JP6351265B2 - Fluorescent substance-containing multilayer film sheet and light emitting device - Google Patents
Fluorescent substance-containing multilayer film sheet and light emitting device Download PDFInfo
- Publication number
- JP6351265B2 JP6351265B2 JP2014002158A JP2014002158A JP6351265B2 JP 6351265 B2 JP6351265 B2 JP 6351265B2 JP 2014002158 A JP2014002158 A JP 2014002158A JP 2014002158 A JP2014002158 A JP 2014002158A JP 6351265 B2 JP6351265 B2 JP 6351265B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- multilayer film
- film sheet
- containing multilayer
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000126 substance Substances 0.000 title claims description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 188
- 229920005989 resin Polymers 0.000 claims description 28
- 239000011347 resin Substances 0.000 claims description 28
- 229910003564 SiAlON Inorganic materials 0.000 claims description 19
- 229920002050 silicone resin Polymers 0.000 claims description 13
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 8
- 239000012190 activator Substances 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 6
- 229920000647 polyepoxide Polymers 0.000 claims description 6
- 239000003822 epoxy resin Substances 0.000 claims description 5
- 239000011342 resin composition Substances 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- -1 silicate nitride Chemical class 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 239000010410 layer Substances 0.000 description 50
- 230000000052 comparative effect Effects 0.000 description 38
- 230000004907 flux Effects 0.000 description 26
- 238000000295 emission spectrum Methods 0.000 description 16
- 230000005284 excitation Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 229910052725 zinc Inorganic materials 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052693 Europium Inorganic materials 0.000 description 7
- 229910052771 Terbium Inorganic materials 0.000 description 7
- 229910004283 SiO 4 Inorganic materials 0.000 description 6
- 229910052788 barium Inorganic materials 0.000 description 5
- 229910052793 cadmium Inorganic materials 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 229910052950 sphalerite Inorganic materials 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- 229910052984 zinc sulfide Inorganic materials 0.000 description 4
- 229910052688 Gadolinium Inorganic materials 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000695 excitation spectrum Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 102100032047 Alsin Human genes 0.000 description 2
- 101710187109 Alsin Proteins 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910015999 BaAl Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 101150027751 Casr gene Proteins 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910018250 LaSi Inorganic materials 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001652 electrophoretic deposition Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Optical Filters (AREA)
- Laminated Bodies (AREA)
- Luminescent Compositions (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Led Device Packages (AREA)
Description
本発明は、青色発光ダイオード(青色LED)又は紫外発光ダイオード(紫外LED)を用いた白色発光ダイオード(白色LED)等を初めとするいろいろな発光装置に利用可能な蛍光体含有多層膜シートと、それを用いた発光装置に関する。 The present invention includes a phosphor-containing multilayer film sheet that can be used in various light emitting devices such as a white light emitting diode (white LED) using a blue light emitting diode (blue LED) or an ultraviolet light emitting diode (ultraviolet LED), and the like, The present invention relates to a light emitting device using the same.
LEDを光源に用いて構成された発光装置は、電球に比べて寿命が長く、小型化が容易であり、定電圧駆動が可能であることから、家庭用照明をはじめとする各種照明や、車両用灯具、液晶表示素子のバックライトなど、次世代の光源として注目され、近年盛んに研究と開発が進められている。 A light-emitting device that uses an LED as a light source has a longer life than a light bulb, is easy to miniaturize, and can be driven at a constant voltage. It has attracted attention as a next-generation light source such as a lighting fixture and a backlight of a liquid crystal display element, and has been actively researched and developed in recent years.
従来のLED光源は、青色、あるいは紫外光の光を発するLEDチップを励起光源として使用し、複数の蛍光体を励起することで、光の3原色である赤色光、緑色光、青色光を得て白色光を得る方式が広く使われている。図1に、LED光源の蛍光体が分散されている部位の拡大図を示す。 Conventional LED light sources use LED chips that emit blue or ultraviolet light as excitation light sources, and excite multiple phosphors to obtain red, green, and blue light, which are the three primary colors of light. The method of obtaining white light is widely used. FIG. 1 shows an enlarged view of a portion where the phosphor of the LED light source is dispersed.
しかしながら、図1に示すように、同一の蛍光体層に複数の蛍光体を含有させると、蛍光体の分散状態によって、発光の「色むら」を引き起こしてしまう問題がある。
また、複数の蛍光体を使用すると、一方の蛍光体の励起スペクトルが他方の蛍光体の発光スペクトルと重なっている場合、後者の蛍光体からの発光が前者の蛍光体に吸収される現象が起こる。一般に蛍光体の励起スペクトルは発光スペクトルより短波長側に位置するため、このような現象は短波長の発光スペクトルを持つ蛍光体からの発光が、前記発光スペクトルと同じ波長域に励起スペクトルを持つ蛍光体に吸収されることで起こる。これにより、発光効率が下がり高い輝度が得られない問題がある。
However, as shown in FIG. 1, when a plurality of phosphors are contained in the same phosphor layer, there is a problem of causing “color unevenness” of light emission depending on the dispersion state of the phosphors.
In addition, when a plurality of phosphors are used, when the excitation spectrum of one phosphor overlaps with the emission spectrum of the other phosphor, a phenomenon occurs in which light emitted from the latter phosphor is absorbed by the former phosphor. . In general, since the excitation spectrum of a phosphor is located on the shorter wavelength side than the emission spectrum, this phenomenon is caused by the fact that light emitted from a phosphor having a shorter wavelength emission spectrum has an excitation spectrum in the same wavelength range as the emission spectrum. It happens when absorbed by the body. As a result, there is a problem that the luminous efficiency is lowered and high luminance cannot be obtained.
このような課題を解決する目的で、複数の蛍光体層を発光素子からの光の進行方向に積層して設置することが提案されている(例えば特許文献1、特許文献2、および非特許文献1)。積層状態を作る方法として、LEDチップ上面と、パッケージの底が同じ平面になるよう、チップをマウントする位置を凹ませ、これにより得られた実質的に平坦な面に蛍光体を一層ずつ塗布する方法がある。このようにして蛍光体による色むらを無くすことが提案されている(特許文献3)。 In order to solve such problems, it has been proposed to stack a plurality of phosphor layers in the traveling direction of light from the light emitting element (for example, Patent Document 1, Patent Document 2, and Non-Patent Document). 1). As a method of creating a laminated state, the mounting position of the chip is recessed so that the top surface of the LED chip and the bottom of the package are in the same plane, and phosphors are applied to the substantially flat surface obtained thereby one by one. There is a way. In this way, it has been proposed to eliminate color unevenness due to the phosphor (Patent Document 3).
しかしながら、前記特許文献に記載の方式では、蛍光体を一層塗布後、一旦塗布した層を硬化させて、その後に次の層を塗布するため、製造工程が多く、時間がかかる問題がある。また、蛍光体の積層順について、演色性や発光効率の比較はされているが、発光装置の発光色が同じ色度における実施例が何れの場合も示されていない。 However, in the method described in the above-mentioned patent document, there is a problem in that the number of manufacturing steps is long and time is required because the layer once applied is cured after the phosphor is applied one layer, and then the next layer is applied. Further, although the color rendering properties and the light emission efficiency are compared with respect to the order in which the phosphors are stacked, the examples in which the light emission color of the light emitting device has the same chromaticity are not shown.
