JP6353330B2 - Filtration membrane for capturing fine particles and method for producing the same, porous membrane and method for producing the same - Google Patents
Filtration membrane for capturing fine particles and method for producing the same, porous membrane and method for producing the same Download PDFInfo
- Publication number
- JP6353330B2 JP6353330B2 JP2014195525A JP2014195525A JP6353330B2 JP 6353330 B2 JP6353330 B2 JP 6353330B2 JP 2014195525 A JP2014195525 A JP 2014195525A JP 2014195525 A JP2014195525 A JP 2014195525A JP 6353330 B2 JP6353330 B2 JP 6353330B2
- Authority
- JP
- Japan
- Prior art keywords
- hole
- filtration membrane
- communication
- diameter portion
- aluminum material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims description 238
- 238000001914 filtration Methods 0.000 title claims description 212
- 239000010419 fine particle Substances 0.000 title claims description 113
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000004891 communication Methods 0.000 claims description 353
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 153
- 239000011148 porous material Substances 0.000 claims description 144
- 229910052782 aluminium Inorganic materials 0.000 claims description 142
- 239000000463 material Substances 0.000 claims description 138
- 238000007743 anodising Methods 0.000 claims description 105
- 238000010304 firing Methods 0.000 claims description 59
- 238000005530 etching Methods 0.000 claims description 38
- 230000003647 oxidation Effects 0.000 claims description 36
- 238000007254 oxidation reaction Methods 0.000 claims description 36
- 238000001878 scanning electron micrograph Methods 0.000 claims description 32
- 238000002048 anodisation reaction Methods 0.000 claims description 25
- 238000009826 distribution Methods 0.000 claims description 14
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 11
- 239000012498 ultrapure water Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 2
- 239000013589 supplement Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 70
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 24
- 239000007864 aqueous solution Substances 0.000 description 20
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 235000006408 oxalic acid Nutrition 0.000 description 8
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 238000004611 spectroscopical analysis Methods 0.000 description 5
- 239000010407 anodic oxide Substances 0.000 description 4
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Description
本発明は、被処理水中の微粒子捕捉用のろ過膜に関し、特に、半導体製造用の超純水や溶剤又は薬剤中に含まれる微粒子数の測定等のために用いられる微粒子捕捉用のろ過膜に関する。また、本発明は、微細な連通孔を有する多孔質膜に関する。 The present invention relates to a filtration membrane for capturing fine particles in water to be treated, and more particularly to a filtration membrane for capturing fine particles used for measuring the number of fine particles contained in ultrapure water, a solvent, or a chemical for semiconductor production. . The present invention also relates to a porous membrane having fine communication holes.
現在、半導体製造工程で用いられる超純水や薬剤又は薬剤中の微粒子は、50〜100nmの粒径で管理されている。しかしながら、近年、半導体デバイスの高集積化に伴い、デバイスの線幅は微細化しているため、より小さな10nm程度の粒子径で管理することが求められてきている。 Currently, ultrapure water and chemicals used in semiconductor manufacturing processes or fine particles in chemicals are managed with a particle size of 50 to 100 nm. However, in recent years, along with the high integration of semiconductor devices, the line width of devices has become finer, so that it has been required to manage with a smaller particle size of about 10 nm.
超純水中の微粒子評価方法としては、レーザー散乱や音波を利用したオンライン法と、超純水を微粒子捕捉膜でろ過し、膜上に捕捉した微粒子を光学顕微鏡や走査型電子顕微鏡を用いて測定する直接検鏡法がある。そして、直接検鏡法の微粒子捕捉膜としては、陽極酸化膜が使用されている。ただし、陽極酸化膜は、耐水性が弱いため、陽極酸化処理後、焼成処理する必要がある(特許文献1)。 Fine particles in ultrapure water can be evaluated by online methods using laser scattering and sound waves, ultrapure water filtered through a fine particle capture membrane, and fine particles captured on the membrane using an optical microscope or scanning electron microscope. There is a direct microscopic method to measure. An anodic oxide film is used as the microscopic particle capturing film for the direct spectroscopic method. However, since the anodized film has low water resistance, it is necessary to perform a baking process after the anodizing process (Patent Document 1).
例えば、特許文献2の図1には、異径構造を有する膜が示されており、実施例には、最小気孔寸法が20nm程度であることが記載されている。また、市販の陽極酸化膜としては、最小孔径が20nmまでの膜が市販されている。 For example, FIG. 1 of Patent Document 2 shows a film having a different diameter structure, and the example describes that the minimum pore size is about 20 nm. Moreover, as a commercially available anodic oxide film, a film having a minimum pore diameter of up to 20 nm is commercially available.
しかし、現在のところ、それより孔径が小さい陽極酸化膜はない。そのため、近年の更なる小粒子径の微粒子の管理の要求に対応できるような、平均孔径が20nm以下の陽極酸化膜の開発が望まれている。 However, at present, there is no anodic oxide film having a smaller pore diameter. Therefore, development of an anodic oxide film having an average pore diameter of 20 nm or less that can meet the recent demand for management of fine particles having a smaller particle diameter is desired.
従って、本発明は、陽極酸化により連通孔を形成させて得られる微粒子捕捉用ろ過膜であり、従来より平均孔径が小さい微粒子捕捉用ろ過膜及びその製造方法を提供することにある。また、本発明は、陽極酸化により連通孔を形成させて得られる多孔質膜であり、従来より平均孔径が小さい多孔質膜及びその製造方法を提供することにある。 Therefore, the present invention provides a particulate trapping filtration membrane obtained by forming communication holes by anodization, and providing a particulate trapping filtration membrane having an average pore size smaller than that of the prior art and a method for producing the same. Another object of the present invention is to provide a porous film obtained by forming communication holes by anodic oxidation, and having a smaller average pore diameter than conventional ones and a method for producing the same.
このような上記課題は、以下の発明によって解決される。
すなわち、本発明(1)は、アルミニウム材の陽極酸化により連通孔を形成させて得られる微粒子捕捉用ろ過膜であって、
ろ過膜の一方の面に開口する連通孔が形成されている小孔径部と、
該小孔径部の連通孔が繋がり且つ径が該小孔径部の連通孔の径より大きい連通孔が形成されている中間孔部と、
該中間孔部の連通孔が繋がり、径が該中間孔部の連通孔の径より大きく、且つ、ろ過膜の他方の面に開口する連通孔が形成されている大孔径部と、
を有し、
該小孔径部には、ろ過膜の一方の表面から400〜1000nmの位置まで、孔径の平均が4〜20nmの連通孔が形成されており、
ろ過膜の総膜厚が15〜50μmであり、
超純水、溶剤又は薬液用の微粒子補足膜であること、
を特徴とする微粒子捕捉用ろ過膜を提供するものである。
Such a problem is solved by the following invention.
That is, the present invention (1) is a particulate trapping filtration membrane obtained by forming communication holes by anodic oxidation of an aluminum material,
A small hole diameter portion in which a communication hole opening on one surface of the filtration membrane is formed;
An intermediate hole portion in which a communication hole of the small hole diameter portion is connected and a communication hole having a diameter larger than the diameter of the communication hole of the small hole diameter portion is formed;
A large hole diameter portion in which the communication hole of the intermediate hole portion is connected, the diameter is larger than the diameter of the communication hole of the intermediate hole portion, and a communication hole opened on the other surface of the filtration membrane is formed;
Have
In the small pore diameter portion, communication holes having an average pore diameter of 4 to 20 nm are formed from one surface of the filtration membrane to a position of 400 to 1000 nm,
The total thickness of the filtration membrane Ri 15~50μm der,
Ultra-pure water, fine supplement film Der Rukoto of solvent or liquid chemical,
A filtration membrane for capturing fine particles characterized by the above is provided.
また、本発明(2)は、アルミニウム材を陽極酸化することにより、該アルミニウム材に大孔径部用の連通孔を形成させて、陽極酸化アルミニウム材(1)を得る第一陽極酸化工程と、
該陽極酸化アルミニウム材(1)を陽極酸化することにより、該陽極酸化アルミニウム材(1)に、該大孔径部用の連通孔に繋がり且つ径が該大孔径部用の連通孔より小さい中間孔部用の連通孔を形成させて、陽極酸化アルミニウム材(2)を得る第二陽極酸化工程と、
該陽極酸化アルミニウム材(2)を陽極酸化することにより、該陽極酸化アルミニウム材(2)に、該中間孔部用の連通孔に繋がり且つ径が該中間孔部用の連通孔より小さい小孔径部用の連通孔を形成させて、陽極酸化アルミニウム材(3)を得る第三陽極酸化工程と、
該陽極酸化アルミニウム材(3)から陽極酸化された部分を剥離し、次いで、剥離した部分をエッチング処理して、陽極酸化部分を得る剥離及びエッチング工程と、
該陽極酸化部分を800〜1200℃で焼成することにより、微粒子捕捉用ろ過膜を得る焼成工程と、
を有し、
該第三陽極酸化工程で、孔径の平均が4〜20nmの連通孔を、厚さ方向に400〜1000nm形成させること、
及び該第一陽極酸化工程から該第三陽極酸化工程までで、陽極酸化により連通孔を形成させる部分の全厚みが15〜50μmであること、
を特徴とする微粒子捕捉用ろ過膜の製造方法を提供するものである。
In addition, the present invention (2) includes a first anodizing step for obtaining an anodized aluminum material (1) by anodizing an aluminum material to form a communication hole for a large hole diameter portion in the aluminum material,
By anodizing the anodized aluminum material (1), the anodized aluminum material (1) is connected to the communicating hole for the large hole diameter portion and has a diameter smaller than that of the communicating hole for the large hole diameter portion. A second anodizing step of forming an anodized aluminum material (2) by forming a communicating hole for the part;
By anodizing the anodized aluminum material (2), the anodized aluminum material (2) is connected to the communication hole for the intermediate hole and has a smaller diameter than the communication hole for the intermediate hole. A third anodizing step of forming an anodized aluminum material (3) by forming a communicating hole for the part;
A peeling and etching step of peeling the anodized part from the anodized aluminum material (3), and then etching the peeled part to obtain an anodized part;
A firing step of obtaining a filtration membrane for capturing fine particles by firing the anodized portion at 800 to 1200 ° C .;
Have
In the third anodic oxidation step, communication holes having an average pore diameter of 4 to 20 nm are formed in the thickness direction from 400 to 1000 nm.
And from the first anodizing step to the third anodizing step, the total thickness of the portion where the communicating holes are formed by anodization is 15 to 50 μm,
A method for producing a filtration membrane for capturing fine particles is provided.
本発明によれば、陽極酸化により連通孔を形成させて得られる微粒子捕捉用ろ過膜であり、従来より平均孔径が小さい微粒子捕捉用ろ過膜及びその製造方法を提供することができる。また、本発明によれば、陽極酸化により連通孔を形成させて得られる多孔質膜であり、従来より平均孔径が小さい多孔質膜及びその製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is a filtration membrane for fine particle capture | acquisition obtained by forming a communicating hole by anodic oxidation, and can provide the filtration membrane for fine particle capture | acquisition with a smaller average pore diameter than before, and its manufacturing method. Moreover, according to this invention, it is a porous membrane obtained by forming a communicating hole by anodic oxidation, and can provide the porous membrane with a smaller average pore diameter than before, and its manufacturing method.
図1〜図5を参照して、本発明の微粒子捕捉用ろ過膜及びその製造方法について説明する。図1は、図2中の符号40で示す点線で囲んだ部分の拡大図であり、ろ過膜の一方の表面近傍の拡大図である。図2は、本発明の微粒子捕捉用ろ過膜の形態例の模式図であり、ろ過膜の表面に対して垂直に切ったときの端面図である。図3は、図2中の符号39で示す点線で囲んだ部分の拡大図であり、ろ過膜の他方の表面近傍の拡大図である。図4は、陽極酸化工程を示す概念図である。図5は、アルミニウム材が陽極酸化される様子を示す模式図であり、ろ過膜の表面に対して垂直に切ったときの端面図である。 With reference to FIGS. 1-5, the filtration membrane for fine particle capture | acquisition of this invention and its manufacturing method are demonstrated. 1 is an enlarged view of a portion surrounded by a dotted line indicated by reference numeral 40 in FIG. 2, and is an enlarged view of the vicinity of one surface of the filtration membrane. FIG. 2 is a schematic view of an embodiment of the filtration membrane for capturing fine particles of the present invention, and is an end view when cut perpendicularly to the surface of the filtration membrane. FIG. 3 is an enlarged view of a portion surrounded by a dotted line indicated by reference numeral 39 in FIG. 2, and is an enlarged view of the vicinity of the other surface of the filtration membrane. FIG. 4 is a conceptual diagram showing an anodic oxidation process. FIG. 5 is a schematic view showing an aluminum material being anodized, and is an end view when cut perpendicular to the surface of the filtration membrane.
図1〜図3に示すように、微粒子捕捉用ろ過膜1は、平均孔径が4〜20nmの連通孔が形成されている小孔径部2と、径が小孔径部の連通孔の径より大きい連通孔が形成されている中間孔部3と、径が中間孔部3の連通孔より大きい連通孔が形成されている大孔径部4と、を有する。小径孔部2、中間孔部3及び大孔径部4の合計の厚み、すなわち、微粒子捕捉用ろ過膜1の総膜厚は、50μm以下である。なお、微粒子捕捉用ろ過膜1の小孔径部2、中間孔部3及び大孔径部4には、図1及び図3に示すように連通孔が形成されているが、図2では、作図の都合上、連通孔を記載せずに、小孔径部2、中間孔部3及び大孔径部の存在位置のみを斜線で示した。また、図2に斜線で示されている部分は、微粒子捕捉用ろ過膜1の小孔径部2、中間孔部3及び大孔径部4の一部であり、実際には、図2の斜線部分の左右いずれの方向にも、小孔径部2、中間孔部3及び大孔径部4が連続している。 As shown in FIGS. 1 to 3, the particulate trapping filtration membrane 1 has a small pore diameter portion 2 in which communication pores having an average pore diameter of 4 to 20 nm are formed, and a diameter larger than the diameter of the communication pores of the small pore diameter portion. It has the intermediate hole part 3 in which the communication hole is formed, and the large hole diameter part 4 in which the communication hole larger than the communication hole of the intermediate hole part 3 is formed. The total thickness of the small-diameter hole portion 2, the intermediate hole portion 3, and the large-pore diameter portion 4, that is, the total film thickness of the particulate trapping filtration membrane 1 is 50 μm or less. In addition, as shown in FIG.1 and FIG.3, although the small hole diameter part 2, the intermediate | middle hole part 3, and the large hole diameter part 4 of the filtration membrane 1 for particulate capture | acquisition have formed the communicating hole, in FIG. For convenience, the communicating holes are not described, and only the positions where the small hole diameter part 2, the intermediate hole part 3 and the large hole diameter part exist are indicated by hatching. 2 are portions of the small hole diameter portion 2, the intermediate hole portion 3 and the large hole diameter portion 4 of the particulate trapping filtration membrane 1. In practice, the hatched portion in FIG. The small hole diameter part 2, the intermediate hole part 3, and the large hole diameter part 4 are continuous in both the left and right directions.
小孔径部2は、微粒子捕捉用ろ過膜1の一方の表面5側に形成されており、ろ過膜の一方の表面5に、小孔径部2の連通孔8の開口7が開口している。大孔径部4は、微粒子捕捉用ろ過膜1の他方の表面6側に形成されており、ろ過膜の一方の表面6に、大孔径部4の連通孔10の開口11が開口している。中間孔部3は、小孔径部2と大孔径部4との間に形成されており、中間孔部3の連通孔9に、小孔径部2の連通孔8が繋がり、且つ、中間孔部3の連通孔9は、大孔径部4の連通孔10に繋がっている。そのため、小孔径部2の連通孔8、中間孔部3の連通孔9及び大孔径部4の連通孔10は、微粒子捕捉用ろ過膜1の一方の表面5から他方の表面6までの連続した連通孔を形成している。 The small hole diameter portion 2 is formed on one surface 5 side of the fine particle capturing filtration membrane 1, and the opening 7 of the communication hole 8 of the small hole diameter portion 2 is opened on one surface 5 of the filtration membrane. The large pore diameter portion 4 is formed on the other surface 6 side of the particulate trapping filtration membrane 1, and the opening 11 of the communication hole 10 of the large pore diameter portion 4 is opened on one surface 6 of the filtration membrane. The intermediate hole portion 3 is formed between the small hole diameter portion 2 and the large hole diameter portion 4, the communication hole 8 of the small hole diameter portion 2 is connected to the communication hole 9 of the intermediate hole portion 3, and the intermediate hole portion The three communication holes 9 are connected to the communication hole 10 of the large hole diameter portion 4. Therefore, the communication hole 8 of the small hole diameter portion 2, the communication hole 9 of the intermediate hole portion 3, and the communication hole 10 of the large hole diameter portion 4 are continuous from one surface 5 to the other surface 6 of the filtration membrane 1 for capturing particles. A communication hole is formed.
中間孔部3の連通孔9には小孔径部2の複数の連通孔8が繋がっており、また、大孔径部4の連通孔10には中間孔部3の複数の連通孔9が繋がっている。 A plurality of communication holes 8 of the small hole diameter portion 2 are connected to the communication holes 9 of the intermediate hole portion 3, and a plurality of communication holes 9 of the intermediate hole portion 3 are connected to the communication holes 10 of the large hole diameter portion 4. Yes.
微粒子捕捉用ろ過膜1の骨格部は、アルミニウム材を陽極酸化し、次いで、アルミニウム材から陽極酸化部分を剥離し、次いで、表面をエッチング処理し、次いで、焼成することにより得られるものなので、酸化アルミニウムで構成されている。すなわち、小孔径部2の連通孔8、中間孔部3の連通孔9及び大孔径部4の連通孔10は、酸化アルミニウムの壁12a、12b、12cにより形成されている。 Since the skeleton of the particulate trapping filtration membrane 1 is obtained by anodizing an aluminum material, then peeling the anodized portion from the aluminum material, then etching the surface, and then firing, Consists of aluminum. That is, the communication hole 8 of the small hole diameter portion 2, the communication hole 9 of the intermediate hole portion 3, and the communication hole 10 of the large hole diameter portion 4 are formed by aluminum oxide walls 12a, 12b and 12c.
