JP6354271B2 - High-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in low-temperature toughness, uniform elongation and hole expansibility, and a method for producing the same - Google Patents

High-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in low-temperature toughness, uniform elongation and hole expansibility, and a method for producing the same Download PDF

Info

Publication number
JP6354271B2
JP6354271B2 JP2014079521A JP2014079521A JP6354271B2 JP 6354271 B2 JP6354271 B2 JP 6354271B2 JP 2014079521 A JP2014079521 A JP 2014079521A JP 2014079521 A JP2014079521 A JP 2014079521A JP 6354271 B2 JP6354271 B2 JP 6354271B2
Authority
JP
Japan
Prior art keywords
less
rolling
steel sheet
strength
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014079521A
Other languages
Japanese (ja)
Other versions
JP2015199987A (en
Inventor
武 豊田
武 豊田
力 岡本
力 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014079521A priority Critical patent/JP6354271B2/en
Publication of JP2015199987A publication Critical patent/JP2015199987A/en
Application granted granted Critical
Publication of JP6354271B2 publication Critical patent/JP6354271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は,低温靭性と均一伸びと穴拡げ性に優れた引張強度780MPa以上の高強度熱延鋼板及びその製造方法に関するものである。   The present invention relates to a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in low-temperature toughness, uniform elongation, and hole expansibility, and a method for producing the same.

近年、自動車燃費向上などのため、車体の軽量化を目的に高強度鋼板を足回り部品に適用することが進められている。また、衝突安全性の法規制の強化から、これまで低強度の鋼板しか用いることができなかった複雑形状を有する部品まで高強度鋼板を適用しようとするニーズがある。しかしながら、一般に鋼板は高強度になるほど延性が低下して成形性が劣化するため、複雑形状を有する部材へ高強度鋼板を適用するにあたっては、成形性と高強度の両方を満足する鋼板を製造する必要がある。特に、自動車足回り部品では熱延高強度鋼板を伸びフランジ成形するため、強度と伸びフランジ成形の指標となる打抜き穴拡げ性が重要となる。また、プレス成形品では鋼板のくびれは部品の強度設計上問題となるため、鋼板特性としては均一伸びが重要となる。   In recent years, for the purpose of improving automobile fuel efficiency, the application of high-strength steel sheets to undercarriage parts has been promoted for the purpose of reducing the weight of the vehicle body. In addition, there is a need to apply high-strength steel sheets to parts having complex shapes, which have so far only been able to use low-strength steel sheets, due to the strengthening of collision safety laws and regulations. However, in general, the higher the strength of a steel sheet, the lower the ductility and the formability deteriorate. Therefore, when applying a high-strength steel sheet to a member having a complicated shape, a steel sheet that satisfies both formability and high strength is manufactured. There is a need. In particular, in an automobile undercarriage part, a hot-rolled high-strength steel sheet is stretch-flange-formed, and therefore, strength and punching hole expansibility as an index for stretch-flange forming are important. Further, in a press-formed product, the narrowing of the steel plate becomes a problem in the strength design of the part, and therefore uniform elongation is important as the steel plate characteristics.

特許文献1においては、「Ar3点+100℃」以下の温度で仕上圧延を行った直後に「Ar3点―100℃」までの平均冷却速度を400℃/s以上にし、フェライト粒を極めて微細化するとともに<111>集合組織を強く残すことにより、強度の面内異方性を改善し、延性と伸びフランジ性を改善する方法が提案されている。しかし、Ar3点+100℃以下の温度で仕上圧延するとオーステナイトの再結晶が十分に進行せず、フェライト組織がバンド状になったり、未再結晶オーステナイトからの変態による集合組織が残存し、機械特性の異方性を改善させるのには不十分である。   In Patent Document 1, immediately after finish rolling at a temperature of “Ar3 point + 100 ° C.” or less, the average cooling rate to “Ar3 point−100 ° C.” is set to 400 ° C./s or more to extremely refine the ferrite grains. At the same time, a method for improving the in-plane anisotropy of the strength and improving the ductility and stretch flangeability by leaving a strong <111> texture has been proposed. However, when finish rolling at a temperature of Ar3 point + 100 ° C. or lower, the recrystallization of austenite does not proceed sufficiently, the ferrite structure becomes band-like, or the texture due to transformation from unrecrystallized austenite remains, and the mechanical properties It is insufficient to improve the anisotropy.

特許文献2では、B添加した上で熱間圧延の仕上温度を高温化することで圧延集合組織を抑制し、かつ圧延集合組織をもったコロニーを微細化し、ランアウトテーブルにてB量により定まる下限冷却速度以上で急冷却を行うことにより、オーステナイトの再結晶を促進し、圧延集合組織の{110}面強度を低下させ、介在物やフェライト結晶粒の伸張を抑制し、穴拡げ性に優れ、穴拡げ性のバラつきを抑える方法が提案されている。   In patent document 2, after adding B, the finishing temperature of hot rolling is increased to suppress the rolling texture, and the colony having the rolling texture is refined, and the lower limit determined by the amount of B on the runout table. By performing rapid cooling above the cooling rate, the recrystallization of austenite is promoted, the {110} plane strength of the rolling texture is reduced, the expansion of inclusions and ferrite crystal grains is suppressed, and the hole expandability is excellent. A method for suppressing the variation in hole expansibility has been proposed.

また、同じく鋼板の高強度化を図りつつ穴拡げ性を向上させる技術としては、例えば特許文献3には圧延面と平行な{211}面のX線ランダム強度比を低くすることと、Vを必須元素とすることと相まって、穴拡げ性を改善できることを見出し、この{211}面のX線ランダム強度比は熱間圧延工程における仕上圧延終了温度が高温であるほど低減することを見出し、Vを添加して高温で仕上圧延を完了させて穴拡げ性を向上させる方法が提案されている。しかしながら、特許文献2,3に記載の発明は鋼板の高強度化と穴拡げ性の向上を実現することを可能にしたものの、組織が粗大化し、低温靭性が劣化してしまい、自動車部品が寒冷地などで使用される際に不安が残ってしまうことがわかった。   Similarly, as a technique for improving the hole expansibility while increasing the strength of the steel sheet, for example, Patent Document 3 discloses that the X-ray random intensity ratio of the {211} plane parallel to the rolling surface is reduced; It has been found that the hole expandability can be improved in combination with the essential element, and the X-ray random intensity ratio of this {211} plane has been found to decrease as the finish rolling finish temperature in the hot rolling process increases. A method has been proposed in which finish rolling is completed at a high temperature to improve hole expansibility. However, although the inventions described in Patent Documents 2 and 3 make it possible to achieve higher strength and improved hole expansibility of the steel sheet, the structure becomes coarse, the low-temperature toughness deteriorates, and the automobile parts are cooled. It was found that anxiety remained when used on the ground.

これらに対し、高温圧延による集合組織改善に着目した技術として、特許文献4では{211}<011>方向のX線ランダム強度比を2.5以下に抑制しつつ、高温圧延による組織粗大化を抑制するために最終仕上圧延後1.0秒以内に冷却を開始し、低温靭性を改善させる方法が提案されている。最終仕上圧延後の冷却開始時間を短時間としたことで組織の粗大化は抑制し、低温靭性と穴拡げ性を両立することができている。しかしながら、この方法では再結晶オーステナイトからの変態となり、変態核生成が少ないためにフェライト組織分率が低く、フェライトの粒径のバラつきが大きくなってしまい、近年複雑化している自動車部品の形状を得るには、均一伸びが十分でなかった。   On the other hand, as a technique paying attention to the texture improvement by high temperature rolling, in Patent Document 4, the X-ray random intensity ratio in the {211} <011> direction is suppressed to 2.5 or less, and the coarsening by high temperature rolling is performed. In order to suppress this, a method has been proposed in which cooling is started within 1.0 seconds after the final finish rolling to improve low temperature toughness. By making the cooling start time after final finish rolling short, the coarsening of the structure is suppressed, and both low temperature toughness and hole expandability can be achieved. However, this method results in transformation from recrystallized austenite, and since there is little transformation nucleation, the ferrite structure fraction is low, and the grain size of ferrite becomes large, resulting in the recently complicated automotive parts shapes The uniform elongation was not sufficient.

特開2004−137565号公報JP 2004-137565 A 特開2009−24226号公報JP 2009-24226 A 特開2010−90476号公報JP 2010-90476 A 特開2012−136773号公報JP 2012-136773 A

本発明は、低温靭性と均一伸びと穴拡げ性にも優れた引張強度780MPa以上の高強度熱延鋼板及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more that is excellent in low-temperature toughness, uniform elongation, and hole expandability, and a method for producing the same.