本発明は、青色乃至紫外光を光源とする白色LED等の発光装置の製造工程において光源の色度調節を簡素化し、発光装置の全光束を高めることができる蛍光体含有多層膜シートを提供することものである。 The present invention provides a phosphor-containing multilayer sheet capable of simplifying the chromaticity adjustment of a light source and increasing the total luminous flux of the light emitting device in the manufacturing process of a light emitting device such as a white LED using blue to ultraviolet light as a light source. It is a thing.
すなわち、本発明は、エポキシ系樹脂、あるいはシリコーン系樹脂を樹脂Aとしたとき、樹脂Aを主成分とする樹脂組成物2層以上で構成されていて、赤色蛍光体と緑色蛍光体を含む2種類以上の蛍光体を含有する蛍光体含有多層膜シートにおいて、前記蛍光体含有多層膜シートを通り抜ける光の進行方向に積層するように設けられてなり、前記蛍光体含有多層膜シートの内、前記蛍光体を含有する蛍光体層が少なくとも2層以上あり、各々の蛍光体層に含有される蛍光体は一種類であり、他の蛍光体は異なる蛍光体層に含有されてなるとともに、発光波長が長い蛍光体を含有する蛍光体層から発光波長が短い蛍光体を含有する蛍光体層へと順に前記蛍光体含有多層膜シートを通り抜ける光の進行方向に配置されており、各々の蛍光体層に含有される蛍光体の体積頻度が0.4%以上40%以下であり、各々の蛍光体層の厚みが0.2mm以上0.5mm以下であり、少なくとも光が入射する面と前記入射された光を外部に出射する面に微細凹凸構造を設けさせたことを特徴とする蛍光体含有多層膜シートである。 That is, the present invention is composed of two or more layers of a resin composition mainly composed of resin A, where epoxy resin or silicone resin is resin A, and includes a red phosphor and a green phosphor. In the phosphor-containing multilayer film sheet containing more than one kind of phosphor, the phosphor-containing multilayer film sheet is provided so as to be laminated in the traveling direction of light passing through the phosphor-containing multilayer film sheet. There are at least two phosphor layers containing phosphors, each phosphor layer contains one kind of phosphor, and other phosphors are contained in different phosphor layers, and the emission wavelength Are arranged in the traveling direction of light passing through the phosphor-containing multilayer film sheet in order from a phosphor layer containing a long phosphor to a phosphor layer containing a phosphor having a short emission wavelength, and each phosphor layer Included in The volume frequency of the phosphor is 0.4% or more and 40% or less, the thickness of each phosphor layer is 0.2 mm or more and 0.5 mm or less, and at least the light incident surface and the incident light The phosphor-containing multilayer film sheet is characterized in that a fine concavo-convex structure is provided on the surface from which light is emitted to the outside.
また、微細凹凸構造のパタンピッチ距離が、0.05μm〜0.4μmである蛍光体含有多層膜シートである。 Moreover, it is a fluorescent substance containing multilayer film sheet whose pattern pitch distance of a fine concavo-convex structure is 0.05 micrometer-0.4 micrometer.
また、微細凹凸構造の凸部の高さが0.05μm〜0.4μmである蛍光体含有多層膜シートである。 Moreover, it is a fluorescent substance containing multilayer film sheet whose height of the convex part of a fine uneven structure is 0.05 micrometer-0.4 micrometer.
この蛍光体含有多層膜シートは、微細凹凸構造を各層の界面に形成されてもよい。 The phosphor-containing multilayer film sheet may be formed with a fine concavo-convex structure at the interface of each layer.
樹脂Aの主成分が、エポキシ系樹脂、シリコーン系樹脂から選択したいずれかである蛍光体含有多層膜シートである。 The phosphor-containing multilayer film sheet in which the main component of the resin A is any one selected from an epoxy resin and a silicone resin.
更に、樹脂Aの主成分がシリコーン系樹脂である蛍光体含有多層膜シートである。 Furthermore, the phosphor-containing multilayer film sheet in which the main component of the resin A is a silicone resin.
赤色蛍光体が、Eu2+を付活剤とし、アルカリ土類ケイ窒化物、アルカリ土類ケイ酸窒化物、α―SiAlONまたはアルカリ土類ケイ酸塩からなる結晶を母体とする蛍光体から選ばれる1種類の蛍光体を含む、蛍光体含有多層膜シートでもある。 The red phosphor is selected from phosphors having Eu 2+ as an activator and based on a crystal composed of alkaline earth silicate, alkaline earth silicate, α-SiAlON or alkaline earth silicate. It is also a phosphor-containing multilayer film sheet containing one type of phosphor.
緑色蛍光体が、Eu2+を付活剤とし、アルカリ土類ケイ酸塩、アルカリ土類ケイ酸窒化物もしくはβ−SiAlONからなる結晶を母体とする緑色蛍光体又はCe3+を付活剤とし、ガーネット型酸化物もしくはアルカリ土類金属スカンジウム酸塩からなる結晶を母体とする緑色蛍光体である蛍光体含有多層膜シートでもある。 The green phosphor has Eu 2+ as an activator and a green phosphor or Ce 3+ based on a crystal composed of alkaline earth silicate, alkaline earth silicate nitride or β-SiAlON as an activator. It is also a phosphor-containing multilayer film sheet that is a green phosphor having a crystal composed of a garnet-type oxide or an alkaline earth metal scandate as a base material.
前記2種類以上の蛍光体は、それぞれの種類毎に層状に形成されて積層されていることを特徴とする蛍光体含有多層膜シートである。 The phosphor-containing multilayer sheet is characterized in that the two or more types of phosphors are formed and laminated in layers for each type.
微細凹凸構造は、切削法、ナノインプリント法、レーザー微細加工、エッチング法などにより形成される蛍光体含有多層膜シートである。 The fine concavo-convex structure is a phosphor-containing multilayer film sheet formed by a cutting method, a nanoimprint method, a laser fine processing, an etching method, or the like.
また、更に上記の蛍光体含有多層膜シートからなる発光装置でもある。 Further, it is also a light emitting device comprising the above phosphor-containing multilayer sheet.
本発明の蛍光体含有多層膜シートを用いることによって、光源の色が昼光色、電球色に色度調節を行ったシートを作製した際に、従来の複数の蛍光体が同一層に混合されたものに比べて高い輝度を得ることが可能となる。 By using the phosphor-containing multilayer film of the present invention, a sheet in which the color of the light source is adjusted to daylight and the light bulb color is adjusted, and a plurality of conventional phosphors are mixed in the same layer It is possible to obtain higher brightness than
本発明者等は、公知の青色乃至紫外線を励起光源とする白色LEDの製造工程の簡素化させ、かつ光源の高輝度化を検討した。その結果、屈折率1.3〜1.8の樹脂Aを主成分とする樹脂組成物で構成されていて、赤色蛍光体と緑色蛍光体を含む2種類以上の蛍光体を含有する蛍光体含有多層膜シートの、前記蛍光体含有多層膜シートの内、前記蛍光体含有する層を少なくとも2層以上形成させ、個々の蛍光体が含有する層に含まれる蛍光体は1種類とした。また、励起光源に近い層に発光波長が長い方の蛍光体を含有させ、励起光源に遠い蛍光体層に発光波長が短い蛍光体を含有させた。更に、少なくとも光が入射する面と前記入射された光を外部に出射する面に、パタンピッチ距離と凸部の高さが可視光の波長よりも小さい微細凹凸構造を形成させたことによって、従来の白色LEDよりも高輝度な光が得られることを見出した。 The present inventors have studied the simplification of the manufacturing process of a white LED using a known blue to ultraviolet light as an excitation light source, and studied to increase the brightness of the light source. As a result, it is composed of a resin composition mainly composed of a resin A having a refractive index of 1.3 to 1.8, and contains a phosphor containing two or more kinds of phosphors including a red phosphor and a green phosphor. In the multilayer sheet, at least two or more layers containing the phosphor are formed in the phosphor-containing multilayer film sheet, and one kind of phosphor is included in the layer containing each phosphor. Further, a phosphor having a longer emission wavelength was contained in a layer near the excitation light source, and a phosphor having a shorter emission wavelength was contained in a phosphor layer far from the excitation light source. Furthermore, by forming a fine concavo-convex structure in which the pattern pitch distance and the height of the convex portion are smaller than the wavelength of visible light on at least the light incident surface and the surface from which the incident light is emitted to the outside, It was found that light with higher luminance than that of the white LED can be obtained.
