JP6355016B2 - Method for preparing specimen and measuring method for specimen - Google Patents

Method for preparing specimen and measuring method for specimen Download PDF

Info

Publication number
JP6355016B2
JP6355016B2 JP2014073349A JP2014073349A JP6355016B2 JP 6355016 B2 JP6355016 B2 JP 6355016B2 JP 2014073349 A JP2014073349 A JP 2014073349A JP 2014073349 A JP2014073349 A JP 2014073349A JP 6355016 B2 JP6355016 B2 JP 6355016B2
Authority
JP
Japan
Prior art keywords
specimen
rod
pair
shaped member
kneaded material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014073349A
Other languages
Japanese (ja)
Other versions
JP2015194449A (en
Inventor
康範 鈴木
康範 鈴木
紀枝 多田
紀枝 多田
大野 晃
晃 大野
孝二 大田
孝二 大田
梶尾 聡
聡 梶尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014073349A priority Critical patent/JP6355016B2/en
Publication of JP2015194449A publication Critical patent/JP2015194449A/en
Application granted granted Critical
Publication of JP6355016B2 publication Critical patent/JP6355016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、電気抵抗に基づく測定の対象となる供試体を作製する方法および該供試体を測定する方法に関する。   The present invention relates to a method for producing a specimen to be measured based on electric resistance and a method for measuring the specimen.

コンクリートと水とが混練されてなる混練物が硬化することで形成されるコンクリート構造物に対して、内部の電気抵抗に基づく種々の測定が行われている。例えば、コンクリート構造物内に含有される水分は、コンクリート構造物の劣化現象に関与することが知られているため、コンクリート構造物の含水率を把握するべく、コンクリート構造物内の電気抵抗に基づく含水率の測定が行われている。   Various measurements based on internal electric resistance are performed on a concrete structure formed by curing a kneaded material obtained by kneading concrete and water. For example, the moisture contained in a concrete structure is known to be involved in the deterioration phenomenon of the concrete structure. Therefore, in order to grasp the moisture content of the concrete structure, it is based on the electrical resistance in the concrete structure. The moisture content is being measured.

斯かる含水率の測定の1つとして、電気抵抗式水分計を用いた方法が提案されている。具体的には、電気ドリルを用いてコンクリート構造物を穿孔して複数の孔を形成し、該複数の孔から選択される一対の孔に電気抵抗式水分計の一対の電極を挿入する。そして、一対の電極間におけるコンクリート構造物内の電気抵抗に基づくカウント値を測定する。これにより、得られるカウント値に対応した含水率を把握することが可能となっている(非特許文献1および2参照)。   As one of the measurements of the moisture content, a method using an electric resistance moisture meter has been proposed. Specifically, a concrete structure is drilled using an electric drill to form a plurality of holes, and a pair of electrodes of an electric resistance moisture meter is inserted into a pair of holes selected from the plurality of holes. And the count value based on the electrical resistance in the concrete structure between a pair of electrodes is measured. Thereby, it is possible to grasp the moisture content corresponding to the obtained count value (see Non-Patent Documents 1 and 2).

「外部環境がコンクリート構造物内部の含水状態に与える影響」(土木学会 第64回年次学術講演会概要集 平成21年9月)"Effects of external environment on moisture content inside concrete structures" (Outline of the 64th Annual Conference of Japan Society of Civil Engineers, September 2009) 「建設技術研究開発費補助金総合研究報告書」(研究期間:平成20年度〜平成21年度)"Construction Technology R & D Subsidy Comprehensive Research Report" (Research period: 2008-2009)

しかしながら、上記のように、電極を挿入する孔(以下、挿入孔とも記す)が電気ドリルを用いて形成される場合、電気ドリルの刃の回転による摩擦や気流の影響によって、挿入孔の内面が乾燥することになる。また、穿孔によって生じる粉塵を挿入孔内から除去するために、挿入孔内に気体を噴射したり、挿入孔内から粉塵を吸い上げたりすることでも、挿入孔の内面が乾燥することになる。また、電気ドリルの刃の回転や粉塵の除去による気流によって、コンクリート構造物の内部と挿入孔の内面との間に温度差が生じることになる。   However, as described above, when an electrode insertion hole (hereinafter also referred to as an insertion hole) is formed using an electric drill, the inner surface of the insertion hole is caused by the influence of friction and airflow caused by the rotation of the blade of the electric drill. It will dry. Further, in order to remove dust generated by the perforation from the inside of the insertion hole, the inner surface of the insertion hole is also dried by injecting gas into the insertion hole or sucking up dust from the insertion hole. In addition, a temperature difference is generated between the inside of the concrete structure and the inner surface of the insertion hole due to the airflow caused by the rotation of the blade of the electric drill and the removal of dust.

このように、挿入孔の内面の乾燥や、挿入孔の内面とコンクリート構造物の内部との温度差が生じることで、一対の電極間の電気抵抗とコンクリート構造物内の真の電気抵抗との間に誤差が生じることになる。更に、コンクリート構造物を穿孔する際に、電気ドリルの刃が粗骨材を貫通した場合には、挿入孔内に粗骨材が露出するため、粗骨材と電極とが接触する虞がある。斯かる場合には、粗骨材自体の含水率が一対の電極間の電気抵抗に影響することなるため、一対の電極間の電気抵抗とコンクリート構造物内の真の電気抵抗との間に誤差が生じることになる。   Thus, the drying of the inner surface of the insertion hole and the temperature difference between the inner surface of the insertion hole and the inside of the concrete structure cause the electrical resistance between the pair of electrodes and the true electrical resistance in the concrete structure. An error will occur between them. Furthermore, when drilling a concrete structure, if the blade of an electric drill penetrates the coarse aggregate, the coarse aggregate is exposed in the insertion hole, and there is a possibility that the coarse aggregate and the electrode come into contact with each other. . In such a case, since the moisture content of the coarse aggregate itself affects the electrical resistance between the pair of electrodes, there is an error between the electrical resistance between the pair of electrodes and the true electrical resistance in the concrete structure. Will occur.

そこで、本発明は、電気抵抗に基づく測定を正確に行うことができる供試体を作製することができる供試体の作製方法、および、該供試体の測定方法を提供することを課題とする。   Then, this invention makes it a subject to provide the preparation method of the specimen which can produce the specimen which can perform the measurement based on an electrical resistance correctly, and the measuring method of this specimen.