本発明は、特許文献4で提案されている高温仕上圧延後1.0秒以内に急冷却を開始して細粒な再結晶オーステナイト粒を作り込む技術に着目し、種々検討を行った結果、再結晶したオーステナイトに軽圧延を施すことによって低温靭性と穴拡げ性を劣化させず、良好にしたままフェライト粒の細粒化と粒径のバラつきを抑えることで均一伸びの向上を図れることを見出した。具体的には、引張強度780MPa以上の高強度熱延鋼板において、仕上温度を高温化して鋼板の集合組織をランダム化することによって穴拡げ性を良好に保持するとともに、その後軽圧延による微量のひずみをオーステナイトの粒界に導入する。これにより,オーステナイトの粒界から核生成するフェライトの生成頻度が高まり,フェライト変態が促進されるとともに、フェライトの粒径が細粒で均一化できる。その結果、優れた低温靭性と、良好な均一伸びと穴拡げ性を併せて実現することが可能となる。   The present invention, as a result of various investigations, focusing on the technology of starting rapid cooling within 1.0 seconds after high-temperature finish rolling proposed in Patent Document 4 and making fine recrystallized austenite grains, It has been found that by applying light rolling to recrystallized austenite, the low temperature toughness and hole expandability are not deteriorated, and it is possible to improve uniform elongation by suppressing ferrite grain refinement and grain size variation while maintaining good conditions. It was. Specifically, in a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, the finish temperature is increased to randomize the texture of the steel sheet, thereby maintaining good hole expandability, and then a small amount of strain caused by light rolling. Is introduced into the grain boundary of austenite. This increases the frequency of ferrite nucleating from the austenite grain boundaries, promotes ferrite transformation, and makes the ferrite grain size fine and uniform. As a result, it is possible to achieve both excellent low temperature toughness, good uniform elongation and hole expandability.

本発明は上記知見に基づいてなされたものであり,本発明の要旨するところは以下の通りである。
(1)質量%で、C:0.01〜0.10%、Si:0.01〜2.0%、Mn:0.5〜2.5%、P:0.1%以下、S:0.01%以下、Al:0.005〜1.0%、N:0.01%以下、Ti:0.01〜0.20%を含み、残部Feおよび不可避的不純物からなり、面積分率で、フェライト相の組織分率40%以上、90%以下で、残部がベイナイト相で構成される二相組織を有し,鋼板の圧延面に平行で、圧延方向と平行な{211}<011>方位のX線ランダム強度比が2.5以下であり、フェライト粒の平均粒径が5.0μm以下であり、その粒径の標準偏差が2.0μm以下であることを特徴とする低温靭性と均一伸びと穴拡げ性に優れた引張強度780MPa以上の高強度熱延鋼板。
(2)さらに,質量%でNb:0.001%以上,0.10%以下,B:0.0005%以上、0.0030%以下,Ca:0.0005%以上,0.0030%以下,Mo:0.02%以上,0.5%以下,Cr:0.02%以上,1.0%以下の1種以上を含有することを特徴とする(1)に記載の低温靭性と均一伸びと穴拡げ性に優れた引張強度780MPa以上の高強度熱延鋼板。
(3)上記(1)又は(2)に記載の高強度熱延鋼板の製造方法であって、上記(1)又は(2)に記載の成分の連続鋳造スラブを1200℃以上に加熱し、仕上げ圧延で圧延を実施する最終スタンド前のスタンドでの圧延を960℃以上、1100℃以下で、圧延率20%以上で行い、スタンド間で強制冷却を施して最終スタンドでの圧延をAr3点以上、950℃以下で、且つ、圧延率5%以上、20%以下で行い、圧延終了後3秒以内に強制冷却を開始して30℃/s以上の冷却速度で600℃以上、750℃以下まで冷却し、2秒以上、10秒以下の自然放冷を施したのち、30℃/s以上の冷却速度で300℃以上、550℃以下まで冷却し、300℃以上、550℃以下で巻き取ることを特徴とする低温靭性と均一伸びと穴拡げ性に優れた引張強度780MPa以上の高強度熱延鋼板の製造方法。
The present invention has been made based on the above findings, and the gist of the present invention is as follows.
(1) By mass%, C: 0.01 to 0.10%, Si: 0.01 to 2.0%, Mn: 0.5 to 2.5%, P: 0.1% or less, S: 0.01% or less, Al: 0.005 to 1.0%, N: 0.01% or less, Ti: 0.01 to 0.20%, consisting of the remainder Fe and inevitable impurities, and an area fraction Thus, {211} <011 in which the ferrite phase has a structure fraction of 40% or more and 90% or less and the balance is a bainite phase and is parallel to the rolling surface of the steel plate and parallel to the rolling direction. > X-ray random intensity ratio of orientation is 2.5 or less, the average grain size of ferrite grains is 5.0 μm or less, and the standard deviation of the grain size is 2.0 μm or less. High-strength hot-rolled steel sheet with a tensile strength of 780 MPa or more and excellent in uniform elongation and hole expansibility.
(2) Further, in terms of mass%, Nb: 0.001% or more, 0.10% or less, B: 0.0005% or more, 0.0030% or less, Ca: 0.0005% or more, 0.0030% or less, Low temperature toughness and uniform elongation according to (1), characterized by containing one or more of Mo: 0.02% or more, 0.5% or less, Cr: 0.02% or more, 1.0% or less High strength hot-rolled steel sheet with a tensile strength of 780 MPa or more and excellent hole expandability.
(3) A method for producing a high-strength hot-rolled steel sheet according to (1) or (2) above, wherein the continuous cast slab of the component according to (1) or (2) is heated to 1200 ° C or higher, Rolling in finish rolling is performed at a stand before the final stand at 960 ° C. or higher and 1100 ° C. or lower at a rolling rate of 20% or higher, and forced cooling is performed between the stands, and rolling at the final stand is performed at Ar 3 points or higher. , At 950 ° C. or less and at a rolling rate of 5% or more and 20% or less, and starts forced cooling within 3 seconds after the end of rolling to 600 ° C. or more and 750 ° C. or less at a cooling rate of 30 ° C./s or more. After cooling and natural cooling for 2 seconds to 10 seconds, cool to 300 ° C to 550 ° C at a cooling rate of 30 ° C / s and wind up at 300 ° C to 550 ° C. Low temperature toughness, uniform elongation and hole expansion characterized by Excellent tensile strength 780MPa above manufacturing method of the high strength hot rolled steel sheet.

本発明によれば,低温靭性と均一伸びと穴拡げ性に優れた高強度熱延鋼板を提供することができるため,厳しい加工を要するプレス部品に適した高強度熱延鋼板を提供することができる。また,本発明の高強度熱延鋼板は自動車などの車体の軽量化,部品の一体成型化,加工工程の短縮が可能であり,燃費の向上,製造コストの低減を図ることができ,工業的価値が高いものである。   According to the present invention, it is possible to provide a high-strength hot-rolled steel sheet excellent in low-temperature toughness, uniform elongation, and hole expansibility. Therefore, it is possible to provide a high-strength hot-rolled steel sheet suitable for pressed parts that require severe processing. it can. The high-strength hot-rolled steel sheet of the present invention can reduce the weight of automobile bodies such as automobiles, integrate parts, and shorten the machining process, improving fuel efficiency and reducing manufacturing costs. It is a high value.

本発明は、引張強度780MPa以上の高強度熱延鋼板を対象とする。そして、ISO16630で規定されている鋼板の打抜き穴拡げ率:λ(%)と、鋼板の引張強度:TS(MPa)と、鋼板の均一伸び:U−El(%)に優れた鋼板を対象とする。このような高強度鋼板において穴拡げ性の向上を実現するためには、特許文献4に記載のように、圧延面と平行な{211}面のX線ランダム強度比を下げることが効果的である。しかしながら、穴拡げ性を改善させるメカニズムとしては圧延面と平行な{211}面のランダム強度比だけでなく、厳密には{211}面の中でも圧延方向が<011>に平行になる{211}<011>方位のX線ランダム強度比を低下させることが必要であることを見出した。具体的には、本発明が対象とする引張強度780MPa以上の高強度熱延鋼板においては、上記X線ランダム強度比を2.5以下とすることにより、良好な穴拡げ性を実現できる。そして熱間圧延工程における最終仕上圧延温度を960℃以上と高温化とすることによってオーステナイトの再結晶を促進させ、必要とするX線ランダム強度比を得ることができる。さらに、最終仕上圧延温度を高温化して再結晶を促進させた後、最終仕上圧延終了後1.0秒以内に急冷却を開始することにより、穴拡げ性の改善と、結晶粒の粗大化抑制を両立することができる。   The present invention is directed to a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more. And it targets the steel plate excellent in punching hole expansion rate: λ (%), steel plate tensile strength: TS (MPa), and uniform elongation of steel plate: U-El (%) specified in ISO 16630 To do. In order to realize improvement in hole expansibility in such a high-strength steel plate, it is effective to lower the X-ray random strength ratio of the {211} plane parallel to the rolling surface as described in Patent Document 4. is there. However, as a mechanism for improving the hole expandability, not only the random intensity ratio of the {211} plane parallel to the rolling surface, but strictly speaking, the rolling direction is parallel to <011> in the {211} plane {211} It has been found that it is necessary to reduce the X-ray random intensity ratio in the <011> orientation. Specifically, in the high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, which is the subject of the present invention, good hole expansibility can be realized by setting the X-ray random strength ratio to 2.5 or less. The final finish rolling temperature in the hot rolling step is increased to 960 ° C. or higher to promote austenite recrystallization, and the required X-ray random intensity ratio can be obtained. Furthermore, after the final finish rolling temperature is increased to promote recrystallization, rapid cooling is started within 1.0 seconds after the final finish rolling is completed, thereby improving hole expandability and suppressing grain coarsening. Can be compatible.