樹脂Aの具体的材料として、エポキシ樹脂、シリコーン樹脂のような耐候性に優れた透明樹脂が好ましい。特にシリコーン樹脂を用いると信頼性に優れ且つ蛍光体物質の分散性を向上させることができ好ましい。
また、樹脂Aの屈折率は、光の取り出し効率から1.3〜1.8のものが好ましい。更に、1.4〜1.5のものがより好ましい。
As a specific material of the resin A, a transparent resin excellent in weather resistance such as an epoxy resin and a silicone resin is preferable. In particular, it is preferable to use a silicone resin because it is excellent in reliability and can improve the dispersibility of the phosphor substance.
The refractive index of the resin A is preferably 1.3 to 1.8 in terms of light extraction efficiency. Furthermore, the thing of 1.4-1.5 is more preferable.
蛍光体は、420nm〜500nm(青色領域)、500nm〜555nm(緑色領域)、555nm〜580nm(黄色領域)、580nm〜600nm(橙色領域)、600nm〜630nm(赤橙色領域)、630〜800nm(赤色領域)に発光波長を有する。蛍光体粒子には、ケイ素(Si)、アルミニウム(Al)、チタン(Ti)、ゲルマニウム(Ge)、リン(P)、ホウ素(B)、イットリウム(Y)、アルカリ土類元素、硫化物、希土類元素、窒化物の少なくとも1種類が含まれている。 The phosphors are 420 nm to 500 nm (blue region), 500 nm to 555 nm (green region), 555 nm to 580 nm (yellow region), 580 nm to 600 nm (orange region), 600 nm to 630 nm (red orange region), 630 to 800 nm (red). Region) has an emission wavelength. Phosphor particles include silicon (Si), aluminum (Al), titanium (Ti), germanium (Ge), phosphorus (P), boron (B), yttrium (Y), alkaline earth elements, sulfides, rare earths At least one element or nitride is included.
赤橙色領域あるいは赤色領域の光を発する蛍光体が赤色蛍光体になる。具体的には、以下の蛍光体が該当する。
Y2O2S:Eu、Y2O2S:Eu+pigment、Y2O3:Eu、Zn3(PO4)2:Mn、(Zn,Cd)S:Ag+In2O3、(Y,Gd,Eu)BO3、(Y,Gd,Eu)2O3、YVO4:Eu、La2O2S:Eu,Sm、LaSi3N5:Eu2+、α−SiAlON:Eu2+、CaAlSiN3:Eu2+、CaSiNX:Eu2+、CaSiNX:Ce2+、M2Si5N8:Eu2+、CaAlSiN3:Eu2+、(SrCa)AlSiN3:EuX+、Srx(SiyAl3)z(OxN):EuX+。
A phosphor that emits light in a red-orange region or a red region becomes a red phosphor. Specifically, the following phosphors are applicable.
Y 2 O 2 S: Eu, Y 2 O 2 S: Eu + pigment, Y 2 O 3 : Eu, Zn 3 (PO 4 ) 2 : Mn, (Zn, Cd) S: Ag + In 2 O 3 , (Y, Gd, Eu) BO 3 , (Y, Gd, Eu) 2 O 3 , YVO 4 : Eu, La 2 O 2 S: Eu, Sm, LaSi 3 N 5 : Eu 2+ , α-SiAlON: Eu 2+ , CaAlSiN 3 : Eu 2+ , CaSiN X : Eu 2+ , CaSiN X : Ce 2+ , M 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ , (SrCa) AlSiN 3 : Eu X + , Sr x (Si y Al 3 ) z xN ): Eu X + .
緑色領域の光を発する蛍光体が緑色蛍光体である。具体的には、以下の蛍光体が該当する。
ZnS:Cu,Al、ZnS:Cu,Al+pigment、(Zn,Cd)S:Cu,Al、ZnS:Cu,Au,Al,+pigment、Y3Al5O12:Tb、Y3(Al,Ga)5O12:Tb、Y2SiO5:Tb、Y3(Al,Ga)5O12:Tb、Y2SiO5:Tb、Zn2SiO4:Mn、(Zn,Cd)S:Cu、ZnS:Cu、Zn2SiO4:Mn、ZnS:Cu+Zn2SiO4:Mn、Gd2O2S:Tb、(Zn,Cd)S:Ag、ZnS:Cu,Al、Y2O2S:Tb、ZnS:Cu,Al+In2O3、(Zn,Cd)S:Ag+In2O3、(Zn,Mn)2SiO4、BaAl12O19:Mn、(Ba,Sr,Mg)O・aAl2O3:Mn、LaPO4:Ce,Tb、Zn2SiO4:Mn、ZnS:Cu、La2O3・0.2SiO2・0.9P2O5:Ce,Tb、CeMgAl11O19:Tb、CaSc2O4:Ce、(BrSr)SiO4:Eu、α−SiAlON:Yb2+、β−SiAlON:Eu2+、(SrBa)YSi4N7:Eu2+、(CaSr)Si2O4N7:Eu2+、Sr(SiAl)(ON):Ce。
A phosphor that emits light in the green region is a green phosphor. Specifically, the following phosphors are applicable.
ZnS: Cu, Al, ZnS: Cu, Al + pigment, (Zn, Cd) S: Cu, Al, ZnS: Cu, Au, Al, + pigment, Y 3 Al 5 O 12 : Tb, Y 3 (Al, Ga) 5 O 12 : Tb, Y 2 SiO 5 : Tb, Y 3 (Al, Ga) 5 O 12 : Tb, Y 2 SiO 5 : Tb, Zn 2 SiO 4 : Mn, (Zn, Cd) S: Cu, ZnS: Cu, Zn 2 SiO 4 : Mn, ZnS: Cu + Zn 2 SiO 4 : Mn, Gd 2 O 2 S: Tb, (Zn, Cd) S: Ag, ZnS: Cu, Al, Y 2 O 2 S: Tb, ZnS : Cu, Al + In 2 O 3 , (Zn, Cd) S: Ag + In 2 O 3 , (Zn, Mn) 2 SiO 4 , BaAl 12 O 19 : Mn, (Ba, Sr, Mg) O · aAl 2 O 3 : M , LaPO 4: Ce, Tb, Zn 2 SiO 4: Mn, ZnS: Cu, La 2 O 3 · 0.2SiO 2 · 0.9P 2 O 5: Ce, Tb, CeMgAl 11 O 19: Tb, CaSc 2 O 4 : Ce, (BrSr) SiO 4 : Eu, α-SiAlON: Yb 2+ , β-SiAlON: Eu 2+ , (SrBa) YSi 4 N 7 : Eu 2+ , (CaSr) Si 2 O 4 N 7 : Eu 2+ , Sr (SiAl) (ON): Ce.