そして、超純水等の被処理水21が、微粒子捕捉用ろ過膜1の一方の表面5側からろ過膜内に供給され、ろ過膜内の連通孔を通過して、微粒子捕捉用ろ過膜1の他方の表面6側から、処理水22として、ろ過膜外へ排出される。このとき、超純水等の被処理水21内の微粒子が、微粒子捕捉用ろ過膜1の一方の表面5上に捕捉される。 And the to-be-processed water 21 such as ultrapure water is supplied into the filtration membrane from one surface 5 side of the particulate trapping filtration membrane 1, passes through the communication hole in the filtration membrane, and then passed through the filtration membrane 1. From the other surface 6 side, the treated water 22 is discharged out of the filtration membrane. At this time, fine particles in the water to be treated 21 such as ultrapure water are captured on one surface 5 of the fine particle capturing filtration membrane 1.
このような微粒子捕捉用ろ過膜1の連通孔は、図4に示すような、陽極酸化により形成される。陽極酸化は、電解液25に、アルミニウム材23と、アルミニウム、銅、ニッケル、白金等の材質からなる対極材24とを浸漬し、アルミニウム材23から対電極材24に直流電流が流れるように、直流電源26を印加することにより行われる。 Such communication holes of the particulate trapping filtration membrane 1 are formed by anodic oxidation as shown in FIG. In anodization, an aluminum material 23 and a counter electrode material 24 made of a material such as aluminum, copper, nickel, or platinum are immersed in the electrolytic solution 25 so that a direct current flows from the aluminum material 23 to the counter electrode material 24. This is done by applying a DC power supply 26.
この微粒子捕捉用ろ過膜1の製造における陽極酸化は、アルミニウム材23に対して、大孔径部用の連通孔101を形成するための陽極酸化(図5(A))と、中間孔部用の連通孔91を形成するための陽極酸化(図5(B))と、小孔径部用の連通孔81を形成するための陽極酸化(図5(C))の3段階に分けて行われる。なお、大孔径部用の連通孔101、中間孔部用の連通孔91及び小孔径部用の連通孔81は、焼成までを経て、それぞれ、微粒子捕捉用ろ過膜1の大孔径部4の連通孔10、中間孔部3の連通孔9及び小孔径部2の連通孔8となる連通孔である。 The anodic oxidation in the production of the particulate trapping filtration membrane 1 includes anodization (FIG. 5 (A)) for forming the communication hole 101 for the large pore diameter portion with respect to the aluminum material 23, and for the intermediate pore portion. Anodization for forming the communication hole 91 (FIG. 5B) and anodization for forming the small hole diameter communication hole 81 (FIG. 5C) are performed in three stages. Note that the communication hole 101 for the large hole diameter part, the communication hole 91 for the intermediate hole part, and the communication hole 81 for the small hole diameter part are communicated with the large hole diameter part 4 of the particulate trapping filtration membrane 1 through firing. These are communication holes which are the hole 10, the communication hole 9 of the intermediate hole portion 3, and the communication hole 8 of the small hole diameter portion 2.
先ず、図5(A)に示す大孔径部用の連通孔101を形成するための陽極酸化では、陽極酸化により、アルミニウム材23の表面から、大孔径部用の連通孔101を形成させて、陽極酸化アルミニウム材(1)31を得る。次いで、図5(B)に示す中間孔部用の連通孔91を形成するための陽極酸化では、陽極酸化により、陽極酸化アルミニウム材(1)31に形成された連通孔101の端部から中間孔部用の連通孔91を形成させて、陽極酸化アルミニウム材(2)32を得る。次いで、図5(C)に示す小孔径部用の連通孔81を形成するための陽極酸化では、陽極酸化により、陽極酸化アルミニウム材(2)32に形成された連通孔91の端部から小孔径部用の連通孔81を形成させて、陽極酸化アルミニウム材(3)33を得る。なお、連通孔101と、連通孔91と、連通孔81の作り分けは、後述するように、印加する電圧、通電する電流、印加時間、電解液の種類等の陽極酸化の条件を適宜選択することにより行われる。そして、図5中、符号401で示す部分、符号301で示す部分及び符号201で示す部分は、焼成までを経て、それぞれ、微粒子捕捉用ろ過膜1の大孔径部4、中間孔部3及び小孔径部2となる部分であり、それぞれ、微粒子捕捉用ろ過膜1の大孔径部4に対応する部分、中間孔部3に対応する部分及び小孔径部2に対応する部分である。 First, in the anodic oxidation for forming the large hole diameter communication hole 101 shown in FIG. 5A, the large hole diameter communication hole 101 is formed from the surface of the aluminum material 23 by anodic oxidation. An anodized aluminum material (1) 31 is obtained. Next, in the anodic oxidation for forming the communication hole 91 for the intermediate hole shown in FIG. 5 (B), it is intermediate from the end of the communication hole 101 formed in the anodized aluminum material (1) 31 by anodic oxidation. The hole 91 is formed to obtain the anodized aluminum material (2) 32. Next, in the anodic oxidation for forming the small hole diameter portion communication hole 81 shown in FIG. 5C, anodization is performed from the end of the communication hole 91 formed in the anodized aluminum material (2) 32. A communicating hole 81 for the hole diameter portion is formed to obtain the anodized aluminum material (3) 33. In addition, the formation of the communication hole 101, the communication hole 91, and the communication hole 81 is appropriately selected according to an anodic oxidation condition such as a voltage to be applied, a current to be applied, an application time, and a type of electrolyte as described later. Is done. In FIG. 5, the portion denoted by reference numeral 401, the portion denoted by reference numeral 301, and the portion denoted by reference numeral 201 are subjected to firing until the large pore diameter portion 4, the intermediate pore portion 3, and the small pore portion of the particulate trapping filtration membrane 1, respectively. It is a part which becomes the hole diameter part 2, and is a part corresponding to the large hole diameter part 4, the part corresponding to the intermediate hole part 3, and the part corresponding to the small hole diameter part 2, respectively.
上記のような3段階の陽極酸化を行った後、得られる陽極酸化アルミニウム材(3)33のアルミニウム材部分35から陽極酸化部分34を剥離させ、次いで、得られる陽極酸化部分34の表面をエッチング処理して、図5(D)に示す陽極酸化部分34を得る。 After performing the three-stage anodization as described above, the anodized portion 34 is peeled off from the aluminum material portion 35 of the anodized aluminum material (3) 33 obtained, and then the surface of the obtained anodized portion 34 is etched. Processing is performed to obtain the anodized portion 34 shown in FIG.
次いで、エッチング処理を行い得られた陽極酸化部分34を、800〜1200℃で焼成することにより、微粒子捕捉用ろ過膜1を得る。 Next, the anodized portion 34 obtained by performing the etching treatment is baked at 800 to 1200 ° C., thereby obtaining the particulate capturing filter membrane 1.
このように、微粒子捕捉用ろ過膜1は、アルミニウム材の陽極酸化により連通孔を形成させて得られる微粒子捕捉用ろ過膜である。 As described above, the particulate trapping filtration membrane 1 is a particulate trapping filtration membrane obtained by forming communication holes by anodization of an aluminum material.
本発明の微粒子捕捉用ろ過膜は、アルミニウム材の陽極酸化により連通孔を形成させて得られる微粒子捕捉用ろ過膜であって、
ろ過膜の一方の面に開口する連通孔が形成されている小孔径部と、
該小孔径部の連通孔が繋がり且つ径が該小孔径部の連通孔の径より大きい連通孔が形成されている中間孔部と、
該中間孔部の連通孔が繋がり、径が該中間孔部の連通孔の径より大きく、且つ、ろ過膜の他方の面に開口する連通孔が形成されている大孔径部と、
を有し、
該小孔径部には、ろ過膜の一方の表面から少なくとも400nmの位置まで、孔径の平均が4〜20nmの連通孔が形成されており、
ろ過膜の総膜厚が50μm以下であること、
を特徴とする微粒子捕捉用ろ過膜である。
The filtration membrane for capturing fine particles of the present invention is a filtration membrane for capturing fine particles obtained by forming a communication hole by anodization of an aluminum material,
A small hole diameter portion in which a communication hole opening on one surface of the filtration membrane is formed;
An intermediate hole portion in which a communication hole of the small hole diameter portion is connected and a communication hole having a diameter larger than the diameter of the communication hole of the small hole diameter portion is formed;
A large hole diameter portion in which the communication hole of the intermediate hole portion is connected, the diameter is larger than the diameter of the communication hole of the intermediate hole portion, and a communication hole opened on the other surface of the filtration membrane is formed;
Have
In the small pore diameter portion, a communication hole having an average pore diameter of 4 to 20 nm is formed from one surface of the filtration membrane to a position of at least 400 nm,
The total membrane thickness of the filtration membrane is 50 μm or less,
Is a filtration membrane for capturing fine particles.
本発明の微粒子捕捉用ろ過膜に係るアルミニウム材は、本発明の微粒子捕捉用ろ過膜を製造するための原材料であり、陽極酸化される材料である。本発明の微粒子捕捉用ろ過膜に係るアルミニウム材は、アルミニウムを主とする材料であり、特に制限されないが、アルミニウム中に含まれる不純物が多いと、製造時に欠陥が生じ易くなるため、アルミニウム材の純度は、98.5質量%以上が好ましく、99.0質量%以上が特に好ましい。 The aluminum material according to the filtration membrane for capturing particulates of the present invention is a raw material for producing the filtration membrane for capturing particulates of the present invention, and is an anodized material. The aluminum material according to the filtration membrane for capturing fine particles of the present invention is a material mainly made of aluminum, and is not particularly limited. However, since a large amount of impurities contained in aluminum tends to cause defects during production, The purity is preferably 98.5% by mass or more, particularly preferably 99.0% by mass or more.
そして、本発明の微粒子捕捉用ろ過膜は、アルミニウム材の陽極酸化により連通孔を形成させて得られる微粒子捕捉用ろ過膜であり、更に詳細には、アルミニウム材を陽極酸化して連通孔を形成させ、次いで、アルミニウム材から陽極酸化部分を剥離し、次いで、陽極酸化部分を表面エッチング処理し、次いで、陽極酸化部分を焼成して得られる微粒子捕捉用ろ過膜である。本発明の微粒子捕捉用ろ過膜では、小孔径部の連通孔、中間孔部の連通孔及び大孔径部の連通孔は、先ず、印加する電圧、通電する電流、印加時間、電解液の種類等の陽極酸化の条件を選択した陽極酸化によりアルミニウム材に、順に、大孔径部用の連通孔と、中間孔部用の連通孔と、小孔径部用の連通孔とを形成させ、次いで、陽極酸化部分の剥離、陽極酸化部分のエッチング処理及び焼成を行うことにより得られる。 The filtration membrane for capturing fine particles of the present invention is a filtration membrane for capturing fine particles obtained by forming communication holes by anodizing an aluminum material, and more specifically, anodizing the aluminum material to form communication holes. Then, the anodized portion is peeled from the aluminum material, then the anodized portion is subjected to surface etching treatment, and then the anodized portion is baked to obtain a particulate trapping filtration membrane. In the filtration membrane for capturing fine particles of the present invention, the communication hole of the small hole diameter part, the communication hole of the intermediate hole part and the communication hole of the large hole diameter part are first applied voltage, current to be applied, application time, type of electrolyte, etc. The anodization with the selected anodic oxidation conditions was performed to form, in order, a communication hole for the large hole diameter portion, a communication hole for the intermediate hole portion, and a communication hole for the small hole diameter portion in the aluminum material. It can be obtained by peeling off the oxidized portion, etching the anodic oxidized portion, and baking.
本発明の微粒子捕捉用ろ過膜は、孔径の平均が4〜20nmである連通孔が形成されている小孔径部と、小孔径部の連通孔が繋がり且つ径が小孔径部の連通孔の径より大きい連通孔が形成されている中間孔部と、中間孔部の連通孔が繋がり且つ径が中間孔部の連通孔の径より大きい連通孔が形成されている大孔径部と、を有する。小孔径部の連通孔、中間孔部の連通孔及び大孔径部の連通孔は、微粒子捕捉用ろ過膜の一方及び他方の表面に対して略垂直方向に、つまり、ろ過膜の厚み方向に延びている。 The fine particle capturing filtration membrane of the present invention has a small hole diameter portion in which a communication hole having an average pore diameter of 4 to 20 nm is formed, and a communication hole of the small hole diameter portion is connected and the diameter of the communication hole having a small hole diameter portion. An intermediate hole portion in which a larger communication hole is formed, and a large hole diameter portion in which the communication hole of the intermediate hole portion is connected and a communication hole having a diameter larger than that of the communication hole of the intermediate hole portion is formed. The small hole diameter communication hole, the intermediate hole communication hole, and the large hole diameter communication hole extend in a direction substantially perpendicular to one and the other surfaces of the particulate trapping filtration membrane, that is, in the thickness direction of the filtration membrane. ing.
小孔径部は本発明の微粒子捕捉用ろ過膜の一方の表面側に形成され、小孔径部の連通孔は本発明の微粒子捕捉用ろ過膜の一方の表面に開口する。また、大孔径部は本発明の微粒子捕捉用ろ過膜の他方の表面側に形成され、大孔径部の連通孔は本発明の微粒子捕捉用ろ過膜の他方の表面に開口する。また、中間孔部は小孔径部と大孔径部との間に形成され、中間孔部の連通孔には小孔径部の連通孔が繋がり且つ中間孔部の連通孔は大孔径部の連通孔に繋がっている。そのため、本発明の微粒子捕捉用ろ過膜の一方の表面から他方の表面まで、小孔径部の連通孔、中間孔部の連通孔、大孔径部の連通孔の順に、被処理水が通過することができる連続孔が形成されている。 The small pore diameter portion is formed on one surface side of the fine particle capturing filtration membrane of the present invention, and the communication hole of the small pore diameter portion opens on one surface of the fine particle capturing filtration membrane of the present invention. The large pore diameter portion is formed on the other surface side of the fine particle capturing filtration membrane of the present invention, and the communication hole of the large pore diameter portion opens on the other surface of the fine particle capturing filtration membrane of the present invention. The intermediate hole portion is formed between the small hole diameter portion and the large hole diameter portion, the communication hole of the intermediate hole portion is connected to the communication hole of the small hole diameter portion, and the communication hole of the intermediate hole portion is the communication hole of the large hole diameter portion. It is connected to. Therefore, the water to be treated passes through the small pore diameter communication hole, the intermediate hole communication hole, and the large pore diameter communication hole in this order from one surface to the other surface of the filtration membrane for capturing fine particles of the present invention. The continuous hole which can be formed is formed.
中間孔部の連通孔には、小孔径部の1つの連通孔のみが繋がっていても、小孔径部の複数の連通孔が繋がっていてもよい。また、大孔径部の連通孔には、中間孔部の1つの連通孔のみが繋がっていても、中間孔部の複数の連通孔が繋がっていてもよい。そして、本発明の微粒子捕捉用ろ過膜では、中間孔部の連通孔に小孔径部の複数の連通孔が繋がり、且つ、大孔径部の連通孔に中間孔部の複数の連通孔が繋がっていること、言い換えると、大孔径部の1つの連通孔の端部から、中間孔部の連通孔の複数が伸び、且つ、中間孔部の1つの連通孔の端部から、小孔径部の連通孔の複数が伸びる構造であることが、微粒子捕捉用ろ過膜の一方の表面に小孔径部の連通孔を密に設けることができ、被処理水が通水し易くなる。 The communication hole of the intermediate hole part may be connected to only one communication hole of the small hole diameter part or may be connected to a plurality of communication holes of the small hole diameter part. Further, only one communication hole of the intermediate hole portion may be connected to the communication hole of the large hole diameter portion, or a plurality of communication holes of the intermediate hole portion may be connected. In the fine particle capturing filtration membrane of the present invention, a plurality of communication holes of the small hole diameter portion are connected to the communication hole of the intermediate hole portion, and a plurality of communication holes of the intermediate hole portion are connected to the communication hole of the large hole diameter portion. In other words, a plurality of communication holes of the intermediate hole portion extend from the end of one communication hole of the large hole diameter portion, and the communication of the small hole diameter portion extends from the end of the one communication hole of the intermediate hole portion. The structure in which a plurality of holes extend allows the small pore diameter communication holes to be densely provided on one surface of the particulate trapping filtration membrane, which facilitates the passage of treated water.
本発明の微粒子捕捉用ろ過膜に係る小孔径部には、孔径の平均が4〜20nm、好ましくは8〜20nm、特に好ましくは9〜15nm、より好ましくは9〜12nmの連通孔が、ろ過膜の一方の表面から少なくとも400nmの位置まで形成されている。つまり、小孔径部では、孔径の平均が4〜20nm、好ましくは8〜20nm、特に好ましくは9〜15nm、より好ましくは9〜12nmの孔が、少なくともろ過膜の一方の表面から少なくとも400nmの位置まで連続している。言い換えると、孔径の平均が4〜20nm、好ましくは8〜20nm、特に好ましくは9〜15nm、より好ましくは9〜12nmの孔が連続している小孔径部の厚みは、400nm以上である。小孔径部の連通孔の孔径の平均が上記範囲にあることにより、直接検鏡法に用いられる微粒子捕捉用ろ過膜として、優れた性能を発揮する。また、小孔径部の厚みが400nm以上であることにより、陽極酸化、剥離及びエッチングにより得られる陽極酸化部分の小孔径部の連通孔の破損が少なくなる。また、小孔径部には、孔径の平均が4〜20nm、好ましくは8〜20nm、特に好ましくは9〜15nm、より好ましくは9〜12nmの連通孔が、ろ過膜の一方の表面から1000nmの位置を超えて形成されていないことが、つまり、小孔径部の厚みが1000nm以下であることが、被処理水の通液時に、圧力損失による透過流量が低くなり過ぎない点で好ましい。小孔径部の厚みは、好ましくは400〜1000nm、特に好ましくは400〜700nmである。 In the small pore diameter portion of the filtration membrane for capturing fine particles of the present invention, there is a communication pore having an average pore diameter of 4 to 20 nm, preferably 8 to 20 nm, particularly preferably 9 to 15 nm, and more preferably 9 to 12 nm. It is formed from the one surface of this to the position of at least 400 nm. That is, in the small pore diameter portion, pores having an average pore diameter of 4 to 20 nm, preferably 8 to 20 nm, particularly preferably 9 to 15 nm, more preferably 9 to 12 nm are located at least 400 nm from at least one surface of the filtration membrane. Is continuous. In other words, the average pore diameter is 4 to 20 nm, preferably 8 to 20 nm, particularly preferably 9 to 15 nm, and more preferably 9 to 12 nm. When the average pore diameter of the communication holes in the small pore diameter portion is within the above range, excellent performance is exhibited as a filtration membrane for capturing fine particles used in direct spectroscopic methods. Further, when the thickness of the small hole diameter portion is 400 nm or more, the communication holes in the small hole diameter portion of the anodized portion obtained by anodic oxidation, peeling and etching are less damaged. Further, the small pore diameter portion has an average pore diameter of 4 to 20 nm, preferably 8 to 20 nm, particularly preferably 9 to 15 nm, more preferably 9 to 12 nm, at a position 1000 nm from one surface of the filtration membrane. In other words, it is preferable that the thickness of the small hole diameter portion is 1000 nm or less because the permeate flow rate due to pressure loss does not become too low when the water to be treated is passed. The thickness of the small hole diameter portion is preferably 400 to 1000 nm, particularly preferably 400 to 700 nm.