しかしながら、オーステナイト粒が再結晶しているために、フェライト変態時の核生成に必要な転位密度が非常に少なく、フェライト変態に時間がかかるとともに、フェライトの粒成長にかかる時間差が生じていた。その結果、熱延のランアウトテーブルで組織分率を制御する際に、フェライト組織の分率を十分に確保するのが非常に困難であり、形成されるフェライト粒径のバラつきが大きく、均一伸びが低くなっていた。   However, since the austenite grains are recrystallized, the dislocation density required for nucleation during ferrite transformation is very small, and it takes time for ferrite transformation and a time difference for ferrite grain growth. As a result, when controlling the structure fraction with a hot-roll runout table, it is very difficult to secure a sufficient fraction of the ferrite structure, the variation in the ferrite particle size formed is large, and the uniform elongation is It was low.

本発明においては,熱間仕上げ圧延後の冷却中に生成するフェライトの核生成サイトや粒成長挙動に着目し,微細なフェライト粒を生成させ、フェライト粒の細粒化と粒径のバラつきを制御することで低温靭性と均一伸びと穴拡げ性に優れるものである。その方法としては、仕上げ圧延で圧延を実施する最終スタンド前のスタンドでの圧延では高温で高い圧延率によってオーステナイト組織を再結晶させ、その後の軽圧延により微量のひずみをオーステナイト粒界に導入することによって初析フェライトの核生成数を増加させ、均一に変態させることで平均粒径と粒径のバラつきを制御する。   In the present invention, focusing on ferrite nucleation sites and grain growth behavior generated during cooling after hot finish rolling, fine ferrite grains are generated, and ferrite grain refinement and grain size variation are controlled. By doing so, it is excellent in low temperature toughness, uniform elongation and hole expansibility. As the method, in the rolling before the final stand where rolling is performed by finish rolling, the austenite structure is recrystallized at a high temperature and at a high rolling rate, and then a slight strain is introduced into the austenite grain boundary by light rolling. By increasing the number of nucleation of pro-eutectoid ferrite and transforming uniformly, the variation of the average particle size and the particle size is controlled.

以下に、本発明の個々の構成要件について詳細に説明する。まず、本発明の成分の限定理由について述べる。成分含有量についての%は質量%を意味する。   Below, the individual constituent requirements of the present invention will be explained in detail. First, the reasons for limiting the components of the present invention will be described. % With respect to component content means mass%.

Cは強度上昇に有効な元素である。目的の強度を得るためには0.01%以上含有する必要がある。好ましくは0.03%以上とする。しかし、0.10%超含有していると炭化物の生成により加工性が劣化するので、0.10%以下とする。   C is an element effective for increasing the strength. In order to obtain the desired strength, it is necessary to contain 0.01% or more. Preferably it is 0.03% or more. However, if it exceeds 0.10%, the workability deteriorates due to the formation of carbides, so the content is made 0.10% or less.

Siは予備脱酸に必要な元素であるとともに、固溶強化元素として強度上昇に有効である。目的の強度を得るためには、0.01%以上含有する必要がある。しかし、2.0%超とした場合、変態点が過度に高温となるため、本発明に必要な圧延温度の確保が困難となるため、その上限は2.0%とする。   Si is an element necessary for preliminary deoxidation and is effective for increasing the strength as a solid solution strengthening element. In order to obtain the desired strength, it is necessary to contain 0.01% or more. However, if it exceeds 2.0%, the transformation point becomes excessively high, and it becomes difficult to secure the rolling temperature necessary for the present invention, so the upper limit is made 2.0%.

Mnは固溶強化元素として強度上昇に有効である。目的の強度を得るためには0.5%以上必要である。また、Mn以外にSによる熱間割れの発生を抑制するTiなどの元素が十分に添加されない場合には、質量%でMn/S>20となるMn量を添加することが望ましい。一方、2.5%超添加するとスラブ割れを生ずるため、2.5%以下とする。   Mn is effective for increasing the strength as a solid solution strengthening element. In order to obtain the target strength, 0.5% or more is necessary. In addition to Mn, when an element such as Ti that suppresses the occurrence of hot cracking due to S is not sufficiently added, it is desirable to add an amount of Mn that satisfies Mn / S> 20 by mass%. On the other hand, if added over 2.5%, slab cracking occurs, so the content is made 2.5% or less.

Pは不可避的に含有される不純物元素であり、低いほど望ましく、0.1%超含有すると加工性や溶接性に悪影響を及ぼすとともに、疲労特性も低下させるので、0.1%以下とする。厳しい加工を受ける部品用途で、厳しい成形に耐えうる材質とするためには、0.02%以下とすることが好ましい。   P is an impurity element that is inevitably contained, and is desirably as low as possible. If it exceeds 0.1%, P is adversely affected on workability and weldability, and fatigue characteristics are also reduced. In order to make a material that can withstand severe molding in a part application subjected to severe processing, the content is preferably 0.02% or less.

SはPと同様に不可避的に含有される不純物元素であり、多すぎるとMnS等の粗大な介在物となって成形性を劣化させるので、0.01%以下とする必要がある。厳しい加工を受ける部品用途で、厳しい成形に耐えうる材質とするためには、0.005%以下とすることが好ましい。   S is an impurity element that is inevitably contained in the same manner as P, and if it is too much, it becomes coarse inclusions such as MnS and deteriorates the moldability, so it is necessary to make it 0.01% or less. In order to make a material that can withstand severe molding in parts that undergo severe processing, the content is preferably 0.005% or less.

Alは溶綱の脱酸に必要な元素であるので、その効果を得るには0.005%以上含有させる必要がある。しかし、過剰に添加すると、変態点を極度に上昇させ、本発明に必要な圧延温度の確保が困難となるため、その上限は1.0%とする。   Since Al is an element necessary for deoxidation of molten steel, it is necessary to contain 0.005% or more in order to obtain the effect. However, if added excessively, the transformation point is extremely raised, and it becomes difficult to secure the rolling temperature necessary for the present invention, so the upper limit is made 1.0%.

NはCよりも高温にてTiおよびNbと析出物を形成し、Cを固定するのに有効なTiを減少させるばかりでなく、穴拡げ率のばらつきを増大させる大きなサイズのTi窒化物を形成する。したがって極力低減させるべきであるが、0.01%以下ならば許容できる範囲である。しかし、過多にあると、粗大なTiとの析出物が析出するので0.005%以下とすることが好ましい。   N forms precipitates with Ti and Nb at a higher temperature than C, not only reduces Ti effective to fix C, but also forms large sized Ti nitrides that increase variation in hole expansion ratio To do. Therefore, it should be reduced as much as possible, but if it is 0.01% or less, it is an acceptable range. However, if it is excessive, coarse precipitates with Ti are deposited, so 0.005% or less is preferable.

Tiは本発明における最も重要な元素のひとつである。すなわち、Tiは析出効果により鋼板の強度上昇に寄与する。ただし、0.01%未満ではこの効果が不十分であり、0.2%超含有してもその効果が飽和するだけでなく合金コストの上昇を招く。したがって、Tiの含有量は0.01%以上、0.2%以下とする。   Ti is one of the most important elements in the present invention. That is, Ti contributes to the strength increase of the steel sheet due to the precipitation effect. However, if the content is less than 0.01%, this effect is insufficient. Even if the content exceeds 0.2%, the effect is not only saturated but also the alloy cost is increased. Therefore, the Ti content is 0.01% or more and 0.2% or less.

要求特性を満たすために必須ではないが,製造ばらつきを低減させたり,強度をより向上させるために下記の元素を添加することが好ましい。   Although not essential to satisfy the required characteristics, it is preferable to add the following elements in order to reduce manufacturing variability or to further improve the strength.

Nbは本発明において、析出強化により強度をより向上させることができる。しかし、Nbの含有量が0.001%未満では十分な強度増加の効果は得られず、一方、0.10%超ではその効果は飽和する。以上の理由から、Nbの含有量は、0.001%以上、0.10%以下とする。   In the present invention, Nb can further improve the strength by precipitation strengthening. However, if the Nb content is less than 0.001%, a sufficient strength increasing effect cannot be obtained, while if it exceeds 0.10%, the effect is saturated. For the above reasons, the Nb content is set to 0.001% or more and 0.10% or less.

Bは必要に応じて添加することにより粒界強度を増加させ、靭性を向上させることができる。Bの含有量が0.0005%未満では十分な靭性向上効果は得られず、一方、0.003%より多く添加してもその効果は飽和するので、Bの添加量は0.0005%以上、0.0030%以下とする。   B can be added as necessary to increase the grain boundary strength and improve toughness. If the B content is less than 0.0005%, a sufficient toughness improving effect cannot be obtained. On the other hand, even if added in an amount of more than 0.003%, the effect is saturated, so the added amount of B is 0.0005% or more. 0.0030% or less.

Caは必要に応じて添加することにより、溶鋼脱酸に微細な酸化物を多数分散させ、組織微細化のために好適な元素であるとともに、溶鋼の脱硫のために鋼中Sを球形のCaSとして固定し、MnSなどの延伸介在物の生成を抑制して穴拡げ性を向上させる元素である。これらの効果は添加量が0.0005%から得られるが、0.003%で飽和するため、Caの含有量は0.0005%以上、0.003%以下とする。   Ca is added as necessary to disperse many fine oxides in the deoxidation of molten steel, and is a suitable element for refining the structure. S in the steel is transformed into spherical CaS for desulfurization of the molten steel. It is an element that improves the hole expandability by suppressing the formation of stretched inclusions such as MnS. These effects are obtained when the addition amount is 0.0005%, but since saturation occurs at 0.003%, the Ca content is set to 0.0005% or more and 0.003% or less.

Moはフェライトの析出強化として有効な元素である。この効果を得るためには0.02%以上の添加が望ましい。ただし,多量の添加はスラブの割れ感受性が高まりスラブの取り扱いが困難になるため,その上限を0.5%とする。   Mo is an effective element for precipitation strengthening of ferrite. In order to obtain this effect, addition of 0.02% or more is desirable. However, the addition of a large amount makes the slab more susceptible to cracking and makes it difficult to handle the slab, so the upper limit is 0.5%.

Crは鋼板強度を向上させるのに有効な元素である。この効果を得るためには0.02%以上の添加が必要である。ただし,多量の添加は延性が低下するため上限を1.0%とする。   Cr is an element effective for improving the steel sheet strength. In order to obtain this effect, addition of 0.02% or more is necessary. However, the upper limit is set to 1.0% because a large amount of addition decreases ductility.

次に,本発明の鋼板の結晶組織について説明する。   Next, the crystal structure of the steel sheet of the present invention will be described.

本発明の鋼板は、圧延面に平行で、圧延方向に平行な{211}<011>方位のX線ランダム強度比が2.5以下であることが必要である。X線ランダム強度比とは、X線回折測定において、ランダムな方位分布をもつ粉末試料のX線強度に対する、測定対象である熱延鋼板試料のX線強度の強度比である。熱延鋼板中においては、圧延面に平行で、圧延方向に平行な{211}<011>方位のX線ランダム強度比が大きいほど穴拡げ性が劣化する。当該X線ランダム強度比が2.5以下であれば、ISO16630で規定する穴拡げ率:λ(%)を向上させることができる。   The steel sheet of the present invention needs to have an X-ray random strength ratio of 2.5 or less in the {211} <011> orientation parallel to the rolling surface and parallel to the rolling direction. The X-ray random intensity ratio is the intensity ratio of the X-ray intensity of the hot-rolled steel sheet sample to be measured to the X-ray intensity of the powder sample having a random orientation distribution in the X-ray diffraction measurement. In the hot-rolled steel sheet, the hole expandability deteriorates as the X-ray random intensity ratio in the {211} <011> orientation parallel to the rolling surface and parallel to the rolling direction increases. If the X-ray random intensity ratio is 2.5 or less, the hole expansion ratio λ (%) defined by ISO 16630 can be improved.

X線ランダム強度比は、適切なX線管球を用いたディフラクトメーター法等を用いて圧延面に平行で、圧延方向に平行な{211}<011>方位のX線回折強度の測定を行い、ランダムサンプルの回折強度との比較により測定するものとする。X線回折による測定が困難な場合には、EBSD(Electron Back Scattering Diffraction Pattern)法を用いて、ピクセルの測定間隔が平均粒径の1/5以下で、結晶粒が5000個以上測定できる領域で測定し、極点図またはODF(Orientation Distribution Function)の分布からランダム強度比を測定してもよい。   The X-ray random intensity ratio is measured by measuring the X-ray diffraction intensity in the {211} <011> direction parallel to the rolling surface and parallel to the rolling direction by using a diffractometer method using an appropriate X-ray tube. And measured by comparison with the diffraction intensity of a random sample. When measurement by X-ray diffraction is difficult, use an EBSD (Electron Back Scattering Diffraction Pattern) method in a region where the measurement interval of pixels is 1/5 or less of the average grain size and 5000 or more crystal grains can be measured. The random intensity ratio may be measured from a pole figure or an ODF (Orientation Distribution Function) distribution.

熱延鋼板においては圧延面に平行で、圧延方向に平行な{211}<011>方位のX線ランダム強度比が高いことにより鋼材の異方性が大きくなる。特に、圧延方向、圧延方向に対して45°方向並びに90°方向(板幅方向)の塑性歪比(r値)をそれぞれr0、r45、r90と定義すると、この場合においてはr0とr45及びr90との差が大きくなるうえ、r90が大きく低下することになる。これにより穴拡げ成形時に、板幅方向に引張歪を受ける圧延方向端面において板厚減少が大きくなり、端面に高い応力が発生して亀裂が発生、伝播しやすくなる。このため、圧延面に平行で、圧延方向に平行な{211}<011>方位のX線ランダム強度比が高い場合に穴拡げ率が劣化すると考えられる。 In a hot-rolled steel sheet, the anisotropy of the steel material increases due to the high X-ray random strength ratio in the {211} <011> orientation parallel to the rolling surface and parallel to the rolling direction. In particular, if the plastic strain ratios (r values) in the rolling direction and the 45 ° direction and the 90 ° direction (sheet width direction) with respect to the rolling direction are defined as r 0 , r 45 , and r 90 , r 0 in this case. And r 45 and r 90 are increased, and r 90 is greatly decreased. As a result, at the time of hole expansion forming, the reduction in the plate thickness increases at the end surface in the rolling direction that receives tensile strain in the plate width direction, and high stress is generated at the end surface, so that cracks are easily generated and propagated. For this reason, it is considered that the hole expansion rate deteriorates when the X-ray random intensity ratio in the {211} <011> orientation parallel to the rolling surface and parallel to the rolling direction is high.

本発明の鋼板は、フェライト組織の分率が40%以上、90%以下であることが必要である。鋼板の均一伸びを確保するためには伸びに優れたフェライト組織を確保することが必要である。フェライト組織の分率が40%以上で目標とする均一伸びを確保することができる。一方、引張強度が780MPa以上の高強度鋼板では、フェライト組織の分率が90%を超えると低温靭性が急激に劣化する傾向があるため、90%以下とする必要がある。鋼板組織の残部はベイナイトとする必要がある。ベイナイトは鋼板の強化能が高く、マルテンサイトよりも延性があるため、本発明の強度と低温靭性と伸びと穴拡げ性を両立するのに必要不可欠な組織である。   The steel sheet of the present invention is required to have a ferrite structure fraction of 40% or more and 90% or less. In order to ensure uniform elongation of the steel sheet, it is necessary to ensure a ferrite structure excellent in elongation. The target uniform elongation can be secured when the fraction of the ferrite structure is 40% or more. On the other hand, in a high-strength steel sheet having a tensile strength of 780 MPa or more, if the ferrite structure fraction exceeds 90%, the low-temperature toughness tends to deteriorate rapidly, so it is necessary to make it 90% or less. The balance of the steel sheet structure needs to be bainite. Since bainite has a high steel sheet strengthening ability and is more ductile than martensite, it is an indispensable structure for achieving both the strength, low-temperature toughness, elongation, and hole expandability of the present invention.