蛍光体含有多層膜シートでは、赤色蛍光体は、CaAlSiN3:Eu2+あるいは、(SrCa)AlSiN3:EuX+を使用するのが好ましい。緑色蛍光体は、β−SiAlON:Eu2+を使用するのが好ましい。 In the phosphor-containing multilayer sheet, it is preferable to use CaAlSiN 3 : Eu 2+ or (SrCa) AlSiN 3 : Eu X + as the red phosphor. As the green phosphor, β-SiAlON: Eu 2+ is preferably used.
本発明において、赤色領域、緑色領域以外の領域の光を発する蛍光体を使用してもよい。具体的には以下の蛍光体が該当する。
ZnS:Ag、ZnS:Ag+pigment、ZnS:Ag,Al、ZnS:Ag,Cu,Ga,Cl、ZnS:Ag+In2O3、ZnS:Zn+In2O3、(Ba,Eu)MgAl10O17、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu、Sr10(PO4)6Cl2:Eu、(Ba,Sr,Eu)(Mg,Mn)Al10O17、10(Sr,Ca,Ba,Mg)・6PO4・Cl2、BaMg2Al16O25:Eu。
In the present invention, a phosphor that emits light in a region other than the red region and the green region may be used. Specifically, the following phosphors are applicable.
ZnS: Ag, ZnS: Ag + pigment, ZnS: Ag, Al, ZnS: Ag, Cu, Ga, Cl, ZnS: Ag + In 2 O 3 , ZnS: Zn + In 2 O 3 , (Ba, Eu) MgAl 10 O 17 , (Sr , Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, Sr 10 (PO 4 ) 6 Cl 2 : Eu, (Ba, Sr, Eu) (Mg, Mn) Al 10 O 17 , 10 (Sr , Ca, Ba, Mg) · 6PO 4 · Cl 2 , BaMg 2 Al 16 O 25 : Eu.
本発明のシートの前記蛍光体層の蛍光体の体積頻度(%)と、前記蛍光体層の厚み(mm)の調節方法について説明する。これらは、励起光源の波長λ(nm)または色度に応じて適宜調節される。 A method for adjusting the volume frequency (%) of the phosphor of the phosphor layer of the sheet of the present invention and the thickness (mm) of the phosphor layer will be described. These are appropriately adjusted according to the wavelength λ (nm) or chromaticity of the excitation light source.
図4、図5に示すような、本発明は励起光源の色度CIEx、CIEyと、励起光源の波長λまたは色度、蛍光体層の蛍光体の体積頻度(%)、蛍光体層の厚み(mm)との対応を示すデータをとる。 As shown in FIGS. 4 and 5, the present invention is based on the chromaticity CIEx and CIEy of the excitation light source, the wavelength λ or chromaticity of the excitation light source, the volume frequency (%) of the phosphor in the phosphor layer, and the thickness of the phosphor layer. Data indicating correspondence with (mm) is taken.
励起光源の波長λまたは色度、蛍光体の体積頻度、蛍光体層の厚みを、それぞれ個別に変化させた発光装置を用意し、各データ間の対応付けを行う。蛍光体の体積頻度(%)は、下記数式(1)により置き換えられる。すなわち、シートの厚みと発光装置の色度から、蛍光体層の蛍光体含有量が決定される。 A light emitting device is prepared in which the wavelength λ or chromaticity of the excitation light source, the volume frequency of the phosphor, and the thickness of the phosphor layer are individually changed, and the data are associated with each other. The volume frequency (%) of the phosphor is replaced by the following mathematical formula (1). That is, the phosphor content of the phosphor layer is determined from the thickness of the sheet and the chromaticity of the light emitting device.
ここで、
mphos:蛍光体層中の蛍光体質量[g]
ρphos:蛍光体の密度[g/cm3]
mmatrix:蛍光体層の樹脂Aの質量[g]
ρmatrix:樹脂Aの密度[g/cm3]
here,
m phos : phosphor mass in the phosphor layer [g]
ρ phos : phosphor density [g / cm 3 ]
m matrix : mass of resin A in the phosphor layer [g]
ρ matrix : density of resin A [g / cm 3 ]
励起光源の波長λまたは色度、蛍光体層の蛍光体含有量、蛍光体層の厚みをパラメータとして、発光装置の分光波形を計測する。これにより、分光波形と、励起光源の波長λまたは色度、蛍光体層の蛍光体含有量、蛍光体層の厚み、との対応付けがなされる。 The spectral waveform of the light emitting device is measured using the wavelength λ or chromaticity of the excitation light source, the phosphor content of the phosphor layer, and the thickness of the phosphor layer as parameters. Thus, the spectral waveform is associated with the wavelength λ or chromaticity of the excitation light source, the phosphor content of the phosphor layer, and the thickness of the phosphor layer.
例えば、励起光源の波長が450nm、蛍光体層は2層、各層の厚みが0.2mm〜0.5mm、各蛍光体層に赤色蛍光体と緑色蛍光体がそれぞれ含有させて色度を(CIEx,CIEy)=(0.289,0.294)(=昼光色)にする場合は、緑色蛍光体の体積頻度を2.00%〜50.0%、赤色蛍光体の体積頻度を0.400%〜5.00%が好ましい。同様な構成で色度を(CIEx,CIEy)=(0.437,0.404)(=電球色)にする場合、緑色蛍光体の体積頻度を4.00%〜40.0%、赤色蛍光体の体積頻度を0.500%〜6.00%が好ましい。 For example, the wavelength of the excitation light source is 450 nm, the phosphor layers are two layers, the thickness of each layer is 0.2 mm to 0.5 mm, and each phosphor layer contains a red phosphor and a green phosphor, and the chromaticity (CIEx) , CIEy) = (0.289, 0.294) (= daylight color), the volume frequency of the green phosphor is 2.00% to 50.0%, and the volume frequency of the red phosphor is 0.400%. -5.00% is preferable. When the chromaticity is set to (CIEx, CIEy) = (0.437, 0.404) (= bulb color) with the same configuration, the volume frequency of the green phosphor is 4.00% to 40.0%, and the red fluorescence The volume frequency of the body is preferably 0.500% to 6.00%.
本発明の蛍光体含有多層膜シートの各層の厚さは、0.2mm〜0.5mmが好ましい。シートの厚さが0.2mmより小さいと、蛍光体の体積頻度を大きくしても所望の色度が得られなくなり、かつ、シート作製が困難になる。シートの厚さが0.5mmを超えると、層内で蛍光体から発した光を同じ層内にある他の蛍光体が吸収する自己吸収が要因である濃度消光がおき、全光束を低下させてしまう。 The thickness of each layer of the phosphor-containing multilayer film of the present invention is preferably 0.2 mm to 0.5 mm. If the thickness of the sheet is smaller than 0.2 mm, the desired chromaticity cannot be obtained even if the volume frequency of the phosphor is increased, and the sheet production becomes difficult. When the thickness of the sheet exceeds 0.5 mm, concentration quenching occurs due to self-absorption caused by the other phosphors in the same layer that absorbs the light emitted from the phosphors in the layer, thereby reducing the total luminous flux. End up.