小孔径部全体の連通孔の平均孔径は、4〜20nm、好ましくは8〜20nm、特に好ましくは9〜15nm、より好ましくは9〜12nmである。小孔径部全体の連通孔の平均孔径が上記範囲にあることにより、直接検鏡法に用いられる微粒子捕捉用ろ過膜として、優れた性能を発揮する。 The average pore diameter of the communication holes in the entire small pore diameter portion is 4 to 20 nm, preferably 8 to 20 nm, particularly preferably 9 to 15 nm, and more preferably 9 to 12 nm. When the average pore diameter of the communicating holes in the entire small pore diameter portion is in the above range, excellent performance is exhibited as a filtration membrane for capturing fine particles used in direct spectroscopic methods.
本発明において、例えば、ろ過膜の一方の表面から少なくとも400nmの位置まで、孔径の平均が4〜20nmの連通孔が形成されていることの確認は、微粒子捕捉用ろ過膜を厚み方向に切った断面を走査型電子顕微鏡で観察し、得られるSEM画像に基づいて行われる。具体的な確認方法について、図6を参照して説明する。また、本発明において、小孔径部全体の連通孔の平均孔径は、以下のようにして求められる。図6は、微粒子捕捉用ろ過膜の表面近傍の断面の模式的なSEM画像40である。先ず、SEM画像40に、小孔径部2の部分のろ過膜の表面の位置に、ろ過膜の一方の表面に平行に直線41aを引き、次いで、直線41aのうち、各連通孔8と重なっている部分それぞれについて、それぞれ長さを測定し、それらの長さを平均し、平均値を算出して、小孔径部2のろ過膜の表面の位置の連通孔の孔径の平均を求める。次いで、小孔径部2の部分の中間孔部3の連通孔9に繋がっている位置近傍に、ろ過膜の一方の表面に平行に直線41bを引き、次いで、直線41bのうち、各連通孔8と重なっている部分それぞれについて、それぞれ長さを測定し、それらの長さを平均し、平均値を算出して、中間孔部3の連通孔9に繋がっている位置近傍の連通孔の孔径の平均を求める。次いで、ろ過膜の表面と中間孔部3の連通孔9に繋がっている位置近傍との中間の位置近傍に、ろ過膜の一方の表面に平行に直線41cを引き、次いで、直線41cのうち、各連通孔8と重なっている部分それぞれについて、それぞれ長さを測定し、それらの長さを平均し、平均値を算出して、小孔径部2のろ過膜の表面と中間孔部3の連通孔に繋がっている位置近傍との中間位置近傍の連通孔の孔径の平均を求める。そして、小孔径部2のろ過膜の表面の位置の連通孔の孔径の平均と、小孔径部2の中間孔部3の連通孔9に繋がっている位置近傍の連通孔の孔径の平均と、小孔径部2のろ過膜の表面と中間孔部3の連通孔9に繋がっている位置近傍との中間位置近傍の連通孔の孔径の平均のいずれもが、4〜20nmの範囲にあれば、ろ過膜の一方の表面から中間孔部3の連通孔9に繋がっている位置近傍の位置まで、孔径の平均が4〜20nmの連通孔が形成されていると判断される。そして、直線41aから直線41bまでの距離が400nm以上あれば、ろ過膜の一方の表面から少なくとも400nmの位置まで、孔径の平均が4〜20nmの連通孔が形成されていると判断される。また、直線41aと直線41bとで区切られている部分に存在している連通孔8の面積の合計(合計面積A)、直線41aと直線41bとで区切られている部分に存在している連通孔8の数(連通孔数B)、及び直線41aと直線41bの距離(距離C)を測定する。そして、「小孔径部全体の連通孔の平均孔径=(A/(B×C))」の式にて計算される値が、小孔径部全体の連通孔の平均孔径である。 In the present invention, for example, the confirmation that a communication hole having an average pore diameter of 4 to 20 nm is formed from one surface of the filtration membrane to a position of at least 400 nm is obtained by cutting the filtration membrane for capturing fine particles in the thickness direction. The cross section is observed with a scanning electron microscope, and is performed based on the obtained SEM image. A specific confirmation method will be described with reference to FIG. Moreover, in this invention, the average hole diameter of the communicating hole of the whole small hole diameter part is calculated | required as follows. FIG. 6 is a schematic SEM image 40 of a cross section in the vicinity of the surface of the fine particle capturing filtration membrane. First, in the SEM image 40, a straight line 41a is drawn in parallel with one surface of the filtration membrane at the position of the surface of the filtration membrane in the portion of the small hole diameter portion 2, and then overlaps with each communication hole 8 in the straight line 41a. For each of the portions, the lengths are measured, the lengths are averaged, the average value is calculated, and the average pore diameter of the communication holes at the position of the surface of the filtration membrane of the small pore diameter portion 2 is obtained. Next, a straight line 41b is drawn in parallel with one surface of the filtration membrane in the vicinity of the position connected to the communication hole 9 of the intermediate hole part 3 in the small hole diameter part 2, and then each communication hole 8 in the straight line 41b. For each of the overlapping portions, the lengths are measured, the lengths are averaged, the average value is calculated, and the hole diameter of the communication hole in the vicinity of the position connected to the communication hole 9 of the intermediate hole portion 3 is calculated. Find the average. Next, a straight line 41c is drawn parallel to one surface of the filtration membrane in the vicinity of the middle position between the surface of the filtration membrane and the vicinity of the position connected to the communication hole 9 of the intermediate hole portion 3, and then, among the straight lines 41c, The length of each of the portions overlapping each communication hole 8 is measured, the lengths are averaged, the average value is calculated, and the surface of the filtration membrane of the small hole diameter portion 2 communicates with the intermediate hole portion 3. The average of the hole diameters of the communication holes near the intermediate position with the vicinity of the position connected to the hole is obtained. And the average of the hole diameter of the communication hole of the position of the surface of the filtration membrane of the small hole diameter part 2, and the hole diameter of the communication hole near the position connected to the communication hole 9 of the intermediate hole part 3 of the small hole diameter part 2, If any of the average pore diameters of the communication holes near the intermediate position between the surface of the filtration membrane of the small hole diameter part 2 and the vicinity of the position connected to the communication hole 9 of the intermediate hole part 3 is in the range of 4 to 20 nm, From one surface of the filtration membrane to the position in the vicinity of the position connected to the communication hole 9 of the intermediate hole portion 3, it is determined that a communication hole having an average pore diameter of 4 to 20 nm is formed. And if the distance from the straight line 41a to the straight line 41b is 400 nm or more, it will be judged that the communicating hole with an average hole diameter of 4-20 nm is formed from the one surface of the filtration membrane to the position of at least 400 nm. Further, the total area (total area A) of the communication holes 8 existing in the portion delimited by the straight line 41a and the straight line 41b, and the communication existing in the portion delimited by the straight line 41a and the straight line 41b. The number of holes 8 (the number of communicating holes B) and the distance (distance C) between the straight line 41a and the straight line 41b are measured. Then, the value calculated by the formula “average hole diameter of communication holes in the entire small hole diameter portion = (A / (B × C))” is the average hole diameter of the communication holes in the entire small hole diameter portion.
小孔径部の連通孔の孔径分布における相対標準偏差は、好ましくは40%以下、特に好ましくは35%以下である。小孔径部の連通孔の孔径分布における相対標準偏差が上記範囲にあることにより、目的とする粒子径の微粒子を的確に捕捉し易くなる点で好ましい。 The relative standard deviation in the hole diameter distribution of the communication holes in the small hole diameter portion is preferably 40% or less, particularly preferably 35% or less. The relative standard deviation in the pore size distribution of the communicating holes in the small pore diameter portion is preferably in the above range, so that it is easy to accurately capture fine particles having a target particle size.
なお、本発明において、小孔径部の連通孔の孔径分布における相対標準偏差は、以下のように、微粒子捕捉用ろ過膜を厚み方向に切った断面を走査型電子顕微鏡で観察し、得られるSEM画像に基づいて求められる。具体的な方法について、図6を参照して説明する。先ず、図6に示すSEM画像40に、ろ過膜の一方の表面に平行に、小孔径部2の部分のろ過膜の表面の位置に直線41aを、中間孔部3の連通孔9に繋がっている位置近傍に直線41bを、ろ過膜の表面と中間孔部3の連通孔9に繋がっている位置近傍との中間位置近傍に直線41cを引き、次いで、直線41a、41b及び41cのうち、各連通孔8と重なっている部分それぞれについて、それぞれ長さを測定する。次いで、それらの測定値の平均値と標準偏差から、相対標準偏差を算出する。 In the present invention, the relative standard deviation in the pore size distribution of the communicating holes of the small pore diameter portion is obtained by observing a cross section of the fine particle capturing filtration membrane in the thickness direction with a scanning electron microscope as follows. It is determined based on the image. A specific method will be described with reference to FIG. First, in the SEM image 40 shown in FIG. 6, a straight line 41 a is connected to the communication hole 9 of the intermediate hole portion 3 at the position of the surface of the filtration membrane in the portion of the small hole diameter portion 2 in parallel with one surface of the filtration membrane. A straight line 41b is drawn in the vicinity of the position, and a straight line 41c is drawn in the vicinity of the intermediate position between the surface of the filtration membrane and the vicinity of the position connected to the communication hole 9 of the intermediate hole portion 3, and each of the straight lines 41a, 41b and 41c The length of each portion overlapping the communication hole 8 is measured. Next, a relative standard deviation is calculated from the average value and standard deviation of these measured values.
本発明の微粒子捕捉用ろ過膜の一方の表面における小孔径部の連通孔の開口率は、好ましくは10〜50%、特に好ましくは15〜50%である。微粒子捕捉用ろ過膜の一方の表面における小孔径部の連通孔の開口率が上記範囲にあることにより、より多くの透過水量が得られ、また、耐圧性が維持されることから破損が少なくなる点で好ましい。 The open area ratio of the small pore diameter communication holes on one surface of the fine particle capturing filtration membrane of the present invention is preferably 10 to 50%, particularly preferably 15 to 50%. When the open area ratio of the small pore diameter communication hole on one surface of the fine particle capturing filtration membrane is in the above range, a larger amount of permeated water is obtained, and the pressure resistance is maintained, so that the damage is reduced. This is preferable.
本発明において、微粒子捕捉用ろ過膜の一方の表面における小孔径部の連通孔の開口率は、以下のように、微粒子捕捉用ろ過膜の小孔径部の連通孔が開口している側の表面を走査型電子顕微鏡で観察し、得られるSEM画像に基づいて求められる。先ず、図7に示すSEM画像中の小孔径部の連通孔の開口7の総面積を測定する。次いで、測定視野の面積に対する開口7の総面積の割合を計算し、その値を微粒子捕捉用ろ過膜の一方の表面における小孔径部の連通孔の開口率とする。なお、図7は、微粒子捕捉用ろ過膜の一方の表面のSEM画像の模式図である。 In the present invention, the opening ratio of the small pore diameter communication hole on one surface of the fine particle capturing filtration membrane is as follows: the surface on the side where the small pore diameter communication hole of the fine particle capturing filtration membrane is open Is observed with a scanning electron microscope and obtained based on the obtained SEM image. First, the total area of the opening 7 of the communication hole of the small hole diameter part in the SEM image shown in FIG. 7 is measured. Next, the ratio of the total area of the opening 7 to the area of the measurement visual field is calculated, and the value is set as the opening ratio of the communication hole of the small hole diameter portion on one surface of the fine particle capturing filtration membrane. FIG. 7 is a schematic diagram of an SEM image of one surface of the filtration membrane for capturing fine particles.
本発明の微粒子捕捉用ろ過膜では、走査型電子顕微鏡観察による断面のSEM画像における小孔径部中の連通孔の存在割合(面積割合=((連通孔の面積/小孔径部の面積)×100)は、好ましくは10〜60%、特に好ましくは20〜50%である。微粒子捕捉用ろ過膜の断面のSEM画像における小孔径部中の連通孔の存在割合が上記範囲にあることにより、透過水量が多くなる点で好ましい。 In the filtration membrane for capturing microparticles of the present invention, the proportion of communication holes in the small hole diameter portion (area ratio = ((area of communication holes / area of small hole diameter)) × 100 in the SEM image of the cross section observed with a scanning electron microscope. ) Is preferably 10% to 60%, particularly preferably 20% to 50%, and the permeation rate of the communication hole in the small pore diameter portion in the SEM image of the cross-section of the filtration membrane for capturing fine particles is within the above range. This is preferable in that the amount of water increases.
本発明において、微粒子捕捉用ろ過膜の断面のSEM画像における小孔径部中の連通孔の存在割合(面積割合)は、以下のようにして求められる。先ず、図8に示すSEM画像40に、ろ過膜の一方の表面の位置に、ろ過膜の一方の表面と平行に直線41dを、中間孔部3の連通孔に繋がっている位置近傍に直線41eを引き、直線41dと直線41eに挟まれている部分の小孔径部2の面積、すなわち、長方形42a、42b、42c、42dの面積を測定する。次いで、長方形42a、42b、42c、42d内に存在している小孔径部2の連通孔8の総面積を求める。次いで、長方形42a、42b、42c、42dの面積に対する長方形42a、42b、42c、42d内に存在している小孔径部2の連通孔8の総面積の割合を計算し、その値を微粒子捕捉用ろ過膜の断面のSEM画像における小孔径部中の連通孔の存在割合(面積割合)とする。なお、図8は、図6と同じ微粒子捕捉用ろ過膜の表面近傍の断面の模式的なSEM画像40である。 In the present invention, the existence ratio (area ratio) of communication holes in the small pore diameter portion in the SEM image of the cross section of the filtration membrane for capturing fine particles is obtained as follows. First, in the SEM image 40 shown in FIG. 8, a straight line 41 d is formed parallel to one surface of the filtration membrane at a position on one surface of the filtration membrane, and a straight line 41 e in the vicinity of the position connected to the communication hole of the intermediate hole portion 3. To measure the area of the small hole diameter portion 2 between the straight line 41d and the straight line 41e, that is, the area of the rectangles 42a, 42b, 42c, and 42d. Next, the total area of the communication holes 8 of the small hole diameter portion 2 existing in the rectangles 42a, 42b, 42c, and 42d is obtained. Next, the ratio of the total area of the communication holes 8 of the small-diameter portion 2 existing in the rectangles 42a, 42b, 42c, 42d to the areas of the rectangles 42a, 42b, 42c, 42d is calculated, and the value is used for capturing particles. It is set as the existence ratio (area ratio) of the communication hole in the small hole diameter part in the SEM image of the cross section of the filtration membrane. FIG. 8 is a schematic SEM image 40 of a cross section in the vicinity of the surface of the same fine particle capturing filtration membrane as FIG.
中間孔部には、小孔径部の連通孔が繋がっている位置近傍から大孔径部の連通孔に繋がる位置近傍まで、同程度の孔径の連通孔が形成されていても、あるいは、小孔径部の連通孔が繋がっている位置近傍から大孔径部の連通孔に繋がる位置近傍になるに従って、孔径が大きくなる連通孔が形成されていてもよい。そして、中間孔部の連通孔の孔径は、好ましくは10〜1000nm、特に好ましくは20〜100nmである。また、中間孔部の厚みは、好ましくは50〜1000nm、特に好ましくは50〜800nmである。 The intermediate hole portion may have a communication hole having the same hole diameter from the vicinity of the position where the communication hole of the small hole diameter portion is connected to the vicinity of the position where the communication hole of the large hole diameter portion is connected, or the small hole diameter portion. A communication hole having a larger hole diameter may be formed from the vicinity of the position where the communication hole is connected to the vicinity of the position where the communication hole is connected to the communication hole of the large hole diameter portion. And the hole diameter of the communicating hole of an intermediate | middle hole part becomes like this. Preferably it is 10-1000 nm, Most preferably, it is 20-100 nm. Moreover, the thickness of the intermediate hole is preferably 50 to 1000 nm, particularly preferably 50 to 800 nm.