また、鋼板のフェライトの平均粒径は5.0μm以下であることが必要である。鋼板の結晶粒を微細化し、平均粒径を5.0μm以下にすることにより、延性脆性遷移温度を−60℃以下にすることができる。平均粒径とは、板厚の1/4の深さの部位でEBSD法を用いて、ピクセルの測定間隔が平均粒径の1/5以下で、結晶粒が1000個以上測定できる領域で測定し、隣接するピクセル間の結晶方位の角度差が5度以上の場合を粒界とみなしたとき、結晶粒と同じ面積の円の直径で粒径を示し、Area Fraction法により平均値を算出したものである。   Moreover, the average particle diameter of the ferrite of a steel plate needs to be 5.0 micrometers or less. The ductile brittle transition temperature can be set to −60 ° C. or less by refining the crystal grains of the steel sheet and setting the average particle size to 5.0 μm or less. The average grain size is measured in an area where the measurement interval of pixels is 1/5 or less of the average grain size and 1000 or more crystal grains can be measured using the EBSD method at a depth of 1/4 of the plate thickness. When the angle difference between crystal orientations between adjacent pixels is 5 degrees or more, the grain size is indicated by the diameter of a circle having the same area as the crystal grain, and the average value is calculated by the Area Fraction method. Is.

さらに、フェライト粒径の標準偏差は2.0μm以下であることが必要である。標準偏差が2.0μm超だと引張試験片にくびれが発生しやすくなり、均一伸びが劣化するとともに、穴拡げ時の割れを誘発し、加工性が劣化する。   Furthermore, the standard deviation of the ferrite grain size needs to be 2.0 μm or less. If the standard deviation is more than 2.0 μm, the tensile test piece is likely to be constricted, the uniform elongation is deteriorated, and cracking is induced at the time of hole expansion, resulting in deterioration of workability.

次に製造方法について説明する。   Next, a manufacturing method will be described.

本発明の高強度熱延鋼板は、本発明の成分を有する連続鋳造スラブを1200℃以上に加熱し、仕上げ圧延で圧延を実施する最終スタンド前のスタンドでの圧延を960℃以上、1100℃以下で、圧延率20%以上で行い、スタンド間で強制冷却を施して最終スタンドでの圧延をAr3点以上、950℃以下で、且つ、圧延率5%以上、20%以下で行い、圧延終了後3秒以内に強制冷却を開始して30℃/秒以上の冷却速度で600℃以上、750℃以下まで冷却し,2秒以上、10秒以下の自然放冷を施したのち,30℃/s以上の冷却速度で300℃以上、550℃以下まで冷却し、300℃以上、550℃以下で巻取り処理を行うことにより達成できる。   The high-strength hot-rolled steel sheet of the present invention is such that the continuous cast slab having the components of the present invention is heated to 1200 ° C. or higher, and rolling at the stand before the final stand for performing rolling by finish rolling is 960 ° C. or higher and 1100 ° C. or lower. The rolling is performed at a rolling rate of 20% or more, forced cooling is performed between the stands, and rolling at the final stand is performed at an Ar3 point or higher and 950 ° C or lower, and at a rolling rate of 5% or higher and 20% or less, after the rolling is completed. Start forced cooling within 3 seconds, cool to 600 ° C or higher and 750 ° C or lower at a cooling rate of 30 ° C / second or higher, perform natural cooling for 2 seconds to 10 seconds, and then 30 ° C / s This can be achieved by cooling to 300 ° C. or more and 550 ° C. or less at the above cooling rate and performing a winding process at 300 ° C. or more and 550 ° C. or less.

上記スラブは熱延の前に、均質化やTi炭窒化物の溶解の必要がある。これを行う際、連続鋳造のスラブを再加熱する。再加熱の温度が、1200℃未満では、均質化、溶解とも不十分となり、強度の低下や加工性の低下を起こす。一方で、1350℃を超えると、製造コスト、生産性が低下すること、また、初期のオーステナイト粒径が大きくなることで最終的に混粒になりやすくなる。そこで、1200℃以上とする必要があり、1350℃未満が望ましい。   The slab needs to be homogenized and dissolved in Ti carbonitride before hot rolling. In doing this, the continuously cast slab is reheated. When the reheating temperature is less than 1200 ° C., both homogenization and dissolution become insufficient, resulting in a decrease in strength and a decrease in workability. On the other hand, when it exceeds 1350 ° C., the production cost and productivity are lowered, and the initial austenite grain size is increased, so that it tends to be finally mixed. Therefore, it is necessary to set the temperature to 1200 ° C. or higher, and preferably lower than 1350 ° C.

スラブの加熱後、粗圧延を行い、さらに仕上圧延を行う。{211}面のX線ランダム強度比を増加させる原因となる未再結晶状態の圧延集合組織が残存するのを避けるため、最終スタンド前のスタンドにおける圧延を960℃以上で行う。圧延温度が高すぎるとオーステナイト粒径が粗大化し、フェライト変態が急激に遅延されてフェライト分率の確保が困難になるため、上限の圧延温度は1100℃とする。   After heating the slab, rough rolling is performed, and further finish rolling is performed. In order to avoid leaving an unrecrystallized rolled texture that causes an increase in the X-ray random intensity ratio of the {211} plane, rolling in the stand before the final stand is performed at 960 ° C. or higher. If the rolling temperature is too high, the austenite grain size becomes coarse, and the ferrite transformation is rapidly delayed to make it difficult to secure the ferrite fraction. Therefore, the upper limit rolling temperature is set to 1100 ° C.

最終スタンド前のスタンドでの圧延率は20%以上とする。これにより、再結晶率を上記温度で高めることができる。圧延率が高いと圧延荷重の制約や、鋼板形状の悪化が懸念されるが、再結晶を確実に起こさせるためには圧延率を30〜40%とすることが好ましい。その後、最終スタンドで圧延を行う。最終スタンドでの圧延温度が高いと圧延によって導入するひずみが回復し、フェライト変態の促進効果と粒径のバラつき低減が困難になる。そのため、最終スタンドでの圧延温度は950℃以下であることが重要となる。より好ましくは900℃以下である。最終スタンドの圧延温度を確保するため、スタンド間で強制冷却を施して目的の温度を確保する。ただし、最終スタンドの圧延温度がAr3点を下回ると加工フェライトが残ることで均一伸びが著しく低下するため、圧延温度の下限はAr3点とする。尚、前記最終スタンド前のスタンドは、例えば最終スタンドの前段スタンドであっても、最終スタンドの前々スタンドであってよく、上記最終スタンド前のスタンドを最終スタンドの前々段スタンドとした場合、最終スタンドの前段のスタンドで圧延を実施しないで前々段のスタンドでの圧延率を20%以上とし、2つのスタンド間または2つのスタンド間の何れか一方のスタンド間で強制冷却を施して最終スタンドの圧延温度を確保する。   The rolling rate at the stand before the final stand is 20% or more. Thereby, a recrystallization rate can be raised at the said temperature. When the rolling rate is high, there is a concern that the rolling load is restricted and the shape of the steel sheet is deteriorated, but in order to cause recrystallization reliably, the rolling rate is preferably set to 30 to 40%. Thereafter, rolling is performed at the final stand. If the rolling temperature at the final stand is high, the strain introduced by rolling recovers, and it becomes difficult to promote the ferrite transformation and reduce the variation in grain size. Therefore, it is important that the rolling temperature at the final stand is 950 ° C. or lower. More preferably, it is 900 degrees C or less. In order to ensure the rolling temperature of the final stand, forced cooling is performed between the stands to ensure the target temperature. However, when the rolling temperature of the final stand is lower than the Ar3 point, the processed ferrite remains and the uniform elongation is significantly reduced, so the lower limit of the rolling temperature is the Ar3 point. The stand before the final stand may be, for example, the stand before the final stand, or the stand before the final stand, and when the stand before the final stand is the stage stand before the final stand, Without rolling at the stand preceding the last stand, the rolling rate at the last stand is set to 20% or more, and forced cooling is applied between either one of the two stands or between the two stands. Secure the rolling temperature of the stand.

最終スタンドの圧延率は5%以上、20%以下とする。この圧延率は再結晶したオーステナイトの粒界にひずみを与え、フェライト粒の細粒化とバラつきの抑制に有効である。5%未満ではオーステナイト粒界に与えるひずみが不十分であり、目的のフェライト分率が得られない。一方、20%超では未再結晶オーステナイトが残存するため、{211}<011>方位のX線ランダム強度比が増加し、穴拡げ性が劣化する。圧延温度や冷却開始時間にも依存するが、安定的に軽圧延の効果を得るためには圧延率が7%以上、15%以下とすることが好ましい。   The rolling rate of the final stand is 5% or more and 20% or less. This rolling rate gives strain to the recrystallized austenite grain boundaries, and is effective in reducing the ferrite grain size and variation. If it is less than 5%, the strain applied to the austenite grain boundary is insufficient, and the desired ferrite fraction cannot be obtained. On the other hand, if it exceeds 20%, unrecrystallized austenite remains, so the X-ray random intensity ratio in the {211} <011> orientation increases, and the hole expandability deteriorates. Although depending on the rolling temperature and the cooling start time, in order to stably obtain the effect of light rolling, the rolling rate is preferably 7% or more and 15% or less.

圧延終了後はしかるべく速やかに強制冷却を行った方がよい。加工から強制冷却までの間はひずみが回復し、粒成長が起こることで変態によって生成するフェライト粒、オーステナイト粒とも粗大になりやすい。冷却開始までのひずみの回復量は圧延温度や圧延率によって変化するが、3秒以内であれば回復することを防ぐことができる。圧延によるひずみを効率的に利用するには1秒以内であることが好ましい。圧延終了後、一次冷却として冷却速度30℃/s以上にて600℃以上、750℃以下に冷却し、2秒以上、10秒以下の自然放冷(以下「中間空冷」と言う)を行う。この温度範囲はフェライトの核生成頻度が高く、均一な粒径を持ったフェライトが細かく形成される。これにより延性が向上する上、低温靭性が向上する。冷却速度が30℃/s未満では、オーステナイトの粗大化を引き起こし、中間空冷時のフェライト変態が遅延され、目的のフェライト分率が得られなくなる。中間空冷開始温度が750℃を超えると、フェライト分率が十分に取れなくなる上、粒が大きくなりすぎ、低温靭性が得られない。中間空冷開始温度が600℃未満、または、中間空冷時間が2秒未満では所定のフェライト分率が得られず、延性が劣化する。一方で中間空冷時間が10秒を超えるとフェライト分率が90%超となり、低温靭性が劣化する。フェライトの粒径を制御する観点では8秒以下とすることが望ましい。   It is better to perform forced cooling as soon as possible after rolling. Strain is recovered during the period from processing to forced cooling, and grain growth tends to cause both ferrite grains and austenite grains generated by transformation to become coarse. The amount of strain recovery until the start of cooling varies depending on the rolling temperature and rolling rate, but recovery can be prevented within 3 seconds. In order to efficiently use the strain caused by rolling, it is preferably within 1 second. After the rolling, as primary cooling, cooling is performed at 600 ° C. or higher and 750 ° C. or lower at a cooling rate of 30 ° C./s or higher, and natural cooling (hereinafter referred to as “intermediate air cooling”) is performed for 2 seconds or longer and 10 seconds or shorter. In this temperature range, the nucleation frequency of ferrite is high, and ferrite having a uniform particle size is finely formed. This improves ductility and improves low temperature toughness. When the cooling rate is less than 30 ° C./s, coarsening of austenite is caused, ferrite transformation during intermediate air cooling is delayed, and the desired ferrite fraction cannot be obtained. When the intermediate air cooling start temperature exceeds 750 ° C., the ferrite fraction cannot be sufficiently obtained, the grains become too large, and low temperature toughness cannot be obtained. When the intermediate air cooling start temperature is less than 600 ° C. or the intermediate air cooling time is less than 2 seconds, a predetermined ferrite fraction cannot be obtained and ductility deteriorates. On the other hand, if the intermediate air cooling time exceeds 10 seconds, the ferrite fraction exceeds 90% and the low temperature toughness deteriorates. From the viewpoint of controlling the grain size of the ferrite, it is desirable to set it to 8 seconds or less.

上記中間空冷を終了した後は30℃/s以上の冷却を行う。本発明においては、中間空冷で残存したオーステナイトをベイナイトとすることで穴拡げ性と低温靭性を両立することができる。30℃/s未満では冷却中にパーライトが析出し、穴拡げ性が劣化する。   After the intermediate air cooling is completed, cooling at 30 ° C./s or more is performed. In the present invention, hole expandability and low temperature toughness can be achieved by using austenite remaining after intermediate air cooling as bainite. If it is less than 30 ° C./s, pearlite is precipitated during cooling, and the hole expandability deteriorates.

上記冷却速度で鋼板温度が300℃以上、550℃以下で冷却を停止する。冷却停止温度が550℃超ではフェライトが過剰に変態し、低温靭性が劣化する。冷却停止温度が300℃未満ではマルテンサイトが生成するため穴拡げ性が劣化する。   Cooling is stopped when the steel sheet temperature is 300 ° C. or higher and 550 ° C. or lower at the cooling rate. If the cooling stop temperature exceeds 550 ° C., the ferrite is excessively transformed and the low-temperature toughness deteriorates. When the cooling stop temperature is less than 300 ° C., martensite is generated, so that the hole expandability deteriorates.

その後、300℃以上、550℃以下で鋼板を巻き取る。巻取温度が550℃超ではTi析出物が粗大化し、低温靭性が劣化する。巻取温度が300℃未満ではマルテンサイトが生成するため穴拡げ性が劣化する。   Then, a steel plate is wound up at 300 degreeC or more and 550 degrees C or less. When the coiling temperature exceeds 550 ° C., the Ti precipitate becomes coarse and the low temperature toughness deteriorates. When the coiling temperature is less than 300 ° C., martensite is generated, so that the hole expandability deteriorates.

表1に示す成分を含有する鋼を転炉にて溶製し,連続鋳造にて厚み230mmのスラブとした。その後,スラブを1200℃〜1250℃の温度に加熱し,粗圧延,仕上圧延を行い,一次冷却、中間空冷、二次冷却後に巻取りを行い,熱延鋼板を製造した。表2には,用いた鋼種記号と仕上圧延条件,鋼板の板厚を示す。表2において,「F5圧延率」は最終スタンド前の前段スタンドにおける圧延率,「FT5」は最終スタンド前の前段スタンドの圧延温度,「F6圧延率」は最終スタンドの圧延率,「FT6」は最終スタンドの圧延温度,「S冷却量」は最終スタンドの前段スタンドと最終スタンド間での冷却量、「冷却開始」は仕上圧延を終了してから一次冷却開始までの時間、「一次冷却」は仕上圧延を終了してから中間空冷開始温度までの平均冷却速度,「中間温度」は一次冷却後の中間空冷開始温度,「中間時間」は一次冷却後の中間空冷時間,「二次冷却」は中間空冷後から巻き取るまでの平均冷却速度,「巻取温度」は二次冷却終了後の温度である。   Steels containing the components shown in Table 1 were melted in a converter and slabs having a thickness of 230 mm were formed by continuous casting. Thereafter, the slab was heated to a temperature of 1200 ° C. to 1250 ° C., subjected to rough rolling and finish rolling, and wound after primary cooling, intermediate air cooling, and secondary cooling to produce a hot-rolled steel sheet. Table 2 shows the steel type symbols used, finish rolling conditions, and steel plate thickness. In Table 2, “F5 rolling rate” is the rolling rate of the preceding stand before the final stand, “FT5” is the rolling temperature of the preceding stand before the final stand, “F6 rolling rate” is the rolling rate of the final stand, and “FT6” is The rolling temperature of the final stand, “S cooling amount” is the cooling amount between the last stand of the final stand and the final stand, “Cooling start” is the time from finish rolling to the start of primary cooling, “Primary cooling” is Average cooling rate from finish rolling to intermediate air cooling start temperature, “intermediate temperature” is intermediate air cooling start temperature after primary cooling, “intermediate time” is intermediate air cooling time after primary cooling, and “secondary cooling” is The average cooling rate from the intermediate air cooling to the winding, the “winding temperature” is the temperature after the end of the secondary cooling.

このようにして得られた鋼板について光学顕微鏡を用いて鋼板の板厚1/4の深さの部位でフェライト,ベイナイトの組織分率とフェライト粒の粒径測定,集合組織の集積度を調査した。   The steel plate thus obtained was examined for the ferrite and bainite microstructure fraction, the ferrite grain size measurement, and the texture accumulation degree at a depth of 1/4 of the steel plate thickness using an optical microscope. .

鋼板のフェライトとベイナイトの組織分率及びフェライトの粒径については,ナイタール腐食後に光学顕微鏡を用いて500×500μmの視野で画像解析を用いて組織の面積率及びフェライトの平均粒径と標準偏差を求めた。   Regarding the structure fraction of ferrite and bainite and the grain size of ferrite in steel sheets, the area ratio of the structure and the average grain diameter and standard deviation of the ferrite are determined by image analysis using an optical microscope after a nital corrosion with a 500 × 500 μm field of view. Asked.

鋼板の引張試験については,鋼板の圧延幅方向(C方向)にJIS5号試験片を採取し,降伏強度:YP(MPa),引張強度:TS(MPa),均一伸び:U−EL(%)を評価した。引張強度780MPa以上、均一伸び8%以上を良好とした。   For the steel sheet tensile test, JIS No. 5 test piece was taken in the rolling width direction (C direction) of the steel sheet, yield strength: YP (MPa), tensile strength: TS (MPa), uniform elongation: U-EL (%) Evaluated. A tensile strength of 780 MPa or more and a uniform elongation of 8% or more were considered good.

X線ランダム強度比は、EBSD(Electron Back Scattering Diffraction Pattern)法を用いて、ピクセルの測定間隔が平均粒径の1/5以下で、結晶粒が5000個以上測定できる領域で測定し、極点図またはODF(Orientation Distribution Function)の分布からランダム強度比を測定した。適切なX線管球を用いたディフラクトメーター法等を用いて圧延面に平行で、圧延方向に平行な{211}<011>方位のX線回折強度の測定を行い、ランダムサンプルの回折強度との比較により測定してもよい。   The X-ray random intensity ratio is measured using an EBSD (Electron Back Scattering Diffraction Pattern) method in a region where the pixel measurement interval is 1/5 or less of the average grain size and 5000 or more crystal grains can be measured. Or the random intensity ratio was measured from the distribution of ODF (Orientation Distribution Function). Measure the X-ray diffraction intensity in the {211} <011> direction parallel to the rolling surface and parallel to the rolling direction by using a diffractometer method using an appropriate X-ray tube, etc. You may measure by comparison with.

穴拡げ率:λ(%)については,ISO16630で規定する方法によって評価を行った。穴拡げ率80%以上を良好とした。   The hole expansion rate: λ (%) was evaluated by the method specified in ISO 16630. A hole expansion rate of 80% or more was considered good.

延性脆性遷移温度については、JIS Z 2242に規定する方法で評価を行った。遷移温度が−53℃以下であれば良好であるとした。   About the ductile brittle transition temperature, it evaluated by the method prescribed | regulated to JISZ2242. A transition temperature of −53 ° C. or lower was considered good.

表2に組織分率、平均粒径、粒径の標準偏差、X線強度比、材質の評価結果を示す。   Table 2 shows the evaluation results of the structure fraction, average particle diameter, standard deviation of particle diameter, X-ray intensity ratio, and material.

Figure 0006354271
Figure 0006354271

Figure 0006354271
Figure 0006354271

表2に示すように本発明例は引張強度が780MPa以上で、フェライト相の組織分率40%以上90%以下で、残部がベイナイト相で構成される二相組織で,鋼板の圧延面に平行で、圧延方向と平行な{211}<011>方位のX線ランダム強度比が2.5以下であり、平均粒径が5.0μm以下で、その標準偏差が2.0μm以下である低温靭性と均一伸びと穴拡げ性に優れた鋼板となっている。   As shown in Table 2, the examples of the present invention have a tensile strength of 780 MPa or more, a ferrite phase structure fraction of 40% or more and 90% or less, and the balance being a bainite phase, which is parallel to the rolled surface of the steel sheet. And the X-ray random intensity ratio in the {211} <011> orientation parallel to the rolling direction is 2.5 or less, the average grain size is 5.0 μm or less, and the standard deviation thereof is 2.0 μm or less. And it is a steel plate with excellent uniform elongation and hole expandability.

これに対して、比較例2は中間空冷温度が高く、フェライト変態が進まなかったためにフェライト分率が低い。さらに冷却開始時間が3秒超となったため、フェライトの粗大化が進み、フェライトの粒径が5.0μm超となり、標準偏差も2.0μm超のため、均一伸びと低温靭性が劣位である。   On the other hand, Comparative Example 2 has a high intermediate air cooling temperature and a low ferrite fraction because the ferrite transformation did not proceed. Furthermore, since the cooling start time exceeded 3 seconds, the ferrite coarsened, the ferrite grain size exceeded 5.0 μm, and the standard deviation exceeded 2.0 μm, so the uniform elongation and low temperature toughness were inferior.

比較例5は最終スタンドの圧延率が5%未満のため、フェライトの粒径が5.0μm超で、標準偏差が2.0μm超でバラつきが大きく、均一伸びと低温靭性が劣位である。   In Comparative Example 5, since the rolling ratio of the final stand is less than 5%, the ferrite grain size is more than 5.0 μm, the standard deviation is more than 2.0 μm, the variation is large, and the uniform elongation and the low temperature toughness are inferior.

比較例8は最終スタンドの圧延温度が950℃超となったためにオーステナイトの粗大化が進み、軽圧延の効果も効果的でなかったため、フェライト粒径が粗大化し、さらに標準偏差も2.0μm超となったため、均一伸びと低温靭性が劣位である。   In Comparative Example 8, since the rolling temperature of the final stand exceeded 950 ° C., austenite coarsening progressed, and the effect of light rolling was not effective, so the ferrite grain size became coarse, and the standard deviation exceeded 2.0 μm. Therefore, uniform elongation and low temperature toughness are inferior.

比較例12は中間空冷時間が2秒未満のため、フェライト変態が十分に進まなかったため、目的の組織分率が得られず、均一伸びが劣位である。   In Comparative Example 12, since the intermediate air cooling time was less than 2 seconds and the ferrite transformation did not proceed sufficiently, the target structure fraction could not be obtained and the uniform elongation was inferior.

比較例16は中間空冷時間が10秒超のため、フェライト分率が90%超となったため、低温靭性が劣位である。   In Comparative Example 16, since the intermediate air cooling time exceeds 10 seconds and the ferrite fraction exceeds 90%, the low temperature toughness is inferior.

比較例17は中間空冷温度が600℃未満のため、フェライトの組織分率が得られず、均一伸びが劣位である。   In Comparative Example 17, since the intermediate air cooling temperature is less than 600 ° C., the structure fraction of ferrite cannot be obtained, and the uniform elongation is inferior.

比較例20は最終スタンドの圧延率が20%超であり、{211}<011>方位のX線ランダム強度比が2.5超となり、穴拡げ性が劣位である。   In Comparative Example 20, the rolling ratio of the final stand is more than 20%, the X-ray random intensity ratio in the {211} <011> orientation is more than 2.5, and the hole expandability is inferior.

比較例24は最終スタンド前のスタンドでの圧延率が20%未満のため、オーステナイトの再結晶が十分でなかったために{211}<011>方位のX線ランダム強度比が2.5超であり穴拡げ性が劣位である。   In Comparative Example 24, since the rolling ratio at the stand before the final stand was less than 20%, the recrystallization of austenite was not sufficient, so the X-ray random intensity ratio in the {211} <011> orientation was more than 2.5. Hole expandability is inferior.

比較例29はMnが成分上限を超えており、MnS延伸介在物の生成により、熱延条件が発明範囲内であっても目的の組織分率が得られず、均一伸びと穴拡げ性と低温靭性が劣位である。   In Comparative Example 29, Mn exceeded the upper limit of the component, and even when the hot rolling conditions were within the scope of the invention, the desired structure fraction could not be obtained due to the generation of MnS stretching inclusions, uniform elongation, hole expansibility, and low temperature. Toughness is inferior.

比較例30はTiが成分下限を下回っており、析出強化が十分でなかったために引張強度が780MPa以上得られていない。   In Comparative Example 30, Ti is below the component lower limit, and precipitation strengthening was not sufficient, so that a tensile strength of 780 MPa or more was not obtained.

尚、本実施例は最終スタンドと、最終スタンドの前段スタンドで圧延を行ったが、最終スタンドの前段スタンドで圧延を行うことなく前々段スタンドで圧延を行い、最終スタンドと前段スタンド、前段スタンドと前々段スタンドの2つのスタンド間またはいずれか一方のスタンド間で強制を施しても同様の結果を得ることができる。   In this example, rolling was performed at the final stand and the previous stage stand. However, rolling was performed at the previous stage without rolling at the previous stage stand, and the final stand, the previous stage stand, and the previous stage stand were rolled. The same result can be obtained by forcing between the two stands of the preceding stage stand or between any one of the stands.

Claims (3)

質量%で
C:0.01〜0.10%、
Si:0.01〜2.0%、
Mn:0.5〜2.5%、
P:0.1%以下、
S:0.01%以下、
Al:0.005〜1.0%
N:0.01%以下、
Ti:0.01〜0.20%、
を含み、残部Feおよび不可避的不純物からなり、面積分率で、フェライト相の組織分率40%以上、90%以下で、残部がベイナイト相で構成される二相組織を有し,鋼板の圧延面に平行で、圧延方向と平行な{211}<011>方位のX線ランダム強度比が2.5以下であり、フェライト粒の平均粒径が5.0μm以下であり、その粒径の標準偏差が2.0μm以下であることを特徴とする低温靭性と均一伸びと穴拡げ性に優れた引張強度780MPa以上の高強度熱延鋼板。
C: 0.01 to 0.10% by mass%,
Si: 0.01 to 2.0%,
Mn: 0.5 to 2.5%
P: 0.1% or less,
S: 0.01% or less,
Al: 0.005 to 1.0%
N: 0.01% or less,
Ti: 0.01-0.20%,
Steel, the balance of Fe and inevitable impurities, the area fraction of the ferrite phase is 40% or more and 90% or less and the balance is a bainite phase, and the steel sheet is rolled. The X-ray random intensity ratio in the {211} <011> orientation parallel to the plane and parallel to the rolling direction is 2.5 or less, and the average grain size of ferrite grains is 5.0 μm or less. A high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in low-temperature toughness, uniform elongation, and hole expansibility, characterized in that the deviation is 2.0 μm or less.
更に,質量%で
Nb:0.001%以上,0.10%以下,
B:0.0005%以上、0.0030%以下、
Ca:0.0005%以上,0.0030%以下、
Mo:0.02%以上,0.5%以下,
Cr:0.02%以上,1.0%以下,
の1種以上を含有することを特徴とする請求項1に記載の低温靭性と均一伸びと穴拡げ性に優れた引張強度780MPa以上の高強度熱延鋼板。
Furthermore, Nb in mass%: 0.001% or more, 0.10% or less,
B: 0.0005% or more, 0.0030% or less,
Ca: 0.0005% or more, 0.0030% or less,
Mo: 0.02% or more, 0.5% or less,
Cr: 0.02% or more, 1.0% or less,
The high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in low-temperature toughness, uniform elongation, and hole expansibility according to claim 1.
請求項1または2に記載の高強度熱延鋼板の製造方法であって、
請求項1又は2に記載の成分の連続鋳造スラブを1200℃以上に加熱し、仕上げ圧延で圧延を実施する最終スタンド前のスタンドでの圧延を960℃以上、1100℃以下で、圧延率20%以上で行い、スタンド間で強制冷却を施して最終スタンドでの圧延をAr3点以上、950℃以下で、且つ、圧延率5%以上、20%以下で行い、圧延終了後3秒以内に強制冷却を開始して30℃/s以上の冷却速度で600℃以上、750℃以下まで冷却し、2秒以上、10秒以下の自然放冷を施したのち、30℃/s以上の冷却速度で300℃以上、550℃以下まで冷却し、300℃以上、550℃以下で巻き取ることを特徴とする低温靭性と均一伸びと穴拡げ性に優れた引張強度780MPa以上の高強度熱延鋼板の製造方法。
A method for producing a high-strength hot-rolled steel sheet according to claim 1 or 2,
The continuous casting slab of the component according to claim 1 or 2 is heated to 1200 ° C or higher, and rolling at a stand before the final stand for performing rolling by finish rolling is 960 ° C or higher and 1100 ° C or lower, and a rolling rate of 20%. Performed above, forced cooling between the stands, and rolling at the final stand is performed at Ar3 point or higher and 950 ° C or lower, and at a rolling rate of 5% or higher and 20% or lower, and forced cooling within 3 seconds after rolling is completed. After cooling to 600 ° C. or more and 750 ° C. or less at a cooling rate of 30 ° C./s or more, and after allowing natural cooling for 2 seconds or more and 10 seconds or less, 300 at a cooling rate of 30 ° C./s or more. A method for producing a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more excellent in low-temperature toughness, uniform elongation and hole expansibility, which is cooled to 300 ° C. or more and 550 ° C. or less. .
JP2014079521A 2014-04-08 2014-04-08 High-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in low-temperature toughness, uniform elongation and hole expansibility, and a method for producing the same Active JP6354271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014079521A JP6354271B2 (en) 2014-04-08 2014-04-08 High-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in low-temperature toughness, uniform elongation and hole expansibility, and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014079521A JP6354271B2 (en) 2014-04-08 2014-04-08 High-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in low-temperature toughness, uniform elongation and hole expansibility, and a method for producing the same

Publications (2)

Publication Number Publication Date
JP2015199987A JP2015199987A (en) 2015-11-12
JP6354271B2 true JP6354271B2 (en) 2018-07-11

Family

ID=54551536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014079521A Active JP6354271B2 (en) 2014-04-08 2014-04-08 High-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in low-temperature toughness, uniform elongation and hole expansibility, and a method for producing the same

Country Status (1)

Country Link
JP (1) JP6354271B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101988153B1 (en) 2015-05-26 2019-06-12 닛폰세이테츠 가부시키가이샤 Steel sheet and manufacturing method thereof
WO2017085841A1 (en) * 2015-11-19 2017-05-26 新日鐵住金株式会社 High strength hot-rolled steel sheet and method for producing same
WO2018110152A1 (en) * 2016-12-12 2018-06-21 Jfeスチール株式会社 Low-yield-ratio hot-rolled steel plate for square steel pipe
KR102259719B1 (en) * 2017-03-31 2021-06-01 제이에프이 스틸 가부시키가이샤 Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing(drd) can
CN107099739B (en) * 2017-06-14 2019-02-22 唐山钢铁集团有限责任公司 600MPa grades of tensile strength inexpensive high-chambering steel plates and its production method
EP3663427B1 (en) 2017-07-31 2021-01-20 JFE Steel Corporation Steel sheet for crown cap, crown cap, and method for producing steel sheet for crown cap
BR112020002263A2 (en) * 2017-10-30 2020-08-04 Nippon Steel Corporation hot rolled steel plate and method for producing it
CN108570604A (en) * 2018-04-28 2018-09-25 唐山钢铁集团有限责任公司 A kind of high reaming steel band of 780MPa grades of hot rolling acid-cleaning and its production method
JP7344962B2 (en) * 2018-10-26 2023-09-14 ポスコ カンパニー リミテッド High-strength steel material with excellent sulfide stress corrosion cracking resistance and method for producing the same
KR102164107B1 (en) * 2018-11-30 2020-10-13 주식회사 포스코 High strength steel plate having superior elongation percentage and excellent low-temperature toughness, and manufacturing method for the same
CN112575267A (en) * 2019-09-27 2021-03-30 宝山钢铁股份有限公司 High-hole-expansion complex phase steel and manufacturing method thereof
JP7440740B2 (en) 2019-12-06 2024-02-29 日本製鉄株式会社 Steel plate for tanks
KR20230148840A (en) * 2021-03-30 2023-10-25 제이에프이 스틸 가부시키가이샤 Hot rolled steel sheet and manufacturing method thereof
WO2022269742A1 (en) * 2021-06-22 2022-12-29 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
CN114657458B (en) * 2022-02-18 2022-10-25 山东钢铁集团日照有限公司 Crude oil storage tank steel plate for large-thickness high-strength high-toughness high-heat input welding and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842726A (en) * 1981-09-04 1983-03-12 Kobe Steel Ltd Manufacture of high strength hot rolled steel plate
JP5070865B2 (en) * 2007-02-02 2012-11-14 住友金属工業株式会社 Hot rolled steel sheet with excellent local rolling performance and method for producing the same
JP5359296B2 (en) * 2008-01-17 2013-12-04 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5370016B2 (en) * 2008-09-11 2013-12-18 新日鐵住金株式会社 High-strength hot-rolled steel sheet excellent in hole expansibility and method for producing the same
JP5747803B2 (en) * 2010-12-07 2015-07-15 新日鐵住金株式会社 High-strength hot-rolled steel sheet excellent in low-temperature toughness and hole expansibility and method for producing the same
ES2665982T3 (en) * 2011-03-28 2018-04-30 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet and its production procedure
KR101539162B1 (en) * 2011-03-31 2015-07-23 신닛테츠스미킨 카부시키카이샤 Bainite-containing high-strength hot-rolled steel plate with excellent isotropic workability and process for producing same
JP5640898B2 (en) * 2011-06-02 2014-12-17 新日鐵住金株式会社 Hot rolled steel sheet
JP5915412B2 (en) * 2012-06-29 2016-05-11 Jfeスチール株式会社 High strength hot-rolled steel sheet excellent in bendability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015199987A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP6354271B2 (en) High-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and excellent in low-temperature toughness, uniform elongation and hole expansibility, and a method for producing the same
KR101912512B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP5821912B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5821861B2 (en) High-strength hot-rolled steel sheet with excellent appearance and excellent balance between elongation and hole expansibility and method for producing the same
JP5522084B2 (en) Thick steel plate manufacturing method
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
JP5825189B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and low-temperature toughness, and method for producing the same
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
WO2016092733A1 (en) High-strength cold-rolled steel sheet and method for producing same
JP6460258B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
KR20130121940A (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
KR20150086354A (en) Hot-rolled steel sheet and production method therefor
JP6260198B2 (en) High-strength hot-rolled steel sheet with excellent balance between elongation and hole expansibility and method for producing the same
JP5860343B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
KR20190107070A (en) Hot rolled steel sheet and its manufacturing method
JPWO2015181911A1 (en) Hot rolled steel sheet and manufacturing method thereof
JP5483562B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP6515386B2 (en) Hot rolled steel sheet and method of manufacturing the same
JP5860345B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP2022511066A (en) High-strength hot-rolled steel sheet with excellent formability and its manufacturing method
JP5246283B2 (en) Low yield ratio high strength cold-rolled steel sheet excellent in elongation and stretch flangeability and manufacturing method thereof
JP2013124399A (en) High-strength cold-rolled steel plate having little variation in strength and ductility, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R151 Written notification of patent or utility model registration

Ref document number: 6354271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350