本発明の蛍光体含有多層膜シートを製造する方法について述べる。封止樹脂と蛍光体を前記の割合で混練と真空脱泡を施したスラリーから、真空成型、圧空成形、プレス成形等、公知のシート成形方法を利用し、切削法、ナノインプリント法、レーザー微細加工、エッチング法等を用いて表面に微細凹凸構造を設けることによって、蛍光体含有多層膜シートを得ることができる。本発明の蛍光体含有多層膜シートを用いることによって、白色LEDの発光輝度を高めることができ、白色LEDを製造する上で、蛍光体を塗布する工程が必要なくなり、簡略化させることができる。 A method for producing the phosphor-containing multilayer film of the present invention will be described. From slurry obtained by kneading sealing resin and phosphor at the above ratio and vacuum defoaming, using known sheet forming methods such as vacuum forming, pressure forming, press forming, etc., cutting method, nanoimprint method, laser micromachining A phosphor-containing multilayer film sheet can be obtained by providing a fine relief structure on the surface using an etching method or the like. By using the phosphor-containing multilayer film sheet of the present invention, the light emission luminance of the white LED can be increased, and the process of applying the phosphor is not necessary and can be simplified in manufacturing the white LED.
<光の取り出し効率評価>
発光ピーク波長が450nm、半値幅20nmのLEDチップを、光放出面積4.5mm2、深さ0.85mmのパッケージに実装した。その後、屈折率nD=1.41であるシリコーン樹脂(KER−2500、信越化学工業製)をポッティングし樹脂を硬化させた。その後、電圧3V、電流20mAでチップを光らせ、全光束測定システム(全光束測定(φ1000mm)システム、大塚電子社製)を用いて、全光束を測定した。同様に、シリコーン樹脂をポッティングせず、チップ(屈折率=2.5)が空気(屈折率=1.0)にさらされたものも前記全光束システムを用いて全光束を測定した。
<Evaluation of light extraction efficiency>
An LED chip having an emission peak wavelength of 450 nm and a half width of 20 nm was mounted on a package having a light emission area of 4.5 mm 2 and a depth of 0.85 mm. Thereafter, a silicone resin (KER-2500, manufactured by Shin-Etsu Chemical Co., Ltd.) having a refractive index n D = 1.41 was potted to cure the resin. Thereafter, the chip was illuminated with a voltage of 3 V and a current of 20 mA, and the total luminous flux was measured using a total luminous flux measurement system (total luminous flux measurement (φ1000 mm) system, manufactured by Otsuka Electronics Co., Ltd.). Similarly, the total luminous flux was measured using the above-mentioned total luminous flux system even when the tip (refractive index = 2.5) was exposed to air (refractive index = 1.0) without potting the silicone resin.
図6に前記ポッティングした場合のパッケージの発光スペクトルと、樹脂をポッティングしなかった場合の発光スペクトルを示す。樹脂をポッティングした場合の全光束値がポッティングしなかった場合より1.36倍大きい結果が得られた。 FIG. 6 shows an emission spectrum of the package when the potting is performed and an emission spectrum when the resin is not potted. When the resin was potted, the total luminous flux value was 1.36 times larger than when the resin was not potted.
前記樹脂をポッティングした場合は、チップと樹脂の界面、樹脂と空気層の界面で不連続的な屈折率ギャップが生じている。光はこの屈折率のギャップにより反射する。そこで、本発明者等は各層の界面・表面に可視光(400〜800nm)よりも小さい微細凹凸構造を設けた。これにより、光はまるで界面がないかのうように反射することなく透過する。これによって、更に全光束を高められることを本発明者等は見出した。 When the resin is potted, a discontinuous refractive index gap is generated at the interface between the chip and the resin and at the interface between the resin and the air layer. Light is reflected by this refractive index gap. Therefore, the present inventors provided a fine concavo-convex structure smaller than visible light (400 to 800 nm) at the interface / surface of each layer. This allows light to pass through without reflecting as if there were no interface. The present inventors have found that this can further increase the total luminous flux.
本発明を、実施例を用いてより具体的に例示するが、本発明はこの実施例に記載された内容によって限定されるものではない。 The present invention will be illustrated more specifically with reference to examples, but the present invention is not limited by the contents described in these examples.
<シートの作製方法>
樹脂Aとして、二液型シリコーン樹脂(KER−2500、信越化学工業製)に蛍光体を、真空脱泡装置(ARV−310、THINKY社製)を用いて溶融混練し、蛍光体ペーストを作製する。次に、30mm×30mm、深さは調節した開口部を有するスペーサ枠を用いて、開口部に前記ペーストを流し込む。その後、150℃で1時間加熱して硬化させ、蛍光体含有シートを作製した。
<Production method of sheet>
As a resin A, a phosphor is melt-kneaded with a two-part silicone resin (KER-2500, manufactured by Shin-Etsu Chemical Co., Ltd.) using a vacuum defoaming device (ARV-310, manufactured by THINKY) to prepare a phosphor paste. . Next, the paste is poured into the opening using a spacer frame having an opening of 30 mm × 30 mm and the depth adjusted. Then, it heated and hardened at 150 degreeC for 1 hour, and produced the fluorescent substance containing sheet.
<シートの各層の厚み評価>
[実施例1]
色度が(0.289,0.294)になるように、赤色蛍光体CASNが、体積頻度が0.9%になるように前記シリコーン樹脂と混合し、シートの厚みが0.5mmになるように蛍光体含有シートを作製した。同様に、緑色蛍光体β−SiAlONが、体積頻度が5.5%になるように前記シリコーン樹脂と混合し、シートの厚みが0.5mmになるように前記作製方法で蛍光体含有シートを作製した。更に、赤色蛍光体含有シートが励起光源に近い位置に配置され、励起光源に遠い位置に緑色蛍光体含有シートを重ねた。最後に、励起光の光が入射する面と、前記入射した光が外部に出射する面に、微細凹凸構造を形成させた。図11に示す微細凹凸構造のパタンピッチ距離が0.2μmであり、微細凹凸構造の凸部の高さが0.4μmであるようにし、これを蛍光体含有多層膜シートとした。
<Evaluation of thickness of each layer of sheet>
[Example 1]
The red phosphor CASN is mixed with the silicone resin so that the volume frequency is 0.9% so that the chromaticity becomes (0.289, 0.294), and the thickness of the sheet becomes 0.5 mm. Thus, a phosphor-containing sheet was produced. Similarly, green phosphor β-SiAlON is mixed with the silicone resin so that the volume frequency is 5.5%, and the phosphor-containing sheet is produced by the production method so that the thickness of the sheet is 0.5 mm. did. Further, the red phosphor-containing sheet was disposed at a position close to the excitation light source, and the green phosphor-containing sheet was stacked at a position far from the excitation light source. Finally, a fine concavo-convex structure was formed on the surface where the excitation light was incident and the surface where the incident light was emitted to the outside. The pattern pitch distance of the fine concavo-convex structure shown in FIG. 11 was 0.2 μm, and the height of the convex part of the fine concavo-convex structure was 0.4 μm, which was used as a phosphor-containing multilayer film sheet.