本発明において、例えば、中間孔部の孔径が10〜1000nmであることの確認は、以下に示すように、微粒子捕捉用ろ過膜を厚み方向に切った断面を走査型電子顕微鏡で観察し、得られるSEM画像に基づいて行われる。具体的な確認方法について、図9を参照して説明する。先ず、図9中のSEM画像40に、ろ過膜の一方の表面に平行に、中間孔部3の部分の小孔径部2の連通孔8が繋がっている位置近傍に直線43aを、中間後部3の部分の大孔径部4の連通孔10に繋がっている位置近傍に直線43bを、小孔径部2の連通孔8が繋がっている位置近傍と大孔径部4の連通孔10に繋がっている位置近傍との中間位置近傍に直線43cを引き、次いで、直線43a、43b及び43cのうち、各連通孔9と重なっている部分それぞれについて、それぞれ長さを測定する。そして、それらの長さのいずれもが、10〜1000nmの範囲にあれば、中間孔部の孔径が10〜1000nmであると判断される。なお、図9は、図6と同じ微粒子捕捉用ろ過膜の表面近傍の断面の模式的なSEM画像40である。 In the present invention, for example, confirmation that the pore diameter of the intermediate hole portion is 10 to 1000 nm is obtained by observing a cross section of the fine particle capturing filtration membrane in the thickness direction with a scanning electron microscope, as shown below. This is performed based on the SEM image. A specific confirmation method will be described with reference to FIG. First, in the SEM image 40 in FIG. 9, a straight line 43 a is formed in the vicinity of the position where the communication hole 8 of the small hole diameter portion 2 of the intermediate hole portion 3 is connected in parallel with one surface of the filtration membrane, and the intermediate rear portion 3. The straight line 43b is located in the vicinity of the position connected to the communication hole 10 of the large hole diameter portion 4, and the position near the position where the communication hole 8 of the small hole diameter portion 2 is connected to the communication hole 10 of the large hole diameter portion 4. A straight line 43c is drawn in the vicinity of an intermediate position with the vicinity, and then the length of each of the portions of the straight lines 43a, 43b, and 43c that overlap with the communication holes 9 is measured. And if all of those length exists in the range of 10-1000 nm, it will be judged that the hole diameter of an intermediate | middle hole part is 10-1000 nm. FIG. 9 is a schematic SEM image 40 of a cross section in the vicinity of the surface of the same fine particle capturing filtration membrane as FIG.
大孔径部には、中間孔部の連通孔が繋がっている位置近傍からろ過膜の他方の表面まで、同程度の孔径の連通孔が形成されていても、あるいは、中間孔部の連通孔が繋がっている位置近傍からろ過膜の他方の表面になるに従って、孔径が大きくなる連通孔が形成されていてもよい。そして、大孔径部の連通孔の孔径は、好ましくは20〜2000nm、特に好ましくは30〜2000nmである。 In the large hole diameter portion, a communication hole having the same hole diameter is formed from the vicinity of the position where the communication hole of the intermediate hole portion is connected to the other surface of the filtration membrane, or the communication hole of the intermediate hole portion is not provided. A communication hole having a larger pore diameter may be formed from the vicinity of the connected position to the other surface of the filtration membrane. And the hole diameter of the communicating hole of a large hole diameter part becomes like this. Preferably it is 20-2000 nm, Most preferably, it is 30-2000 nm.
本発明において、例えば、大孔径部の連通孔の孔径が20〜2000nmであることの確認は、以下に示すように、微粒子捕捉用ろ過膜を厚み方向に切った断面を走査型電子顕微鏡で観察し、得られるSEM画像に基づいて行われる。先ず、大孔径部の中間孔部の連通孔に繋がっている位置からろ過膜の他方の表面の位置までが測定視野の収まっているSEM画像を得る。次いで、そのSEM画像中に、ろ過膜の他方の表面に平行に、ろ過膜の他方の表面の位置に直線Xを、大孔径部4の部分の中間孔部の連通孔が繋がっている位置近傍に直線Yを、ろ過膜の他方の表面と大孔径部4の部分の中間孔部の連通孔が繋がっている位置近傍との中間位置近傍に直線Zを引き、次いで、直線X、Y及びZのうち、大孔径部の各連通孔と重なっている部分それぞれについて、それぞれ長さを測定する。そして、それらの長さのいずれもが、20〜2000nmの範囲にあれば、大孔径部の孔径が20〜2000nmであると判断される。 In the present invention, for example, to confirm that the pore diameter of the communicating hole of the large pore diameter portion is 20 to 2000 nm, as shown below, a cross section of the fine particle capturing filter membrane cut in the thickness direction is observed with a scanning electron microscope. And based on the obtained SEM image. First, an SEM image is obtained in which the measurement field of view extends from the position connected to the communication hole of the intermediate hole portion of the large hole diameter portion to the position of the other surface of the filtration membrane. Next, in the SEM image, in the vicinity of the position where the straight hole X is connected to the position of the other surface of the filtration membrane in parallel with the other surface of the filtration membrane and the communication hole of the intermediate hole portion of the large pore diameter portion 4 is connected A straight line Z is drawn in the vicinity of the intermediate position between the other surface of the filtration membrane and the vicinity of the position where the communication hole of the intermediate hole portion of the large pore diameter portion 4 is connected, and then the straight lines X, Y and Z Of these, the length of each portion of the large-diameter portion that overlaps each communication hole is measured. And if all of those length exists in the range of 20-2000 nm, it will be judged that the hole diameter of a large hole diameter part is 20-2000 nm.
大孔径部全体の連通孔の平均孔径は、好ましくは30〜1000nm、特に好ましくは50〜1000nmである。 The average pore diameter of the communication holes of the entire large pore diameter portion is preferably 30 to 1000 nm, particularly preferably 50 to 1000 nm.
本発明において、大孔径部全体の連通孔の平均孔径は、以下に示すように、微粒子捕捉用ろ過膜を厚み方向に切った断面を走査型電子顕微鏡で観察し、得られるSEM画像に基づいて行われる。なお、以下に示す大孔径部全体の連通孔の平均孔径の求め方は、測定対象が異なるが、上述した小孔径部全体の連通孔の平均孔径の求め方と同様である。先ず、大孔径部の中間孔部の連通孔に繋がっている位置からろ過膜の他方の表面の位置までが測定視野の収まっているSEM画像を得る。次いで、そのSEM画像に、ろ過膜の他方の表面に平行に、大孔径部の部分のろ過膜の表面の位置に直線Xを、大孔径部の部分の中間孔部の連通孔が繋がっている位置近傍に直線Yを引く。次いで、直線Xと直線Yとで区切られている部分に存在している連通孔の面積の合計(合計面積A)、直線Xと直線Yとで区切られている部分に存在している連通孔の数(連通孔数B)、及び直線Xと直線Yの距離(距離C)を測定する。そして、「大孔径部全体の連通孔の平均孔径=(A/(B×C))」の式にて計算される値が、大孔径部全体の連通孔の平均孔径である。 In the present invention, as shown below, the average pore diameter of the communication holes of the entire large pore diameter portion is based on the SEM image obtained by observing a cross-section of the particulate trapping filtration membrane in the thickness direction with a scanning electron microscope. Done. In addition, although the measuring object differs in the method of calculating | requiring the average hole diameter of the communicating hole of the whole large hole diameter part shown below, it is the same as that of the average hole diameter of the communicating hole of the whole small hole diameter part mentioned above. First, an SEM image is obtained in which the measurement field of view extends from the position connected to the communication hole of the intermediate hole portion of the large hole diameter portion to the position of the other surface of the filtration membrane. Next, in the SEM image, a straight line X is connected to the position of the surface of the filtration membrane at the large pore diameter portion in parallel with the other surface of the filtration membrane, and the communication hole of the intermediate hole portion at the large pore diameter portion is connected. A straight line Y is drawn near the position. Next, the total area (total area A) of the communication holes existing in the part delimited by the straight line X and the straight line Y, the communication hole existing in the part delimited by the straight line X and the straight line Y And the distance (distance C) between the straight line X and the straight line Y are measured. Then, the value calculated by the formula “average pore diameter of communication holes in the entire large hole diameter portion = (A / (B × C))” is the average hole diameter of the communication holes in the entire large hole diameter portion.
本発明の微粒子捕捉用ろ過膜において、小孔径部全体の連通孔の平均孔径に対する大孔径部全体の連通孔の平均孔径の比(大孔径部全体の連通孔の平均孔径/小孔径部全体の連通孔の平均孔径)は、好ましくは3〜100、特に好ましくは4〜50、さらに好ましくは4〜20である。小孔径部全体の連通孔の平均孔径に対する大孔径部全体の連通孔の平均孔径の比が上記範囲にあることにより、応力に強く破損し難くなる点で好ましい。 In the filtration membrane for collecting fine particles of the present invention, the ratio of the average pore diameter of the entire large pore diameter portion to the average pore diameter of the communication pores of the entire small pore diameter portion (average pore diameter of the entire large pore diameter portion / total pore diameter portion The average pore diameter of the communication holes) is preferably 3 to 100, particularly preferably 4 to 50, and further preferably 4 to 20. The ratio of the average hole diameter of the communication holes of the entire large hole diameter portion to the average hole diameter of the communication holes of the entire small hole diameter portion is preferable because it is resistant to stress and difficult to break.
大孔径部の厚みは、好ましくは10〜50μm、特に好ましくは20〜40μmである。 The thickness of the large pore diameter portion is preferably 10 to 50 μm, particularly preferably 20 to 40 μm.
本発明の微粒子捕捉用ろ過膜の総膜厚は、50μm以下、好ましくは20〜50μm、特に好ましくは20〜35μmである。微粒子捕捉用ろ過膜の総膜厚が上記範囲にあることにより、陽極酸化、剥離及びエッチング処理により得られる陽極酸化部分を焼成するときに、陽極酸化部分の破損が少なくなる。 The total film thickness of the filtration membrane for capturing fine particles of the present invention is 50 μm or less, preferably 20 to 50 μm, particularly preferably 20 to 35 μm. When the total film thickness of the particulate trapping filtration membrane is within the above range, the anodized portion is less damaged when the anodized portion obtained by anodizing, peeling and etching is baked.
本発明の微粒子捕捉用ろ過膜は、アルミニウム材の陽極酸化により連通孔を形成させて得られる微粒子捕捉用ろ過膜であり、更に詳細には、アルミニウム材を陽極酸化して連通孔を形成させ、次いで、アルミニウム材から陽極酸化部分を剥離し、次いで、陽極酸化部分を表面エッチング処理し、次いで、陽極酸化部分を焼成して得られる微粒子捕捉用ろ過膜であるので、本発明の微粒子捕捉用ろ過膜の骨格部、言い換えると、小孔径部の連通孔、中間孔部の連通孔及び大孔径部の連通孔の壁は、酸化アルミニウムで形成されている。 The fine particle capturing filtration membrane of the present invention is a fine particle capturing filtration membrane obtained by forming a communication hole by anodization of an aluminum material, and more specifically, an aluminum material is anodized to form a communication hole, Next, since the anodized portion is peeled off from the aluminum material, and then the anodized portion is subjected to surface etching treatment, and then the anodized portion is baked, the particulate capturing filter of the present invention is obtained. The walls of the membrane skeleton, in other words, the small hole diameter communication hole, the intermediate hole communication hole, and the large hole diameter communication hole are made of aluminum oxide.
また、本発明の微粒子捕捉用ろ過膜中の中間孔部の連通孔及び大孔径部の連通孔を、ランダムに抽出して、それらの孔径を比べると、中間孔部の連通孔には、大孔径部の連通孔よりも孔径が大きい部分があるものが存在する。一方、本発明の微粒子捕捉用ろ過膜中の一方の表面側から他方の表面側までの連続流路を形成している一連の大孔径部の連通孔と中間孔部の連通孔と小孔径部の連通孔で、それらの孔径を比べると、本発明の微粒子捕捉用ろ過膜は、アルミニウム材の陽極酸化により連通孔を形成させて得られる微粒子捕捉用ろ過膜であるので、1つの大孔径部の連通孔には、それより孔径が小さい中間孔部の連通孔が繋がっており、その中間孔部の連通孔には、それよりも孔径が小さい小孔径部の連通孔が繋がっている。 In addition, when the communication hole of the intermediate hole portion and the communication hole of the large hole diameter portion in the filtration membrane for capturing fine particles of the present invention are extracted at random, and the pore diameters are compared, There exists a thing with a part whose hole diameter is larger than the communicating hole of a hole diameter part. On the other hand, a series of large-pore diameter communication holes and intermediate-hole communication holes and small-hole diameter portions forming a continuous flow path from one surface side to the other surface side in the filtration membrane for capturing fine particles of the present invention When the pore diameters are compared, the filtration membrane for capturing particulates of the present invention is a filtration membrane for capturing particulates obtained by forming a communication hole by anodization of an aluminum material. The communication hole is connected to a communication hole of an intermediate hole portion having a smaller hole diameter, and the communication hole of the intermediate hole portion is connected to a communication hole of a small hole diameter portion having a smaller hole diameter.
本発明の微粒子捕捉用ろ過膜は、半導体製造に用いられる超純水、溶剤、薬液等の直接検鏡法による微粒子評価のための微粒子捕捉膜として、好適に用いられる。また、本発明の微粒子捕捉用ろ過膜は、気体やエアロゾル、その他の流体中の微粒子の捕捉や、タンパク質、DNAの分離や捕捉にも用いられる。 The filtration membrane for capturing fine particles of the present invention is suitably used as a fine particle capturing membrane for evaluating fine particles by direct spectroscopic methods such as ultrapure water, solvents, chemical solutions, etc. used in semiconductor production. The filtration membrane for capturing fine particles of the present invention is also used for capturing fine particles in gases, aerosols and other fluids, and for separating and capturing proteins and DNA.
本発明の微粒子捕捉用ろ過膜は、以下の本発明の微粒子測定用ろ過膜の製造方法により、好適に製造される。 The fine particle capturing filtration membrane of the present invention is preferably produced by the following method for producing a fine particle measurement filtration membrane of the present invention.
本発明の微粒子測定用ろ過膜の製造方法は、アルミニウム材を陽極酸化することにより、該アルミニウム材に大孔径部用の連通孔を形成させて、陽極酸化アルミニウム材(1)を得る第一陽極酸化工程と、
該陽極酸化アルミニウム材(1)を陽極酸化することにより、該陽極酸化アルミニウム材(1)に、該大孔径部用の連通孔に繋がり且つ径が該大孔径部用の連通孔より小さい中間孔部用の連通孔を形成させて、陽極酸化アルミニウム材(2)を得る第二陽極酸化工程と、
該陽極酸化アルミニウム材(2)を陽極酸化することにより、該陽極酸化アルミニウム材(2)に、該中間孔部用の連通孔に繋がり且つ径が該中間孔部用の連通孔より小さい小孔径部用の連通孔を形成させて、陽極酸化アルミニウム材(3)を得る第三陽極酸化工程と、
該陽極酸化アルミニウム材(3)から陽極酸化された部分を剥離し、次いで、剥離した部分をエッチング処理して、陽極酸化部分を得る剥離及びエッチング工程工程と、
該陽極酸化部分を800〜1200℃で焼成することにより、微粒子捕捉用ろ過膜を得る焼成工程と、
を有し、
該第三陽極酸化工程で、孔径の平均が4〜20nmの連通孔を、厚さ方向に400nm以上形成させること、
及び該第一陽極酸化工程から該第三陽極酸化工程までで、陽極酸化により連通孔を形成させる部分の全厚みが50μm以下であること、
を特徴とする微粒子捕捉用ろ過膜の製造方法である。
The method for producing a filtration membrane for fine particle measurement according to the present invention includes a first anode for obtaining an anodized aluminum material (1) by anodizing an aluminum material to form a communicating hole for a large pore diameter portion in the aluminum material. An oxidation process;
By anodizing the anodized aluminum material (1), the anodized aluminum material (1) is connected to the communicating hole for the large hole diameter portion and has a diameter smaller than that of the communicating hole for the large hole diameter portion. A second anodizing step of forming an anodized aluminum material (2) by forming a communicating hole for the part;
By anodizing the anodized aluminum material (2), the anodized aluminum material (2) is connected to the communication hole for the intermediate hole and has a smaller diameter than the communication hole for the intermediate hole. A third anodizing step of forming an anodized aluminum material (3) by forming a communicating hole for the part;
Peeling and etching step of removing the anodized part from the anodized aluminum material (3) and then etching the peeled part to obtain an anodized part;
A firing step of obtaining a filtration membrane for capturing fine particles by firing the anodized portion at 800 to 1200 ° C .;
Have
In the third anodic oxidation step, a communication hole having an average pore diameter of 4 to 20 nm is formed in a thickness direction of 400 nm or more,
And, from the first anodizing step to the third anodizing step, the total thickness of the portion where the communicating holes are formed by anodizing is 50 μm or less,
Is a method for producing a filtration membrane for capturing fine particles.
本発明の微粒子捕捉用ろ過膜の製造方法に係る第一陽極酸化工程は、アルミニウム材を陽極酸化することにより、アルミニウム材に大孔径部用の連通孔を形成させて、陽極酸化アルミニウム材(1)を得る工程である。なお、大孔径部用の連通孔とは、焼成工程までを経て得られる微粒子捕捉用ろ過膜中の大孔径部の連通孔になる連通孔のことである。 In the first anodizing step according to the method for producing a microparticle-capturing filtration membrane of the present invention, the aluminum material is anodized to form communication holes for large-diameter portions in the aluminum material, and the anodized aluminum material (1 ). The communication hole for the large pore diameter portion is a communication hole that becomes a communication hole for the large pore diameter portion in the filtration membrane for capturing fine particles obtained through the firing step.
第一陽極酸化工程に係るアルミニウム材は、第一陽極酸化工程で陽極酸化の対象となる材料であり、アルミニウムを主とする材料であり、特に制限されないが、アルミニウム中に含まれる不純物が多いと、製造時に欠陥が生じ易くなるため、アルミニウム材の純度は、98.5質量%以上が好ましく、99.0質量%以上が特に好ましい。 The aluminum material related to the first anodizing step is a material to be anodized in the first anodizing step and is a material mainly made of aluminum, and is not particularly limited, but when there are many impurities contained in the aluminum Since defects are likely to occur during production, the purity of the aluminum material is preferably 98.5% by mass or more, particularly preferably 99.0% by mass or more.
また、第一陽極酸化工程において、陽極酸化されるアルミニウム材は、表面が予め脱脂処理及び平滑化処理がされていることが好ましい。脱脂処理を行う方法は、アルミニウム材の表面に存在する有機物や油脂を除去することができる方法であれば、特に制限されず、例えば、アルミニウム材を、アセトン、エタノール、メタノール、IPA(イソプロピルアルコール)等の有機溶剤に浸漬し、超音波を照射する方法、加熱(アニール処理)する方法等が挙げられる。平滑化処理を行う方法としては、アルミニウム材の表面を平滑にすることができる方法であれば、特に制限されず、例えば、電解研磨、化学研磨、機械研磨等が挙げられる。電解研磨の電解液としては、例えば、リン酸や過塩素酸含有エタノールなどが挙げられる。また、化学研磨としては、リン酸と硝酸の混酸を用いる方法やリン酸と硫酸の混酸を用いる方法などが挙げられる。 Moreover, in the first anodizing step, the surface of the aluminum material to be anodized is preferably subjected to degreasing treatment and smoothing treatment in advance. The method for performing the degreasing treatment is not particularly limited as long as it is a method capable of removing organic substances and oils and fats existing on the surface of the aluminum material. For example, the aluminum material is made of acetone, ethanol, methanol, IPA (isopropyl alcohol). Examples thereof include a method of immersing in an organic solvent such as irradiating ultrasonic waves and a method of heating (annealing). The method for performing the smoothing treatment is not particularly limited as long as the surface of the aluminum material can be smoothed. Examples thereof include electrolytic polishing, chemical polishing, and mechanical polishing. Examples of the electrolytic solution for electropolishing include phosphoric acid and ethanol containing perchloric acid. Examples of chemical polishing include a method using a mixed acid of phosphoric acid and nitric acid, a method using a mixed acid of phosphoric acid and sulfuric acid, and the like.
第一陽極酸化工程において、アルミニウム材を陽極酸化するときの陽極酸化条件は、得ようとする微粒子捕捉用ろ過膜中の大孔径部の連通孔に応じて、適宜選択され、目的とする大孔径部の連通孔が形成されるように、印加する電圧、通電する電流、印加時間、電解液の種類等が適宜選択される。第一陽極酸化工程における陽極酸化条件としては、例えば、0.5〜30質量%濃度のシュウ酸水溶液、リン酸水溶液、クロム酸水溶液、又はそれらの混酸水溶液等の電解液中、50〜200Vの条件が挙げられる。このとき、一定電圧で行う方式であっても、一定電流で行う方式であっても、電圧及び電流の両方を変化させる方式であってもよい。 In the first anodizing step, the anodizing conditions for anodizing the aluminum material are appropriately selected according to the communicating holes of the large pore diameter portion in the particulate trapping filtration membrane to be obtained, and the desired large pore diameter The voltage to be applied, the current to be energized, the application time, the type of the electrolytic solution, and the like are appropriately selected so that the communication hole of the part is formed. As anodizing conditions in the first anodizing step, for example, 50 to 200 V in an electrolytic solution such as an aqueous solution of oxalic acid having a concentration of 0.5 to 30% by mass, an aqueous solution of phosphoric acid, an aqueous solution of chromic acid, or a mixed acid aqueous solution thereof. Conditions are mentioned. At this time, a method using a constant voltage, a method using a constant current, or a method of changing both voltage and current may be used.
第一陽極酸化工程において、陽極酸化によりアルミニウム材に形成させる大孔径部用の連通孔としては、大孔径部用の連通孔の孔径が、好ましくは20〜2000nm、特に好ましくは30〜2000nmであり、大孔径部に対応する部分全体の連通孔の平均孔径が、好ましくは30〜1000nm、特に好ましくは50〜1000nmであり、大孔径部に対応する部分の厚みが、好ましくは10〜50μm、特に好ましくは20〜40μmである。 In the first anodizing step, the hole diameter of the large hole diameter portion formed in the aluminum material by anodization is preferably 20 to 2000 nm, particularly preferably 30 to 2000 nm. The average pore diameter of the communication holes of the entire portion corresponding to the large pore diameter portion is preferably 30 to 1000 nm, particularly preferably 50 to 1000 nm, and the thickness of the portion corresponding to the large pore diameter portion is preferably 10 to 50 μm, particularly Preferably it is 20-40 micrometers.
そして、第一陽極酸化工程を行うことにより、アルミニウム材の表面から厚み方向に連通孔が形成されて、アルミニウム材に、アルミニウム材の表面から厚み方向に延びる大孔径部用の連通孔が形成され、陽極酸化アルミニウム材(1)が得られる。 Then, by performing the first anodizing step, a communication hole is formed in the thickness direction from the surface of the aluminum material, and a communication hole for a large hole diameter portion extending in the thickness direction from the surface of the aluminum material is formed in the aluminum material. An anodized aluminum material (1) is obtained.
本発明の微粒子捕捉用ろ過膜の製造方法に係る第二陽極酸化工程は、陽極酸化アルミニウム材(1)を陽極酸化することにより、陽極酸化アルミニウム材(1)に中間孔部用の連通孔を形成させて、陽極酸化アルミニウム材(2)を得る工程である。なお、中間孔部用の連通孔とは、焼成工程までを経て得られる微粒子捕捉用ろ過膜中の中間孔部の連通孔になる連通孔のことである。 In the second anodizing step according to the method for producing a filtration membrane for capturing fine particles of the present invention, the anodized aluminum material (1) is anodized to form a communication hole for the intermediate hole portion in the anodized aluminum material (1). In this step, an anodized aluminum material (2) is obtained. In addition, the communication hole for intermediate | middle hole parts is a communication hole used as the communication hole of the intermediate | middle hole part in the filtration membrane for fine particle acquisition obtained through a baking process.
第二陽極酸化工程において、陽極酸化アルミニウム材(1)を陽極酸化するときの陽極酸化条件は、得ようとする微粒子捕捉用ろ過膜中の中間孔部の連通孔に応じて、適宜選択され、目的とする中間孔部の連通孔が形成されるように、印加する電圧、通電する電流、印加時間、電解液の種類等が適宜選択される。第二陽極酸化工程における陽極酸化条件としては、大孔径部用の連通孔より径が小さい連通孔が形成される条件であればよく、例えば、0.5〜30質量%濃度のシュウ酸水溶液、リン酸水溶液、クロム酸水溶液、又はそれらの混酸水溶液等の電解液中、50〜200V、好ましくは第一陽極酸化条件の電圧よりも低い電圧との条件が挙げられる。このとき、一定電圧で行う方式であっても、一定電流で行う方式であっても、電圧及び電流の両方を変化させる方式であってもよい。 In the second anodizing step, the anodizing conditions for anodizing the anodized aluminum material (1) are appropriately selected according to the communication hole of the intermediate hole portion in the particulate trapping filtration membrane to be obtained, The voltage to be applied, the current to be applied, the application time, the type of the electrolyte, and the like are appropriately selected so that the target communication hole of the intermediate hole is formed. The anodic oxidation conditions in the second anodizing step may be any conditions as long as a communication hole having a diameter smaller than that of the large hole diameter portion is formed. For example, an aqueous oxalic acid solution having a concentration of 0.5 to 30% by mass, In electrolyte solution, such as phosphoric acid aqueous solution, chromic acid aqueous solution, or those mixed acid aqueous solution, 50-200V, Preferably the conditions with a voltage lower than the voltage of 1st anodizing conditions are mentioned. At this time, a method using a constant voltage, a method using a constant current, or a method of changing both voltage and current may be used.
第二陽極酸化工程において、陽極酸化により陽極酸化アルミニウム材(1)に形成させる中間孔部用の連通孔としては、中間孔部用の連通孔の孔径が、好ましくは10〜1000nm、特に好ましくは20〜100nmであり、中間孔部に対応する部分の厚みが、好ましくは50〜1000nm、特に好ましくは50〜800nmである。 In the second anodic oxidation step, the communication hole for the intermediate hole part formed in the anodized aluminum material (1) by anodic oxidation has a hole diameter of the communication hole for the intermediate hole part of preferably 10 to 1000 nm, particularly preferably. It is 20-100 nm, The thickness of the part corresponding to an intermediate | middle hole part becomes like this. Preferably it is 50-1000 nm, Most preferably, it is 50-800 nm.
そして、第二陽極酸化工程を行うことにより、陽極酸化アルミニウム材(1)内の大孔径部用の連通孔の端部から厚み方向に、大孔径部用の連通孔より孔径が小さい連通孔が形成されて、陽極酸化アルミニウム材(1)に、陽極酸化アルミニウム材(1)の大孔径部用の連通孔の端部から厚み方向に延びる中間孔部用の連通孔が形成され、陽極酸化アルミニウム材(2)が得られる。 And by performing a 2nd anodizing process, the communicating hole whose hole diameter is smaller than the communicating hole for large-diameter parts in the thickness direction from the edge part of the communicating hole for large-diameter parts in the anodized aluminum material (1). The anodized aluminum material (1) is formed with a communication hole for an intermediate hole extending in the thickness direction from the end of the large hole diameter communication hole of the anodized aluminum material (1). A material (2) is obtained.
本発明の微粒子捕捉用ろ過膜の製造方法に係る第三陽極酸化工程は、陽極酸化アルミニウム材(2)を陽極酸化することにより、陽極酸化アルミニウム材(2)に小孔径部用の連通孔を形成させて、陽極酸化アルミニウム材(3)を得る工程である。なお、小孔径部用の連通孔とは、焼成工程までを経て得られる微粒子捕捉用ろ過膜中の小孔径部の連通孔になる連通孔のことである。 In the third anodizing step according to the method for producing a particulate trapping filtration membrane of the present invention, the anodized aluminum material (2) is anodized so that a small hole diameter communicating hole is formed in the anodized aluminum material (2). In this step, an anodized aluminum material (3) is obtained. In addition, the communication hole for small hole diameter parts is a communication hole which becomes a communication hole of the small hole diameter part in the filtration membrane for fine particle capture | acquisition obtained through a baking process.
第三陽極酸化工程において、陽極酸化アルミニウム材(2)を陽極酸化するときの陽極酸化条件は、得ようとする微粒子捕捉用ろ過膜中の小孔径部の連通孔に応じて、適宜選択され、目的とする小孔径部の連通孔が形成されるように、印加する電圧、通電する電流、印加時間、電解液の種類等が適宜選択される。第三陽極酸化工程における陽極酸化条件としては、孔径の平均が4〜20nm、好ましくは8〜20nm、特に好ましくは9〜15nm、より好ましくは9〜12nmであり、厚さ方向に400nm以上、好ましくは400〜1000nm、特に好ましくは400〜700nm連通する連通孔が形成される条件であればよく、例えば、硫酸水溶液電解液中、5〜30Vの条件が挙げられる。このとき、一定電圧で行う方式であっても、一定電流で行う方式であっても、電圧及び電流の両方を変化させる方式であってもよい。 In the third anodizing step, the anodizing conditions for anodizing the anodized aluminum material (2) are appropriately selected according to the communication holes of the small pore diameter portion in the filter membrane for capturing fine particles to be obtained, The voltage to be applied, the current to be energized, the application time, the type of the electrolyte, and the like are appropriately selected so that the desired communication hole having a small hole diameter is formed. As anodizing conditions in the third anodizing step, the average pore diameter is 4 to 20 nm, preferably 8 to 20 nm, particularly preferably 9 to 15 nm, more preferably 9 to 12 nm, and 400 nm or more in the thickness direction, preferably May be any condition as long as a communication hole communicating with 400 to 1000 nm, particularly preferably 400 to 700 nm is formed. Examples thereof include 5 to 30 V in a sulfuric acid aqueous solution electrolyte. At this time, a method using a constant voltage, a method using a constant current, or a method of changing both voltage and current may be used.
第三陽極酸化工程では、陽極酸化により陽極酸化アルミニウム材(2)に、孔径の平均が4〜20nm、好ましくは8〜20nm、特に好ましくは9〜15nm、より好ましくは9〜12nmの小孔径部用の連通孔を、厚さ方向に400nm以上、好ましくは400〜1000nm、特に好ましくは400〜700nm形成させる。小孔径部用の連通孔の孔径の平均が上記範囲にあることにより、直接検鏡法に用いられる微粒子捕捉用ろ過膜として、優れた性能を発揮する微粒子捕捉用ろ過膜が得られる。また、小孔径部に対応する部分の厚みが400nm以上であることにより、剥離工程を行い得られる陽極酸化部分の小孔径部に対応する部分の連通孔の破損が少なくなる。また、小孔径部に対応する部分の厚みが1000nm以下であることが、被処理水の通液時に、圧力損失による透過流量が低くなり過ぎない微粒子捕捉用ろ過膜が得られる点で好ましい。 In the third anodizing step, a small pore diameter portion having an average pore diameter of 4 to 20 nm, preferably 8 to 20 nm, particularly preferably 9 to 15 nm, and more preferably 9 to 12 nm in the anodized aluminum material (2) by anodization. The communication hole for use is formed in a thickness direction of 400 nm or more, preferably 400 to 1000 nm, particularly preferably 400 to 700 nm. When the average pore diameter of the communication holes for the small pore diameter portion is within the above range, a particulate trapping filtration membrane exhibiting excellent performance can be obtained as a particulate trapping membrane used in the direct spectroscopic method. Moreover, when the thickness of the part corresponding to the small hole diameter part is 400 nm or more, the breakage of the communication hole in the part corresponding to the small hole diameter part of the anodized part obtained by performing the peeling step is reduced. Moreover, it is preferable that the thickness of the part corresponding to the small pore diameter part is 1000 nm or less in that a filtration membrane for trapping fine particles can be obtained in which the permeate flow rate due to pressure loss is not too low when water to be treated is passed.
第三陽極酸化工程において、陽極酸化により陽極酸化アルミニウム材(2)に形成させる小孔径部用の連通孔としては、小孔径部に対応する部分全体の連通孔の平均孔径が、4〜20nm、好ましくは8〜20nm、特に好ましくは9〜15nm、より好ましくは9〜12nmであり、小孔径部用の連通孔の孔径分布における相対標準偏差は、好ましくは40%以下、特に好ましくは35%以下であり、断面のSEM画像における小孔径部に対応する部分中の連通孔の存在割合(面積割合)は、好ましくは10〜60%、特に好ましくは20〜50%である。 In the third anodic oxidation step, the communication hole for the small hole diameter portion formed in the anodized aluminum material (2) by anodic oxidation has an average hole diameter of 4 to 20 nm of the communication holes of the entire portion corresponding to the small hole diameter part, Preferably it is 8-20 nm, Especially preferably, it is 9-15 nm, More preferably, it is 9-12 nm, The relative standard deviation in the hole diameter distribution of the communicating hole for small hole diameter parts becomes like this. Preferably it is 40% or less, Most preferably, it is 35% or less The existence ratio (area ratio) of the communicating holes in the portion corresponding to the small hole diameter portion in the SEM image of the cross section is preferably 10 to 60%, particularly preferably 20 to 50%.
そして、第三陽極酸化工程を行うことにより、陽極酸化アルミニウム材(2)内の中間孔部用の連通孔の端部から厚み方向に、中間孔部用の連通孔より孔径が小さい連通孔が形成されて、陽極酸化アルミニウム材(2)に、陽極酸化アルミニウム材(2)の中間孔部用の連通孔の端部から厚み方向に延びる小孔径部用の連通孔が形成され、陽極酸化アルミニウム材(3)が得られる。 And by performing a 3rd anodizing process, the communicating hole whose hole diameter is smaller than the communicating hole for intermediate holes in the thickness direction from the edge part of the communicating hole for intermediate holes in the anodized aluminum material (2). The anodized aluminum material (2) is formed with a small hole diameter communication hole extending in the thickness direction from the end of the intermediate hole communication hole of the anodized aluminum material (2). A material (3) is obtained.
第一陽極酸化工程、第二陽極酸化工程及び第三陽極酸化工程では、得ようとする微粒子捕捉用ろ過膜中の小孔径部、中間孔部及び大孔径部の各連通孔の形状に応じて、目的とする形状の小孔径部、中間孔部及び大孔径部の各連通孔が形成されるように、第一陽極酸化工程、第二陽極酸化工程及び第三陽極酸化工程での各陽極酸化条件、つまり、印加する電圧、通電する電流、印加時間、電解液の種類等をそれぞれ調節する。 In the first anodizing step, the second anodizing step, and the third anodizing step, depending on the shape of each communicating hole of the small pore diameter portion, the intermediate pore portion, and the large pore diameter portion in the filter membrane for capturing fine particles to be obtained Each anodizing in the first anodizing step, the second anodizing step and the third anodizing step so that the communication holes of the small hole diameter part, the intermediate hole part and the large hole diameter part of the desired shape are formed. The conditions, that is, the voltage to be applied, the current to be energized, the application time, the type of electrolyte, etc. are adjusted.
また、第一陽極酸化工程、第二陽極酸化工程又は第一陽極酸化工程と第二陽極酸化工程の両方では、陽極酸化を行った後の陽極酸化アルミニウム材を、リン酸水溶液、クロム酸水溶液、シュウ酸水溶液、硫酸水溶液、又はそれらの混酸水溶液、水酸化ナトリウム水溶液などの溶液中に浸漬させ、大孔径部又は中孔径部に相当する部分の連通孔の孔径を拡大する処理を行うこともできる。 Also, in both the first anodizing step, the second anodizing step or both the first anodizing step and the second anodizing step, the anodized aluminum material after the anodization is treated with a phosphoric acid aqueous solution, a chromic acid aqueous solution, It is also possible to perform a treatment for expanding the pore diameter of the communicating hole corresponding to the large pore diameter portion or the medium pore diameter portion by immersing in an aqueous solution of oxalic acid aqueous solution, sulfuric acid aqueous solution, mixed acid aqueous solution thereof, sodium hydroxide aqueous solution or the like. .
また、第一陽極酸化工程から第三陽極酸化工程までで、連通孔が形成されている部分の全厚みが、50μm以下、好ましくは20〜50μm、特に好ましくは20〜35μmとなるように、第一陽極酸化工程、第二陽極酸化工程及び第三陽極酸化工程での各陽極酸化条件を調節する。第一陽極酸化工程から第三陽極酸化工程までで、連通孔が形成されている部分の全厚みが上記範囲にあることにより、焼成工程で陽極酸化部分を焼成するときに、陽極酸化部分の破損が少なくなる。 In addition, the first anodizing step to the third anodizing step are performed so that the total thickness of the portion where the communication holes are formed is 50 μm or less, preferably 20 to 50 μm, particularly preferably 20 to 35 μm. Each anodizing condition in the one anodizing process, the second anodizing process, and the third anodizing process is adjusted. In the first anodizing step to the third anodizing step, the entire thickness of the portion where the communication holes are formed is in the above range, so that when the anodized portion is fired in the firing step, the anodized portion is damaged. Less.
本発明の微粒子捕捉用ろ過膜の製造方法に係る剥離及びエッチング工程は、陽極酸化アルミニウム材(3)から陽極酸化された部分を剥離し、次いで、剥離された部分の表面をエッチング処理して、陽極酸化部分を得る工程である。 The peeling and etching step according to the method for producing a filtration membrane for capturing fine particles of the present invention is performed by peeling an anodized part from the anodized aluminum material (3), and then etching the surface of the peeled part. This is a step of obtaining an anodized portion.
剥離及びエッチング工程において、陽極酸化アルミニウム材(3)から陽極酸化された部分を剥離する方法としては、特に制限されないが、例えば、溶液浸漬、逆電流法、電解研磨等が挙げられる。溶液浸漬は、陽極酸化アルミニウム材(3)を硫酸銅水溶液や塩酸等に浸漬することにより行われ、剥離に長時間を要するものの、物理的なダメージが少ない方法である。逆電流法は、陽極酸化時の電流を逆に流すことにより行われ、速やかに陽極酸化アルミニウム材(3)から陽極酸化部分を剥離することができる方法である。電解研磨は、陽極酸化アルミニウム材(3)を、過塩素酸含有エタノール溶液、過塩素酸含有ジアセトン溶液中で、電圧印加することにより行われ、速やかに陽極酸化アルミニウム材(3)から陽極酸化部分を剥離することができる方法である。 In the peeling and etching step, the method for peeling the anodized portion from the anodized aluminum material (3) is not particularly limited, and examples thereof include solution immersion, a reverse current method, and electropolishing. The solution immersion is performed by immersing the anodized aluminum material (3) in an aqueous copper sulfate solution, hydrochloric acid or the like, and is a method with little physical damage, although it takes a long time for peeling. The reverse current method is a method in which the current at the time of anodizing is reversed and the anodized portion can be quickly peeled off from the anodized aluminum material (3). The electrolytic polishing is performed by applying voltage to the anodized aluminum material (3) in a perchloric acid-containing ethanol solution or a perchloric acid-containing diacetone solution. It is a method which can peel.
剥離及びエッチング工程において、剥離された陽極酸化部分の表面をエッチング処理する方法としては、特に制限されないが、例えば、シュウ酸、リン酸、クロム酸、硫酸、アルカリ水溶液などの溶液中に浸漬する方法、等が挙げられる。 In the stripping and etching step, the method for etching the surface of the stripped anodized portion is not particularly limited, but for example, a method of immersing in a solution such as oxalic acid, phosphoric acid, chromic acid, sulfuric acid, alkaline aqueous solution, etc. , Etc.
そして、エッチング処理を行うことにより、アルミニウム材から剥離された部分の表面がエッチングされて、大孔径部用の連通孔、中間孔部用の連通孔及び小孔径部用の連通孔が形成され、それらにより貫通している貫通膜である陽極酸化部分が得られる。 Then, by performing an etching process, the surface of the part peeled off from the aluminum material is etched to form a communication hole for the large hole diameter part, a communication hole for the intermediate hole part, and a communication hole for the small hole diameter part, As a result, an anodized portion which is a penetrating film penetrating therethrough is obtained.
本発明の微粒子捕捉用ろ過膜の製造方法に係る焼成工程は、陽極酸化部分を焼成することにより、微粒子捕捉用ろ過膜を得る工程である。 The firing step according to the method for producing a particulate trapping filtration membrane of the present invention is a step of obtaining a particulate trapping filtration membrane by firing an anodized portion.
焼成工程において、陽極酸化部分を焼成するときの焼成温度は、800〜1200℃、好ましくは800〜1000℃である。また、焼成工程において、陽極酸化部分を焼成するときの焼成時間は、好ましくは10時間以下、特に好ましくは1〜5時間である。また、焼成工程において、陽極酸化部分を焼成するときの焼成雰囲気は、空気、酸素ガス等の酸化性雰囲気である。 In the firing step, the firing temperature when firing the anodized portion is 800 to 1200 ° C, preferably 800 to 1000 ° C. In the firing step, the firing time when firing the anodized portion is preferably 10 hours or less, particularly preferably 1 to 5 hours. In the firing step, the firing atmosphere when firing the anodized portion is an oxidizing atmosphere such as air or oxygen gas.
本発明の微粒子捕捉用ろ過膜の連通孔は、大孔径部から小孔径部まで、陽極酸化により形成されたものなので、つまり、陽極酸化で、先ず、アルミニウム材に大孔径部用の連通孔を形成させ、次いで、その大孔径部用の連通孔の端部から中間孔部用の連通孔を形成させ、次いで、その中間孔部用の連通孔の端部から小孔径部用の連通孔を形成させるという順で、形成されたものなので、ろ過膜の一方の表面側から他方の表面側までの連通孔の全てが繋がっている。 Since the communication holes of the filtration membrane for capturing fine particles of the present invention are formed by anodization from the large pore diameter portion to the small pore diameter portion, that is, by anodic oxidation, first, the communication holes for the large pore diameter portion are formed in the aluminum material. Next, a communication hole for the intermediate hole is formed from the end of the communication hole for the large hole diameter part, and then a communication hole for the small hole diameter part is formed from the end of the communication hole for the intermediate hole part. Since they are formed in the order of formation, all the communication holes from one surface side of the filtration membrane to the other surface side are connected.
本発明の多孔質膜は、アルミニウム材の陽極酸化により連通孔を形成させて得られる多孔質膜であって、
多孔質膜の一方の面に開口する連通孔が形成されている小孔径部と、
該小孔径部の連通孔が繋がり且つ径が該小孔径部の連通孔の径より大きい連通孔が形成されている中間孔部と、
該中間孔部の連通孔が繋がり、径が該中間孔部の連通孔の径より大きく、且つ、多孔質膜の他方の面に開口する連通孔が形成されている大孔径部と、
を有し、
該小孔径部には、多孔質膜の一方の表面から少なくとも400nmの位置まで、孔径の平均が4〜20nmの連通孔が形成されており、
多孔質膜の総膜厚が50μm以下であること、
を特徴とする多孔質膜である。
The porous film of the present invention is a porous film obtained by forming communication holes by anodization of an aluminum material,
A small hole diameter portion in which a communication hole opening on one surface of the porous membrane is formed;
An intermediate hole portion in which a communication hole of the small hole diameter portion is connected and a communication hole having a diameter larger than the diameter of the communication hole of the small hole diameter portion is formed;
A large hole diameter portion in which the communication hole of the intermediate hole portion is connected, the diameter is larger than the diameter of the communication hole of the intermediate hole portion, and a communication hole is formed in the other surface of the porous membrane;
Have
In the small pore diameter portion, a communication hole having an average pore diameter of 4 to 20 nm is formed from one surface of the porous membrane to a position of at least 400 nm,
The total thickness of the porous membrane is 50 μm or less,
Is a porous film characterized by
本発明の多孔質膜に係るアルミニウム材、陽極酸化、連通孔、小孔径部、中間孔部及び大孔径部は、前記本発明の微粒子捕捉用ろ過膜に係るアルミニウム材、陽極酸化、連通孔、小孔径部、中間孔部及び大孔径部と同様である。 The aluminum material, anodizing, communication hole, small hole diameter part, intermediate hole part and large hole diameter part relating to the porous membrane of the present invention are the aluminum material, anodizing, communication hole, and the fine particle capturing filtration membrane of the present invention, The same as the small hole diameter part, the intermediate hole part and the large hole diameter part.
本発明の多孔質膜の用途としては、前記微粒子捕捉用ろ過膜以外に、酵素電極等で酵素を固定するための酵素担体や、炭素材料、半導体配線の鋳型や、溶媒又は溶剤を極微量ずつ添加するための添加フィルターなどが挙げられる。 As the use of the porous membrane of the present invention, in addition to the filtration membrane for capturing fine particles, an enzyme carrier for immobilizing an enzyme with an enzyme electrode or the like, a carbon material, a template for semiconductor wiring, a solvent or a solvent in a trace amount. Examples include an addition filter for addition.
本発明の多孔質膜の製造方法は、アルミニウム材を陽極酸化することにより、該アルミニウム材に大孔径部用の連通孔を形成させて、陽極酸化アルミニウム材(1)を得る第一陽極酸化工程と、
該陽極酸化アルミニウム材(1)を陽極酸化することにより、該陽極酸化アルミニウム材(1)に、該大孔径部用の連通孔に繋がり且つ径が該大孔径部用の連通孔より小さい中間孔部用の連通孔を形成させて、陽極酸化アルミニウム材(2)を得る第二陽極酸化工程と、
該陽極酸化アルミニウム材(2)を陽極酸化することにより、該陽極酸化アルミニウム材(2)に、該中間孔部用の連通孔に繋がり且つ径が該中間孔部用の連通孔より小さい小孔径部用の連通孔を形成させて、陽極酸化アルミニウム材(3)を得る第三陽極酸化工程と、
該陽極酸化アルミニウム材(3)から陽極酸化された部分を剥離し、次いで、剥離した部分をエッチング処理して、陽極酸化部分を得る剥離及びエッチング工程と、
該陽極酸化部分を800〜1200℃で焼成することにより、多孔質膜を得る焼成工程と、
を有し、
該第三陽極酸化工程で、孔径の平均が4〜20nmの連通孔を、厚さ方向に400nm以上形成させること、
及び該第一陽極酸化工程から第三陽極酸化工程までで、陽極酸化により連通孔を形成させる部分の全厚みが50μm以下であること、
を特徴とする多孔質膜の製造方法である。
The method for producing a porous membrane of the present invention comprises a first anodizing step in which an aluminum material is anodized to form a communicating hole for a large pore diameter portion in the aluminum material to obtain an anodized aluminum material (1). When,
By anodizing the anodized aluminum material (1), the anodized aluminum material (1) is connected to the communicating hole for the large hole diameter portion and has a diameter smaller than that of the communicating hole for the large hole diameter portion. A second anodizing step of forming an anodized aluminum material (2) by forming a communicating hole for the part;
By anodizing the anodized aluminum material (2), the anodized aluminum material (2) is connected to the communication hole for the intermediate hole and has a smaller diameter than the communication hole for the intermediate hole. A third anodizing step of forming an anodized aluminum material (3) by forming a communicating hole for the part;
A peeling and etching step of peeling the anodized part from the anodized aluminum material (3), and then etching the peeled part to obtain an anodized part;
A firing step of firing the anodized part at 800 to 1200 ° C. to obtain a porous film;
Have
In the third anodic oxidation step, a communication hole having an average pore diameter of 4 to 20 nm is formed in a thickness direction of 400 nm or more,
And the total thickness of the portion where the communicating holes are formed by anodization from the first anodizing step to the third anodizing step is 50 μm or less,
Is a method for producing a porous membrane.
本発明の多孔質膜の製造方法に係るアルミニウム材、陽極酸化、大孔径部用の連通孔、陽極酸化アルミニウム材(1)、第一陽極酸化工程、中間孔部用の連通孔、陽極酸化アルミニウム材(2)、第二陽極酸化工程、小孔径部用の連通孔、陽極酸化アルミニウム材(3)、第三陽極酸化工程、剥離及びエッチング工程、及び焼成工程は、前記本発明の微粒子捕捉用ろ過膜の製造方法に係るアルミニウム材、陽極酸化、大孔径部用の連通孔、陽極酸化アルミニウム材(1)、第一陽極酸化工程、中間孔部用の連通孔、陽極酸化アルミニウム材(2)、第二陽極酸化工程、小孔径部用の連通孔、陽極酸化アルミニウム材(3)、第三陽極酸化工程、剥離及びエッチング工程、及び焼成工程と同様である。 Aluminum material, anodization, large hole diameter communication hole, anodized aluminum material (1), first anodization step, intermediate hole communication hole, anodized aluminum according to the porous membrane manufacturing method of the present invention The material (2), the second anodizing step, the communication hole for the small hole diameter portion, the anodized aluminum material (3), the third anodizing step, the peeling and etching step, and the firing step are for capturing fine particles of the present invention. Aluminum material, anodizing, communication hole for large pore diameter part, anodized aluminum material (1), first anodizing step, communication hole for intermediate hole part, anodized aluminum material (2) The second anodizing step, the small hole diameter communicating hole, the anodized aluminum material (3), the third anodizing step, the peeling and etching step, and the firing step are the same.
本発明の多孔質膜の製造方法は、前記微粒子捕捉用ろ過膜の製造の他に、酵素電極等で酵素を固定するための酵素担体、炭素材料、半導体配線の鋳型、溶媒又は溶剤を極微量ずつ添加するための添加フィルターなどに用いられる多孔質膜の製造や、塗装を剥がれ難くするため表面加工して、下地材の表面に多孔質膜を形成するために用いられる。 The method for producing a porous membrane of the present invention includes an enzyme carrier, a carbon material, a semiconductor wiring template, a solvent or a solvent for immobilizing an enzyme with an enzyme electrode or the like in addition to the production of the filtration membrane for capturing fine particles. It is used to form a porous film on the surface of a base material by manufacturing a porous film used for an addition filter for adding each one or the like, or by performing surface treatment to make it difficult to peel off the coating.
以下、本発明を実施例に基づき詳細に説明する。ただし、本発明は、以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples.
(実施例1)
・微粒子捕捉用ろ過膜の製造
<陽極酸化用のアルミニウム板材の準備>
純度98.5質量%のアルミニウム板材を5枚用意した。次いで、アルミニウム板材を、アセトン中で、30分間超音波照射し、10質量%過塩素酸含有エタノール溶液中、20V、15分間の条件で電解研磨し、陽極酸化用のアルミニウム板材を準備した。
なお、準備した陽極酸化用のアルミニウム板材のうち、1枚については剥離工程まで行い小孔径部の破損状況の観察に用い、残りの4枚については焼成工程まで行った。
<第一陽極酸化工程>
上記で得た陽極酸化用のアルミニウム板材を、1.8質量%シュウ酸水溶液を電解液とし、浴温5℃で100Vの一定電圧下で、陽極酸化を行った。
<第二陽極酸化工程>
次いで、1.8質量%シュウ酸水溶液を電解液とし、浴温5℃で電圧を徐々に低下させて、5分間陽極酸化を行った。
<第三陽極酸化工程>
次いで、20質量%硫酸水溶液中、浴温5℃で電圧9.5Vで、3分間陽極酸化を行った。
<剥離及びエッチング工程>
次いで、電解研磨にて、陽極酸化部分を剥離させた。次いで、得られた陽極酸化部分を超純水で洗浄後、20質量%硫酸水溶液に浸漬して、表面をエッチングし、貫通膜にした。次いで、超純水で洗浄した。
<焼成工程>
次いで、1000℃、大気雰囲気下で焼成を行い、微粒子捕捉用ろ過膜を得た。
Example 1
・ Manufacture of filtration membrane for capturing fine particles <Preparation of anodized aluminum plate>
Five aluminum plates with a purity of 98.5% by mass were prepared. Next, the aluminum plate was ultrasonically irradiated in acetone for 30 minutes, and electropolished in a 10% by weight perchloric acid-containing ethanol solution at 20 V for 15 minutes to prepare an anodized aluminum plate.
In addition, among the prepared aluminum plates for anodization, one sheet was subjected to the peeling process and used for observing the breakage of the small hole diameter portion, and the remaining four sheets were subjected to the firing process.
<First anodizing process>
The aluminum plate material for anodization obtained above was anodized under a constant voltage of 100 V at a bath temperature of 5 ° C. using an 1.8 mass% oxalic acid aqueous solution as an electrolyte.
<Second anodizing process>
Subsequently, 1.8 mass% oxalic acid aqueous solution was used as the electrolytic solution, and the voltage was gradually decreased at a bath temperature of 5 ° C. to perform anodic oxidation for 5 minutes.
<Third anodizing process>
Next, anodic oxidation was performed in a 20% by mass sulfuric acid aqueous solution at a bath temperature of 5 ° C. and a voltage of 9.5 V for 3 minutes.
<Peeling and etching process>
Next, the anodized portion was peeled off by electropolishing. Next, the obtained anodized portion was washed with ultrapure water and then immersed in a 20% by mass sulfuric acid aqueous solution to etch the surface to form a penetrating film. Subsequently, it was washed with ultrapure water.
<Baking process>
Next, firing was performed at 1000 ° C. in an air atmosphere to obtain a filtration membrane for capturing fine particles.
・微粒子捕捉用ろ過膜の構造の分析
得られた微粒子捕捉用ろ過膜の断面及び小孔径部側の表面を走査型電子顕微鏡にて観察し、得られるSEM画像より、構造を求めた。また、得られた断面のSEM画像を図10に、表面のSEM画像を図11に示す。
<小孔径部>
小孔径部の厚みは400nmであった。また、小孔径部の表面、200nm、400nm位置の孔径の平均は、それぞれ、10nm、10nm、10nmであった。また、小孔径部全体の連通孔の平均孔径は10nmであった。また、連通孔の孔径分布における相対標準偏差は30%であった。また、小孔径部の連通孔の開口の開口率は17%であった。また、小孔径部中の連通孔の存在割合は37%であった。
<中間孔部>
中間孔部の連通孔の孔径は23〜40nmであった。なお、中間孔部の連通孔の孔径は、中間孔部の厚み方向の中間位置近傍の孔径である。中間孔部の連通孔の孔径については、以下、同様である。
<大孔径部>
大孔径部の連通孔の孔径は27〜102nmであった。また、大孔径部全体の連通孔の平均孔径は58nmであった。
<ろ過膜の総膜厚>
ろ過膜の総膜厚は22μmであった。
-Analysis of the structure of the fine particle capturing filtration membrane The cross section of the obtained fine particle capturing filtration membrane and the surface of the small pore diameter side were observed with a scanning electron microscope, and the structure was determined from the obtained SEM image. Moreover, the SEM image of the obtained cross section is shown in FIG. 10, and the SEM image of the surface is shown in FIG.
<Small hole diameter part>
The thickness of the small hole diameter portion was 400 nm. Moreover, the average of the hole diameter of the surface of a small hole diameter part and 200 nm and 400 nm position was 10 nm, 10 nm, and 10 nm, respectively. Moreover, the average hole diameter of the communication hole of the whole small hole diameter part was 10 nm. The relative standard deviation in the hole diameter distribution of the communication holes was 30%. Further, the opening ratio of the communication hole of the small hole diameter portion was 17%. Further, the existence ratio of the communication holes in the small hole diameter portion was 37%.
<Intermediate hole>
The hole diameter of the communication hole of the intermediate hole portion was 23 to 40 nm. The hole diameter of the communication hole of the intermediate hole portion is a hole diameter in the vicinity of the intermediate position in the thickness direction of the intermediate hole portion. The same applies to the diameter of the communication hole of the intermediate hole portion.
<Large hole diameter part>
The hole diameter of the communication hole in the large hole diameter portion was 27 to 102 nm. Moreover, the average hole diameter of the communication hole of the whole large hole diameter part was 58 nm.
<Total thickness of filtration membrane>
The total film thickness of the filtration membrane was 22 μm.
・剥離及びエッチング工程後の小孔径部の破損状況の観察
剥離及びエッチング工程を行った後の陽極酸化部分の小孔径部側の表面を、走査型電子顕微鏡にて観察した。次いで、得られたSEM画像から、観察視野の面積に対する破損部分の面積の割合を求めた。その結果、観察視野の面積に対する破損部分の面積の割合は、1.5%であった。
-Observation of the damage state of the small hole diameter part after peeling and an etching process The surface by the side of the small hole diameter part of the anodized part after peeling and an etching process was observed with the scanning electron microscope. Next, the ratio of the area of the damaged portion to the area of the observation field was obtained from the obtained SEM image. As a result, the ratio of the area of the damaged portion to the area of the observation field was 1.5%.
・焼成工程での焼成成功率
焼成を行った4枚の陽極酸化部分について、それぞれ、焼成により破損しなければ焼成成功とし、焼成成功率を求めた。なお、破損とは、膜に亀裂が生じた場合、又は膜が割れた場合を指す。その結果、焼成成功率は100%であった。
-Sintering success rate in firing process For each of the four anodic oxidized portions that were fired, if they were not damaged by firing, the firing was successful and the firing success rate was determined. The term “breakage” refers to a case where a crack occurs in the film or a case where the film breaks. As a result, the firing success rate was 100%.
(実施例2)
第三陽極酸化工程の陽極酸化時間を5分間とすること以外は、実施例1と同様に行い微粒子捕捉用ろ過膜を得た。
(Example 2)
A filtration membrane for capturing fine particles was obtained in the same manner as in Example 1 except that the anodic oxidation time in the third anodizing step was 5 minutes.
・微粒子捕捉用ろ過膜の構造の分析
<小孔径部>
小孔径部の厚みは600nmであった。また、小孔径部の表面、300nm、600nm位置の孔径の平均は、それぞれ、10nm、10nm、10nmであった。また、小孔径部全体の連通孔の平均孔径は10nmであった。また、連通孔の孔径分布における相対標準偏差は39%であった。また、小孔径部の連通孔の開口の開口率は19%であった。また、小孔径部中の連通孔の存在割合は23%であった。
<中間孔部>
中間孔部の連通孔の孔径は25〜50nmであった。
<大孔径部>
大孔径部の連通孔の孔径は40〜144nmであった。また、大孔径部全体の連通孔の平均孔径は77nmであった。
<ろ過膜の総膜厚>
ろ過膜の総膜厚は23μmであった。
・ Analysis of the structure of filtration membrane for capturing fine particles <Small pore size>
The thickness of the small hole diameter portion was 600 nm. Moreover, the average of the hole diameter of the surface of a small hole diameter part and a 300 nm and 600 nm position was 10 nm, 10 nm, and 10 nm, respectively. Moreover, the average hole diameter of the communication hole of the whole small hole diameter part was 10 nm. The relative standard deviation in the pore size distribution of the communication holes was 39%. Further, the opening ratio of the communication hole of the small hole diameter portion was 19%. The proportion of communication holes in the small hole diameter portion was 23%.
<Intermediate hole>
The hole diameter of the communication hole of the intermediate hole portion was 25 to 50 nm.
<Large hole diameter part>
The hole diameter of the communication hole in the large hole diameter portion was 40 to 144 nm. Moreover, the average hole diameter of the communication hole of the whole large hole diameter part was 77 nm.
<Total thickness of filtration membrane>
The total film thickness of the filtration membrane was 23 μm.
・剥離及びエッチング工程後の小孔径部の破損状況の観察
剥離及びエッチング工程を行った後の陽極酸化部分の小孔径部側の表面における、観察視野の面積に対する破損部分の面積の割合は、1%未満であった。
・ Observation of damage condition of small hole diameter part after peeling and etching process The ratio of the area of the broken part to the area of the observation field on the surface of the small hole diameter part of the anodized part after peeling and etching process is 1 %.
(実施例3)
第三陽極酸化工程の陽極酸化時間を10分間とすること以外は、実施例1と同様に行い微粒子捕捉用ろ過膜を得た。
(Example 3)
A filtration membrane for capturing fine particles was obtained in the same manner as in Example 1 except that the anodic oxidation time in the third anodizing step was 10 minutes.
・微粒子捕捉用ろ過膜の構造の分析
<小孔径部>
小孔径部の厚みは1000nmであった。また、小孔径部の表面、500nm、1000nm位置の孔径の平均は、それぞれ、14nm、14nm、14nmであった。また、小孔径部全体の連通孔の平均孔径は14nmであった。また、連通孔の孔径分布における相対標準偏差は29%であった。また、小孔径部の連通孔の開口の開口率は30%であった。また、小孔径部中の連通孔の存在割合は37%であった。
<中間孔部>
中間孔部の連通孔の孔径は28〜52nmであった。
<大孔径部>
大孔径部の連通孔の孔径は48〜135nmであった。また、大孔径部全体の連通孔の平均孔径は75nmであった。
<ろ過膜の総膜厚>
ろ過膜の総膜厚は25μmであった。
・ Analysis of the structure of filtration membrane for capturing fine particles <Small pore size>
The thickness of the small hole diameter portion was 1000 nm. Moreover, the average of the hole diameter of the surface of a small hole diameter part, 500 nm, and 1000 nm position was 14 nm, 14 nm, and 14 nm, respectively. Moreover, the average hole diameter of the communication hole of the whole small hole diameter part was 14 nm. Moreover, the relative standard deviation in the hole diameter distribution of the communication holes was 29%. Further, the opening ratio of the communication hole of the small hole diameter portion was 30%. Further, the existence ratio of the communication holes in the small hole diameter portion was 37%.
<Intermediate hole>
The hole diameter of the communication hole of the intermediate hole portion was 28 to 52 nm.
<Large hole diameter part>
The hole diameter of the communication hole in the large hole diameter portion was 48 to 135 nm. Moreover, the average hole diameter of the communication hole of the whole large hole diameter part was 75 nm.
<Total thickness of filtration membrane>
The total film thickness of the filtration membrane was 25 μm.
・剥離及びエッチング工程後の小孔径部の破損状況の観察
剥離及びエッチング工程を行った後の陽極酸化部分の小孔径部側の表面における、観察視野の面積に対する破損部分の面積の割合は、1%未満であった。
・ Observation of damage condition of small hole diameter part after peeling and etching process The ratio of the area of the broken part to the area of the observation field on the surface of the small hole diameter part of the anodized part after peeling and etching process is 1 %.
(比較例1)
第三陽極酸化工程の陽極酸化時間を2分間とすること以外は、実施例1と同様に行い微粒子捕捉用ろ過膜を得た。
(Comparative Example 1)
A filtration membrane for capturing fine particles was obtained in the same manner as in Example 1 except that the anodic oxidation time in the third anodizing step was 2 minutes.
・微粒子捕捉用ろ過膜の構造の分析
<小孔径部>
小孔径部の厚みは200nmであった。また、小孔径部の表面、100nm、200nm位置の孔径の平均は、それぞれ、10nm、10nm、10nmであった。また、小孔径部全体の連通孔の平均孔径は10nmであった。また、連通孔の孔径分布における相対標準偏差は27%であった。また、小孔径部の連通孔の開口の開口率は17%であった。また、小孔径部中の連通孔の存在割合は30%であった。
<中間孔部>
中間孔部の連通孔の孔径は7〜31nmであった。
<大孔径部>
大孔径部の連通孔の孔径は21〜78nmであった。また、大孔径部全体の連通孔の平均孔径は50nmであった。
<ろ過膜の総膜厚>
ろ過膜の総膜厚は25μmであった。
・ Analysis of the structure of filtration membrane for capturing fine particles <Small pore size>
The thickness of the small hole diameter portion was 200 nm. Moreover, the average of the hole diameter of the surface of a small hole diameter part and a 100 nm and 200 nm position was 10 nm, 10 nm, and 10 nm, respectively. Moreover, the average hole diameter of the communication hole of the whole small hole diameter part was 10 nm. Moreover, the relative standard deviation in the hole diameter distribution of the communication holes was 27%. Further, the opening ratio of the communication hole of the small hole diameter portion was 17%. In addition, the existence ratio of communication holes in the small hole diameter portion was 30%.
<Intermediate hole>
The hole diameter of the communication hole of the intermediate hole portion was 7 to 31 nm.
<Large hole diameter part>
The hole diameter of the communication hole in the large hole diameter portion was 21 to 78 nm. Moreover, the average hole diameter of the communication hole of the whole large hole diameter part was 50 nm.
<Total thickness of filtration membrane>
The total film thickness of the filtration membrane was 25 μm.
・剥離及びエッチング工程後の小孔径部の破損状況の観察
剥離及びエッチング工程を行った後の陽極酸化部分の小孔径部側の表面における、観察視野の面積に対する破損部分の面積の割合は、30%であった。
・ Observation of damage state of small hole diameter part after peeling and etching process The ratio of the area of the broken part to the area of the observation field on the surface of the small hole diameter part of the anodized part after peeling and etching process is 30 %Met.
(実施例4)
第一陽極酸化工程の陽極酸化時間を実施例1よりも長くするとすること以外は、実施例1と同様に行い微粒子捕捉用ろ過膜を得た。
Example 4
A filtration membrane for capturing fine particles was obtained in the same manner as in Example 1 except that the anodic oxidation time in the first anodizing step was made longer than that in Example 1.
・焼成工程での焼成成功率
焼成工程での焼成成功率を求めたところ、焼成成功率は100%であった。
-Successful firing rate in firing step When the successful firing rate in the firing step was determined, the successful firing rate was 100%.
・剥離工程後の陽極酸化部分の総膜厚の分析
剥離工程後の陽極酸化部分の総膜厚は40μmであった。
・微粒子捕捉用ろ過膜の構造の分析
<小孔径部>
小孔径部の厚みは400nmであった。また、小孔径部の表面、200nm、400nm位置の孔径の平均は、それぞれ、10nm、10nm、10nmであった。また、小孔径部全体の連通孔の平均孔径は10nmであった。また、連通孔の孔径分布における相対標準偏差は30%であった。また、小孔径部の連通孔の開口の開口率は20%であった。また、小孔径部中の連通孔の存在割合は36%であった。
<中間孔部>
中間孔部の連通孔の孔径は15〜55nmであった。
<大孔径部>
大孔径部の連通孔の孔径は20〜81nmであった。また、大孔径部全体の連通孔の平均孔径は50nmであった。
<ろ過膜の総膜厚>
ろ過膜の総膜厚は40μmであった。
-Analysis of the total film thickness of the anodized part after a peeling process The total film thickness of the anodized part after a peeling process was 40 micrometers.
・ Analysis of the structure of filtration membrane for capturing fine particles <Small pore size>
The thickness of the small hole diameter portion was 400 nm. Moreover, the average of the hole diameter of the surface of a small hole diameter part and 200 nm and 400 nm position was 10 nm, 10 nm, and 10 nm, respectively. Moreover, the average hole diameter of the communication hole of the whole small hole diameter part was 10 nm. The relative standard deviation in the hole diameter distribution of the communication holes was 30%. Further, the opening ratio of the communication hole of the small hole diameter portion was 20%. The proportion of communication holes in the small hole diameter portion was 36%.
<Intermediate hole>
The hole diameter of the communication hole of the intermediate hole portion was 15 to 55 nm.
<Large hole diameter part>
The hole diameter of the communication hole in the large hole diameter portion was 20 to 81 nm. Moreover, the average hole diameter of the communication hole of the whole large hole diameter part was 50 nm.
<Total thickness of filtration membrane>
The total film thickness of the filtration membrane was 40 μm.
(実施例5)
第一陽極酸化工程の陽極酸化時間を実施例4よりも長くするとすること以外は、実施例1と同様に行い微粒子捕捉用ろ過膜を得た。
(Example 5)
A filtration membrane for capturing fine particles was obtained in the same manner as in Example 1 except that the anodic oxidation time in the first anodizing step was made longer than that in Example 4.
・焼成工程での焼成成功率
焼成工程での焼成成功率を求めたところ、焼成成功率は75%であった。
-Successful firing rate in firing step When the successful firing rate in the firing step was determined, the successful firing rate was 75%.
・剥離工程後の陽極酸化部分の総膜厚の分析
剥離工程後の陽極酸化部分の総膜厚は50μmであった。
・微粒子捕捉用ろ過膜の構造の分析
<小孔径部>
小孔径部の厚みは400nmであった。また、小孔径部の表面、200nm、400nm位置の孔径の平均は、それぞれ、10nm、10nm、10nmであった。また、小孔径部全体の連通孔の平均孔径は10nmであった。また、連通孔の孔径分布における相対標準偏差は37%であった。また、小孔径部の連通孔の開口の開口率は20%であった。また、小孔径部中の連通孔の存在割合は36%であった。
<中間孔部>
中間孔部の連通孔の孔径は22〜48nmであった。
<大孔径部>
大孔径部の連通孔の孔径は27〜66nmであった。また、大孔径部全体の連通孔の平均孔径は50nmであった。
<ろ過膜の総膜厚>
ろ過膜の総膜厚は50μmであった。
-Analysis of the total film thickness of the anodized part after a peeling process The total film thickness of the anodized part after a peeling process was 50 micrometers.
・ Analysis of the structure of filtration membrane for capturing fine particles <Small pore size>
The thickness of the small hole diameter portion was 400 nm. Moreover, the average of the hole diameter of the surface of a small hole diameter part and 200 nm and 400 nm position was 10 nm, 10 nm, and 10 nm, respectively. Moreover, the average hole diameter of the communication hole of the whole small hole diameter part was 10 nm. The relative standard deviation in the hole diameter distribution of the communication holes was 37%. Further, the opening ratio of the communication hole of the small hole diameter portion was 20%. The proportion of communication holes in the small hole diameter portion was 36%.
<Intermediate hole>
The hole diameter of the communication hole of the intermediate hole portion was 22 to 48 nm.
<Large hole diameter part>
The hole diameter of the communication hole in the large hole diameter portion was 27 to 66 nm. Moreover, the average hole diameter of the communication hole of the whole large hole diameter part was 50 nm.
<Total thickness of filtration membrane>
The total film thickness of the filtration membrane was 50 μm.
(比較例2)
第一陽極酸化工程の陽極酸化時間を実施例5よりも長くすること以外は、実施例1と同様に行い微粒子捕捉用ろ過膜を得た。
(Comparative Example 2)
A filtration membrane for capturing fine particles was obtained in the same manner as in Example 1 except that the anodic oxidation time in the first anodizing step was made longer than that in Example 5.
・焼成工程での焼成成功率
焼成工程での焼成成功率を求めたところ、焼成成功率は0%であった。
-Successful firing rate in firing step When the successful firing rate in the firing step was determined, the successful firing rate was 0%.
・剥離及びエッチング工程後の陽極酸化部分の総膜厚の分析
剥離及びエッチング工程後の陽極酸化部分の総膜厚は60μmであった。
・微粒子捕捉用ろ過膜の構造の分析
焼成工程で全て破損したため、正常な微粒子捕捉用ろ過膜は得られなかったので、分析しなかった。
-Analysis of the total film thickness of the anodized part after peeling and an etching process The total film thickness of the anodized part after a peeling and etching process was 60 micrometers.
・ Analysis of the structure of the filter membrane for capturing fine particles Since it was completely damaged in the firing process, a filter membrane for capturing fine particles could not be obtained.
(実施例6)
第二陽極酸化工程にて、電圧を2分間徐々に低下させて陽極酸化を行った後、次いで、1.8重量%シュウ酸溶液中に4時間浸漬させて、得られた陽極酸化アルミニウム材を用いて、第三陽極酸化工程を行ったこと以外は、実施例1と同様に行い微粒子捕捉用ろ過膜を得た。
(Example 6)
In the second anodic oxidation step, the voltage was gradually lowered for 2 minutes to perform anodic oxidation, and then immersed in a 1.8 wt% oxalic acid solution for 4 hours to obtain the obtained anodized aluminum material. In the same manner as in Example 1 except that the third anodizing step was performed, a filtration membrane for capturing fine particles was obtained.
・微粒子捕捉用ろ過膜の構造の分析
<小孔径部>
小孔径部の厚みは400nmであった。また、小孔径部の表面、200nm、400nm位置の孔径の平均は、それぞれ、10nm、10nm、10nmであった。また、小孔径部全体の連通孔の平均孔径は10nmであった。また、連通孔の孔径分布における相対標準偏差は36%であった。また、小孔径部の連通孔の開口の開口率は25%であった。また、小孔径部中の連通孔の存在割合は38%であった。
<中間孔部>
中間孔部の連通孔の孔径は16〜72nmであった。
<大孔径部>
大孔径部の連通孔の孔径は31〜120nmであった。また、大孔径部全体の連通孔の平均孔径は80nmであった。
<ろ過膜の総膜厚>
ろ過膜の総膜厚は24μmであった。
・ Analysis of the structure of filtration membrane for capturing fine particles <Small pore size>
The thickness of the small hole diameter portion was 400 nm. Moreover, the average of the hole diameter of the surface of a small hole diameter part and 200 nm and 400 nm position was 10 nm, 10 nm, and 10 nm, respectively. Moreover, the average hole diameter of the communication hole of the whole small hole diameter part was 10 nm. The relative standard deviation in the hole diameter distribution of the communication holes was 36%. Further, the opening ratio of the communication hole of the small hole diameter portion was 25%. The proportion of communication holes in the small hole diameter portion was 38%.
<Intermediate hole>
The hole diameter of the communication hole of the intermediate hole portion was 16 to 72 nm.
<Large hole diameter part>
The hole diameter of the communication hole of the large hole diameter portion was 31 to 120 nm. Moreover, the average hole diameter of the communication hole of the whole large hole diameter part was 80 nm.
<Total thickness of filtration membrane>
The total film thickness of the filtration membrane was 24 μm.
・剥離及びエッチング工程後の小孔径部の破損状況の観察
剥離及びエッチング工程を行った後の陽極酸化部分の小孔径部側の表面を、走査型電子顕微鏡にて観察した。次いで、得られたSEM画像から、観察視野の面積に対する破損部分の面積の割合を求めた。その結果、観察視野の面積に対する破損部分の面積の割合は、0.1%であった。
-Observation of the damage state of the small hole diameter part after peeling and an etching process The surface by the side of the small hole diameter part of the anodized part after peeling and an etching process was observed with the scanning electron microscope. Next, the ratio of the area of the damaged portion to the area of the observation field was obtained from the obtained SEM image. As a result, the ratio of the area of the damaged portion to the area of the observation field was 0.1%.
・焼成工程での焼成成功率
焼成工程での焼成成功率を求めたところ、焼成成功率は100%であった。
-Successful firing rate in firing step When the successful firing rate in the firing step was determined, the successful firing rate was 100%.
(実施例7)
・微粒子捕捉用ろ過膜の製造
第三陽極酸化工程において、電圧を9.5Vとすることに代えて、電圧を20Vとすること以外は、実施例6と同様に行い微粒子捕捉用ろ過膜を得た。
(Example 7)
-Manufacture of filtration membrane for capturing particulates A filtration membrane for capturing particulates is obtained in the same manner as in Example 6 except that in the third anodizing step, the voltage is set to 20 V instead of 9.5 V. It was.
・微粒子捕捉用ろ過膜の構造の分析
<小孔径部>
小孔径部の厚みは1000nmであった。また、小孔径部の表面、500nm、1000nm位置の孔径の平均は、それぞれ、20nm、20nm、20nmであった。また、小孔径部全体の連通孔の平均孔径は20nmであった。また、連通孔の孔径分布における相対標準偏差は21%であった。また、小孔径部の連通孔の開口の開口率は26%であった。また、小孔径部中の連通孔の存在割合は36%であった。
<中間孔部>
中間孔部の連通孔の孔径は40〜80nmであった。
<大孔径部>
大孔径部の連通孔の孔径は51〜139nmであった。また、大孔径部全体の連通孔の平均孔径は91nmであった。
<ろ過膜の総膜厚>
ろ過膜の総膜厚は24μmであった。
(実施例8)
第一陽極酸化工程において、陽極酸化を行った後、次いで、1.8重量%シュウ酸溶液中に4時間浸漬させて、得られた陽極酸化アルミニウム材を用いて、第三陽極酸化工程を行ったこと以外は、実施例7と同様に行い微粒子捕捉用ろ過膜を得た。
・ Analysis of the structure of filtration membrane for capturing fine particles <Small pore size>
The thickness of the small hole diameter portion was 1000 nm. Moreover, the average of the hole diameter of the surface of a small hole diameter part and 500 nm and 1000 nm position was 20 nm, 20 nm, and 20 nm, respectively. Moreover, the average hole diameter of the communication hole of the whole small hole diameter part was 20 nm. The relative standard deviation in the hole diameter distribution of the communication holes was 21%. Further, the opening ratio of the communication hole of the small hole diameter portion was 26%. The proportion of communication holes in the small hole diameter portion was 36%.
<Intermediate hole>
The hole diameter of the communication hole of the intermediate hole portion was 40 to 80 nm.
<Large hole diameter part>
The hole diameter of the communication hole of the large hole diameter portion was 51 to 139 nm. Moreover, the average hole diameter of the communicating hole of the whole large hole diameter part was 91 nm.
<Total thickness of filtration membrane>
The total film thickness of the filtration membrane was 24 μm.
(Example 8)
In the first anodizing step, after anodizing, the substrate is immersed in a 1.8 wt% oxalic acid solution for 4 hours, and the resulting anodized aluminum material is used to perform the third anodizing step. Except that, a filtration membrane for capturing fine particles was obtained in the same manner as in Example 7.
・微粒子捕捉用ろ過膜の構造の分析
<小孔径部>
小孔径部の厚みは1000nmであった。小孔径部の表面、500nm、1000nm位置の孔径の平均は、それぞれ、20nm、20nm、20nmであった。また、小孔径部全体の連通孔の平均孔径は20nmであった。また、連通孔の孔径分布における相対標準偏差は28%であった。また、小孔径部の連通孔の開口の開口率は20%であった。また、小孔径部中の連通孔の存在割合は56%であった。
<中間孔部>
中間孔部の連通孔の孔径は40〜80nmであった。
<大孔径部>
大孔径部の連通孔の孔径は62〜136nmであった。また、大孔径部全体の連通孔の平均孔径は90nmであった。
<ろ過膜の総膜厚>
ろ過膜の総膜厚は25μmであった。
・ Analysis of the structure of filtration membrane for capturing fine particles <Small pore size>
The thickness of the small hole diameter portion was 1000 nm. The averages of the pore diameters at the surface of the small pore diameter portion and at the positions of 500 nm and 1000 nm were 20 nm, 20 nm and 20 nm, respectively. Moreover, the average hole diameter of the communication hole of the whole small hole diameter part was 20 nm. The relative standard deviation in the hole diameter distribution of the communication holes was 28%. Further, the opening ratio of the communication hole of the small hole diameter portion was 20%. The proportion of communication holes in the small hole diameter portion was 56%.
<Intermediate hole>
The hole diameter of the communication hole of the intermediate hole portion was 40 to 80 nm.
<Large hole diameter part>
The hole diameter of the communication hole in the large hole diameter portion was 62 to 136 nm. Moreover, the average hole diameter of the communication hole of the whole large hole diameter part was 90 nm.
<Total thickness of filtration membrane>
The total film thickness of the filtration membrane was 25 μm.
・剥離及びエッチング工程後の小孔径部の破損状況の観察
剥離及びエッチング工程を行った後の陽極酸化部分の小孔径部側の表面を、走査型電子顕微鏡にて観察した。次いで、得られたSEM画像から、観察視野の面積に対する破損部分の面積の割合を求めた。その結果、観察視野の面積に対する破損部分の面積の割合は、0.1%であった。
-Observation of the damage state of the small hole diameter part after peeling and an etching process The surface by the side of the small hole diameter part of the anodized part after peeling and an etching process was observed with the scanning electron microscope. Next, the ratio of the area of the damaged portion to the area of the observation field was obtained from the obtained SEM image. As a result, the ratio of the area of the damaged portion to the area of the observation field was 0.1%.
・焼成工程での焼成成功率
焼成工程での焼成成功率を求めたところ、焼成成功率は100%であった。
-Successful firing rate in firing step When the successful firing rate in the firing step was determined, the successful firing rate was 100%.
1 微粒子捕捉用ろ過膜
2 小孔径部
3 中間孔部
4 大孔径部
5 ろ過膜の一方の表面
6 ろ過膜の他方の表面
7 小孔径部の連通孔の開口
8 小孔径部の連通孔
9 中間孔部の連通孔
10 大孔径部の連通孔
11 大孔径部の連通孔の開口
12 壁、骨格部
21 被処理水
22 処理水
23 アルミニウム材
24 対極材
25 電解液
26 直流電源
31 陽極酸化アルミニウム材(1)
32 陽極酸化アルミニウム材(2)
33 陽極酸化アルミニウム材(3)
34 陽極酸化部分
35 アルミニウム材部分
81 小孔径部用の連通孔
91 中間孔部用の連通孔
101 大孔径部用の連通孔
201 小孔径部に対応する部分
301 中間孔部に対応する部分
401 大孔径部に対応する部分
DESCRIPTION OF SYMBOLS 1 Filtration membrane for particulate capture 2 Small pore diameter part 3 Middle pore part 4 Large pore diameter part 5 One surface of filtration membrane 6 Other surface of filtration membrane 7 Small pore diameter communication hole opening 8 Small pore diameter communication hole 9 Middle Hole 10 communicating hole 11 Large hole diameter communicating hole 11 Large hole diameter communicating hole 12 Wall, skeleton 21 Water to be treated 22 Treated water 23 Aluminum material 24 Counter electrode material 25 Electrolytic solution 26 DC power source 31 Anodized aluminum material (1)
32 Anodized aluminum material (2)
33 Anodized aluminum (3)
34 Anodized portion 35 Aluminum material portion 81 Communication hole 91 for small hole diameter portion Communication hole 101 for intermediate hole portion Communication hole 201 for large hole diameter portion 301 Corresponding to small hole diameter portion 301 Portion corresponding to intermediate hole portion Large Portion corresponding to the hole diameter
Claims (6)
ろ過膜の一方の面に開口する連通孔が形成されている小孔径部と、
該小孔径部の連通孔が繋がり且つ径が該小孔径部の連通孔の径より大きい連通孔が形成されている中間孔部と、
該中間孔部の連通孔が繋がり、径が該中間孔部の連通孔の径より大きく、且つ、ろ過膜の他方の面に開口する連通孔が形成されている大孔径部と、
を有し、
該小孔径部には、ろ過膜の一方の表面から400〜1000nmの位置まで、孔径の平均が4〜20nmの連通孔が形成されており、
ろ過膜の総膜厚が15〜50μmであり、
超純水、溶剤又は薬液用の微粒子補足膜であること、
を特徴とする微粒子捕捉用ろ過膜。 A filtration membrane for capturing fine particles obtained by forming communication holes by anodization of an aluminum material,
A small hole diameter portion in which a communication hole opening on one surface of the filtration membrane is formed;
An intermediate hole portion in which a communication hole of the small hole diameter portion is connected and a communication hole having a diameter larger than the diameter of the communication hole of the small hole diameter portion is formed;
A large hole diameter portion in which the communication hole of the intermediate hole portion is connected, the diameter is larger than the diameter of the communication hole of the intermediate hole portion, and a communication hole opened on the other surface of the filtration membrane is formed;
Have
In the small pore diameter portion, communication holes having an average pore diameter of 4 to 20 nm are formed from one surface of the filtration membrane to a position of 400 to 1000 nm,
The total thickness of the filtration membrane Ri 15~50μm der,
Ultra-pure water, fine supplement film Der Rukoto of solvent or liquid chemical,
A filter membrane for capturing fine particles.
該陽極酸化アルミニウム材(1)を陽極酸化することにより、該陽極酸化アルミニウム材(1)に、該大孔径部用の連通孔に繋がり且つ径が該大孔径部用の連通孔より小さい中間孔部用の連通孔を形成させて、陽極酸化アルミニウム材(2)を得る第二陽極酸化工程と、
該陽極酸化アルミニウム材(2)を陽極酸化することにより、該陽極酸化アルミニウム材(2)に、該中間孔部用の連通孔に繋がり且つ径が該中間孔部用の連通孔より小さい小孔径部用の連通孔を形成させて、陽極酸化アルミニウム材(3)を得る第三陽極酸化工程と、
該陽極酸化アルミニウム材(3)から陽極酸化された部分を剥離し、次いで、剥離した部分をエッチング処理して、陽極酸化部分を得る剥離及びエッチング工程と、
該陽極酸化部分を800〜1200℃で焼成することにより、微粒子捕捉用ろ過膜を得る焼成工程と、
を有し、
該第三陽極酸化工程で、孔径の平均が4〜20nmの連通孔を、厚さ方向に400〜1000nm形成させること、
及び該第一陽極酸化工程から該第三陽極酸化工程までで、陽極酸化により連通孔を形成させる部分の全厚みが15〜50μmであること、
を特徴とする微粒子捕捉用ろ過膜の製造方法。 A first anodizing step for obtaining an anodized aluminum material (1) by anodizing the aluminum material to form a communicating hole for a large-diameter portion in the aluminum material;
By anodizing the anodized aluminum material (1), the anodized aluminum material (1) is connected to the communicating hole for the large hole diameter portion and has a diameter smaller than that of the communicating hole for the large hole diameter portion. A second anodizing step of forming an anodized aluminum material (2) by forming a communicating hole for the part;
By anodizing the anodized aluminum material (2), the anodized aluminum material (2) is connected to the communication hole for the intermediate hole and has a smaller diameter than the communication hole for the intermediate hole. A third anodizing step of forming an anodized aluminum material (3) by forming a communicating hole for the part;
A peeling and etching step of peeling the anodized part from the anodized aluminum material (3), and then etching the peeled part to obtain an anodized part;
A firing step of obtaining a filtration membrane for capturing fine particles by firing the anodized portion at 800 to 1200 ° C .;
Have
In the third anodic oxidation step, communication holes having an average pore diameter of 4 to 20 nm are formed in the thickness direction from 400 to 1000 nm,
And from the first anodizing step to the third anodizing step, the total thickness of the portion where the communicating holes are formed by anodization is 15 to 50 μm,
A method for producing a fine particle capturing filtration membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014195525A JP6353330B2 (en) | 2014-09-25 | 2014-09-25 | Filtration membrane for capturing fine particles and method for producing the same, porous membrane and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014195525A JP6353330B2 (en) | 2014-09-25 | 2014-09-25 | Filtration membrane for capturing fine particles and method for producing the same, porous membrane and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016064374A JP2016064374A (en) | 2016-04-28 |
JP6353330B2 true JP6353330B2 (en) | 2018-07-04 |
Family
ID=55804691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014195525A Active JP6353330B2 (en) | 2014-09-25 | 2014-09-25 | Filtration membrane for capturing fine particles and method for producing the same, porous membrane and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6353330B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6782081B2 (en) * | 2016-03-11 | 2020-11-11 | オルガノ株式会社 | Filtration membrane for capturing fine particles and its manufacturing method, and porous membrane and its manufacturing method |
JP7118590B2 (en) | 2017-02-01 | 2022-08-16 | オルガノ株式会社 | Centrifugal Filter and Method for Capturing and Observing Fine Particles in Liquid Using the Same |
US11230786B2 (en) * | 2019-06-17 | 2022-01-25 | Nanopec, Inc. | Nano-porous anodic aluminum oxide membrane for healthcare and biotechnology |
JP2023160369A (en) * | 2022-04-22 | 2023-11-02 | オルガノ株式会社 | Filtration membrane for trapping microparticles, method for manufacturing the same, and method for measuring microparticle count |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005022924A (en) * | 2003-07-02 | 2005-01-27 | Japan Fine Ceramics Center | Pore base material and its manufacturing method, and pore base material for gas separation material |
JP2007070126A (en) * | 2005-09-02 | 2007-03-22 | Japan Organo Co Ltd | Method for producing filtering membrane for capturing particulate, filtering membrane for capturing particulate, and method for measuring particulate in ultrapure water |
US7547393B2 (en) * | 2005-12-07 | 2009-06-16 | General Electric Company | Membrane structure and method of making |
JP2009050773A (en) * | 2007-08-24 | 2009-03-12 | Fujifilm Corp | Cross-flow filtration method and cross-flow filtration device |
-
2014
- 2014-09-25 JP JP2014195525A patent/JP6353330B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016064374A (en) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6353330B2 (en) | Filtration membrane for capturing fine particles and method for producing the same, porous membrane and method for producing the same | |
CN101962792B (en) | Method for preparing pore diameter controllable through hole anodized aluminum oxide film | |
Zaraska et al. | Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum | |
González-Rovira et al. | Assessment of the corrosion resistance of self-ordered anodic aluminum oxide (AAO) obtained in tartaric-sulfuric acid (TSA) | |
WO2017154769A1 (en) | Filtration membrane for trapping microparticles, method for manufacturing same, porous membrane, and method for manufacturing same | |
US8231789B2 (en) | Cross-flow filtration method and cross-flow filtration device | |
JP2008202112A (en) | Microstructure and method of manufacturing the same | |
JP2004188395A (en) | Fluid control device and its production method | |
CN101838835A (en) | Ordered porous alumina template capable of being directly applied to electrochemical deposition and preparation method thereof | |
CN106119927A (en) | Electrochemical treatments prepares the method for anisotropy oil-water separation copper mesh | |
KR101701314B1 (en) | Method for manufactiring anodic metal oxide nanoporous template | |
CN105307770A (en) | Visible light-responsive photocatalyst body and method for producing same | |
JP5369083B2 (en) | Surface-treated aluminum member having high withstand voltage and method for producing the same | |
Hong et al. | High-yield and environment-minded fabrication of nanoporous anodic aluminum oxide templates | |
JP4990737B2 (en) | Manufacturing method of fine structure | |
JP6616438B2 (en) | Feeder | |
CN103305890B (en) | The preparation method of the anodic oxidation aluminium formwork that three-dimensional runs through | |
JP4796456B2 (en) | Porous alumina having through pores and method for producing the same | |
Naief et al. | Comparative Study for Anodizing Aluminum Alloy 1060 by Different Types of Electrolytes Solutions | |
Nemes et al. | Porous anodic alumina films obtained by two step anodization | |
JP4800865B2 (en) | Method for producing catalyst body | |
KR101709602B1 (en) | Method of Aluminium Coating Layer with Anti-oxidation Using Micro arc Electrolytic Oxidation | |
Gujela et al. | Anodic aluminum oxide (AAO) nano membrane fabrication under different conditions | |
Kasi et al. | Characterization of cracks in tubular anodic aluminum oxide membrane | |
JP2009030079A (en) | Manufacturing method of fine structure and fine structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20170531 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170703 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171129 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180529 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180608 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6353330 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |