balloon 10 descends from the air according to the winding amount.

中継局40は、不図示の中継用アンテナ及び対移動局用アンテナを有し、移動体通信網に接続される基地局と、基地局がカバーしていたエリア内に位置する携帯端末との間の通信網を形成する。   The relay station 40 has a relay antenna and a mobile station antenna (not shown), and is between a base station connected to the mobile communication network and a mobile terminal located in an area covered by the base station. A communication network.

次に、第1弾性部材51〜第3弾性部材53について説明する。図10(a)は第1弾性部材51〜第3弾性部材53の第1構成例を示す図であり、図10(b)は第1弾性部材51〜第3弾性部材53の第2構成例を示す図である。図10(c)は第1弾性部材51〜第3弾性部材53の第3構成例を示す図であり、図10(d)は第1弾性部材51〜第3弾性部材53の第4構成例を示す図である。   Next, the first elastic member 51 to the third elastic member 53 will be described. FIG. 10A is a diagram illustrating a first configuration example of the first elastic member 51 to the third elastic member 53, and FIG. 10B is a second configuration example of the first elastic member 51 to the third elastic member 53. FIG. FIG. 10C is a diagram illustrating a third configuration example of the first elastic member 51 to the third elastic member 53, and FIG. 10D is a fourth configuration example of the first elastic member 51 to the third elastic member 53. FIG.

図10(a)に示す第1構成例では、張力が印加される前の第1弾性部材〜第3弾性部材の長さは、第1係留副索及び第2係留副索の長さと同一である。図10(b)〜10(d)に示す第2構成例〜第4構成例では、張力が印加される前の第1弾性部材〜第3弾性部材の長さは、第1係留副索及び第2係留副索の長さよりも短い。第2構成例では、第1弾性部材〜第3弾性部材の一端は第1副係留索〜第3副係留索の結節点に接続され、第1弾性部材〜第3弾性部材の他端は第3副係留索の他端及びに気球に第3副係留索を介して接続される。第3構成例では、第1弾性部材〜第3弾性部材の一端は第1副係留索〜第3副係留索の結節点に第3副係留索を介して接続され、第1弾性部材〜第3弾性部材の他端は第3副係留索の他端及びに気球に接続される。第4構成例では、第1弾性部材〜第3弾性部材の一端は第1副係留索〜第3副係留索の結節点に第3副係留索を介して接続され、第1弾性部材〜第3弾性部材の他端は第3副係留索の他端及びに気球に第3副係留索を介して接続される。以下、第4構成例に基づいて、第1弾性部材51〜第3弾性部材53について説明する。   In the first configuration example shown in FIG. 10A, the lengths of the first elastic member to the third elastic member before the tension is applied are the same as the lengths of the first mooring subline and the second mooring subline. is there. In the second configuration example to the fourth configuration example shown in FIGS. 10B to 10D, the lengths of the first elastic member to the third elastic member before the tension is applied are the first mooring subline and It is shorter than the length of the second mooring subline. In the second configuration example, one end of the first elastic member to the third elastic member is connected to a node of the first sub mooring line to the third sub mooring line, and the other end of the first elastic member to the third elastic member is the second one. The balloon is connected to the other end of the three sub mooring lines and the balloon via the third sub mooring lines. In the third configuration example, one end of the first elastic member to the third elastic member is connected to a node of the first sub mooring line to the third sub mooring line via the third sub mooring line, and the first elastic member to the first elastic member The other end of the three elastic members is connected to the balloon at the other end of the third sub mooring line. In the fourth configuration example, one end of the first elastic member to the third elastic member is connected to a node of the first sub mooring line to the third sub mooring line via the third sub mooring line, and the first elastic member to the first elastic member The other end of the three elastic members is connected to the other end of the third sub mooring line and the balloon via the third sub mooring line. Hereinafter, the first elastic member 51 to the third elastic member 53 will be described based on a fourth configuration example.

第1弾性部材51〜第3弾性部材53のそれぞれは、第3係留索33の結節点34の近接する位置に第3係留索33の一部と並列接続される。第1弾性部材51〜第3弾性部材53のそれぞれの一端は共に第3係留索33に接続され、第1弾性部材51〜第3弾性部材53のそれぞれの他端は共に第3係留索33に接続される。一例では、第1弾性部材51〜第3弾性部材53は、平ゴム又はコールゴムとも称される平板状のゴムひもから形成されてよく、またばね等の他の弾性部材から形成されてもよい。   Each of the first elastic member 51 to the third elastic member 53 is connected in parallel with a part of the third mooring line 33 at a position close to the node 34 of the third mooring line 33. One end of each of the first elastic member 51 to the third elastic member 53 is connected to the third mooring line 33, and the other end of each of the first elastic member 51 to the third elastic member 53 is connected to the third mooring line 33. Connected. In one example, the first elastic member 51 to the third elastic member 53 may be formed from a flat rubber string also called flat rubber or coal rubber, or may be formed from another elastic member such as a spring.

第1弾性部材51のばね定数は第2弾性部材52のばね定数よりも小さく、第2弾性部材52のばね定数は第3弾性部材53のばね定数よりも小さい。第1弾性部材51のばね定数が第2弾性部材52のばね定数よりも小さいので、同一の張力が印加された場合、第1弾性部材51の伸びは第2弾性部材52の伸びよりも大きい。また、第2弾性部材52のばね定数が第3弾性部材53のばね定数よりも小さいので、同一の張力が印加された場合、第2弾性部材52の伸びは第3弾性部材53の伸びよりも大きい。   The spring constant of the first elastic member 51 is smaller than the spring constant of the second elastic member 52, and the spring constant of the second elastic member 52 is smaller than the spring constant of the third elastic member 53. Since the spring constant of the first elastic member 51 is smaller than the spring constant of the second elastic member 52, the elongation of the first elastic member 51 is larger than the elongation of the second elastic member 52 when the same tension is applied. Further, since the spring constant of the second elastic member 52 is smaller than the spring constant of the third elastic member 53, when the same tension is applied, the elongation of the second elastic member 52 is larger than the elongation of the third elastic member 53. large.

第1弾性部材51の長さは第2弾性部材52の長さよりも短く、第2弾性部材52の長さは第3弾性部材53の長さよりも短い。第1弾性部材51〜第3弾性部材53のばね定数及び長さの関係は、ばね定数が一番小さい第1弾性部材51の長さが一番短く、ばね定数が二番目に小さい第1弾性部材51の長さが二番目に短く、ばね定数が最も大きい第3弾性部材53の長さが一番長くなる。また、第1弾性部材51〜第3弾性部材53のぞれぞれの両端に接続される間の第3係留副索33の長さは、第3弾性部材53の長さよりも長い。一例では、第1弾性部材51〜第3弾性部材53の間は、金属製のリングにより接続される。   The length of the first elastic member 51 is shorter than the length of the second elastic member 52, and the length of the second elastic member 52 is shorter than the length of the third elastic member 53. Regarding the relationship between the spring constant and the length of the first elastic member 51 to the third elastic member 53, the first elastic member 51 having the smallest spring constant has the shortest length, and the first elasticity has the second smallest spring constant. The length of the member 51 is the second shortest, and the length of the third elastic member 53 having the largest spring constant is the longest. The length of the third mooring subline 33 while being connected to both ends of each of the first elastic member 51 to the third elastic member 53 is longer than the length of the third elastic member 53. In one example, the first elastic member 51 to the third elastic member 53 are connected by a metal ring.

図11は、第1係留副索31〜第3係留副索33及び第1弾性部材51〜第3弾性部材53の長さを示す図である。図8において、双方向矢印L1は張力がゼロのときの第1弾性部材51の長さを示し、双方向矢印L2は張力がゼロのときの第2弾性部材51の長さを示し、双方向矢印L3は張力がゼロのときの第3弾性部材53の長さを示す。また、双方向矢印L4は、第1弾性部材51〜第3弾性部材53のぞれぞれの両端に接続される間の第3弾係留副索33の長さを示す。   FIG. 11 is a diagram illustrating the lengths of the first mooring sub-line 31 to the third mooring sub-line 33 and the first elastic member 51 to the third elastic member 53. In FIG. 8, the bidirectional arrow L1 indicates the length of the first elastic member 51 when the tension is zero, and the bidirectional arrow L2 indicates the length of the second elastic member 51 when the tension is zero. An arrow L3 indicates the length of the third elastic member 53 when the tension is zero. The bidirectional arrow L4 indicates the length of the third bullet mooring sub-line 33 while being connected to both ends of each of the first elastic member 51 to the third elastic member 53.

張力がゼロのときの第1弾性部材51〜第3弾性部材53のそれぞれの長さは、第3係留副索33の長さよりも短い。第1弾性部材51は、張力がゼロのときの長さL1から第1弾性部材51〜第3弾性部材53のぞれぞれの両端に接続される間の第3弾性部材53の長さL4まで伸びる。第2弾性部材52は、張力がゼロのときの長さL2から第1弾性部材51〜第3弾性部材53のぞれぞれの両端に接続される間の第3弾性部材53の長さL4まで伸びる。第3弾性部材53は、張力がゼロのときの長さL3から第1弾性部材51〜第3弾性部材53のぞれぞれの両端に接続される間の第3弾性部材53の長さL4まで伸びる。   The lengths of the first elastic member 51 to the third elastic member 53 when the tension is zero are shorter than the length of the third mooring subline 33. The first elastic member 51 has a length L4 of the third elastic member 53 while being connected to both ends of each of the first elastic member 51 to the third elastic member 53 from the length L1 when the tension is zero. It extends to. The second elastic member 52 has a length L4 of the third elastic member 53 while being connected to both ends of each of the first elastic member 51 to the third elastic member 53 from the length L2 when the tension is zero. It extends to. The third elastic member 53 has a length L4 of the third elastic member 53 while being connected to both ends of the first elastic member 51 to the third elastic member 53 from a length L3 when the tension is zero. It extends to.

図12は係留気球1が風を受けたときの姿勢を示す図であり、図13は図12の第1弾性部材51〜第3弾性部材53を含む部分拡大図である。図12(a)及び13(a)は第1弾性部材51〜第3弾性部材53の何れも伸びていない第1の状態を示し、図12(b)及び13(b)は第1弾性部材51のみが伸びる第2の状態を示す。図12(c)及び13(c)は第1弾性部材51及び第2弾性部材52が伸びる第3の状態を示し、図12(d)及び13(d)は第1弾性部材51〜第3弾性部材53の全てが伸びる第4の状態を示す。   12 is a view showing a posture when the mooring balloon 1 receives wind, and FIG. 13 is a partially enlarged view including the first elastic member 51 to the third elastic member 53 of FIG. 12A and 13A show a first state in which none of the first elastic member 51 to the third elastic member 53 is extended, and FIGS. 12B and 13B are the first elastic member. A second state in which only 51 extends is shown. FIGS. 12C and 13C show a third state in which the first elastic member 51 and the second elastic member 52 extend, and FIGS. 12D and 13D show the first elastic member 51 to the third elastic member. The 4th state which all the elastic members 53 extend is shown.

第1の状態では、第1弾性部材51〜第3弾性部材53の何れも伸びていないので、図13(a)において双方向矢印Laで示される第1弾性部材51〜第3弾性部材53の両端の間の距離は、張力がゼロのときの第1弾性部材51の長さL1と等しい。   In the first state, none of the first elastic member 51 to the third elastic member 53 extends, so that the first elastic member 51 to the third elastic member 53 indicated by the bidirectional arrow La in FIG. The distance between both ends is equal to the length L1 of the first elastic member 51 when the tension is zero.

第2の状態では、第1弾性部材51のみが伸びて、第2弾性部材52及び第3弾性部材53は弛んでいる。図13(b)において双方向矢印Lbで示される第1弾性部材51〜第3弾性部材53の両端の間の長さは、張力がゼロのときの第1弾性部材51の長さL1と張力がゼロのときの第2弾性部材52の長さL2との間の長さになる。第2の状態では、第2弾性部材52及び第3弾性部材53は弛んでいるので、スクープ20が受ける風により生じる張力は、第1弾性部材51のみに印加される。第2の状態では、図13(b)において双方向矢印Lbで示される第1弾性部材51〜第3弾性部材53の両端の間の距離は、スクープ20が受ける風により生じる張力及び第1弾性部材51のばね定数によって規定される。   In the second state, only the first elastic member 51 is extended, and the second elastic member 52 and the third elastic member 53 are loosened. The length between both ends of the first elastic member 51 to the third elastic member 53 indicated by the bidirectional arrow Lb in FIG. 13B is equal to the length L1 of the first elastic member 51 when the tension is zero. Is a length between the length L2 of the second elastic member 52 when is zero. In the second state, the second elastic member 52 and the third elastic member 53 are loosened, so that the tension generated by the wind received by the scoop 20 is applied only to the first elastic member 51. In the second state, the distance between both ends of the first elastic member 51 to the third elastic member 53 indicated by the bidirectional arrow Lb in FIG. 13B is the tension generated by the wind received by the scoop 20 and the first elasticity. It is defined by the spring constant of the member 51.

第3の状態では、第1弾性部材51及び第2弾性部材52が伸びて、第3弾性部材53は弛んでいる。図13(c)において双方向矢印Lcで示される第1弾性部材51〜第3弾性部材53の両端の間の長さは、張力がゼロのときの第2弾性部材52の長さL2と張力がゼロのときの第3弾性部材53の長さL3との間の長さになる。第3の状態では、第3弾性部材53は弛んでいるので、スクープ20が受ける風により生じる張力は、第1弾性部材51及び第2弾性部材52に印加される。第3の状態では、図13(c)において双方向矢印Lcで示される第1弾性部材51〜第3弾性部材53の両端の間の距離は、スクープ20が受ける風により生じる張力及び第1弾性部材51及び第2弾性部材52のばね定数によって規定される。   In the third state, the first elastic member 51 and the second elastic member 52 are extended, and the third elastic member 53 is loosened. The length between both ends of the first elastic member 51 to the third elastic member 53 indicated by the bidirectional arrow Lc in FIG. 13C is equal to the length L2 of the second elastic member 52 and the tension when the tension is zero. Is a length between the third elastic member 53 and the length L3 when is zero. In the third state, since the third elastic member 53 is slack, the tension generated by the wind received by the scoop 20 is applied to the first elastic member 51 and the second elastic member 52. In the third state, the distance between both ends of the first elastic member 51 to the third elastic member 53 indicated by the bidirectional arrow Lc in FIG. 13C is the tension generated by the wind received by the scoop 20 and the first elasticity. It is defined by the spring constant of the member 51 and the second elastic member 52.

第4の状態では、第1弾性部材51〜第3弾性部材53の全てが伸びている。図13(d)において双方向矢印Ldで示される第1弾性部材51〜第3弾性部材53の両端の間の長さは、張力がゼロのときの第3弾性部材52の長さL3と第1弾性部材51〜第3弾性部材53が接続される間の第3弾性部材53の長さL4との間の長さになる。第4の状態では、スクープ20が受ける風により生じる張力は、第1弾性部材51〜第3弾性部材53の全てに印加される。第3の状態では、図13(d)において双方向矢印Ldで示される第1弾性部材51〜第3弾性部材53の両端の間の距離は、スクープ20が受ける風により生じる張力及び第1弾性部材51〜第3弾性部材53のばね定数によって規定される。   In the fourth state, all of the first elastic member 51 to the third elastic member 53 are extended. The length between both ends of the first elastic member 51 to the third elastic member 53 indicated by the bidirectional arrow Ld in FIG. 13D is equal to the length L3 of the third elastic member 52 when the tension is zero. It becomes the length between the length L4 of the 3rd elastic member 53 while the 1st elastic member 51-the 3rd elastic member 53 are connected. In the fourth state, the tension generated by the wind received by the scoop 20 is applied to all of the first elastic member 51 to the third elastic member 53. In the third state, the distance between both ends of the first elastic member 51 to the third elastic member 53 indicated by the bidirectional arrow Ld in FIG. 13D is the tension generated by the wind received by the scoop 20 and the first elasticity. It is defined by the spring constant of the member 51 to the third elastic member 53.

(第1実施形態に係る係留気球の作用効果)
係留気球1は、並列接続された第1弾性部材51〜第3弾性部材53を係留気球1の風下に位置する第3係留副索33に並列に接続することにより、風速の変化に追従して伸びる弾性機能を実現できる。
(Operational effect of the mooring balloon according to the first embodiment)
The mooring balloon 1 follows the change in the wind speed by connecting the first elastic member 51 to the third elastic member 53 connected in parallel to the third mooring subline 33 located in the lee of the mooring balloon 1 in parallel. An elastic function that stretches can be realized.

図14(a)は風速と風力の関係を示す図であり、図14(b)は風速、風力及び弾性部材の伸びとの関係を示す第1の図であり、図14(c)は風速、風力及び弾性部材の伸びとの関係を示す第2の図である。図14(b)及び図14(c)のそれぞれにおいて、K1〜K3は風力に応じた弾性部材の伸びを示す。   FIG. 14A is a diagram showing the relationship between the wind speed and the wind force, FIG. 14B is a first diagram showing the relationship between the wind speed, the wind force, and the elongation of the elastic member, and FIG. 14C is the wind velocity. It is a 2nd figure which shows the relationship between wind force and the elongation of an elastic member. In each of Drawing 14 (b) and Drawing 14 (c), K1-K3 shows extension of an elastic member according to wind power.

図14(a)に示すように、風力は風速の二乗に比例して増加する一方、弾性部材の伸びはフックの法則に従って弾性部材に印加される力、すなわち係留気球1が受ける風力の二乗に比例して増加する。   As shown in FIG. 14A, while the wind force increases in proportion to the square of the wind speed, the elongation of the elastic member is the force applied to the elastic member in accordance with Hooke's law, that is, the square of the wind force received by the mooring balloon 1. Increase proportionally.

図14(b)に示すように、単一のばね定数を有する弾性部材により、係留気球の姿勢を維持する場合、係留気球の姿勢を維持するため、風速の変化に弾性部材の伸びを追従させることはできない。一方、係留気球1は、長さが相違する複数の弾性部材により形成される一群の弾性部材群を使用することにより、風速の変化に弾性部材の伸びを追従させることが可能になる。係留気球1は、風速が比較的低いときには第1弾性部材51のみが伸びて、風速が大きくなったときに第1弾性部材51及び第2弾性部材52が伸びる。係留気球1は、風速が更に大きくなったときに、第1弾性部材51〜第3弾性部材53の全てが伸びる。係留気球1では、伸びる弾性部材の数を風速の増加に従って増加させることにより、風速の変化に弾性部材の伸びを追従させることが可能になる。   As shown in FIG. 14B, when the attitude of the mooring balloon is maintained by the elastic member having a single spring constant, the elastic member is allowed to follow the change in the wind speed in order to maintain the attitude of the mooring balloon. It is not possible. On the other hand, the mooring balloon 1 can make the elastic member follow the change in the wind speed by using a group of elastic members formed by a plurality of elastic members having different lengths. In the mooring balloon 1, only the first elastic member 51 extends when the wind speed is relatively low, and the first elastic member 51 and the second elastic member 52 extend when the wind speed increases. In the mooring balloon 1, all of the first elastic member 51 to the third elastic member 53 extend when the wind speed further increases. In the mooring balloon 1, it is possible to make the elastic member follow the change in the wind speed by increasing the number of elastic members that extend as the wind speed increases.

例えば、図14(c)に示すように、係留気球が受ける風の風速が比較的小さいときは、風速の変化の変化に対して伸びK1の弾性部材に伸びるようする。そして、風速が大きくなるに従って、伸びる弾性部材を増加させることにより弾性部材群の伸びをK2、K3と大きくすることができる。また、係留気球1では、第1弾性部材51〜第3弾性部材53のばね定数は、長さに応じて大きくなるように規定されるので、風速が大きくなるに従って、ばね定数が大きい弾性部材が順次伸びに寄与することになる。係留気球1では、風速が大きくなるに従って、ばね定数が大きい弾性部材が順次伸びに寄与することで、風速の二乗に比例する風力の増加量に応じて弾性部材群の伸びを規定することができる。例えば、複数の弾性部材のばね定数は、風速が1m/sのときに弾性部材群のばね定数を1N/mとし、風速が2m/sのときに弾性部材群のばね定数を4N/mとし、風速が3m/sのときに弾性部材群のばね定数を9N/mとするように、規定されてもよい。   For example, as shown in FIG. 14 (c), when the wind speed of the wind received by the mooring balloon is relatively small, the elastic member having the elongation K1 is extended with respect to the change in the wind speed. Then, as the wind speed increases, the elastic members that extend can be increased to increase the elongation of the elastic member group to K2 and K3. In the mooring balloon 1, since the spring constants of the first elastic member 51 to the third elastic member 53 are defined to increase according to the length, an elastic member having a large spring constant increases as the wind speed increases. This will contribute to growth. In the mooring balloon 1, the elastic member having a large spring constant contributes to the elongation sequentially as the wind speed increases, so that the elongation of the elastic member group can be defined according to the amount of increase in the wind force proportional to the square of the wind speed. . For example, the spring constant of the plurality of elastic members is 1 N / m for the elastic member group when the wind speed is 1 m / s, and 4 N / m for the elastic member group when the wind speed is 2 m / s. The elastic member group may have a spring constant of 9 N / m when the wind speed is 3 m / s.

(第2実施形態に係る係留気球の構成及び機能)
図15は、空中に位置する第2実施形態に係る係留気球の斜視図である。
(Configuration and function of the mooring balloon according to the second embodiment)
FIG. 15 is a perspective view of a mooring balloon according to the second embodiment located in the air.

係留気球2は、弾性部材群50の代わりに、弾性部材群60が第3係留副索33に並列接続されることが第1実施形態に係る係留気球1と相違する。弾性部材群60は、直列接続された第1弾性部材61〜第3弾性部材63を有する。弾性部材群60以外の係留気球2の構成要素は、同一符号が付された係留気球1の構成要素と同一の構成及び機能を有するので、ここでは詳細な説明は省略する。   The mooring balloon 2 is different from the mooring balloon 1 according to the first embodiment in that an elastic member group 60 is connected in parallel to the third mooring subline 33 instead of the elastic member group 50. The elastic member group 60 includes a first elastic member 61 to a third elastic member 63 connected in series. Since the constituent elements of the mooring balloon 2 other than the elastic member group 60 have the same configuration and function as the constituent elements of the mooring balloon 1 with the same reference numerals, detailed description thereof is omitted here.

図16(a)は第1弾性部材61〜第3弾性部材63の第1構成例を示す図であり、図16(b)は第1弾性部材61〜第3弾性部材63の第2構成例を示す図である。図16(c)は第1弾性部材61〜第3弾性部材63の第3構成例を示す図であり、図16(d)は第1弾性部材61〜第3弾性部材63の第4構成例を示す図である。   FIG. 16A is a diagram illustrating a first configuration example of the first elastic member 61 to the third elastic member 63, and FIG. 16B is a second configuration example of the first elastic member 61 to the third elastic member 63. FIG. FIG. 16C is a diagram illustrating a third configuration example of the first elastic member 61 to the third elastic member 63, and FIG. 16D is a fourth configuration example of the first elastic member 61 to the third elastic member 63. FIG.

図16(a)に示す第1構成例では、張力が印加される前の第1弾性部材〜第3弾性部材の合計の長さは、第1係留副索及び第2係留副索の長さと同一である。図16(b)〜16(d)に示す第2構成例〜第4構成例では、張力が印加される前の第1弾性部材〜第3弾性部材の合計の長さは、第1係留副索及び第2係留副索の長さよりも短い。第2構成例では、第1弾性部材の一端は第1副係留索〜第3副係留索の結節点に接続され、第3弾性部材の一端は第3副係留索の他端及びに気球に第3副係留索を介して接続される。第3構成例では、第1弾性部材の一端は第1副係留索〜第3副係留索の結節点に第3副係留索を介して接続され、第3弾性部材の一端は第3副係留索の他端及びに気球に接続される。第4構成例では、第1弾性部材の一端は第1副係留索〜第3副係留索の結節点に第3副係留索を介して接続され、第3弾性部材の一端は第3副係留索の他端及びに気球に第3副係留索を介して接続される。以下、第4構成例に基づいて、第1弾性部材61〜第3弾性部材63について説明する。   In the first configuration example shown in FIG. 16A, the total length of the first elastic member to the third elastic member before the tension is applied is the length of the first mooring subline and the second mooring subline. Are the same. In the second configuration example to the fourth configuration example shown in FIGS. 16B to 16D, the total length of the first elastic member to the third elastic member before the tension is applied is the first mooring subordinate. It is shorter than the length of the cable and the second mooring sub cable. In the second configuration example, one end of the first elastic member is connected to the node of the first sub mooring line to the third sub mooring line, and one end of the third elastic member is connected to the other end of the third sub mooring line and a balloon. Connected via third sub mooring line. In the third configuration example, one end of the first elastic member is connected to a node of the first sub mooring line to the third sub mooring line via the third sub mooring line, and one end of the third elastic member is the third sub mooring line. Connected to the balloon at the other end of the cord. In the fourth configuration example, one end of the first elastic member is connected to a node of the first sub mooring line to the third sub mooring line via the third sub mooring line, and one end of the third elastic member is the third sub mooring line. The other end of the cord and the balloon are connected to the balloon via a third sub mooring cord. Hereinafter, the first elastic member 61 to the third elastic member 63 will be described based on the fourth configuration example.

第1弾性部材61の一端は第3係留索33に接続され、第1弾性部材61の他端は第2弾性部材62の一端に接続される。第2弾性部材62の他端は第3弾性部材63の一端に接続され、第3弾性部材の他端は第3係留索33に接続される。一例では、第1弾性部材61〜第3弾性部材63は、第1弾性部材51〜第3弾性部材53と同様に、平ゴム又はコールゴムとも称される平板状のゴムひもから形成されてよく、またばね等の他の弾性部材から形成されてもよい。第1弾性部材61のばね定数は第2弾性部材62のばね定数よりも小さく、第2弾性部材62のばね定数は第3弾性部材63のばね定数よりも小さい。   One end of the first elastic member 61 is connected to the third mooring line 33, and the other end of the first elastic member 61 is connected to one end of the second elastic member 62. The other end of the second elastic member 62 is connected to one end of the third elastic member 63, and the other end of the third elastic member is connected to the third mooring line 33. In one example, the first elastic member 61 to the third elastic member 63 may be formed of a flat rubber string also called flat rubber or coal rubber, similar to the first elastic member 51 to the third elastic member 53. Moreover, you may form from other elastic members, such as a spring. The spring constant of the first elastic member 61 is smaller than the spring constant of the second elastic member 62, and the spring constant of the second elastic member 62 is smaller than the spring constant of the third elastic member 63.

図17は、第1係留副索31〜第3係留副索33及び第1弾性部材61〜第3弾性部材63の長さを示す図である。図18は係留気球2が風を受けたときの姿勢を示す図である。図18(a)は第1弾性部材61〜第3弾性部材63の何れも伸びていない第1の状態を示し、図18(b)は第1弾性部材61が支配的に伸びる第2の状態を示す。図18(c)は第2弾性部材62が支配的に伸びる第3の状態を示し、図18(d)は第3弾性部材63が支配的に伸びる第4の状態を示す。図17において、双方向矢印L1は張力がゼロのときの第1弾性部材61〜第3弾性部材63の長さを示す。また、双方向矢印L4は、第1弾性部材61〜第3弾性部材63のぞれぞれの両端に接続される間の第3弾係留副索33の長さを示す。   FIG. 17 is a diagram illustrating the lengths of the first mooring sub-line 31 to the third mooring sub-line 33 and the first elastic member 61 to the third elastic member 63. FIG. 18 is a view showing the posture when the mooring balloon 2 receives wind. FIG. 18A shows a first state where none of the first elastic member 61 to the third elastic member 63 is extended, and FIG. 18B shows a second state where the first elastic member 61 extends predominantly. Indicates. FIG. 18C shows a third state in which the second elastic member 62 extends predominantly, and FIG. 18D shows a fourth state in which the third elastic member 63 predominantly extends. In FIG. 17, a bidirectional arrow L1 indicates the length of the first elastic member 61 to the third elastic member 63 when the tension is zero. A bidirectional arrow L4 indicates the length of the third bullet mooring sub-line 33 while being connected to both ends of each of the first elastic member 61 to the third elastic member 63.

係留気球2が受ける風の風速が略ゼロのときの第1弾性部材61〜第3弾性部材63のそれぞれは、第3係留副索33の長さよりも短い。係留気球2が受ける風の風速が略ゼロ又は微風である第1の状態では、第1弾性部材61〜第3弾性部材63のそれぞれの長さは略L1であり、互いに略等しい。   Each of the first elastic member 61 to the third elastic member 63 when the wind speed of the wind received by the mooring balloon 2 is substantially zero is shorter than the length of the third mooring subline 33. In the first state where the wind speed of the wind received by the mooring balloon 2 is substantially zero or a slight wind, the lengths of the first elastic member 61 to the third elastic member 63 are substantially L1 and are substantially equal to each other.

係留気球2が受ける風の風速が徐々に大きくなると、図17において矢印Aで示すように、ばね定数が最も小さい第1弾性部材61が、ばね定数が比較的大きい第2弾性部材62及び第3弾性部材63と比較して大きく伸びる。この状態は、図18(b)に示す第2の状態に対応する。   When the wind speed of the wind received by the mooring balloon 2 gradually increases, as shown by an arrow A in FIG. 17, the first elastic member 61 having the smallest spring constant has the second elastic member 62 and the third elastic member having the relatively large spring constant. Compared with the elastic member 63, it extends greatly. This state corresponds to the second state shown in FIG.

係留気球2が受ける風の風速が更に大きくなると、図17において矢印Bで示すように、ばね定数が最も小さい第1弾性部材61は伸び切り、ばね定数が次に小さい第2弾性部材62が伸びる。この状態は、図18(c)に示す第3の状態に対応する。   When the wind speed of the wind received by the mooring balloon 2 is further increased, as shown by an arrow B in FIG. 17, the first elastic member 61 having the smallest spring constant is fully extended, and the second elastic member 62 having the next smallest spring constant is extended. . This state corresponds to the third state shown in FIG.

また、係留気球2が受ける風の風速が更に大きくなると、図17において矢印Cで示すように、第2弾性部材62は伸び切り、ばね定数が最も大きい第3弾性部材63が伸びる。この状態は、図18(d)に示す第4の状態に対応する。そして、第1弾性部材61〜第3弾性部材63の合計の長さが、第1弾性部材61〜第3弾性部材63のぞれぞれの両端に接続される間の第3弾係留副索33の長さL4と等しくなるまで、第3弾性部材63は伸びる。   Further, when the wind speed of the wind received by the mooring balloon 2 is further increased, as indicated by an arrow C in FIG. 17, the second elastic member 62 is fully extended, and the third elastic member 63 having the largest spring constant is extended. This state corresponds to the fourth state shown in FIG. And the 3rd bullet mooring sub rope while the total length of the 1st elastic member 61-the 3rd elastic member 63 is connected to the both ends of each of the 1st elastic member 61-the 3rd elastic member 63 The third elastic member 63 extends until it becomes equal to the length L4 of 33.

(第2実施形態に係る係留気球の作用効果)
係留気球2は、直列接続された第1弾性部材61〜第3弾性部材63を係留気球2の風下に位置する第3係留副索33に並列に接続することにより、係留気球1と同様に、風速の変化に追従して伸びる弾性機能を実現できる。
(Operational effect of the mooring balloon according to the second embodiment)
The mooring balloon 2 connects the first elastic member 61 to the third elastic member 63 connected in series to the third mooring sub-line 33 located in the lee of the mooring balloon 2 in parallel, so that the mooring balloon 1 An elastic function that extends following the change in wind speed can be realized.

(第3実施形態に係る係留気球の構成及び機能)
図19は、空中に位置する第3実施形態に係る係留気球の斜視図である。
(Configuration and function of the mooring balloon according to the third embodiment)
FIG. 19 is a perspective view of a mooring balloon according to a third embodiment located in the air.

係留気球3は、弾性部材群60の代わりに、弾性部材群70が第3係留副索33に並列接続されることが第1実施形態に係る係留気球2と相違する。弾性部材群60以外の係留気球3の構成要素は、同一符号が付された係留気球の構成要素と同一の構成及び機能を有するので、ここでは詳細な説明は省略する。   The mooring balloon 3 is different from the mooring balloon 2 according to the first embodiment in that an elastic member group 70 is connected in parallel to the third mooring subline 33 instead of the elastic member group 60. Since the constituent elements of the mooring balloon 3 other than the elastic member group 60 have the same configuration and function as the constituent elements of the mooring balloons denoted by the same reference numerals, detailed description thereof is omitted here.

弾性部材群70は、直列接続された第1弾性部材71〜第3弾性部材73を有する。第1弾性部材71〜第3弾性部材73のそれぞれは、両端が第3係留副索33に接続されることが第2実施形態に係る第1弾性部材61〜第3弾性部材63と相違する。第1弾性部材71〜第3弾性部材73のそれぞれは、第1弾性部材61〜第3弾性部材63と同様に図16(a)〜16(d)に示す第1構成例〜第4構成例としてもよいが、ここでは第4構成例に基づいて、第1弾性部材71〜第3弾性部材73について説明する。   The elastic member group 70 includes a first elastic member 71 to a third elastic member 73 connected in series. Each of the first elastic member 71 to the third elastic member 73 is different from the first elastic member 61 to the third elastic member 63 according to the second embodiment in that both ends are connected to the third mooring sub rope 33. Each of the first elastic member 71 to the third elastic member 73 is the same as the first elastic member 61 to the third elastic member 63 in the first to fourth configuration examples shown in FIGS. 16 (a) to 16 (d). However, here, the first elastic member 71 to the third elastic member 73 will be described based on the fourth configuration example.

図20は、第1係留副索31〜第3係留副索33及び第1弾性部材71〜第3弾性部材73の長さを示す図である。図21は係留気球3が風を受けたときの姿勢を示す図である。図21(a)は第1弾性部材71〜第3弾性部材73の何れも伸びていない第1の状態を示し、図21(b)は第1弾性部材71が支配的に伸びる第2の状態を示す。図21(c)は第2弾性部材72が支配的に伸びる第3の状態を示し、図21(d)は第3弾性部材73が支配的に伸びる第4の状態を示す。図20において、双方向矢印L1は張力がゼロのときの第1弾性部材71〜第3弾性部材73の長さを示す。また、双方向矢印L4は、第1弾性部材71〜第3弾性部材73のぞれぞれの両端に接続される間の第3弾係留副索33の長さを示す。   FIG. 20 is a diagram illustrating the lengths of the first mooring sub-line 31 to the third mooring sub-line 33 and the first elastic member 71 to the third elastic member 73. FIG. 21 is a view showing a posture when the mooring balloon 3 receives wind. FIG. 21A shows a first state in which none of the first elastic member 71 to the third elastic member 73 is extended, and FIG. 21B shows a second state in which the first elastic member 71 is dominantly extended. Indicates. FIG. 21C shows a third state in which the second elastic member 72 extends predominantly, and FIG. 21D shows a fourth state in which the third elastic member 73 extends predominantly. In FIG. 20, a bidirectional arrow L1 indicates the length of the first elastic member 71 to the third elastic member 73 when the tension is zero. A bidirectional arrow L4 indicates the length of the third bullet mooring sub-line 33 while being connected to both ends of each of the first elastic member 71 to the third elastic member 73.

係留気球3が受ける風の風速が略ゼロのときの第1弾性部材71〜第3弾性部材73のそれぞれは、第3係留副索33の長さよりも短い。係留気球3が受ける風の風速が略ゼロ又は微風である第1の状態では、第1弾性部材71〜第3弾性部材73のそれぞれの長さは略L1であり、互いに略等しい。   Each of the first elastic member 71 to the third elastic member 73 when the wind speed of the wind received by the mooring balloon 3 is substantially zero is shorter than the length of the third mooring subline 33. In the first state where the wind speed received by the mooring balloon 3 is substantially zero or a slight wind, the lengths of the first elastic member 71 to the third elastic member 73 are substantially L1 and are substantially equal to each other.

係留気球3が受ける風の風速が徐々に大きくなると、図20において矢印Aで示すように、ばね定数が最も小さい第1弾性部材71が、ばね定数が比較的大きい第2弾性部材72及び第3弾性部材73と比較して大きく伸びる。この状態は、図21(b)に示す第2の状態に対応する。   When the wind speed of the wind received by the mooring balloon 3 gradually increases, as shown by an arrow A in FIG. 20, the first elastic member 71 having the smallest spring constant is replaced by the second elastic member 72 and the third elastic member 72 having a relatively large spring constant. Compared with the elastic member 73, it extends greatly. This state corresponds to the second state shown in FIG.

係留気球3が受ける風の風速が更に大きくなると、図20において矢印Bで示すように、第1弾性部材61の長さは、第1弾性部材71の両端に接続される間の第3係留副索33の長さL2と等しくなる。第1弾性部材61の長さが第1弾性部材71の両端に接続される間の第3係留副索33の長さL2と等しくなったので、第1弾性部材71は風速が増加してもL2以上に伸びることはない。この状態では、第1弾性部材71は風速が増加してもL2以上に伸びることはないので、ばね定数が次に小さい第2弾性部材72が伸びる。この状態は、図21(c)に示す第3の状態に対応する。   When the wind speed of the wind received by the mooring balloon 3 is further increased, the length of the first elastic member 61 is set to the third mooring sub-time while being connected to both ends of the first elastic member 71 as shown by an arrow B in FIG. It becomes equal to the length L2 of the cord 33. Since the length of the first elastic member 61 becomes equal to the length L2 of the third mooring sub-line 33 while being connected to both ends of the first elastic member 71, the first elastic member 71 is not affected even if the wind speed increases. It does not extend beyond L2. In this state, even if the wind speed increases, the first elastic member 71 does not extend to L2 or more, so the second elastic member 72 having the next smallest spring constant extends. This state corresponds to the third state shown in FIG.

また、係留気球3が受ける風の風速が更に大きくなると、図20において矢印Cで示すように、第2弾性部材62の長さは、第2弾性部材72の両端に接続される間の第3係留副索33の長さL3と等しくなる。第2弾性部材62の長さが第2弾性部材72の両端に接続される間の第3係留副索33の長さL3と等しくなったので、第2弾性部材72は風速が増加してもL3以上に伸びることはない。この状態では、第1弾性部材71及び第2弾性部材72のそれぞれは風速が増加してもL1及びL2以上に伸びることはないので、ばね定数が最も大きい第3弾性部材73が伸びる。この状態は、図21(d)に示す第4の状態に対応する。そして、第1弾性部材61〜第3弾性部材63の合計の長さが、第1弾性部材61〜第3弾性部材63のぞれぞれの両端に接続される間の第3弾係留副索33の長さL4と等しくなるまで、第3弾性部材63は伸びる。   Further, when the wind speed of the wind received by the mooring balloon 3 is further increased, the length of the second elastic member 62 is the third length while being connected to both ends of the second elastic member 72 as shown by an arrow C in FIG. It becomes equal to the length L3 of the mooring sub rope 33. Since the length of the second elastic member 62 becomes equal to the length L3 of the third mooring sub-line 33 while being connected to both ends of the second elastic member 72, the second elastic member 72 can It does not extend beyond L3. In this state, each of the first elastic member 71 and the second elastic member 72 does not extend to L1 and L2 or more even if the wind speed increases, so the third elastic member 73 having the largest spring constant extends. This state corresponds to the fourth state shown in FIG. And the 3rd bullet mooring sub rope while the total length of the 1st elastic member 61-the 3rd elastic member 63 is connected to the both ends of each of the 1st elastic member 61-the 3rd elastic member 63 The third elastic member 63 extends until it becomes equal to the length L4 of 33.

(第3実施形態に係る係留気球の作用効果)
係留気球3は、直列接続された第1弾性部材71〜第3弾性部材73を係留気球3の風下に位置する第3係留副索33に並列に接続することにより、係留気球1と同様に、風速の変化に追従して伸びる弾性機能を実現できる。
(Operational effect of the mooring balloon according to the third embodiment)
The mooring balloon 3 is connected to the third mooring subline 33 located in the lee of the mooring balloon 3 in parallel with the first elastic member 71 to the third elastic member 73 connected in series, so that the mooring balloon 1 is An elastic function that extends following the change in wind speed can be realized.

また、係留気球3では、第1弾性部材71〜第3弾性部材73のそれぞれの両端に接続された第3係留副索33は、第1弾性部材71〜第3弾性部材73のそれぞれが伸び過ぎることを防止することができる。係留気球3では、第3係留副索33が第1弾性部材71〜第3弾性部材73のそれぞれが伸び過ぎることを防止することができるので、第1弾性部材71〜第3弾性部材73が伸び過ぎて弾性を失う又は切断するおそれは低い。   Further, in the mooring balloon 3, the third mooring sub-rows 33 connected to both ends of the first elastic member 71 to the third elastic member 73 are excessively extended by the first elastic member 71 to the third elastic member 73. This can be prevented. In the mooring balloon 3, since the third mooring sub rope 33 can prevent each of the first elastic member 71 to the third elastic member 73 from extending too much, the first elastic member 71 to the third elastic member 73 extend. There is little risk of losing elasticity or cutting.

(実施形態に係る係留気球の変形例)
係留気球1〜3では、弾性部材群50、60及び70は、気球10が気球10の長径の方向が水平方向になるように機能する。しかしながら、実施形態に係る係留気球では、弾性部材群50、60及び70は、気球が気球10の長径の方向が水平方向に対して所定の傾斜を有するようにしてもよい。
(Modification example of the mooring balloon according to the embodiment)
In the mooring balloons 1 to 3, the elastic member groups 50, 60, and 70 function so that the direction of the major axis of the balloon 10 is the horizontal direction. However, in the moored balloon according to the embodiment, the elastic member groups 50, 60, and 70 may be configured such that the major axis direction of the balloon 10 has a predetermined inclination with respect to the horizontal direction.

係留気球1〜3では、気球10は、内部に気体が充填されているときに高さ方向に短軸を有する回転楕円体状の形状を有し且つスクープ20が接合されているが、気球の実施形態は、このような実施形態に限定されない。例えば、気球の形状は、流線形でもよく、ドーナッツ状でもよく、風見安定するように垂直尾翼を有する形状、又は垂直尾翼及び水平尾翼を有する形状としてもよい。スクープ20、垂直尾翼及び水平尾翼のような風見安定するための構造を有する場合、弾性部材群50、60及び70は、第3係留副索33等の風下に配置される係留索に並列接続してもよい。風見安定するための構造を有しない場合、弾性部材群50、60及び70は、第1係留副索31〜第3係留副索33の全てに並列接続してもよい。   In the mooring balloons 1 to 3, the balloon 10 has a spheroid shape having a minor axis in the height direction when the gas is filled therein, and the scoop 20 is joined. Embodiments are not limited to such embodiments. For example, the shape of the balloon may be streamlined or donut-shaped, and may have a shape having a vertical tail or a shape having a vertical tail and a horizontal tail so as to stabilize the weather. In the case of having a structure for stabilizing the weather such as the scoop 20, the vertical tail and the horizontal tail, the elastic member groups 50, 60 and 70 are connected in parallel to the mooring lines arranged on the leeward side of the third mooring subline 33 and the like. May be. If the structure for stabilizing the weather is not provided, the elastic member groups 50, 60 and 70 may be connected in parallel to all of the first mooring subline 31 to the third mooring subline 33.

係留気球1〜3では、第1係留副索31〜第3係留副索33によって気球10が係留されるが、第1係留副索31〜第3係留副索33の代わりに2本、又は4本以上の係留索を配置してもよい。この場合、弾性部材群50、60及び70は、2本、又は4本以上の係留索の何れかに並列接続される。また、係留主索33を有さずに、第1係留副索31〜第3係留副索33によって、気球10がウインチに係留されてもよい。   In the mooring balloons 1 to 3, the balloon 10 is moored by the first mooring subline 31 to the third mooring subline 33, but two or four instead of the first mooring subline 31 to the third mooring subline 33 More than one mooring line may be arranged. In this case, the elastic member groups 50, 60, and 70 are connected in parallel to either two or four or more mooring lines. Alternatively, the balloon 10 may be moored on the winch by the first mooring subline 31 to the third mooring subline 33 without having the mooring main line 33.

係留気球1〜3では、ばね定数が互いに相違する複数の弾性部材が配置されるが、ばね定数が互いに相違する複数の弾性部材のそれぞれは、単一の弾性部材で形成されてもよく、複数の弾性部材で形成されてもよい。   In the mooring balloons 1 to 3, a plurality of elastic members having different spring constants are arranged, but each of the plurality of elastic members having different spring constants may be formed of a single elastic member. The elastic member may be used.

図22は、ばね定数が異なる複数の弾性部材を含む弾性部材群の形成の例を示す図であり、図22(a)は第1の例を示し、図22(b)は第2の例を示し、図22(c)は第3の例を示す。   FIG. 22 is a diagram illustrating an example of formation of an elastic member group including a plurality of elastic members having different spring constants. FIG. 22A illustrates a first example, and FIG. 22B illustrates a second example. FIG. 22 (c) shows a third example.

弾性部材群81は、ばね定数が一番小さい第1弾性部材811と、ばね定数が二番目に小さい第2弾性部材812と、ばね定数が最も大きい第3弾性部材813とを有する。第1弾性部材811の一端は金属製リング814を介して係留索と接続され、第1弾性部材811の他端は金属製リング815を介して第2弾性部材812の一端と接続される。第2弾性部材812の他端は金属製リング816を介して第3弾性部材813の一端と接続され、第3弾性部材813の他端は金属製リング817を介して不図示の係留索と接続される。   The elastic member group 81 includes a first elastic member 811 having the smallest spring constant, a second elastic member 812 having the second smallest spring constant, and a third elastic member 813 having the largest spring constant. One end of the first elastic member 811 is connected to the mooring line via a metal ring 814, and the other end of the first elastic member 811 is connected to one end of the second elastic member 812 via a metal ring 815. The other end of the second elastic member 812 is connected to one end of the third elastic member 813 via a metal ring 816, and the other end of the third elastic member 813 is connected to a mooring line (not shown) via a metal ring 817. Is done.

弾性部材群82は、第1弾性部材821と、第2弾性部材822と、第3弾性部材833とを有する。第2弾性部材822は、第1弾性部材821とばね定数が同一である第21弾性部材8221及び第22弾性部材8222で形成される。第3弾性部材823は、第1弾性部材821とばね定数が同一である第31弾性部材8231、第32弾性部材8232及び第33弾性部材8233で形成される。第1弾性部材821の一端は金属製リング824を介して係留索と接続され、第1弾性部材821の他端は金属製リング825を介して第2弾性部材822の一端と接続される。第2弾性部材822の他端は金属製リング826を介して第3弾性部材823の一端と接続され、第3弾性部材823の他端は金属製リング827を介して不図示の係留索と接続される。   The elastic member group 82 includes a first elastic member 821, a second elastic member 822, and a third elastic member 833. The second elastic member 822 is formed of a 21st elastic member 8221 and a 22nd elastic member 8222 having the same spring constant as that of the first elastic member 821. The third elastic member 823 is formed of a 31st elastic member 8231, a 32nd elastic member 8232, and a 33rd elastic member 8233 having the same spring constant as that of the first elastic member 821. One end of the first elastic member 821 is connected to the mooring line via the metal ring 824, and the other end of the first elastic member 821 is connected to one end of the second elastic member 822 via the metal ring 825. The other end of the second elastic member 822 is connected to one end of the third elastic member 823 via a metal ring 826, and the other end of the third elastic member 823 is connected to a mooring line (not shown) via a metal ring 827. Is done.

弾性部材群83は、第1弾性部材831と、第2弾性部材832と、第3弾性部材833とを有する。第2弾性部材832は、第1弾性部材831とばね定数が同一である第21弾性部材8321と、ばね定数が第1弾性部材831よりも大きい第22弾性部材8322とで形成される。第3弾性部材833は、第1弾性部材831とばね定数が同一である第31弾性部材8331と、第22弾性部材8322とばね定数が同一である第32弾性部材8332と、ばね定数が第32弾性部材8332よりも大きい第33弾性部材8333とで形成される。第1弾性部材831の一端は金属製リング834を介して係留索と接続され、第1弾性部材831の他端は金属製リング835を介して第2弾性部材832の一端と接続される。第2弾性部材832の他端は金属製リング836を介して第3弾性部材833の一端と接続され、第3弾性部材833の他端は金属製リング837を介して不図示の係留索と接続される。   The elastic member group 83 includes a first elastic member 831, a second elastic member 832, and a third elastic member 833. The second elastic member 832 is formed of a twenty-first elastic member 8321 having the same spring constant as the first elastic member 831 and a twenty-second elastic member 8322 having a spring constant larger than that of the first elastic member 831. The third elastic member 833 includes a thirty-first elastic member 8331 having the same spring constant as that of the first elastic member 831, a thirty-second elastic member 8332 having the same spring constant as that of the twenty-second elastic member 8322, and a spring constant of thirty-second. The 33rd elastic member 8333 larger than the elastic member 8332 is formed. One end of the first elastic member 831 is connected to the mooring line via a metal ring 834, and the other end of the first elastic member 831 is connected to one end of the second elastic member 832 via a metal ring 835. The other end of the second elastic member 832 is connected to one end of the third elastic member 833 via a metal ring 836, and the other end of the third elastic member 833 is connected to a mooring line (not shown) via a metal ring 837. Is done.

1〜3 係留気球
10 気球
20 スクープ
31〜33 係留副索
35 係留主索
50、60、70 弾性部材群
1 to 3 Moored balloon 10 Balloon 20 Scoop 31 to 33 Moored sub rope 35 Moored main rope 50, 60, 70 Elastic member group

Claims (2)

内部に気体が充填されたときに扁平形状になる気球と、
それぞれの一端が前記気球の表面に接続された複数の係留索と、
長さが異なり且つ並列接続された複数の弾性部材を含み、前記複数の係留索の何れか1つに接続された弾性部材群と、を有し、
前記複数の弾性部材の長さは、前記複数の弾性部材のばね定数が大きいほど長くなる、ことを特徴とする係留気球。
A balloon that becomes flat when filled with gas,
A plurality of mooring lines, one end of which is connected to the surface of the balloon;
A plurality of elastic members having different lengths and connected in parallel, and an elastic member group connected to any one of the plurality of mooring lines ,
The mooring balloon characterized in that the length of the plurality of elastic members becomes longer as the spring constant of the plurality of elastic members is larger .
内部に気体が充填されたときに扁平形状になる気球と、
それぞれの一端が前記気球の表面に接続された複数の係留索と、
長さが異なり且つ直列接続された複数の弾性部材を含み、前記複数の係留索の何れか1つに前記複数の弾性部材のそれぞれの両端が接続された弾性部材群と、を有し、
前記複数の弾性部材のぞれぞれの両端に接続される間の前記係留索の長さは、前記複数の弾性部材のばね定数が大きいほど短くなる、ことを特徴とする係留気球。
A balloon that becomes flat when filled with gas,
A plurality of mooring lines, one end of which is connected to the surface of the balloon;
An elastic member group including a plurality of elastic members having different lengths and connected in series , each end of each of the plurality of elastic members being connected to any one of the plurality of mooring lines ;
The mooring balloon , wherein a length of the mooring line while being connected to both ends of each of the plurality of elastic members is shorter as a spring constant of the plurality of elastic members is larger .
JP2016047434A 2016-03-10 2016-03-10 Moored balloon Active JP6357494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016047434A JP6357494B2 (en) 2016-03-10 2016-03-10 Moored balloon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016047434A JP6357494B2 (en) 2016-03-10 2016-03-10 Moored balloon

Publications (2)

Publication Number Publication Date
JP2017159834A JP2017159834A (en) 2017-09-14
JP6357494B2 true JP6357494B2 (en) 2018-07-11

Family

ID=59853410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016047434A Active JP6357494B2 (en) 2016-03-10 2016-03-10 Moored balloon

Country Status (1)

Country Link
JP (1) JP6357494B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109760817A (en) * 2018-12-26 2019-05-17 中国电子科技集团公司第三十八研究所 A kind of small-sized high motor driven captive balloon platform system
CN109703730B (en) * 2019-01-29 2024-04-02 广东高空风能技术有限公司 High-altitude captive balloon and control method thereof
CN113942627A (en) * 2021-11-17 2022-01-18 上海交大重庆临近空间创新研发中心 High-altitude balloon stabilizing device and high-altitude balloon system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3318553A (en) * 1965-03-10 1967-05-09 Goodyear Aerospace Corp Angle of attack compensating bridle system for lighter-than-air balloon
CH636662A5 (en) * 1981-03-11 1983-06-15 Martin Ullmann ELASTIC TENSION GANG AND METHOD FOR MAKING THE SAME.
JPH01142663U (en) * 1988-03-28 1989-09-29
JP4329949B2 (en) * 1998-08-24 2009-09-09 株式会社明治ゴム化成 Shock absorber
EP2688795B1 (en) * 2011-03-22 2018-06-27 Technology From Ideas Limited A mooring component having a smooth stress-strain response to high loads
US20120286089A1 (en) * 2011-05-09 2012-11-15 Safe, Inc. Strain reduction on a balloon system in extreme weather conditions
JP5769850B1 (en) * 2014-06-19 2015-08-26 ソフトバンクモバイル株式会社 Moored balloon

Also Published As

Publication number Publication date
JP2017159834A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP5769850B1 (en) Moored balloon
JP6357494B2 (en) Moored balloon
JP5697782B1 (en) Moored balloon
JP5528687B2 (en) Pressure-resistant large membrane structure
US8975771B2 (en) Wind power device with dynamic sail, streamlined cable or enhanced ground mechanism
US6685136B2 (en) Pressure-resistant balloon
US3227398A (en) Balloon tether cable
US9828081B1 (en) Negative pressure vessel
JP2928771B1 (en) Captive balloon
ES2700276T3 (en) Procedure and device for opening an inflated wall
WO2000066424A1 (en) Balloon lifting system
US20160068281A1 (en) Deployable mast with spontaneous autonomous deployment, and satellite comprising at least one mast of this type
ITMI20091340A1 (en) PERFORMED AUTOSTABLE BALLOON AND RELATIVE INVOLVATION AND RECOVERY SYSTEM
US20200331580A1 (en) Telescoping support structure
US20150367959A1 (en) Airship-mooring device
US4762295A (en) Aerostat structure with conical nose
US10793246B1 (en) Anti-tilt assembly for balloons
CN209600783U (en) A kind of captive balloon with kite empennage
US9334058B2 (en) Pre-deployed parachute
JP6680740B2 (en) Water targets and corner reflectors
US11418144B1 (en) Deployable solar panels for high-altitude balloons
EP1447119A1 (en) Framed balloon
US20220185442A1 (en) Outer membrane for aerial vehicles
JP2006327348A (en) Balloon
JP6176814B1 (en) Cable-connected balloon-type rocket launcher.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6357494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250