[比較例1]
シートの厚みを0.7mmに変更したこと以外、実施例1と同様である。
[Comparative Example 1]
The same as Example 1 except that the thickness of the sheet was changed to 0.7 mm.
[比較例2]
シートの厚みを1.0mmに変更したこと以外、実施例1と同様である。
[Comparative Example 2]
The same as Example 1 except that the thickness of the sheet was changed to 1.0 mm.
[実施例2]
赤色蛍光体CASNの体積頻度が2.3%、シートの厚みが0.2mmになるように、緑色蛍光体β−SiAlONの体積頻度が16.4%、シートの厚みが0.2mm、微細凹凸構造のパタンピッチ距離が0.05μmに変更したこと以外、実施例1と同様である。
[Example 2]
The volume frequency of the green phosphor β-SiAlON is 16.4%, the sheet thickness is 0.2 mm, and the fine irregularities so that the volume frequency of the red phosphor CASN is 2.3% and the sheet thickness is 0.2 mm. The same as Example 1 except that the pattern pitch distance of the structure was changed to 0.05 μm.
[比較例3]
シートの厚みを0.1mmに変更したこと以外、実施例2と同様である。
[Comparative Example 3]
The same as Example 2 except that the thickness of the sheet was changed to 0.1 mm.
[比較例4]
シートの厚みを0.05mmに変更したこと以外、実施例2と同様である。
[Comparative Example 4]
The same as Example 2 except that the thickness of the sheet was changed to 0.05 mm.
<シートの評価>
各実施例および比較例で製膜したシートを、ピーク波長450nm、半値幅20nm、発光強度0.0123Wの青色LED治具に乗せて、LEDを点灯させ、全光束測定システム(全光束測定(φ1000mm)システム、大塚電子社製)を用いて、全光束を測定した。
<Evaluation of sheet>
The sheet formed in each example and comparative example was placed on a blue LED jig having a peak wavelength of 450 nm, a half width of 20 nm, and a light emission intensity of 0.0123 W, the LED was turned on, and the total luminous flux measurement system (total luminous flux measurement (φ1000 mm ) System, manufactured by Otsuka Electronics Co., Ltd.) to measure the total luminous flux.
図7に実施例1、比較例1、および比較例2の発光スペクトルを示す。表1に実施例1、比較例1、及び、比較例2の全光束を示す。
図7、表1より、シートの厚さが0.5mmを超える比較例1、比較例2が、本実施形態である実施例1のシートより全光束が小さくなり、目的の色度にならないことがわかる。
FIG. 7 shows emission spectra of Example 1, Comparative Example 1, and Comparative Example 2. Table 1 shows the total luminous fluxes of Example 1, Comparative Example 1, and Comparative Example 2.
As shown in FIG. 7 and Table 1, in Comparative Example 1 and Comparative Example 2 in which the thickness of the sheet exceeds 0.5 mm, the total luminous flux is smaller than the sheet of Example 1 which is the present embodiment, and the target chromaticity is not achieved. I understand.
図8に実施例2、比較例3、および比較例4の蛍光体からの発光スペクトルを示す。表1にそれぞれの全光束を示す。シートの厚さが0.2mm未満である比較例3、比較例4は、目的の色度にならず、全光束も小さかった。 FIG. 8 shows emission spectra from the phosphors of Example 2, Comparative Example 3, and Comparative Example 4. Table 1 shows the total luminous flux. In Comparative Examples 3 and 4 in which the sheet thickness was less than 0.2 mm, the target chromaticity was not achieved, and the total luminous flux was small.
<蛍光体層の積層順検討>
同じ色度の下、励起光源に近い方に発光波長が長い蛍光体を含有する蛍光体層から順に積層したものと、発光波長が短い蛍光体を含有する蛍光体層から順に積層したものとの比較を行った。
<Examination of layer order of phosphor layers>
Under the same chromaticity, the one that is laminated in order from the phosphor layer containing the phosphor having the longer emission wavelength and the one that is laminated in order from the phosphor layer containing the phosphor having the shorter emission wavelength A comparison was made.
図4、図5を基に、シートの厚みをそれぞれ0.5mm、蛍光体の体積頻度を調節し、光源の色度が(0.345,0.352)(=昼白色)、あるいは(0.437,0.404)(=電球色)に色度調整した際の発光スペクトルおよび全光束を測定した。 Based on FIGS. 4 and 5, the sheet thickness is 0.5 mm, the volume frequency of the phosphor is adjusted, and the chromaticity of the light source is (0.345, 0.352) (= day white), or (0 .437, 0.404) (= bulb color), the emission spectrum and the total luminous flux were measured.
[実施例3]
励起光源に近い位置に赤色蛍光体であるCASNを体積頻度1.3%含有し、厚さが0.5mmであるシート配置させ、緑色蛍光体であるβ―SiAlONを体積頻度7.1%含有し、厚さ0.5mmであるシートを積層させ、色度が(0.345,0.352)になるようにしたこと以外、実施例1と同じである。
[Example 3]
CASN, which is a red phosphor, is contained at a volume frequency of 1.3% at a position close to the excitation light source, a sheet having a thickness of 0.5 mm is arranged, and β-SiAlON, which is a green phosphor, is contained at a volume frequency of 7.1%. Then, the same as Example 1 except that sheets having a thickness of 0.5 mm are laminated so that the chromaticity becomes (0.345, 0.352).
[比較例5]
緑色蛍光体であるβ―SiAlONを体積頻度5.0%含有したシートを励起光源に近い位置に配置させ、赤色蛍光体であるCASNを体積頻度2.4%含有したシートを積層するよう変更した以外は、実施例3と同様である。
[Comparative Example 5]
The sheet containing the green phosphor β-SiAlON with a volume frequency of 5.0% was placed close to the excitation light source, and the sheet containing the red phosphor CASN with a volume frequency of 2.4% was stacked. Other than the above, the third embodiment is the same as the third embodiment.
[実施例4]
色度が(0.437,0.404)になるように赤色蛍光体であるCASNを体積頻度2.0%、緑色蛍光体であるβ―SiAlONを体積頻度10.1%に変更したこと以外、実施例3と同様である。
[Example 4]
Other than changing CASN that is red phosphor to volume frequency 2.0% and β-SiAlON that is green phosphor to volume frequency 10.1% so that chromaticity becomes (0.437, 0.404). This is the same as in Example 3.
[比較例6]
色度が(0.437,0.404)になるように緑色蛍光体であるβ―SiAlONを体積頻度5.9%、赤色蛍光体であるCASNを体積頻度4.3%に変更したこと以外、比較例5と同様である。
[Comparative Example 6]
Other than changing β-SiAlON, which is a green phosphor, to a volume frequency of 5.9%, and CASN, which is a red phosphor, to a volume frequency of 4.3% so that the chromaticity is (0.437, 0.404). This is the same as Comparative Example 5.
実施例3および比較例5の発光スペクトルを図9に示す。実施例4および比較例6を図10に示す。表1に実施例3、実施例4、比較例5、および比較例6の全光束値を示す。ここから、本実施形態の方が全光束は大きい。 The emission spectra of Example 3 and Comparative Example 5 are shown in FIG. Example 4 and Comparative Example 6 are shown in FIG. Table 1 shows the total luminous flux values of Example 3, Example 4, Comparative Example 5, and Comparative Example 6. From this, the total luminous flux is larger in the present embodiment.
[比較例7]
表面の凹凸のパタンピッチ距離が0.5μmであり、凸部の高さが0.5μmに変更したこと以外、実施例1と同様である。
[Comparative Example 7]
Example 1 is the same as Example 1 except that the pattern pitch distance of the unevenness on the surface is 0.5 μm and the height of the convex portion is changed to 0.5 μm.
[比較例8]
表面の凹凸のパタンピッチ距離が0.4μmであり、凸部の高さが0.5μmに変更したこと以外、実施例1と同様である。
[Comparative Example 8]
The pattern pitch distance of the unevenness on the surface is 0.4 μm, and the same as Example 1 except that the height of the convex portion is changed to 0.5 μm.
[比較例9]
表面の凹凸のパタンピッチ距離が0.5μmであり、凸部の高さが0.4μmに変更したこと以外、実施例1と同様である。
[Comparative Example 9]
Example 1 is the same as Example 1 except that the pattern pitch distance of the surface irregularities is 0.5 μm and the height of the convex portion is changed to 0.4 μm.
[比較例10]
表面の凹凸のパタンピッチ距離が0.04μmであり、凸部の高さが0.04μmに変更したこと以外、実施例1と同様である。
[Comparative Example 10]
The pattern pitch distance of the unevenness on the surface is 0.04 μm, and the same as Example 1 except that the height of the convex portion is changed to 0.04 μm.
表1に実施例1、比較例7〜10の全光束を示す。実施例1が全光束は大きくなった。 Table 1 shows total luminous fluxes of Example 1 and Comparative Examples 7 to 10. In Example 1, the total luminous flux was increased.
[比較例11]
色度が(0.289,0.294)になるように、赤色蛍光体であるCASNを体積頻度1.6%、緑色蛍光体であるβ−SiAlONを体積頻度4.3%になるようにシリコーン樹脂と混合し、厚み0.5mmの同一層に赤色蛍光体と緑色蛍光体が共存し、単層構造に変更したこと以外、実施例1と同様である。
[Comparative Example 11]
The red phosphor CASN has a volume frequency of 1.6% and the green phosphor β-SiAlON has a volume frequency of 4.3% so that the chromaticity is (0.289, 0.294). It is the same as Example 1 except that the mixture is mixed with a silicone resin, and the red phosphor and the green phosphor coexist in the same layer having a thickness of 0.5 mm, and the single layer structure is changed.
表1に実施例1と比較例11の全光束を示す。実施例1の方が全光束は大きくなった。 Table 1 shows the total luminous fluxes of Example 1 and Comparative Example 11. In Example 1, the total luminous flux was larger.
[実施例5]
色度が(0.437,0.404)になるように赤色蛍光体であるCASNを体積頻度2.0%、厚さが0.5mmであるシート、緑色蛍光体であるβ―SiAlONを体積頻度36.9%、厚さが0.2mmに変更したこと以外、実施例4と同様である。
[Example 5]
CASN, which is a red phosphor, has a volume frequency of 2.0%, a sheet having a thickness of 0.5 mm, and β-SiAlON, which is a green phosphor, so that the chromaticity is (0.437, 0.404). Example 4 is the same as Example 4 except that the frequency was changed to 36.9% and the thickness was changed to 0.2 mm.
[比較例12]
緑色蛍光体であるβ―SiAlONを体積頻度99.9%、厚さが0.1mmに変更したこと以外、実施例5と同様である。
[Comparative Example 12]
The same as Example 5 except that β-SiAlON, which is a green phosphor, was changed to a volume frequency of 99.9% and a thickness of 0.1 mm.
[比較例13]
緑色蛍光体であるβ―SiAlONを体積頻度4.6%、厚さが1.0mmに変更したこと以外、実施例5と同様である。
[Comparative Example 13]
The same as Example 5 except that β-SiAlON, which is a green phosphor, was changed to a volume frequency of 4.6% and a thickness of 1.0 mm.
表1に実施例5、比較例12および比較例13の全光束を示す。実施例5の方が全光束は大きくなった。 Table 1 shows the total luminous fluxes of Example 5, Comparative Example 12, and Comparative Example 13. In Example 5, the total luminous flux was larger.
[実施例6]
樹脂をビスフェノールA型エポキシ樹脂(商品名エピコート806、ジャパンエポキシレジン株式会社製)に変更したこと以外、実施例1と同様である。
[Example 6]
The same as Example 1 except that the resin was changed to bisphenol A type epoxy resin (trade name Epicoat 806, manufactured by Japan Epoxy Resin Co., Ltd.).
表1より、実施例6は実施例1と同程度の全光束であった。 From Table 1, Example 6 had the same total luminous flux as that of Example 1.
1 蛍光体含有多層膜シート
101a 赤色蛍光体含有樹脂層
101b 緑色蛍光体含有樹脂層
102 樹脂層
103、201 赤色蛍光体
104、202 緑色蛍光体
203 青色蛍光体
301 封止樹脂
DESCRIPTION OF SYMBOLS 1 Phosphor containing multilayer film sheet 101a Red fluorescent substance containing resin layer 101b Green fluorescent substance containing resin layer 102 Resin layer 103, 201 Red fluorescent substance 104, 202 Green fluorescent substance 203 Blue fluorescent substance 301 Sealing resin
Claims (9)
前記蛍光体含有多層膜シートを通り抜ける光の進行方向に積層するように設けられてなり、前記蛍光体含有多層膜シートの内、前記蛍光体を含有する蛍光体層が少なくとも2層以上あり、各々の蛍光体層に含有される蛍光体は一種類であり、発光波長が長い蛍光体を含有する蛍光体層から、発光波長が短い蛍光体を含有する蛍光体層へと順に前記蛍光体含有多層膜シートを通り抜ける光の進行方向に配置されており、各々の蛍光体層に含有される蛍光体の体積頻度が0.4%以上40%以下であり、各々の蛍光体層の厚みが0.2mm以上0.5mm以下であり、光が入射する面と入射された該光を外部に出射する面に高さ0.4μm以下、パタンピッチ距離が0.05μm〜0.4μmの微細凹凸構造を形成させたことを特徴とする蛍光体含有多層膜シート。 In the phosphor-containing multilayer film sheet composed of two or more layers of the resin composition mainly composed of the resin A and containing two or more kinds of phosphors including a red phosphor and a green phosphor,
It is provided to be laminated in the traveling direction of light passing through the phosphor-containing multilayer film sheet, and among the phosphor-containing multilayer film sheets, there are at least two phosphor layers containing the phosphor, There is one kind of phosphor contained in the phosphor layer, and the phosphor-containing multilayer is sequentially from a phosphor layer containing a phosphor having a long emission wavelength to a phosphor layer containing a phosphor having a short emission wavelength. The phosphors are arranged in the traveling direction of light passing through the film sheet, the volume frequency of the phosphor contained in each phosphor layer is 0.4% or more and 40% or less, and the thickness of each phosphor layer is 0. A fine concavo-convex structure having a height of 0.4 μm or less and a pattern pitch distance of 0.05 μm to 0.4 μm on the surface where light is incident and the surface where the incident light is emitted to the outside is 2 mm or more and 0.5 mm or less. Including phosphor characterized by formation Multilayer sheet.