本発明に係る供試体の作製方法は、下記の供試体の測定方法で使用される供試体を作製する供試体の作製方法であって、複数の棒状部材の一端部が型枠内の混練物から突出するように複数の棒状部材が混練物に差し込まれた状態で混練物を硬化させて硬化体を形成する硬化体形成工程と、該硬化体から少なくとも一対の棒状部材を引き抜いて一対の挿入孔を備える供試体を形成する引き抜き工程とを備えることを特徴とする。
The specimen preparation method according to the present invention is a specimen preparation method for preparing a specimen used in the following specimen measurement method, wherein one end of a plurality of rod-shaped members is kneaded in a mold a plurality of rod members so as to protrude and a cured body forming step of forming a cured product by curing the kneaded material in a state of being inserted into the kneaded product, the pair and disconnect pull at least a pair of rod-like members from the cured body from And a drawing step of forming a specimen having an insertion hole .

斯かる構成によれば、各棒状部材の一端部が混練物から突出した状態となる。このため、硬化体が形成された状態で、棒状部材の一端部を把持して硬化体から引き抜くことで(引き抜き工程)、硬化体には、一対の電極のそれぞれを挿入可能な一対の挿入孔が形成される。これにより、一対の挿入孔を備えた供試体が形成される。   According to such a configuration, one end of each rod-shaped member is in a state protruding from the kneaded material. For this reason, with the cured body formed, a pair of insertion holes into which each of the pair of electrodes can be inserted into the cured body by grasping one end of the rod-shaped member and pulling it out from the cured body (pulling process) Is formed. As a result, a specimen having a pair of insertion holes is formed.

この一対の挿入孔は、硬化体を電気ドリルで穿孔して形成されたものではないため、電気ドリルの刃の回転による摩擦や気流の影響によって、挿入孔の内面が乾燥することがない。また、穿孔による粉塵が生じないため、挿入孔内の粉塵を除去するべく挿入孔内に気体を噴射したり、挿入孔内から粉塵を吸い上げたりする必要がない。このため、粉塵を除去する際の気流によって挿入孔の内面が乾燥することもない。   Since the pair of insertion holes are not formed by drilling a hardened body with an electric drill, the inner surfaces of the insertion holes do not dry due to the effects of friction and airflow caused by the rotation of the blades of the electric drill. Further, since dust due to perforation is not generated, there is no need to inject gas into the insertion hole or suck up dust from the insertion hole in order to remove the dust in the insertion hole. For this reason, the inner surface of the insertion hole is not dried by the airflow when removing the dust.

また、電気ドリルの刃の回転や粉塵の除去による気流によって、供試体の内部と挿入孔の内面との間に温度差が生じることもない。更に、硬化前の混練物に棒状部材が差し込まれるため、電極ドリルの刃のように、棒状部材が粗骨材を貫通することがない。このため、一対の電極のそれぞれを一対の挿入孔のそれぞれに挿入した際に、挿入孔内に粗骨材が露出して電極と接触することがない。   Further, there is no temperature difference between the inside of the specimen and the inner surface of the insertion hole due to the airflow caused by the rotation of the blade of the electric drill or the removal of dust. Furthermore, since the rod-shaped member is inserted into the kneaded material before hardening, the rod-shaped member does not penetrate the coarse aggregate unlike the blade of an electrode drill. For this reason, when each of the pair of electrodes is inserted into each of the pair of insertion holes, the coarse aggregate is not exposed in the insertion holes and does not come into contact with the electrodes.

これにより、一対の電極のそれぞれを一対の挿入孔のそれぞれに挿入し、一対の電極間の電気抵抗に基づく測定を行う際に、挿入孔の内面の状態(乾燥状態、温度状態)や粗骨材と電極との接触を考慮する必要がなく、正確な(真の測定結果により近い)測定結果を得ることができる。   Thereby, when each of the pair of electrodes is inserted into each of the pair of insertion holes and measurement is performed based on the electrical resistance between the pair of electrodes, the state of the inner surface of the insertion hole (dry state, temperature state) and coarse bone It is not necessary to consider the contact between the material and the electrode, and an accurate measurement result (closer to the true measurement result) can be obtained.

前記硬化体形成工程では、各棒状部材が混練物に差し込まれた状態で、棒状部材の差し込み方向に沿った混練物の外周面から25mm以上内側の領域に各棒状部材が差し込まれることが好ましい。   In the said hardening body formation process, it is preferable that each rod-shaped member is inserted in the area | region inside 25 mm or more from the outer peripheral surface of the kneaded material along the insertion direction of a rod-shaped member in the state which each rod-shaped member was inserted in the kneaded material.

斯かる構成によれば、一対の棒状部材を引き抜くことで形成される一対の挿入孔は、供試体における挿入孔の深さ方向に沿った外周面から25mm以上内側の領域に形成される。これにより、斯かる領域に一対の電極を配置することができるため、供試体の外周面から内部へ向かって進行する乾燥の影響を受けることなく、一対の電極間の電気抵抗に基づく測定を正確に行うことができる。   According to such a configuration, the pair of insertion holes formed by pulling out the pair of rod-shaped members is formed in a region 25 mm or more inside from the outer peripheral surface along the depth direction of the insertion hole in the specimen. As a result, since a pair of electrodes can be arranged in such a region, measurement based on the electrical resistance between the pair of electrodes can be accurately performed without being affected by drying that proceeds from the outer peripheral surface of the specimen toward the inside. Can be done.

前記硬化体形成工程では、各棒状部材が混練物に差し込まれた状態で、棒状部材の差し込み方向に位置する型枠内の混練物の両端部から60mm以上内側の領域に、各棒状部材の他端部が位置するように構成されることが好ましい。   In the cured body forming step, each rod-shaped member is placed in a region 60 mm or more inside both ends of the kneaded material in the mold frame located in the insertion direction of the rod-shaped member with each rod-shaped member inserted into the kneaded material. It is preferable that the end portion is positioned.

斯かる構成によれば、棒状部材の差し込み方向に位置する型枠内の混練物の両端面から60mm以上内側の領域に、各棒状部材の他端部が位置することで、供試体の表面から十分に離間した位置に電極を挿入可能な挿入孔を形成することができる。このため、供試体の両端面(型枠内の混練物の両端面に想到する両端面)から内部へ向かって進行する乾燥の影響を受けることなく、一対の電極間の電気抵抗に基づく測定を正確に行うことができる。   According to such a configuration, the other end of each rod-shaped member is located in the region 60 mm or more from the both end surfaces of the kneaded material in the mold located in the insertion direction of the rod-shaped member, so that the surface of the specimen is An insertion hole into which the electrode can be inserted can be formed at a sufficiently spaced position. For this reason, measurement based on the electrical resistance between a pair of electrodes can be performed without being affected by drying that proceeds inward from both end faces of the specimen (both end faces conceived at both end faces of the kneaded material in the mold). Can be done accurately.

本発明に係る供試体の測定方法は、コンクリートと水とが混練されてなる混練物を型枠内で硬化させることで形成される供試体に対して、内部の電気抵抗に基づく測定を行う供試体の測定方法であって、複数の棒状部材の一端部が型枠内の混練物から突出するように複数の棒状部材が混練物に差し込まれた状態で混練物硬化して形成される硬化体から少なくとも一対の棒状部材を引き抜くことで一対の挿入孔を備える供試体を形成した直後に、一対の挿入孔のそれぞれに一対の電極のそれぞれを挿入し、一対の電極間における供試体の電気抵抗に基づく測定を行う第一測定工程を備えることを特徴とする。 Method of measuring the specimen according to the present invention, provided that with respect to specimens of concrete and water Ru is formed by curing the kneaded product obtained is kneaded in the mold frame, performs measurement based on internal electrical resistance A method for measuring a specimen , in which a kneaded material is cured in a state where a plurality of rod-shaped members are inserted into the kneaded material so that one end portions of the plurality of rod-shaped members protrude from the kneaded material in the mold. Immediately after forming a specimen having a pair of insertion holes by pulling out at least a pair of rod-shaped members from the body , each of the pair of electrodes is inserted into each of the pair of insertion holes, and electricity of the specimen between the pair of electrodes is measured. It is characterized by including a first measurement step for performing resistance-based measurement .

斯かる構成によれば、一対の挿入孔は、硬化体を電気ドリルで穿孔して形成されたものではないため、電気ドリルの刃の回転による摩擦や気流の影響によって、挿入孔の内面が乾燥することがない。また、穿孔による粉塵が生じないため、挿入孔内の粉塵を除去するべく挿入孔内に気体を噴射したり、挿入孔内から粉塵を吸い上げたりする必要がない。このため、粉塵を除去する際の気流によって挿入孔の内面が乾燥することもない。   According to such a configuration, the pair of insertion holes are not formed by drilling the hardened body with an electric drill, and therefore the inner surfaces of the insertion holes are dried due to friction and airflow caused by the rotation of the blades of the electric drill. There is nothing to do. Further, since dust due to perforation is not generated, there is no need to inject gas into the insertion hole or suck up dust from the insertion hole in order to remove the dust in the insertion hole. For this reason, the inner surface of the insertion hole is not dried by the airflow when removing the dust.

また、電気ドリルの刃の回転や粉塵の除去による気流によって、供試体の内部と挿入孔の内面との間に温度差が生じることもない。更に、硬化前の混練物に棒状部材が差し込まれるため、電極ドリルの刃のように、棒状部材が粗骨材を貫通することがない。このため、一対の電極のそれぞれを一対の挿入孔のそれぞれに挿入した際に、挿入孔内に粗骨材が露出して電極と接触することがない。   Further, there is no temperature difference between the inside of the specimen and the inner surface of the insertion hole due to the airflow caused by the rotation of the blade of the electric drill or the removal of dust. Furthermore, since the rod-shaped member is inserted into the kneaded material before hardening, the rod-shaped member does not penetrate the coarse aggregate unlike the blade of an electrode drill. For this reason, when each of the pair of electrodes is inserted into each of the pair of insertion holes, the coarse aggregate is not exposed in the insertion holes and does not come into contact with the electrodes.

これにより、引き抜き工程の直後に一対の電極のそれぞれを一対の挿入孔のそれぞれに挿入し、一対の電極間の電気抵抗に基づく測定を行うことで、挿入孔の内面の状態(乾燥状態、温度状態)や粗骨材と電極との接触を考慮する必要がなく、正確な(真の測定結果により近い)測定結果を得ることができる。   Thus, immediately after the drawing step, each of the pair of electrodes is inserted into each of the pair of insertion holes, and measurement based on the electrical resistance between the pair of electrodes is performed, so that the state of the inner surface of the insertion hole (dry state, temperature) State) and the contact between the coarse aggregate and the electrode, it is possible to obtain an accurate measurement result (closer to the true measurement result).

前記第一測定工程では、一対の電極を備える電気抵抗式水分計を用いて、一対の電極間における供試体の電気抵抗に基づくカウント値を測定するように構成されており、
第一測定工程後、供試体内におけるカウント値を測定した位置の周辺の部位から試験片を採取し、該試験片の含水率を測定する第二測定工程を更に備えることが好ましい。
In the first measurement step, a count value based on the electrical resistance of the specimen between the pair of electrodes is measured using an electrical resistance moisture meter having a pair of electrodes,
After the first measurement step, it is preferable to further include a second measurement step of collecting a test piece from a portion around the position where the count value is measured in the specimen and measuring the moisture content of the test piece.

斯かる構成によれば、挿入孔の内面の状態(乾燥状態、温度状態)や電極と粗骨材との接触を考慮することなく、正確な(真の測定結果により近い)カウント値を測定することができる。これにより、該カウント値および第二測定工程の測定結果からカウント値に対応する含水率を把握することができるため、他の供試体やコンクリート構造物のカウント値を測定することで、該カウント値から含水率を推定することができる。   According to such a configuration, an accurate (closer to the true measurement result) count value is measured without considering the inner surface state (dry state, temperature state) of the insertion hole and the contact between the electrode and the coarse aggregate. be able to. Thereby, since the moisture content corresponding to the count value can be grasped from the count value and the measurement result of the second measurement step, the count value can be determined by measuring the count value of another specimen or a concrete structure. The water content can be estimated from

以上のように、本発明によれば、電気抵抗に基づく測定を正確に行うことができる供試体を作製することができる。   As described above, according to the present invention, it is possible to produce a specimen that can accurately perform measurement based on electric resistance.

本発明に係る供試体の作製方法の一実施形態における硬化体形成工程において、型枠に充填された混練物に棒状部材を差し込む際の斜視図。The perspective view at the time of inserting a rod-shaped member in the kneaded material with which the formwork was filled in the hardening body formation process in one Embodiment of the preparation methods of the test body which concerns on this invention. (a)は、同実施形態における硬化体形成工程で、混練物に棒状部材が差し込まれた状態を上方から見た図、(b)は、同実施形態における硬化体形成工程における(a)のI−I断面図。(A) is the figure which looked at the state by which the rod-shaped member was inserted in the kneaded material from the upper part in the hardening body formation process in the embodiment, (b) is (a) of the hardening body formation process in the embodiment. II sectional drawing. 同実施形態における供試体の斜視図。The perspective view of the test body in the same embodiment. 実施例におけるカウント数と含水率の温度毎の近似を示したグラフ。The graph which showed the approximation for every temperature of the count number and moisture content in an Example. 実施例の近似式における各係数に関する温度の二次式による近似を示したグラフ。The graph which showed the approximation by the quadratic expression of the temperature regarding each coefficient in the approximate expression of an Example. 実施例の近似式において温度毎のカウント数と含水率との関係を示したグラフ。The graph which showed the relationship between the count number for every temperature, and the moisture content in the approximate expression of an Example.

以下、本発明の一実施形態について図1〜3を参照しながら説明する。なお、以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

本実施形態に係る供試体の作製方法は、電気抵抗に基づく測定の対象となる供試体を作製するものである。具体的には、コンクリートと水とが混練されてなる混練物を形成する混練工程と、複数の棒状部材を混練物に差し込んだ状態で該混練物を硬化させて硬化体を形成する硬化体形成工程と、該硬化体から少なくとも一対の棒状部材を引き抜く引き抜き工程とを備える。   The method for producing a specimen according to this embodiment is for producing a specimen to be measured based on electric resistance. Specifically, a kneading step for forming a kneaded material in which concrete and water are kneaded, and a cured body formation in which a plurality of rod-shaped members are inserted into the kneaded material and the kneaded material is cured to form a cured body. A step and a drawing step of pulling out at least a pair of rod-shaped members from the cured body.

前記混練工程では、セメントと粗骨材とから構成されるコンクリートと所定量の水とが混練されて混練物が形成される。なお、セメントおよび粗骨材と共に、細骨材、混和剤(減水剤等)、混和材等が混練されてもよい。   In the kneading step, concrete composed of cement and coarse aggregate and a predetermined amount of water are kneaded to form a kneaded product. A fine aggregate, an admixture (such as a water reducing agent), an admixture, and the like may be kneaded together with cement and coarse aggregate.

前記硬化体形成工程では、図1に示すように、混練工程で得られる混練物Aが円筒状の内部空間を備える型枠X内に充填される。そして、3本の棒状部材Y,Y,Yが型枠Xの軸方向に沿って混練物Aに差し込まれる。型枠Xのサイズとしては、特に限定されるものではなく、例えば、φ80mm以上120mm以下であり、高さ150mm以上220mm以下の内部空間を備える型枠Xを用いることができる。   In the said hardening body formation process, as shown in FIG. 1, the kneaded material A obtained by a kneading | mixing process is filled in the mold form X provided with cylindrical internal space. Then, the three rod-like members Y, Y, Y are inserted into the kneaded material A along the axial direction of the mold X. The size of the mold X is not particularly limited. For example, a mold X having an internal space of φ80 mm to 120 mm and a height of 150 mm to 220 mm can be used.

各棒状部材Yの差し込み位置としては、特に限定されるものではないが、例えば、図2(a)に示すように、棒状部材Yの差し込み方向に沿った混練物Aの外周面A1から25mm以上内側の領域R1であることが好ましい。また、3本の棒状部材Y,Y,Yは、混練物Aに差し込まれた状態で、それぞれが等間隔に配置される(即ち、正三角形状に配置される)ことが好ましい。隣り合う棒状部材Y,Yの間隔としては、特に限定されるものではなく、例えば、20mm以上40mm以下であることが好ましい。   Although it does not specifically limit as an insertion position of each rod-shaped member Y, for example, as shown to Fig.2 (a), it is 25 mm or more from outer peripheral surface A1 of the kneaded material A along the insertion direction of the rod-shaped member Y. The inner region R1 is preferable. Moreover, it is preferable that the three rod-shaped members Y, Y, and Y are arranged at equal intervals in a state where they are inserted into the kneaded product A (that is, arranged in an equilateral triangle shape). The interval between the adjacent rod-shaped members Y, Y is not particularly limited, and is preferably 20 mm or more and 40 mm or less, for example.

また、各棒状部材Yは、図2(b)に示すように、混練物Aに差し込まれた状態で、一端部Y1が混練物Aから突出した状態となる。各棒状部材Yの一端部Y1の混練物Aからの突出量としては、特に限定されるものではないが、該一端部Y1をペンチ等の工具で把持可能な程度であることが好ましい。また、各棒状部材Yが混練物Aに差し込まれた状態では、各棒状部材Yの他端部Y2は、棒状部材Yの差し込み方向に位置する混練物Aの両端面A2,A2から60mm以上内側の領域R2に位置することが好ましい。   Moreover, each rod-shaped member Y will be in the state which one end part Y1 protruded from the kneaded material A in the state inserted in the kneaded material A, as shown in FIG.2 (b). The amount of protrusion of the one end Y1 of each rod-shaped member Y from the kneaded product A is not particularly limited, but it is preferable that the one end Y1 can be gripped with a tool such as pliers. Further, in a state where each rod-shaped member Y is inserted into the kneaded material A, the other end Y2 of each rod-shaped member Y is 60 mm or more inside from both end faces A2, A2 of the kneaded material A located in the insertion direction of the rod-shaped member Y. It is preferable to be located in the region R2.

そして、三本の棒状部材Y,Y,Yが差し込まれた状態で混練物Aが硬化することで硬化体Bが形成される。   And the hardening body B is formed when the kneaded material A hardens | cures in the state in which the three rod-shaped members Y, Y, and Y were inserted.

前記引き抜き工程では、硬化体Bから突出した各棒状部材Yの一端部Y1が把持されて硬化体Bから棒状部材Yが引き抜かれる。これにより、図3に示すように、供試体Cが形成される。該供試体Cは、各棒状部材Yが引き抜かれた位置に、電極を挿入可能な挿入孔C1を備える。該挿入孔C1は、供試体Cにおける挿入孔C1の深さ方向に沿った外周面C2から25mm以上内側の領域(以下、内側領域とも記す)R3に形成されることが好ましい。また、挿入孔C1の底部は、供試体Cにおける挿入孔C1の深さ方向に位置する両端面C3,C3から60mm以上内側の領域(以下、深さ領域とも記す)R4に形成されることが好ましい。   In the extraction step, one end Y1 of each bar-shaped member Y protruding from the cured body B is gripped and the bar-shaped member Y is pulled out from the cured body B. Thereby, as shown in FIG. 3, the specimen C is formed. The specimen C includes an insertion hole C1 into which an electrode can be inserted at a position where each rod-shaped member Y is pulled out. The insertion hole C1 is preferably formed in a region (hereinafter also referred to as an inner region) R3 of 25 mm or more from the outer peripheral surface C2 along the depth direction of the insertion hole C1 in the specimen C. In addition, the bottom of the insertion hole C1 may be formed in a region (hereinafter also referred to as a depth region) R4 60 mm or more from both end faces C3 and C3 located in the depth direction of the insertion hole C1 in the specimen C. preferable.

次に、上記の方法で作製される供試体Cに対して電気抵抗に基づく測定を行う測定方法について説明する。具体的には、斯かる測定方法は、一対の電極を備えた電気抵抗式水分計を用いて供試体Cのカウント値を測定する第一測定工程と、供試体Cの含水率を測定する第二測定工程とを備える。   Next, a measurement method for performing measurement based on electric resistance for the specimen C produced by the above method will be described. Specifically, such a measuring method includes a first measurement step of measuring the count value of the specimen C using an electric resistance moisture meter provided with a pair of electrodes, and a first method of measuring the moisture content of the specimen C. Two measurement steps.

第一測定工程では、供試体Cが形成された直後(即ち、三本の棒状部材Y,Y,Yが引き抜かれた直後)に、一対の挿入孔C1,C1のそれぞれに一対の電極のそれぞれが挿入される。各電極の挿入位置としては、特に限定されるものではないが、供試体Cの深さ領域R4内であることが好ましい。これにより、一対の電極間の電気抵抗に基づくカウント値が測定される。   In the first measurement process, immediately after the specimen C is formed (that is, immediately after the three rod-like members Y, Y, Y are pulled out), the pair of electrodes are respectively inserted into the pair of insertion holes C1, C1. Is inserted. The insertion position of each electrode is not particularly limited, but is preferably within the depth region R4 of the specimen C. Thereby, the count value based on the electrical resistance between the pair of electrodes is measured.

第二測定工程では、第一測定工程後の供試体Cにおいて、内側領域R3内および深さ領域R4内から試験片が採取される。具体的には、供試体Cを割裂し、内側領域R3内および深さ領域R4内における一対の電極間の部位からたがね等を用いて試験片が採取される。そして、該試験片の含水率の測定が行われる。含水率の測定方法としては、特に限定されるものではないが、例えば、以下の方法が挙げられる。具体的には、「コンクリート試料中の自由水の定量方法」の105℃乾燥法(社団法人 日本コンクリート工学協会(現 公益社団法人 日本コンクリート工学会)編 コンクリートの試験・分析マニュアル,p.56)に準じて、採取直後の試験片の重量と、105℃の温度で乾燥させて恒量となった後の試験片の重量とを測定する。そして、乾燥前後の試験片の重量差を採取直後の試験片に含有されていた水分の重量とし、採取直後の試験片の重量に対する水分重量の割合を含水率とすることができる。   In the second measurement process, in the specimen C after the first measurement process, test pieces are collected from the inside region R3 and the depth region R4. Specifically, the specimen C is split, and a test piece is collected from the portion between the pair of electrodes in the inner region R3 and the depth region R4 using a chisel or the like. Then, the moisture content of the test piece is measured. Although it does not specifically limit as a measuring method of a moisture content, For example, the following method is mentioned. Specifically, 105 ° C drying method of “Quantitative method of free water in concrete samples” (Concrete Testing and Analysis Manual, edited by Japan Concrete Institute (currently Japan Concrete Institute), p.56) The weight of the test piece immediately after collection and the weight of the test piece after drying at a temperature of 105 ° C. to become a constant weight are measured. And the weight difference of the test piece before and behind drying can be made into the weight of the moisture contained in the test piece immediately after collection | recovery, and the ratio of the moisture weight with respect to the weight of the test piece immediately after collection | recovery can be made into a moisture content.

そして、含水率の異なる(例えば、乾燥状態のことなる)複数の供試体Cに対して第一測定工程および第二測定工程を行うことで、含水率の変化に対するカウント値の変化を把握することが可能となる。これにより、カウント値に基づいて含水率を推定することが可能となる。   And grasping the change of the count value with respect to the change of the moisture content by performing the first measurement process and the second measurement process on a plurality of specimens C having different moisture contents (for example, being in a dry state). Is possible. Thereby, it becomes possible to estimate a moisture content based on a count value.

以上のように、本発明に係る供試体の作製方法によれば、電気抵抗に基づく測定を正確に行うことができる供試体を作製することができ、本発明に係る供試体の測定方法によれば、電気抵抗に基づく測定を正確に行うことができる。   As described above, according to the method for producing a specimen according to the present invention, it is possible to produce a specimen that can be accurately measured based on electric resistance, and according to the method for measuring a specimen according to the present invention. Thus, measurement based on electric resistance can be accurately performed.

即ち、各棒状部材Yの一端部Y1が混練物Aから突出した状態となる。このため、硬化体Bが形成された状態で、棒状部材Yの一端部Y1を把持して硬化体Bから引き抜くことで(引き抜き工程)、硬化体Bには、一対の電極のそれぞれを挿入可能な一対の挿入孔C1,C1が形成される。これにより、一対の挿入孔C1,C1を備えた供試体Cが形成される。この一対の挿入孔C1,C1は、硬化体Bを電気ドリルで穿孔して形成されたものではないため、電気ドリルの刃の回転による摩擦や気流の影響によって、挿入孔C1の内面が乾燥することがない。また、穿孔による粉塵が生じないため、挿入孔C1内の粉塵を除去するべく挿入孔内に気体を噴射したり、挿入孔C1内から粉塵を吸い上げたりする必要がない。このため、粉塵を除去する際の気流によって挿入孔C1の内面が乾燥することもない。   That is, one end Y1 of each rod-shaped member Y is in a state of protruding from the kneaded material A. For this reason, each of the pair of electrodes can be inserted into the cured body B by grasping the one end Y1 of the rod-shaped member Y and pulling it out of the cured body B in the state in which the cured body B is formed (extraction process). A pair of insertion holes C1 and C1 are formed. Thereby, the specimen C provided with a pair of insertion holes C1 and C1 is formed. Since the pair of insertion holes C1 and C1 is not formed by drilling the hardened body B with an electric drill, the inner surface of the insertion hole C1 is dried by the influence of friction and airflow caused by the rotation of the blade of the electric drill. There is nothing. Further, since dust due to perforation is not generated, there is no need to inject gas into the insertion hole or to suck up dust from the insertion hole C1 in order to remove the dust in the insertion hole C1. For this reason, the inner surface of the insertion hole C1 is not dried by the airflow when removing the dust.

また、電気ドリルの刃の回転や粉塵の除去による気流によって、供試体Cの内部と挿入孔C1の内面との間に温度差が生じることもない。更に、硬化前の混練物Aに棒状部材Yが差し込まれるため、電極ドリルの刃のように、棒状部材Yが粗骨材を貫通することがない。このため、一対の電極のそれぞれを一対の挿入孔C1,C1のそれぞれに挿入した際に、挿入孔C1内に粗骨材が露出して電極と接触することがない。   Further, there is no temperature difference between the inside of the specimen C and the inner surface of the insertion hole C1 due to the airflow caused by the rotation of the blade of the electric drill or the removal of dust. Furthermore, since the rod-shaped member Y is inserted into the kneaded material A before curing, the rod-shaped member Y does not penetrate the coarse aggregate unlike the blade of an electrode drill. Therefore, when each of the pair of electrodes is inserted into each of the pair of insertion holes C1 and C1, the coarse aggregate is not exposed in the insertion hole C1 and does not come into contact with the electrodes.

これにより、一対の電極のそれぞれを一対の挿入孔C1,C1のそれぞれに挿入し、一対の電極間の電気抵抗に基づく測定を行う際に、挿入孔の内面の状態(乾燥状態、温度状態)や粗骨材と電極との接触を考慮する必要がなく、正確な(真の測定結果により近い)測定結果を得ることができる。   Thereby, when each of the pair of electrodes is inserted into each of the pair of insertion holes C1 and C1 and measurement is performed based on the electrical resistance between the pair of electrodes, the state of the inner surface of the insertion hole (dry state, temperature state) In addition, it is not necessary to consider contact between the coarse aggregate and the electrode, and an accurate measurement result (closer to the true measurement result) can be obtained.

また、一対の棒状部材Y,Yを引き抜くことで形成される一対の挿入孔C1,C1は、挿入孔C1の深さ方向に沿った供試体Cの外周面C2から25mm以上内側の領域R3に形成される。これにより、斯かる領域に一対の電極を配置することができるため、供試体Cの外周面C2から内部へ向かって進行する乾燥の影響を受けることなく、一対の電極間の電気抵抗に基づく測定を正確に行うことができる。   Further, the pair of insertion holes C1, C1 formed by pulling out the pair of rod-like members Y, Y is located in a region R3 that is 25 mm or more inside from the outer peripheral surface C2 of the specimen C along the depth direction of the insertion hole C1. It is formed. Thereby, since a pair of electrodes can be arranged in such a region, measurement based on the electrical resistance between the pair of electrodes is not affected by drying that proceeds from the outer peripheral surface C2 of the specimen C toward the inside. Can be done accurately.

また、棒状部材Yの差し込み方向に位置する混練物Aの両端面C3,C3から60mm以上内側の領域R4に、各棒状部材Yの他端部Y2が位置することで、供試体Cの表面から十分に離間した位置に電極を挿入可能な挿入孔C1を形成することができる。このため、供試体Cの両端面(型枠内の混練物Aの両端面に想到する両端面)C3,C3から内部へ向かって進行する乾燥の影響を受けることなく、一対の電極間の電気抵抗に基づく測定を正確に行うことができる。   Further, the other end portion Y2 of each rod-shaped member Y is positioned in the region R4 that is 60 mm or more inside from both end surfaces C3, C3 of the kneaded material A located in the insertion direction of the rod-shaped member Y, so that the surface of the specimen C is removed. An insertion hole C1 into which an electrode can be inserted can be formed at a sufficiently spaced position. For this reason, both ends of the specimen C (both ends conceived at both ends of the kneaded product A in the mold) C3, C3 are not affected by the drying that proceeds inward, and the electricity between the pair of electrodes Resistance-based measurements can be made accurately.

なお、本発明に係る供試体の作製方法および供試体の測定方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記した複数の実施形態の構成や方法等を任意に採用して組み合わせてもよく(1つの実施形態に係る構成や方法等を他の実施形態に係る構成や方法等に適用してもよく)、さらに、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。   The specimen preparation method and specimen measurement method according to the present invention are not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. Further, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined (even if the configurations and methods according to one embodiment are applied to the configurations and methods according to other embodiments). Of course, it is of course possible to arbitrarily select configurations, methods, and the like according to various modifications described below and employ them in the configurations, methods, and the like according to the above-described embodiments.

例えば、上記実施形態では、円柱状の内部空間を備える型枠が用いられているが、これに限定されるものではなく、例えば、立方体状や直方体状の内部空間を備える型枠であってもよい。   For example, in the above-described embodiment, a mold having a cylindrical inner space is used. However, the present invention is not limited to this. For example, a mold having a cubic or cuboid inner space may be used. Good.

また、上記実施形態では、電気抵抗式水分計を用いてカウント値が測定され、供試体の含水率との関係が把握されるように構成されているが、供試体の電気抵抗に基づく測定であれば、これに限定されるものではない。   Further, in the above embodiment, the count value is measured using an electric resistance moisture meter, and the relationship with the moisture content of the specimen is grasped, but the measurement based on the electrical resistance of the specimen is used. If there is, it is not limited to this.

以下、本発明の試験例について説明する。   Hereinafter, test examples of the present invention will be described.

1.使用材料および使用設備
・型枠:φ100mm×高さ200mmの円柱状の内部空間を備えるもの
・棒状部材:φ6mm×長さ150mm ステンレス製(SUS304)
・C:普通ポルトランドセメント(密度:3.15g/cm3 住友大阪セメント社製)
・S1:細骨材(砕砂 密度2.64g/cm3
・S2:細骨材(砕砂 密度2.59g/cm3
・G:粗骨材(砕石 密度:2.63g/cm3
・AD:AE減水剤(ポゾリス15L BASFポゾリス社製)
・AE:消泡剤(マイクロエア40 BASFポゾリス社製)
・W:上水道水(密度:1.00g/cm3
・NaCl
1. Materials and equipment used • Formwork: φ100 mm x Height 200 mm with cylindrical internal space • Bar-shaped member: φ6 mm x Length 150 mm Made of stainless steel (SUS304)
C: Ordinary Portland cement (density: 3.15 g / cm 3 manufactured by Sumitomo Osaka Cement)
S1: Fine aggregate (crushed sand density 2.64 g / cm 3 )
S2: Fine aggregate (crushed sand density 2.59 g / cm 3 )
G: coarse aggregate (crushed stone density: 2.63 g / cm 3 )
AD: AE water reducing agent (Pozoris 15L BASF manufactured by Pozoris)
・ AE: Antifoaming agent (Micro Air 40 BASF Pozzolith)
W: Tap water (density: 1.00 g / cm 3 )
・ NaCl

2.混練工程
上記の材料を下記表1の配合で混練して混練物を形成した。該混練物の性状については、下記表2に示す。また、該混練物を硬化させて形成される硬化体の圧縮強度(材齢28日)をJIS A 1108に準拠して測定した。測定結果については、下記表2に示す。
2. Kneading step The above materials were kneaded according to the formulation shown in Table 1 to form a kneaded product. The properties of the kneaded product are shown in Table 2 below. Further, the compressive strength (material age 28 days) of a cured product formed by curing the kneaded product was measured in accordance with JIS A 1108. The measurement results are shown in Table 2 below.

3.硬化体形成工程
上記の混練物を20℃の環境下で上記の型枠の内部空間を満たすように充填した。そして、型枠内の混練物に上記の棒状部材(三本)を差し込んだ。この際、三本の棒状部材は、中心間距離が30mmとなるように正三角形状に配置され、該正三角形の中心が型枠内の混練物の軸線上に位置するようにした。また、各棒状部材の差し込み深さは、100mmとした。そして、型枠の開口部をビニールで封緘した状態で、混練物を所定温度で養生(乾燥)させて硬化体を得た。養生(乾燥)の温度および期間は、下記表3に示す。なお、養生(乾燥)期間が24時間を経過した時点で、脱型して養生(乾燥)を行った。
3. Cured body forming step The kneaded product was filled to fill the internal space of the mold in an environment of 20 ° C. And said rod-shaped member (three pieces) was inserted in the kneaded material in a mold. At this time, the three rod-shaped members were arranged in a regular triangle shape so that the distance between the centers was 30 mm, and the center of the regular triangle was positioned on the axis of the kneaded material in the mold. Moreover, the insertion depth of each rod-shaped member was 100 mm. Then, the kneaded material was cured (dried) at a predetermined temperature in a state where the opening of the mold was sealed with vinyl to obtain a cured body. Curing (drying) temperature and duration are shown in Table 3 below. In addition, when the curing (drying) period passed 24 hours, the mold was removed and curing (drying) was performed.

4.引き抜き工程
上記の各養生(乾燥)温度において、養生(乾燥)期間毎の各硬化体から三本の棒状部材を引き抜いて、各養生(乾燥)温度における養生(乾燥)期間毎の供試体を形成した。
4). Extraction process At each curing (drying) temperature described above, three bars are pulled out from each cured body for each curing (drying) period to form a specimen for each curing (drying) period at each curing (drying) temperature. did.

5.温度測定工程
引き抜き工程直後に、各供試体の各挿入孔内の温度を測定した。各挿入孔内の温度(即ち、供試体の温度)は、養生(乾燥)温度と略同一であった。
5. Temperature measurement process Immediately after the drawing process, the temperature in each insertion hole of each specimen was measured. The temperature in each insertion hole (that is, the temperature of the specimen) was substantially the same as the curing (drying) temperature.

6.第一測定工程(カウント値の測定)
引き抜き工程直後に、各供試体の三つの挿入孔から選択した2つ(一対)の挿入孔のそれぞれに電気抵抗式水分計の一対の電極のそれぞれを挿入してカウント値を測定した。測定箇所としては、挿入孔の深さの60mm〜100mmの範囲で、深さ方向に10mm間隔とした。また、上記のカウント値の測定を他の対の挿入孔においても行った。そして、測定されたカウント値の平均値を算出してカウント値とした。
6). First measurement process (count value measurement)
Immediately after the drawing step, the count value was measured by inserting each of the pair of electrodes of the electric resistance moisture meter into each of the two (pair) insertion holes selected from the three insertion holes of each specimen. As a measurement location, it was set as the 10 mm space | interval in the depth direction in the range of 60 mm-100 mm of the depth of an insertion hole. In addition, the count value was measured in the other pairs of insertion holes. And the average value of the measured count value was calculated, and it was set as the count value.

7.第二測定工程(含水率の測定)
第一測定工程後の各供試体を割裂し、挿入孔の深さ方向の60mm〜100mmの範囲から試験片を採取した。そして、該試験片の重量(W)を測定した後、105℃で乾燥した。該乾燥は、試験片の経時的な質量変動が無くなるまで行った。乾燥後の試験片の重量(W0)を測定した。そして、下記(1)式により、含水率(M)を算出した。

M={(W−W0)/W}×100・・・(1)
7). Second measurement process (measurement of moisture content)
Each specimen after the first measurement step was split, and test pieces were collected from a range of 60 mm to 100 mm in the depth direction of the insertion hole. And after measuring the weight (W) of this test piece, it dried at 105 degreeC. The drying was performed until the mass fluctuation of the test piece over time disappeared. The weight (W 0 ) of the test piece after drying was measured. And the moisture content (M) was computed by the following (1) formula.

M = {(W−W 0 ) / W} × 100 (1)

8.近似式の作成
上記の第一測定工程および第二測定工程での、カウント値と含水率とを下記表4に示す。
8). Creation of approximate expression Table 4 below shows the count value and the water content in the first measurement step and the second measurement step.

そして、供試体の温度毎にカウント値に対する含水率をグラフにプロットし、種々の方法で近似式を作成する。例えば、本試験例では、図4に示すように、供試体の温度毎にカウント値(カウント数)に対する含水率をグラフにプロットし、供試体の温度毎に試行的に近似式(下記(2)式)を得た。

y=y0+A1×exp((x−x0)/t1)・・・(2)
And the moisture content with respect to a count value is plotted on a graph for every temperature of a test body, and an approximate expression is created with various methods. For example, in this test example, as shown in FIG. 4, the moisture content with respect to the count value (count number) is plotted on a graph for each temperature of the specimen, and an approximate equation (2 ) Formula).

y = y 0 + A 1 × exp ((x−x 0 ) / t 1 ) (2)

そして、図5に示すように、上記の近似式(2)の各係数を温度の二次式で近似することによって、温度毎の係数を得た。温度毎の係数は、下記表5に示す。   Then, as shown in FIG. 5, coefficients for each temperature were obtained by approximating each coefficient of the above approximate expression (2) with a quadratic expression of temperature. The coefficient for each temperature is shown in Table 5 below.

そして、得られた近似式(2)および温度毎の係数を用いて、図6に示すようなグラフを作成することで、カウント値から含水率を推定することが可能となる。   And it becomes possible to estimate a moisture content from a count value by creating a graph as shown in FIG. 6 using the obtained approximate expression (2) and the coefficient for each temperature.

A…混練物、B…硬化体、C…供試体、C1…挿入孔、R3…内側領域、R4…深さ領域、X…型枠、Y…棒状部材   A ... Kneaded material, B ... Hardened body, C ... Specimen, C1 ... Insertion hole, R3 ... Inside region, R4 ... Depth region, X ... Formwork, Y ... Rod-shaped member

Claims (5)

コンクリートと水とが混練されてなる混練物を型枠内で硬化させることで形成される供試体に対して、内部の電気抵抗に基づく測定を行う供試体の測定方法であって、
複数の棒状部材の一端部が型枠内の混練物から突出するように複数の棒状部材が混練物に差し込まれた状態で混練物硬化して形成される硬化体から少なくとも一対の棒状部材を引き抜くことで一対の挿入孔を備える供試体を形成した直後に、一対の挿入孔のそれぞれに一対の電極のそれぞれを挿入し、
一対の電極間における供試体の電気抵抗に基づく測定を行う第一測定工程を備えることを特徴とする供試体の測定方法。
Against specimens and concrete and water Ru is formed by curing the kneaded product obtained is kneaded in the mold frame, the method of measuring specimen to perform measurement based on the internal electrical resistance,
At least a pair of rod-like members from the hardened body with one end portion of the plurality of bar-like members are a plurality of rod members so as to protrude from the kneaded product in the mold the kneaded product in a state of being inserted into the kneaded product is formed by curing Immediately after forming a specimen including a pair of insertion holes by pulling out , each of the pair of electrodes is inserted into each of the pair of insertion holes,
A measurement method for a specimen, comprising a first measurement step for performing measurement based on the electrical resistance of the specimen between a pair of electrodes .
前記第一測定工程では、一対の電極を備える電気抵抗式水分計を用いて、一対の電極間における供試体の電気抵抗に基づくカウント値を測定するように構成されており、
第一測定工程後、供試体内におけるカウント値を測定した位置の周辺の部位から試験片を採取し、該試験片の含水率を測定する第二測定工程を更に備えることを特徴とする請求項に記載の供試体の測定方法。
In the first measurement step, a count value based on the electrical resistance of the specimen between the pair of electrodes is measured using an electrical resistance moisture meter having a pair of electrodes,
The method further comprises a second measurement step of collecting a test piece from a portion around the position where the count value is measured in the specimen after the first measurement step and measuring the moisture content of the test piece. The measuring method of the test piece of 1 .
請求項1又は2に記載の供試体の測定方法で使用される供試体を作製する供試体の作製方法であって、
複数の棒状部材の一端部が型枠内の混練物から突出するように複数の棒状部材が混練物に差し込まれた状態で混練物を硬化させて硬化体を形成する硬化体形成工程と、該硬化体から少なくとも一対の棒状部材を引き抜いて一対の挿入孔を備える供試体を形成する引き抜き工程とを備えることを特徴とする供試体の作製方法。
A method for producing a specimen for producing a specimen used in the method for measuring a specimen according to claim 1 ,
A cured body forming step of curing the kneaded material in a state where the plurality of rod-shaped members are inserted into the kneaded material so that one end portions of the plurality of rod-shaped members protrude from the kneaded material in the mold, the method for manufacturing a specimen, characterized in that it comprises a drawing process to form a specimen comprising at least a pair of rod-like members the pull disconnect have a pair of insertion holes from the cured product.
前記硬化体形成工程では、各棒状部材が混練物に差し込まれた状態で、棒状部材の差し込み方向に沿った混練物の外周面から25mm以上内側の領域に各棒状部材が差し込まれることを特徴とする請求項に記載の供試体の作製方法。 In the cured body forming step, each rod-shaped member is inserted into an inner region of 25 mm or more from the outer peripheral surface of the kneaded material along the insertion direction of the rod-shaped member in a state where each rod-shaped member is inserted into the kneaded material. A method for producing the specimen according to claim 3 . 前記硬化体形成工程では、各棒状部材が混練物に差し込まれた状態で、棒状部材の差し込み方向に位置する型枠内の混練物の両端部から60mm以上内側の領域に、各棒状部材の他端部が位置するように構成されることを特徴とする請求項又はに記載の供試体の作製方法。
In the cured body forming step, each rod-shaped member is placed in a region 60 mm or more inside both ends of the kneaded material in the mold frame located in the insertion direction of the rod-shaped member with each rod-shaped member inserted into the kneaded material. The method for producing a specimen according to claim 3 or 4 , wherein the end portion is positioned.
JP2014073349A 2014-03-31 2014-03-31 Method for preparing specimen and measuring method for specimen Active JP6355016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073349A JP6355016B2 (en) 2014-03-31 2014-03-31 Method for preparing specimen and measuring method for specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073349A JP6355016B2 (en) 2014-03-31 2014-03-31 Method for preparing specimen and measuring method for specimen

Publications (2)

Publication Number Publication Date
JP2015194449A JP2015194449A (en) 2015-11-05
JP6355016B2 true JP6355016B2 (en) 2018-07-11

Family

ID=54433597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073349A Active JP6355016B2 (en) 2014-03-31 2014-03-31 Method for preparing specimen and measuring method for specimen

Country Status (1)

Country Link
JP (1) JP6355016B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6973434B2 (en) * 2019-03-13 2021-11-24 Jfeスチール株式会社 Void inspection device and void inspection method
JP7530568B2 (en) * 2020-09-29 2024-08-08 住友大阪セメント株式会社 Method for measuring electrical resistivity, method for estimating electrical resistivity, and method for setting electrochemical treatment conditions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287841A (en) * 1985-10-14 1987-04-22 Ketsuto Kagaku Kenkyusho:Kk Method for measuring water content of concrete, mortar, etc., electrode and electrode insert jig
JP2002333390A (en) * 2001-05-08 2002-11-22 Fujita Corp Method of making concrete test body and water content measuring method of concrete
ITMC20030085A1 (en) * 2003-07-10 2005-01-11 Stefano Bufarini MODULAR FORMWORK FOR MOLDING OF CUBES OF
JP2011237300A (en) * 2010-05-11 2011-11-24 Maeda Corp Crack generating device
JP6161882B2 (en) * 2012-08-09 2017-07-12 学校法人 芝浦工業大学 Formwork for determining the quality of cast concrete and formwork for determining the end of curing

Also Published As

Publication number Publication date
JP2015194449A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6355016B2 (en) Method for preparing specimen and measuring method for specimen
Friedmann et al. A direct method for determining chloride diffusion coefficient by using migration test
JP6384954B2 (en) Method for estimating compressive strength of soil cement and soil cement storage
CN202886159U (en) Concrete sample pre-set template with cracks
Tang et al. Non-steady state migration of chloride ions in cement pastes at early age
CN107328706A (en) Energization accelerating corrosion armored concrete experimental rig and test method
Shen et al. Predicting relative humidity of early-age concrete under sealed and unsealed conditions
Fernández Canteli et al. Determining fracture energy parameters of concrete from the modified compact tension test
JP2020034423A (en) Method for estimating compressive strength of concrete
KR102013636B1 (en) Method for Evaluating Self-Healing Performance of Cracked Cementitious Material
CN112268933A (en) Concrete sensor with multiple intelligent characteristics and preparation method thereof
JP2014163770A (en) Linear expansion coefficient test method
JP6286340B2 (en) Method for estimating concrete strength
JP2015020925A (en) Seawater-kneaded mortar used for prepacked concrete construction method and postpacked concrete construction method, and method for producing winter concrete using these construction methods
JP6068305B2 (en) Degradation evaluation method for concrete cores
JP6804739B2 (en) Estimating method of strength characteristics of soil cement, estimation device, quality control method of rooted part during pile construction, quality control device
JP4165651B2 (en) Concrete specimen collection device
JP2015212663A (en) Apparatus and method for manufacturing circular cylindrical test piece, and method for measuring compression strength
JP6097664B2 (en) Degradation state analysis method for hardened cement
JP7082955B2 (en) Sampling mold and non-destructive property measurement method for soil
Ma et al. Non-steady state chloride migration and binding in cracked self-compacting concrete
JP2003262581A (en) Method for testing durability of concrete
JP2018136207A (en) Estimation method of strength characteristics of soil cement, estimation device, quality management method of foot protection part when constructing pile, and quality management unit
RU2680495C1 (en) Collapsible container for device forming samples from cement slurries for strength tests
JP6829133B2 (en) Durability evaluation method for buried objects in hardened cementum

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180531

R150 Certificate of patent or registration of utility model

Ref document number: 6355016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150