前記蛍光体含有多層膜シートを通り抜ける光の進行方向に積層するように設けられてなり、前記蛍光体含有多層膜シートの内、前記蛍光体を含有する蛍光体層が少なくとも2層以上あり、各々の蛍光体層に含有される蛍光体は一種類であり、発光波長が長い蛍光体を含有する蛍光体層から、発光波長が短い蛍光体を含有する蛍光体層へと順に前記蛍光体含有多層膜シートを通り抜ける光の進行方向に配置されており、各々の蛍光体層に含有される蛍光体の体積頻度が0.4%以上40%以下であり、各々の蛍光体層の厚みが0.2mm以上0.5mm以下であり、光が入射する面と入射された該光を外部に出射する面に高さ0.05μm〜0.4μm、パタンピッチ距離が0.4μm以下の微細凹凸構造を形成させたことを特徴とする蛍光体含有多層膜シート。It is provided to be laminated in the traveling direction of light passing through the phosphor-containing multilayer film sheet, and among the phosphor-containing multilayer film sheets, there are at least two phosphor layers containing the phosphor, There is one kind of phosphor contained in the phosphor layer, and the phosphor-containing multilayer is sequentially from a phosphor layer containing a phosphor having a long emission wavelength to a phosphor layer containing a phosphor having a short emission wavelength. The phosphors are arranged in the traveling direction of light passing through the film sheet, the volume frequency of the phosphor contained in each phosphor layer is 0.4% or more and 40% or less, and the thickness of each phosphor layer is 0. A fine concavo-convex structure having a height of 0.05 μm to 0.4 μm and a pattern pitch distance of 0.4 μm or less on a surface on which light is incident and a surface on which the incident light is emitted to the outside is 2 mm to 0.5 mm. Including phosphor characterized by formation Multilayer sheet.
The light-emitting device using the fluorescent substance containing multilayer film sheet as described in any one of Claims 1-8 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014002158A JP6351265B2 (en) | 2014-01-09 | 2014-01-09 | Fluorescent substance-containing multilayer film sheet and light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014002158A JP6351265B2 (en) | 2014-01-09 | 2014-01-09 | Fluorescent substance-containing multilayer film sheet and light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015130459A JP2015130459A (en) | 2015-07-16 |
JP6351265B2 true JP6351265B2 (en) | 2018-07-04 |
Family
ID=53760976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014002158A Active JP6351265B2 (en) | 2014-01-09 | 2014-01-09 | Fluorescent substance-containing multilayer film sheet and light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6351265B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015222372A1 (en) * | 2015-11-12 | 2017-05-18 | Faurecia Innenraum Systeme Gmbh | Skin for a vehicle interior trim part and vehicle interior trim part |
JP6304297B2 (en) | 2016-04-06 | 2018-04-04 | 日亜化学工業株式会社 | Method for manufacturing light emitting device |
KR102674066B1 (en) | 2016-11-11 | 2024-06-13 | 삼성전자주식회사 | Light emitting device package |
JP6541638B2 (en) * | 2016-12-28 | 2019-07-10 | 堺化学工業株式会社 | Phosphor-containing multilayer film sheet and light emitting device |
JP2018155968A (en) * | 2017-03-17 | 2018-10-04 | 日亜化学工業株式会社 | Method for manufacturing light-transmitting member and method for manufacturing light-emitting device |
JP2018186167A (en) * | 2017-04-25 | 2018-11-22 | 株式会社ディスコ | Method for manufacturing light-emitting diode chip and light-emitting diode chip |
JP2018186166A (en) * | 2017-04-25 | 2018-11-22 | 株式会社ディスコ | Method for manufacturing light-emitting diode chip and light-emitting diode chip |
WO2019044288A1 (en) * | 2017-08-28 | 2019-03-07 | パナソニックIpマネジメント株式会社 | Light-emitting device |
JP6528872B2 (en) * | 2018-03-01 | 2019-06-12 | 日亜化学工業株式会社 | Method of manufacturing light emitting device |
CN112424957B (en) * | 2018-05-18 | 2024-09-06 | 罗门哈斯电子材料有限责任公司 | Method for producing LEDs by one-step film lamination |
JP7428323B2 (en) | 2018-06-12 | 2024-02-06 | 国立研究開発法人産業技術総合研究所 | light emitting device |
JP7337527B2 (en) * | 2019-03-28 | 2023-09-04 | デンカ株式会社 | Plant-growing member and plant-growing method |
JP7368033B1 (en) * | 2023-06-13 | 2023-10-24 | エルティーアイ株式会社 | Luminescent sheet and its manufacturing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4357854B2 (en) * | 2003-02-28 | 2009-11-04 | 大日本印刷株式会社 | Optical filter and organic EL display using the same |
JP2009070892A (en) * | 2007-09-11 | 2009-04-02 | Citizen Holdings Co Ltd | Led light source |
WO2010068460A2 (en) * | 2008-12-12 | 2010-06-17 | 3M Innovative Properties Company | Particle reflow etching |
JP2011116904A (en) * | 2009-12-04 | 2011-06-16 | Sumitomo Bakelite Co Ltd | Method for producing composite particle, composite particle, resin composition, wavelength conversion layer, and photovoltaic device |
JP5751154B2 (en) * | 2011-12-14 | 2015-07-22 | 豊田合成株式会社 | Light emitting device and manufacturing method thereof |
JP2015038978A (en) * | 2013-07-17 | 2015-02-26 | 日本電気硝子株式会社 | Wavelength conversion member |
-
2014
- 2014-01-09 JP JP2014002158A patent/JP6351265B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015130459A (en) | 2015-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6351265B2 (en) | Fluorescent substance-containing multilayer film sheet and light emitting device | |
JP5105132B1 (en) | Semiconductor light emitting device, semiconductor light emitting system, and lighting fixture | |
JP5121736B2 (en) | White light emitting lamp and lighting device using the same | |
US8035287B2 (en) | Fluorescent lighting creating white light | |
KR101008762B1 (en) | Light-emitting device and method for manufacturing the same | |
JP6275829B2 (en) | Light emitting device | |
JP6365159B2 (en) | Light emitting device | |
US20060181192A1 (en) | White LEDs with tailorable color temperature | |
WO2011129429A1 (en) | Led light-emitting device | |
JP2008541422A (en) | Method for manufacturing white light-emitting diode using phosphor | |
JP6541638B2 (en) | Phosphor-containing multilayer film sheet and light emitting device | |
KR20080031409A (en) | Electroluminescent device | |
JP2008270781A (en) | Light-emitting device | |
JP2015211150A (en) | Wavelength conversion member and illumination device using the same | |
JP2007059898A (en) | Semiconductor light-emitting device | |
JP2010270196A (en) | Phosphor, method for manufacturing phosphor, phosphor-containing composition, light-emitting device, lighting apparatus, image display, and fluorescent paint | |
JP2018518823A (en) | Blue light emitting phosphor-converted LED with blue pigment | |
US10533729B2 (en) | Light source with LED chip and luminophore layer | |
JP2017017132A (en) | Light-emitting device | |
JP6637449B2 (en) | Oxyfluoride phosphor composition and lighting device therefor | |
JP2013012778A (en) | Lighting apparatus | |
JP2021170631A (en) | Wavelength conversion member and method for manufacturing the same | |
JP2007059758A (en) | Light emitting device | |
KR101772656B1 (en) | Phosphor and light emitting device | |
EP2781574A1 (en) | Luminescent composite material and light-emitting device based thereon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180605 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6351265 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |