JP6350686B2 - Austenitic stainless steel - Google Patents
Austenitic stainless steel Download PDFInfo
- Publication number
- JP6350686B2 JP6350686B2 JP2017009846A JP2017009846A JP6350686B2 JP 6350686 B2 JP6350686 B2 JP 6350686B2 JP 2017009846 A JP2017009846 A JP 2017009846A JP 2017009846 A JP2017009846 A JP 2017009846A JP 6350686 B2 JP6350686 B2 JP 6350686B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- amount
- steel
- temperature strength
- stress corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、オーステナイトステンレス鋼に関する。 The present invention relates to austenitic stainless steel.
日本国内では、1990年代から、ボイラの高温高圧化が進み、蒸気温度が600℃を超える超超臨界圧(USC:Ultra Super Critical power)ボイラが主流となった。
一方、欧州、中国をはじめ、世界のボイラにおいても、地球環境対策のCO2削減の観点から、高効率のUSCボイラが次々建設されている。
ボイラ内で高温高圧蒸気を生成する熱交換器管及びボイラの配管に用いる素材鋼としては、高温強度が高い鋼材が嘱望され、近年、種々の鋼材が開発されている。
In Japan, since the 1990s, high-temperature and high-pressure boilers have progressed, and super super critical power (USC) boilers with steam temperatures exceeding 600 ° C. have become mainstream.
On the other hand, Europe, including China, even in the world of the boiler, from the point of view of CO 2 reduction of global environmental protection, high efficiency of USC boiler has been one after another construction.
As a material steel used for heat exchanger pipes and boiler pipes that generate high-temperature and high-pressure steam in a boiler, steel materials having high high-temperature strength are desired, and various steel materials have been developed in recent years.
例えば、特許文献1には、高温強度に優れ、かつ、耐水蒸気酸化性に優れた18Cr系オーステナイトステンレス鋼が開示されている。
特許文献2には、耐高温腐食熱疲労割れ性に優れたオーステナイトステンレス鋼が開示されている。
特許文献3には、高温強度と耐繰返し酸化特性に優れた耐熱オーステナイトステンレス鋼が開示されている。
For example, Patent Document 1 discloses 18Cr austenitic stainless steel having excellent high-temperature strength and excellent steam oxidation resistance.
Patent Document 2 discloses an austenitic stainless steel excellent in high temperature corrosion thermal fatigue crack resistance.
Patent Document 3 discloses a heat-resistant austenitic stainless steel excellent in high-temperature strength and resistance to repeated oxidation.
特許文献4には、高温環境に長期間晒された後でも優れた靱性を有するオーステナイトステンレス鋼が開示されている。
特許文献5には、800℃×600時間でのクリープ破断強度が100MPa以上の高強度オーステナイトステンレス鋼が開示されている。
Patent Document 4 discloses an austenitic stainless steel having excellent toughness even after being exposed to a high temperature environment for a long time.
Patent Document 5 discloses a high-strength austenitic stainless steel having a creep rupture strength at 800 ° C. × 600 hours of 100 MPa or more.
特許文献6には、低炭素ステンレス鋼の低強度を補うため、多量のN(窒素)添加による固溶強化と窒化物の析出強化を活用して高温強度を確保する方法(多量N添加法)が開示されている。 Patent Document 6 describes a method for securing high-temperature strength by utilizing solid solution strengthening and precipitation strengthening of nitride by adding a large amount of N (nitrogen) to compensate for the low strength of low carbon stainless steel (a large amount of N addition method). Is disclosed.
一般に、高温域で用いる熱交換器管及び高温域で用いるボイラの配管に用いられる素材鋼の成分組成の設計においては、高温強度(例えばクリープ強度)、高温耐食性、耐水蒸気酸化特性、耐熱疲労特性などが重視されている一方、常温から350℃近傍までの温度領域における耐食性(例えば、水中での耐応力腐食割れ性)は重視されていない。その理由は、常温から350℃近傍までの温度領域における耐食性は、従来から施工技術又は運転管理技術で対処しているためである。 In general, in the design of the composition of the material steel used for heat exchanger tubes used in high temperature regions and boiler piping used in high temperature regions, high temperature strength (for example, creep strength), high temperature corrosion resistance, steam oxidation resistance, heat fatigue resistance On the other hand, corrosion resistance (for example, stress corrosion cracking resistance in water) in a temperature range from room temperature to around 350 ° C. is not emphasized. The reason is that the corrosion resistance in the temperature range from room temperature to around 350 ° C. has conventionally been dealt with by the construction technique or the operation management technique.
しかし、近年、溶接部、曲げ加工部などの加熱施工部分における、不均質な金属組織又は不均一な炭化物の析出に起因し、常温及び低温(約350℃以下)の水中で、応力腐食割れが発生することが大きな問題になっている。
例えば、ボイラの水圧試験時やボイラの運転を止める場合において、熱交換器管の内部に水が長時間滞留することになり、この時、応力腐食割れが顕著に発生する場合がある。
However, in recent years, stress corrosion cracking has occurred in water at normal temperature and low temperature (about 350 ° C or less) due to non-uniform metal structure or precipitation of non-uniform carbides in heat-treated parts such as welds and bending parts. It has become a big problem.
For example, when a boiler water pressure test is performed or when the operation of the boiler is stopped, water stays in the heat exchanger tube for a long time, and at this time, stress corrosion cracking may occur remarkably.
ステンレス鋼の応力腐食割れは、結晶粒界近傍における、Cr系炭化物の析出又はCr濃度の低い層(Cr欠乏層)の生成により、結晶粒界が選択的に腐食され易くなることで発生する。 The stress corrosion cracking of stainless steel occurs due to the selective precipitation of Cr-based carbides or the formation of a low Cr concentration layer (Cr-deficient layer) in the vicinity of the crystal grain boundary, which tends to be selectively corroded.
18Cr系オーステナイトステンレス鋼の応力腐食割れを防止する方法としては、従来から、C量を低減し、粒界Cr炭化物の生成を抑制する方法(低炭素化法)、
粒界Cr炭化物の生成を抑制するため、Crより炭化物形成能が高いNb及びTiを添加してMC炭化物を形成し、Cを固定する方法(安定化熱処理法)、Crを22%以上添加してCr欠乏層の生成を抑制し、粒界の選択腐食を抑制する方法(多量Cr添加法)、
などが知られている。
As a method for preventing stress corrosion cracking of 18Cr austenitic stainless steel, conventionally, a method of reducing the amount of C and suppressing the formation of grain boundary Cr carbide (low carbonization method),
In order to suppress the formation of grain boundary Cr carbide, Nb and Ti, which have higher carbide forming ability than Cr, are added to form MC carbide, and C is fixed (stabilized heat treatment method). To suppress the formation of Cr-deficient layers and to suppress selective corrosion at grain boundaries (a large amount of Cr addition method),
Etc. are known.
しかし、いずれの方法においても問題がある。
低炭素化法においては、高温強度に有効な炭化物が生成せず、高温強度が低下する傾向がある。
安定化熱処理法においては、950℃程度の低い温度で安定化熱処理をしなければならず、高温強度、特に、クリープ強度が損なわれる傾向がある。
多量Cr添加法においては、シグマ相などの脆化相が多量に生成するので、金属組織の安定化及び高温強度の維持のため、高価なNiを多量に添加する必要があり、素材コストが大幅に上昇する傾向がある。
However, both methods have problems.
In the low carbonization method, carbides effective for high temperature strength are not generated, and high temperature strength tends to decrease.
In the stabilization heat treatment method, the stabilization heat treatment must be performed at a temperature as low as about 950 ° C., and the high-temperature strength, particularly the creep strength, tends to be impaired.
In a large amount of Cr addition method, since a large amount of brittle phases such as sigma phase are generated, it is necessary to add a large amount of expensive Ni in order to stabilize the metal structure and maintain high temperature strength. Tend to rise.
特許文献6に記載された方法(多量N添加法)は、上記の従来法に替わる方法として考案された方法である。
この多量N添加法は、低炭素ステンレス鋼の低強度を補うため、多量のN添加による固溶強化及び窒化物の析出強化を活用し、高温強度を確保する方法である。
The method described in Patent Document 6 (a large amount of N addition method) is a method devised as a method that replaces the above-described conventional method.
In order to compensate for the low strength of low carbon stainless steel, the large amount N addition method is a method of securing high temperature strength by utilizing solid solution strengthening and nitride precipitation strengthening by adding a large amount of N.
しかし、特許文献6の方法(多量N添加法)では、多量の窒化物が生成して、かえって、応力腐食割れが発生するという問題、または、700℃以上の高温域で十分な高温強度が得られないという問題があることが判明した。 However, in the method of Patent Document 6 (a method of adding a large amount of N), a large amount of nitride is generated and, on the contrary, a problem of stress corrosion cracking occurs, or sufficient high-temperature strength is obtained at a high temperature range of 700 ° C. or higher. It turned out that there was a problem that was not possible.
上述した事情により、18Cr系オーステナイトステンレス鋼において、従来の、低炭素化法、安定化熱処理法、多量Cr添加法、及び多量N添加法に依らずに、優れた高温強度及び耐応力腐食割れ性を確保することが求められている。
本発明の目的は、18Cr系オーステナイトステンレス鋼であって、優れた高温強度及び耐応力腐食割れ性が確保されたオーステナイトステンレス鋼を提供することである。
Due to the circumstances described above, 18Cr-based austenitic stainless steel has excellent high-temperature strength and stress corrosion cracking resistance regardless of the conventional low carbonization method, stabilized heat treatment method, large amount Cr addition method, and large amount N addition method. Is required to ensure.
An object of the present invention is to provide an 18Cr-based austenitic stainless steel that has excellent high-temperature strength and stress corrosion cracking resistance.
上記課題を解決するための手段には、以下の態様が含まれる。 Means for solving the above problems include the following aspects.
<1> 成分組成が、質量%で、
C :0.05〜0.13%、
Si:0.10〜1.00%、
Mn:0.10〜3.00%、
P :0.040%以下、
S :0.020%以下、
Cr:17.00〜19.00%、
Ni:12.00〜15.00%、
Cu:2.00〜4.00%、
Mo:0.01〜2.00%、
W :2.00〜5.00%、
2Mo+W:2.50〜5.00%、
V :0.01〜0.40%、
Ti:0.05〜0.50%、
Nb:0.15〜0.70%、
Al:0.001〜0.040%、
B :0.0010〜0.0100%
N :0.0010〜0.0100%、
Nd:0.001〜0.20%、
Zr:0.002%以下、
Bi:0.001%以下、
Sn:0.010%以下、
Sb:0.010%以下、
Pb:0.001%以下、
As:0.001%以下、
Zr+Bi+Sn+Sb+Pb+As:0.020%以下、
O :0.0090%以下、
Co:0.80%以下、
Ca:0.20%以下、
Mg:0.20%以下、
Nd以外のランタノイド元素、Y、Sc、Ta、Hf、及びReの1種又は2種以上:合計で0.20%以下、並びに、
残部:Fe及び不純物からなり、
下記式(1)で定義する有効M量Meffが、0.002〜0.250%であるオーステナイトステンレス鋼。
<1> Ingredient composition is mass%,
C: 0.05 to 0.13%,
Si: 0.10 to 1.00%,
Mn: 0.10 to 3.00%,
P: 0.040% or less,
S: 0.020% or less,
Cr: 17.00-19.00%,
Ni: 12.00 to 15.00%,
Cu: 2.00 to 4.00%,
Mo: 0.01-2.00%,
W: 2.00 to 5.00%
2Mo + W: 2.50 to 5.00%,
V: 0.01-0.40%,
Ti: 0.05 to 0.50%,
Nb: 0.15 to 0.70%,
Al: 0.001 to 0.040%,
B: 0.0010 to 0.0100%
N: 0.0010 to 0.0100%,
Nd: 0.001 to 0.20%
Zr: 0.002% or less,
Bi: 0.001% or less,
Sn: 0.010% or less,
Sb: 0.010% or less,
Pb: 0.001% or less,
As: 0.001% or less,
Zr + Bi + Sn + Sb + Pb + As: 0.020% or less,
O: 0.0090% or less,
Co: 0.80% or less,
Ca: 0.20% or less,
Mg: 0.20% or less,
One or more of lanthanoid elements other than Nd, Y, Sc, Ta, Hf, and Re: 0.20% or less in total, and
The balance: Fe and impurities,
An austenitic stainless steel having an effective M amount Meff defined by the following formula (1) of 0.002 to 0.250%.
有効M量Meff =Nd+13・(B−11・N/14)−1.6・Zr … 式(1)
(式(1)中、各元素記号は、各元素の含有量(質量%)を示す。)
Effective M amount Meff = Nd + 13 · (B-11 · N / 14) −1.6 · Zr (1)
(In the formula (1), each element symbol indicates the content (% by mass) of each element.)
<2> 前記成分組成が、質量%で、Co:0.01〜0.80%、Ca:0.0001〜0.20%、及び、Mg:0.0005〜0.20%の1種又は2種以上を含む<1>に記載のオーステナイトステンレス鋼。
<3> 前記成分組成が、質量%で、Nd以外のランタノイド元素、Y、Sc、Ta、Hf、及びReの1種又は2種以上を、合計で0.001〜0.20%含む<1>又は<2>に記載のオーステナイトステンレス鋼。
<4> 700℃、1万時間のクリープ破断強度が140MPa以上である<1>〜<3>のいずれか1項に記載のオーステナイトステンレス鋼。
<2> The component composition is one by weight in terms of Co: 0.01 to 0.80%, Ca: 0.0001 to 0.20%, and Mg: 0.0005 to 0.20%. The austenitic stainless steel as described in <1> containing 2 or more types.
<3> The component composition contains 0.001 to 0.20% in total of one or more of lanthanoid elements other than Nd, Y, Sc, Ta, Hf, and Re in mass%. > Or <2> The austenitic stainless steel according to <2>.
<4> The austenitic stainless steel according to any one of <1> to <3>, wherein the creep rupture strength at 700 ° C. and 10,000 hours is 140 MPa or more.
本発明によれば、18Cr系オーステナイトステンレス鋼であって、優れた高温強度及び耐応力腐食割れ性が確保されたオーステナイトステンレス鋼が提供される。 According to the present invention, an austenitic stainless steel which is 18Cr austenitic stainless steel and has excellent high temperature strength and stress corrosion cracking resistance is provided.
以下、本発明の実施形態について説明する。
本明細書中において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
また、本明細書中において、元素の含有量を示す「%」及び有効M量Meffの値を示す「%」は、いずれも「質量%」を意味する。
また、本明細書中において、C(炭素)の含有量を、「C量」と表記することがある。他の元素の含有量についても同様に表記することがある。
Hereinafter, embodiments of the present invention will be described.
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, “%” indicating the element content and “%” indicating the value of the effective M amount Meff mean “mass%”.
In the present specification, the content of C (carbon) may be expressed as “C amount”. The content of other elements may be expressed in the same manner.
本実施形態のオーステナイトステンレス鋼(以下、「本実施形態の鋼」ともいう)は、成分組成が、質量%で、C:0.05〜0.13%、Si:0.10〜1.00%、Mn:0.10〜3.00%、P:0.040%以下、S:0.020%以下、Cr:17.00〜19.00%、Ni:12.00〜15.00%、Cu:2.00〜4.00%、Mo:0.01〜2.00%、W:2.00〜5.00%、2Mo+W:2.50〜5.00%、V:0.01〜0.40%、Ti:0.05〜0.50%、Nb:0.15〜0.70%、Al:0.001〜0.040%、B:0.0010〜0.0100%、N:0.0010〜0.0100%、Nd:0.001〜0.20%、Zr:0.002%以下、Bi:0.001%以下、Sn:0.010%以下、Sb:0.010%以下、Pb:0.001%以下、As:0.001%以下、Zr+Bi+Sn+Sb+Pb+As:0.020%以下、O:0.0090%以下、Co:0.80%以下、Ca:0.20%以下、Mg:0.20%以下、Nd以外のランタノイド元素、Y、Sc、Ta、Hf、及びReの1種又は2種以上:合計で0.20%以下、並びに、残部:Fe及び不純物からなり、下記式(1)で定義する有効M量Meffが0.0001〜0.25%である。 The austenitic stainless steel of this embodiment (hereinafter, also referred to as “steel of this embodiment”) has a component composition of mass%, C: 0.05 to 0.13%, Si: 0.10 to 1.00. %, Mn: 0.10 to 3.00%, P: 0.040% or less, S: 0.020% or less, Cr: 17.00 to 19.00%, Ni: 12.00 to 15.00% Cu: 2.00 to 4.00%, Mo: 0.01 to 2.00%, W: 2.00 to 5.00%, 2Mo + W: 2.50 to 5.00%, V: 0.01 To 0.40%, Ti: 0.05 to 0.50%, Nb: 0.15 to 0.70%, Al: 0.001 to 0.040%, B: 0.0010 to 0.0100%, N: 0.0010 to 0.0100%, Nd: 0.001 to 0.20%, Zr: 0.002% or less, Bi: 0.001% or less, n: 0.010% or less, Sb: 0.010% or less, Pb: 0.001% or less, As: 0.001% or less, Zr + Bi + Sn + Sb + Pb + As: 0.020% or less, O: 0.0090% or less, Co: 0.80% or less, Ca: 0.20% or less, Mg: 0.20% or less, one or more of lanthanoid elements other than Nd, Y, Sc, Ta, Hf, and Re: It consists of 20% or less and the balance: Fe and impurities, and the effective M amount Meff defined by the following formula (1) is 0.0001 to 0.25%.
有効M量Meff =Nd+13・(B−11・N/14)−1.6・Zr … 式(1)
(式(1)中、各元素記号は、各元素の含有量(質量%)を示す。)
Effective M amount Meff = Nd + 13 · (B-11 · N / 14) −1.6 · Zr (1)
(In the formula (1), each element symbol indicates the content (% by mass) of each element.)
本実施形態の鋼の化学組成は、Cr:17.00〜19.00%を含有する。
即ち、本実施形態の鋼は、18Cr系オーステナイトステンレス鋼に属する。
前述したとおり、18Cr系オーステナイトステンレス鋼において、従来の、低炭素化法、安定化熱処理法、多量Cr添加法、及び多量N添加法に依らずに、優れた高温強度及び耐応力腐食割れ性を確保することが求められている。
The chemical composition of the steel of this embodiment contains Cr: 17.00-19.00%.
That is, the steel of this embodiment belongs to 18Cr austenitic stainless steel.
As described above, 18Cr-based austenitic stainless steel has excellent high-temperature strength and stress corrosion cracking resistance regardless of the conventional low carbonization method, stabilized heat treatment method, large amount Cr addition method, and large amount N addition method. It is required to ensure.
本実施形態の鋼によれば、従来の、低炭素化法、安定化熱処理法、多量Cr添加法、及び多量N添加法に依らずに、優れた高温強度及び耐応力腐食割れ性が確保される。
本実施形態の鋼により、かかる効果が奏される理由は、以下のように推測される。但し、本発明は以下の推測によって限定されることはない。
According to the steel of this embodiment, excellent high-temperature strength and stress corrosion cracking resistance are ensured regardless of the conventional low carbonization method, stabilization heat treatment method, large amount Cr addition method, and large amount N addition method. The
The reason why this effect is achieved by the steel of this embodiment is presumed as follows. However, the present invention is not limited by the following assumptions.
本実施形態の鋼では、Nd及びBを、それぞれ上記含有量にて複合添加し、更に、有効M量Meffが上記範囲となるように調整することにより、粒界清浄化及び強度向上が図られる。
更に、本実施形態の鋼では、不純物である、Zr、Bi、Sn、Sb、Pb、及びAs(以下、これらを「不純物6元素」ともいう)の含有量を上記範囲に制限することにより、高純度化が図られる。
上述した、粒界清浄化、強度向上、及び高純度化により、低炭素化法、安定化熱処理法、及び多量Cr添加法のいずれにも依らずに、優れた高温強度及び耐応力腐食割れ性が確保されると考えられる。
In the steel of this embodiment, Nd and B are added together at the above contents, and further, the effective M amount Meff is adjusted to be in the above range, whereby grain boundary cleaning and strength improvement are achieved. .
Furthermore, in the steel of the present embodiment, by limiting the contents of impurities Zr, Bi, Sn, Sb, Pb, and As (hereinafter also referred to as “impurity 6 elements”) to the above range, High purity is achieved.
The above-described grain boundary cleaning, strength improvement, and high purity make it possible to achieve excellent high-temperature strength and stress corrosion cracking resistance regardless of any of the low carbonization method, stabilization heat treatment method, and large amount of Cr addition method. Is considered to be secured.
更に、本実施形態の鋼では、N(窒素)を可能な限り(具体的には0.0100%以下)に低減し、Wを上記の量添加することにより、微細炭化物の析出及び微細で安定なラーベス相の析出による析出強化が可能となると考えられる。
その結果、多量N添加法(例えば、特許文献6参照)に依らずに、18Cr系オーステナイトステンレス鋼において、優れた高温強度が確保されると考えられる。
この知見は、従来常識に反する新規な知見である。
Furthermore, in the steel of this embodiment, N (nitrogen) is reduced as much as possible (specifically, 0.0100% or less), and by adding the above amount of W, fine carbide precipitation and fine and stable It is considered that precipitation strengthening by the precipitation of the Laves phase becomes possible.
As a result, it is considered that excellent high-temperature strength is secured in the 18Cr austenitic stainless steel without depending on a large amount of N addition method (for example, see Patent Document 6).
This finding is a novel finding contrary to conventional common sense.
通常、炭化物及びラーベス相は、窒化物の周囲、及び、結晶粒界の窒化物に優先的に析出して、高温強度及び耐食性を損なう。即ち、窒化物が存在すると、微細炭化物の析出及び微細で安定なラーベス相の析出はいずれも困難となり、高温強度は向上しない。特に、粗大なZr窒化物が存在すると、微細炭化物の析出及び微細で安定なラーベス相の析出はより困難になるので、極力、N及びZrを低減する必要がある。
しかし、極微量のNは、高温強度の向上に寄与する微細炭化物の析出核を形成する。このため、本実施形態の鋼において、Nは、不純物元素ではなく、有用元素として、極低量域(具体的には、0.0010〜0.0100%)で管理する。
本実施形態の鋼では、N量を0.0010〜0.0100%とすることにより、微細炭化物による析出強化及び微細で安定なラーベス相の析出強化の両方が効果的に達成され、その結果、700℃以上の温度域で、高温強度を確保し、金属組織を安定化することができる。
即ち、本実施形態の鋼では、窒化物の析出強化に依らないで、高強度化を達成でき、かつ、脆化相等の生成を伴わずに、金属組織の安定化を達成できる。この手法は、従来技術にない手法である。
In general, carbides and Laves phases are preferentially precipitated around nitrides and nitrides at grain boundaries, thereby impairing high temperature strength and corrosion resistance. That is, if nitride is present, precipitation of fine carbide and precipitation of a fine and stable Laves phase are difficult, and the high-temperature strength is not improved. In particular, when coarse Zr nitride is present, the precipitation of fine carbides and the precipitation of fine and stable Laves phases become more difficult, so it is necessary to reduce N and Zr as much as possible.
However, a very small amount of N forms fine carbide precipitation nuclei that contribute to the improvement of high-temperature strength. For this reason, in the steel of this embodiment, N is managed as a useful element, not an impurity element, in an extremely low amount region (specifically, 0.0010 to 0.0100%).
In the steel of this embodiment, by setting the N amount to 0.0010 to 0.0100%, both precipitation strengthening by fine carbides and precipitation strengthening of a fine and stable Laves phase are effectively achieved. In a temperature range of 700 ° C. or higher, high-temperature strength can be secured and the metal structure can be stabilized.
That is, in the steel of this embodiment, high strength can be achieved without depending on precipitation strengthening of nitrides, and stabilization of the metal structure can be achieved without the generation of an embrittlement phase or the like. This method is a method not found in the prior art.
以下、まず、本実施形態の鋼の化学組成及びその好ましい態様について説明し、引き続き、有効M量Meff(式(1))等について説明する。 Hereinafter, first, the chemical composition of the steel of the present embodiment and a preferred aspect thereof will be described, and then the effective M amount Meff (formula (1)) and the like will be described.
C:0.05〜0.13%
Cは、炭化物の生成及びオーステナイト組織の安定化、さらには、高温強度の向上及び高温での金属組織の安定化に不可欠な元素である。
本実施形態の鋼は、N添加による強化を用いず、また、Cを低減しなくても応力腐食割れを防止できる。
但し、C量が0.05%未満であると、高温クリープ強度の向上と高温での金属組織の安定化とが難しくなるので、C量は0.05%以上とする。C量は、好ましくは、0.06%以上である。
C: 0.05 to 0.13%
C is an element indispensable for the formation of carbides and stabilization of the austenite structure, and further improvement of high temperature strength and stabilization of the metal structure at high temperature.
The steel of this embodiment can prevent stress corrosion cracking without using N addition strengthening and without reducing C.
However, if the C content is less than 0.05%, it is difficult to improve the high-temperature creep strength and stabilize the metal structure at a high temperature, so the C content is set to 0.05% or more. The amount of C is preferably 0.06% or more.
一方、C量が0.13%を超えると、粗大なCr系炭化物が結晶粒界に析出し、応力腐食割れ又は溶接割れの原因となり、また、靭性が低下する。このため、C量は、0.13%以下とする。C量は、好ましくは0.12%以下である。 On the other hand, if the C content exceeds 0.13%, coarse Cr carbide precipitates at the grain boundaries, causing stress corrosion cracking or weld cracking, and lowering toughness. For this reason, the amount of C is made into 0.13% or less. The amount of C is preferably 0.12% or less.
Si:0.10〜1.00%
Siは、製鋼時に脱酸剤として機能し、また、高温における水蒸気酸化を防止する元素である。しかし、Si量が0.10%未満では、添加効果が十分に得られないので、Si量は0.10%以上とする。Si量は、好ましくは0.20%以上である。
Si: 0.10 to 1.00%
Si is an element that functions as a deoxidizer during steelmaking and prevents steam oxidation at high temperatures. However, if the Si amount is less than 0.10%, the effect of addition cannot be obtained sufficiently, so the Si amount is set to 0.10% or more. The amount of Si is preferably 0.20% or more.
一方、Si量が1.00%を超えると、加工性が低下するとともに、高温でシグマ相などの脆化相が析出するので、Si量は1.00%以下とする。Si量は、好ましくは0.80%以下である。 On the other hand, if the Si content exceeds 1.00%, the workability deteriorates and an embrittlement phase such as a sigma phase precipitates at a high temperature, so the Si content is set to 1.00% or less. The amount of Si is preferably 0.80% or less.
Mn:0.10〜3.00%
Mnは、不純物元素のSとMnSを形成してSを無害化し、熱間加工性の向上に寄与するとともに、高温での金属組織の安定化に寄与する元素である。
しかし、Mn量が0.10%未満では、添加効果が十分に得られないので、Mn量は0.10%以上とする。Mn量は、好ましくは0.20%以上である。
一方、Mn量が3.00%を超えると、加工性と溶接性が低下するので、Mn量は3.00%以下とする。Mn量は、好ましくは2.60%以下である。
Mn: 0.10 to 3.00%
Mn is an element that contributes to the stabilization of the metal structure at high temperatures, while forming impurity elements S and MnS to detoxify S and contribute to improving hot workability.
However, if the Mn content is less than 0.10%, the effect of addition cannot be obtained sufficiently, so the Mn content is 0.10% or more. The amount of Mn is preferably 0.20% or more.
On the other hand, if the amount of Mn exceeds 3.00%, workability and weldability deteriorate, so the amount of Mn is set to 3.00% or less. The amount of Mn is preferably 2.60% or less.
P:0.040%以下
Pは、不純物元素であり、加工性及び溶接性を阻害する元素である。
P量が0.040%を超えると、加工性及び溶接性が著しく低下する。このため、P量は0.040%以下とする。P量は、好ましくは0.030%以下であり、より好ましくは0.020%以下である。
P: 0.040% or less P is an impurity element and is an element that hinders workability and weldability.
When the amount of P exceeds 0.040%, workability and weldability are significantly reduced. For this reason, the amount of P is made into 0.040% or less. The amount of P is preferably 0.030% or less, and more preferably 0.020% or less.
Pは、少ないほど好ましいので、P量は0%であってもよい。
しかし、Pは、鋼原料(原料鉱石、スクラップ等)から不可避的に混入する場合があり、P量を0.001%未満に低減すると、製造コストが大幅に上昇する。このため、製造コストの観点から、P量は、0.001%以上であってもよい。
The smaller the amount of P, the better. Therefore, the amount of P may be 0%.
However, P may be inevitably mixed from a steel raw material (raw ore, scrap, etc.), and if the amount of P is reduced to less than 0.001%, the manufacturing cost increases significantly. For this reason, from the viewpoint of manufacturing cost, the P amount may be 0.001% or more.
S:0.020%以下
Sは、不純物元素であり、加工性、溶接性、及び、耐応力腐食割れ性を阻害する元素である。
S量が0.020%を超えると、加工性、溶接性、及び、耐応力腐食割れ性が著しく低下する。このため、S量は、0.020%以下とする。
溶接時の湯流れ改善するためSを添加する場合があるが、その場合も、0.020%以下添加する。S量は、好ましくは0.010%以下である。
S: 0.020% or less S is an impurity element, and is an element that inhibits workability, weldability, and stress corrosion cracking resistance.
When the amount of S exceeds 0.020%, workability, weldability, and stress corrosion cracking resistance are significantly reduced. For this reason, the amount of S is made into 0.020% or less.
In order to improve the hot water flow during welding, S may be added, but in that case, 0.020% or less is also added. The amount of S is preferably 0.010% or less.
Sは、少ないほど好ましいため、S量は0%であってもよい。
しかし、Sは、鋼原料(原料鉱石、スクラップ等)から不可避的に混入する場合があり、S量を0.001%未満に低減すると、製造コストが大幅に上昇する。このため、製造コストの観点から、S量は、0.001%以上であってもよい。
Since S is preferably as small as possible, the S amount may be 0%.
However, S may be inevitably mixed from a steel raw material (raw ore, scrap, etc.), and if the amount of S is reduced to less than 0.001%, the manufacturing cost increases significantly. For this reason, 0.001% or more may be sufficient as S amount from a viewpoint of manufacturing cost.
Cr:17.00〜19.00%
Crは、18Cr系オーステナイトステンレス鋼の主要元素として、耐酸化性、耐水蒸気酸化性、耐応力腐食割れ性の向上、及び、Cr炭化物による強度や金属組織の安定化に寄与する元素である。
Cr量が17.00%未満では、添加効果が十分に得られない。このため、Cr量は17.00%以上とする。Cr量は、好ましくは17.30%以上であり、より好ましくは17.50%以上である。
Cr: 17.00 to 19.00%
Cr is an element that contributes to the improvement of oxidation resistance, steam oxidation resistance, stress corrosion cracking resistance, and strength and metal structure stabilization due to Cr carbide, as the main elements of 18Cr austenitic stainless steel.
If the Cr content is less than 17.00%, the effect of addition cannot be obtained sufficiently. For this reason, the Cr content is set to 17.00% or more. The amount of Cr is preferably 17.30% or more, and more preferably 17.50% or more.
一方、Cr量が19.00%を超えると、オーステナイト組織の安定性を維持するために、多量のNiが必要となる他、脆化相が生成し、高温強度や靭性が低下する。このため、Cr量は19.00%以下とする。Cr量は、好ましくは18.80%以下であり、より好ましくは18.60%以下である。 On the other hand, if the Cr content exceeds 19.00%, a large amount of Ni is required to maintain the stability of the austenite structure, and an embrittled phase is generated, resulting in a decrease in high-temperature strength and toughness. For this reason, the Cr amount is set to 19.00% or less. The amount of Cr is preferably 18.80% or less, and more preferably 18.60% or less.
Ni:12.00〜15.00%
Niは、オーステナイト生成元素であり、18Cr系オーステナイトステンレス鋼の主要元素として、高温強度及び加工性の向上、並びに、高温での金属組織の安定化に寄与する元素である。
Ni: 12.00 to 15.00%
Ni is an austenite-forming element, and is an element that contributes to improvement of high-temperature strength and workability and stabilization of the metal structure at high temperature as a main element of 18Cr-based austenitic stainless steel.
Ni量が12.00%未満では、添加効果が十分に得られず、また、Cr、W、Moなどのフェライト生成元素の量とのバランスを欠いて、高温で脆化相(シグマ相など)の生成を促進する。このため、Ni量は、12.00%以上とする。Ni量は、好ましくは12.50%以上である。 When the amount of Ni is less than 12.00%, the effect of addition is not sufficiently obtained, and the amount of Ni, such as Cr, W, and Mo, is lacking in balance with the amount of ferrite-forming elements, and the embrittlement phase (sigma phase, etc.) Promote the generation of For this reason, the amount of Ni is made 12.00% or more. The amount of Ni is preferably 12.50% or more.
一方、Ni量が15.00%を超えると、高温強度と経済性が低下するので、15.00%以下とする。Ni量は、好ましくは14.90%以下であり、より好ましくは14.80%以下であり、更に好ましくは14.50%以下である。 On the other hand, if the Ni content exceeds 15.00%, the high-temperature strength and economy are lowered, so the content is made 15.00% or less. The amount of Ni is preferably 14.90% or less, more preferably 14.80% or less, and still more preferably 14.50% or less.
Cu:2.00〜4.00%
Cuは、微細で、かつ、高温で安定なCu相として析出し、高温強度の向上に寄与する元素である。
Cu量が2.00%未満では、添加効果が十分に得られないので、Cu量は2.00%以上とする。Cu量は、好ましくは2.20%以上であり、より好ましくは2.50%以上である。
Cu: 2.00 to 4.00%
Cu is an element that is fine and precipitates as a Cu phase that is stable at a high temperature and contributes to an increase in high-temperature strength.
If the amount of Cu is less than 2.00%, the effect of addition cannot be obtained sufficiently, so the amount of Cu is made 2.00% or more. The amount of Cu is preferably 2.20% or more, more preferably 2.50% or more.
一方、Cu量が4.00%を超えると、加工性、クリープ延性、及び、強度が低下する。このため、Cu量は4.00%以下とする。Cu量は、好ましくは3.90%以下であり、より好ましくは3.80%以下であり、更に好ましくは3.50%以下である。 On the other hand, when the amount of Cu exceeds 4.00%, workability, creep ductility, and strength decrease. Therefore, the Cu amount is 4.00% or less. The amount of Cu is preferably 3.90% or less, more preferably 3.80% or less, and still more preferably 3.50% or less.
Mo:0.01〜2.00%
Moは、耐食性、高温強度、及び、耐応力腐食割れ性の向上に不可欠な元素である。また、Moは、Wとの複合添加による相乗効果で、高温で長時間安定なラーベス相や炭化物の生成に寄与する元素である。
Mo: 0.01 to 2.00%
Mo is an element indispensable for improving corrosion resistance, high-temperature strength, and stress corrosion cracking resistance. Mo is an element that contributes to the formation of Laves phases and carbides that are stable at high temperatures for a long time due to the synergistic effect of the combined addition with W.
Mo量が0.01%未満では、添加効果が十分に得られないので、Moは0.01%以上とする。Mo量は、好ましくは0.02%以上である。 If the amount of Mo is less than 0.01%, the effect of addition cannot be sufficiently obtained, so Mo is made 0.01% or more. The amount of Mo is preferably 0.02% or more.
一方、Mo量が2.00%を超えると、脆化相が多量に生成し、加工性、高温強度、及び、靭性が低下するので、Moは2.00%以下とする。Mo量は、好ましくは1.80%以下であり、より好ましくは1.50%以下であり、更に好ましくは1.30%以下である。 On the other hand, if the Mo content exceeds 2.00%, a large amount of embrittlement phase is generated, and the workability, high-temperature strength, and toughness are reduced, so Mo is made 2.00% or less. The amount of Mo is preferably 1.80% or less, more preferably 1.50% or less, and still more preferably 1.30% or less.
W:2.00〜5.00%
Wは、耐食性、高温強度、及び、耐応力腐食割れ性の向上に不可欠な元素である。また、Moとの複合添加による相乗効果で、高温で長時間安定なラーベス相及び炭化物の析出に寄与する元素である。さらに、Wは、高温下での拡散がMoより遅いので、高温で、強度の安定的な長時間維持に寄与する元素である。
W: 2.00 to 5.00%
W is an element indispensable for improving corrosion resistance, high temperature strength, and stress corrosion cracking resistance. In addition, it is an element that contributes to the precipitation of Laves phase and carbides that are stable at high temperatures for a long time due to a synergistic effect by combined addition with Mo. Further, W is an element that contributes to stable long-term strength maintenance at a high temperature because diffusion at a higher temperature is slower than that of Mo.
W量が2.00%未満では、添加効果が十分に得られないので、W量は2.00%以上とする。W量は、好ましくは2.10%以上である。 If the amount of W is less than 2.00%, the effect of addition cannot be obtained sufficiently, so the amount of W is made 2.00% or more. The amount of W is preferably 2.10% or more.
一方、W量が5.00%を超えると、脆化相が多量に生成し、加工性及び強度が低下するので、W量は5.00%以下とする。W量は、好ましくは4.90%以下であり、より好ましくは4.80%以下であり、更に好ましくは4.70%以下である。 On the other hand, if the amount of W exceeds 5.00%, a large amount of embrittlement phase is generated, and the workability and strength are lowered. Therefore, the amount of W is made 5.00% or less. The amount of W is preferably 4.90% or less, more preferably 4.80% or less, and still more preferably 4.70% or less.
2Mo+W:2.50〜5.00%
Mo及びWの複合添加は、高温強度、耐応力腐食割れ性、及び、高温耐食性の向上に寄与する。2Mo+W(ここで、MoはMo量を表し、WはW量を表す。以下同じ。)が2.50%未満であると、複合添加による相乗効果が十分に得られない。このため、2Mo+Wは、2.50%以上とする。2Mo+Wは、好ましくは2.60%以上であり、より好ましくは2.80%以上であり、更に好ましくは3.00%以上である。
2Mo + W: 2.50 to 5.00%
The combined addition of Mo and W contributes to the improvement of high temperature strength, stress corrosion cracking resistance, and high temperature corrosion resistance. If 2Mo + W (where Mo represents the amount of Mo and W represents the amount of W. The same shall apply hereinafter) is less than 2.50%, the synergistic effect due to the composite addition cannot be sufficiently obtained. For this reason, 2Mo + W is set to 2.50% or more. 2Mo + W is preferably 2.60% or more, more preferably 2.80% or more, and further preferably 3.00% or more.
一方、2Mo+Wが5.00%を超えると、強度や靭性が低下し、また、高温での金属組織の安定性が低下する。このため、2Mo+Wは、5.00%以下とする。2Mo+Wは、好ましくは4.90%以下である。 On the other hand, when 2Mo + W exceeds 5.00%, the strength and toughness are lowered, and the stability of the metal structure at high temperatures is lowered. For this reason, 2Mo + W is 5.00% or less. 2Mo + W is preferably 4.90% or less.
V:0.01〜0.40%
Vは、Ti及びNbとともに、微細な炭化物を形成し、高温強度の向上に寄与する元素である。V量が0.01%未満では、添加効果が十分に得られないので、V量は、0.01%以上とする。V量は、好ましくは0.02%以上である。
V: 0.01-0.40%
V is an element that forms fine carbides together with Ti and Nb and contributes to the improvement of high-temperature strength. If the amount of V is less than 0.01%, the effect of addition cannot be obtained sufficiently, so the amount of V is set to 0.01% or more. The amount of V is preferably 0.02% or more.
一方、V量が0.40%を超えると、強度や耐応力腐食割れ性が低下するので、V量は0.40%以下とする。V量は、好ましくは0.38%以下である。 On the other hand, if the V content exceeds 0.40%, strength and stress corrosion cracking resistance deteriorate, so the V content is set to 0.40% or less. The amount of V is preferably 0.38% or less.
Ti:0.05〜0.50%
Tiは、V及びNbとともに、微細な炭化物を形成し、高温強度の向上に寄与するとともに、Cを固定して、結晶粒界におけるCr炭化物の析出を抑制し、耐応力腐食割れ性の向上に寄与する元素である。
Ti: 0.05 to 0.50%
Ti, together with V and Nb, forms fine carbides and contributes to the improvement of high-temperature strength, and also fixes C and suppresses precipitation of Cr carbides at grain boundaries, thereby improving stress corrosion cracking resistance. It is a contributing element.
従来のN添加のオーステナイトステンレス鋼では、窒化物が塊状に析出して、N添加の効果が有効に発現しないばかりか、粒界に粗大なCr炭化物が析出して耐応力腐食割れ性が低下する。
本発明者らは、18Cr系オーステナイトステンレス鋼において、N量を極低レベルに管理することによって、微細なTi炭化物の有用な作用効果が奏されること、具体的には、微細なTi炭化物を核として微細なラーベス相が析出し、その結果、鋼の高温強度が大きく向上することを知見した。
In conventional N-added austenitic stainless steel, nitride precipitates in a lump and the effect of N addition does not appear effectively, and coarse Cr carbide precipitates at the grain boundaries, reducing the stress corrosion cracking resistance. .
The present inventors have demonstrated that the useful effects of fine Ti carbides can be achieved by controlling the N content at an extremely low level in 18Cr austenitic stainless steel. Specifically, fine Ti carbides can be produced. It has been found that a fine Laves phase precipitates as a nucleus, and as a result, the high-temperature strength of the steel is greatly improved.
Ti量が0.05%未満では、添加効果が十分に得られないので、Ti量は0.05%以上とする。Nb、Vとの複合添加が好ましく、Ti量は、好ましくは0.10%以上である。 If the amount of Ti is less than 0.05%, the effect of addition cannot be obtained sufficiently, so the amount of Ti is set to 0.05% or more. Combined addition with Nb and V is preferred, and the Ti content is preferably 0.10% or more.
一方、Ti量が0.50%を超えると、塊状の析出物が析出し、強度、靭性、及び、耐応力腐食割れ性が低下するので、Ti量は0.50%以下とする。Ti量は、好ましくは0.45%以下である。 On the other hand, if the Ti content exceeds 0.50%, massive precipitates are deposited and the strength, toughness, and stress corrosion cracking resistance are deteriorated, so the Ti content is 0.50% or less. The amount of Ti is preferably 0.45% or less.
Nb:0.15〜0.70%
Nbは、V及びTiとともに、微細な炭化物を形成し、高温強度の向上に寄与するとともに、Cを固定して、結晶粒界におけるCr炭化物の析出を抑制し、耐応力腐食割れ性の向上に寄与する元素である。
また、Nbは、Tiと同様に、微細なラーベス相の析出による高温強度の向上に寄与する元素である。
Nb: 0.15 to 0.70%
Nb, together with V and Ti, forms fine carbides and contributes to the improvement of high-temperature strength, and also fixes C and suppresses the precipitation of Cr carbides at the grain boundaries, thereby improving the stress corrosion cracking resistance. It is a contributing element.
Nb, like Ti, is an element that contributes to the improvement of high-temperature strength due to the precipitation of a fine Laves phase.
Nb量が0.15%未満では、添加効果が十分に得られないので、Nb量は0.15%以上とする。Nb量は、好ましくは0.20%以上である。
一方、Nb量が0.70%を超えると、塊状の析出物が析出し、強度、靭性、及び、耐応力腐食割れ性が低下するので、Nb量は0.70%以下とする。Nb量は、好ましくは0.60%以下である。
If the Nb content is less than 0.15%, the effect of addition cannot be obtained sufficiently, so the Nb content is 0.15% or more. The Nb amount is preferably 0.20% or more.
On the other hand, if the amount of Nb exceeds 0.70%, massive precipitates are deposited, and the strength, toughness, and stress corrosion cracking resistance are reduced. Therefore, the amount of Nb is set to 0.70% or less. The Nb amount is preferably 0.60% or less.
Al:0.001〜0.040%
Alは、製鋼時、脱酸元素として機能し、鋼を清浄化する元素である。
Al量が0.001%未満では、鋼の清浄化を十分に達成できないので、Al量は0.001%以上とする。Al量は、好ましくは0.002%以上である。
Al: 0.001 to 0.040%
Al is an element that functions as a deoxidizing element during steelmaking and cleans steel.
If the Al amount is less than 0.001%, the steel cannot be sufficiently cleaned, so the Al amount is set to 0.001% or more. The amount of Al is preferably 0.002% or more.
一方、Al量が0.040%を超えると、非金属介在物が多量に生成し、耐応力腐食割れ性、高温強度、加工性、靭性、及び、高温下での金属組織の安定性が低下するので、Al量は0.040%以下とする。Al量は、好ましくは0.034%以下である。 On the other hand, when the Al content exceeds 0.040%, a large amount of non-metallic inclusions are generated, and the stress corrosion cracking resistance, high-temperature strength, workability, toughness, and stability of the metal structure at high temperatures are reduced. Therefore, the Al content is set to 0.040% or less. The amount of Al is preferably 0.034% or less.
B:0.0010〜0.0100%
Bは、本実施形態の鋼において重要なNdとの複合添加により、優れた高温強度及び耐応力腐食割れ性の確保を達成するための元素であり、不可欠な元素である。Bは、結晶粒界に偏析して、高温強度の向上に寄与するだけでなく、高温強度の向上に有効な、炭化物の生成、ラーベス相の微細化、及び金属組織の安定化にも寄与する元素である。
B: 0.0010 to 0.0100%
B is an element for achieving excellent high-temperature strength and stress corrosion cracking resistance by complex addition with Nd, which is important in the steel of this embodiment, and is an indispensable element. B segregates at the grain boundaries and contributes not only to the improvement of the high temperature strength but also to the formation of carbides, the refinement of the Laves phase, and the stabilization of the metal structure, which are effective for the improvement of the high temperature strength. It is an element.
また、Bは、N(本実施形態の鋼中に0.0010〜0.0100%存在する)をBNとして無害化し、高温強度及び耐応力腐食性の向上にも寄与する元素である。 Further, B is an element that renders N (0.0010 to 0.0100% in the steel of the present embodiment) harmless as BN and contributes to improvement in high temperature strength and stress corrosion resistance.
B量が0.0010%未満では、窒化物として消費されずに存在するB、即ち、高温強度及び耐応力腐食性の向上に寄与するBを確保できない。このため、B量が0.0010%未満であると、Ndとの複合添加(及び有効M量の確保)による相乗効果(この点については後述する)が得られないので、高温強度及び耐応力腐食割れ性が向上しない。従って、B量は0.0010%以上とする。
B量は、好ましくは0.0015%以上である。
If the amount of B is less than 0.0010%, B that exists without being consumed as a nitride, that is, B that contributes to improvement in high-temperature strength and stress corrosion resistance cannot be secured. For this reason, if the amount of B is less than 0.0010%, a synergistic effect (this point will be described later) due to the combined addition with Nd (and securing of effective M amount) cannot be obtained, so high temperature strength and stress resistance Corrosion cracking is not improved. Therefore, the B amount is 0.0010% or more.
The amount of B is preferably 0.0015% or more.
一方、B量が0.0100%を超えると、ボロン化合物が生成して、加工性、溶接性、及び、高温強度が低下するので、B量は0.0100%以下とする。B量は、好ましくは0.0080%以下であり、より好ましくは0.0060%以下である。 On the other hand, if the amount of B exceeds 0.0100%, a boron compound is generated, and the workability, weldability, and high-temperature strength decrease, so the amount of B is set to 0.0100% or less. The amount of B is preferably 0.0080% or less, and more preferably 0.0060% or less.
N:0.0010〜0.0100%
N(窒素)は、一般の18Cr系オーステナイトステンレス鋼においては、固溶強化と窒化物の析出強化による高温強度の向上とに有用な元素である。しかし、本実施形態の鋼において、窒化物は耐応力腐食割れ性を阻害するので、Nは積極的には添加しない。
しかし、微量のNは、高温強度の向上に有効な微細析出物の析出核を生成するので、本実施形態の鋼では、高温強度の向上に有効な微細析出物の析出核を生成する微量の範囲でNを許容する。
N: 0.0010 to 0.0100%
N (nitrogen) is a useful element for improving the high-temperature strength by solid solution strengthening and precipitation strengthening of nitride in general 18Cr austenitic stainless steel. However, in the steel of this embodiment, N inhibits the stress corrosion cracking resistance, so N is not actively added.
However, since a small amount of N generates precipitation nuclei of fine precipitates effective for improving high-temperature strength, in the steel of this embodiment, a small amount of fine precipitates generating nuclei of fine precipitates effective for improving high-temperature strength is produced. Allow N in the range.
即ち、本実施形態の鋼の基本思想は、Nを積極的には添加せず、微量の範囲でNを許容する点で、従来技術と異なる。 That is, the basic idea of the steel of the present embodiment is different from the prior art in that N is not actively added and N is allowed in a very small range.
N量が0.0010%未満では、高温強度の向上に有効な微細析出物の析出核の形成が困難であるので、N量は0.0010%以上とする。N量は、好ましくは0.0020%以上、より好ましくは0.0030%以上である。 If the amount of N is less than 0.0010%, it is difficult to form precipitation nuclei of fine precipitates effective for improving the high temperature strength, so the amount of N is set to 0.0010% or more. The amount of N is preferably 0.0020% or more, more preferably 0.0030% or more.
一方、N量が0.0100%を超えると、窒化物が生成し、高温強度及び耐応力腐食割れ性が低下するので、N量は0.0100%以下とする。N量は、好ましくは0.0090%以下、より好ましくは0.0080%以下であり、更に好ましくは0.0070%以下である。 On the other hand, if the N content exceeds 0.0100%, nitrides are generated and the high-temperature strength and stress corrosion cracking resistance deteriorate, so the N content is 0.0100% or less. The amount of N is preferably 0.0090% or less, more preferably 0.0080% or less, and still more preferably 0.0070% or less.
Nd:0.001〜0.20%
Ndは、Bとの複合添加による相乗効果(後述する)により、高温強度及び耐応力腐食割れ性を顕著に向上させる元素である。
前述したように、本実施形態の鋼においては、高温強度の向上に有効な炭化物及びラーベス相を微細化し、かつ、長時間の安定性を確保し、さらに、Nd及びBの複合添加により、結晶粒界を強化して耐応力腐食割れ性を向上させる。
Nd: 0.001 to 0.20%
Nd is an element that remarkably improves high-temperature strength and stress corrosion cracking resistance due to a synergistic effect (described later) by the combined addition with B.
As described above, in the steel of this embodiment, the carbide and Laves phase effective for improving the high-temperature strength are refined, and long-term stability is ensured. Strengthen grain boundaries to improve stress corrosion cracking resistance.
しかし、Ndは、N、O、及びSとの結合力が極めて強く、金属Ndとして添加しても、有害析出物として析出して消費されてしまい、添加効果が十分に発現し難い。このため、Ndの添加効果を十分に得るためには、極力、N量、O量、及びS量を低減する必要がある。 However, Nd has an extremely strong bonding force with N, O, and S, and even when added as metal Nd, it is deposited and consumed as a harmful precipitate, and the effect of addition is hardly exhibited. For this reason, in order to sufficiently obtain the Nd addition effect, it is necessary to reduce the N amount, the O amount, and the S amount as much as possible.
Nd量が0.001%未満では、N量、O量、及びS量を低減した場合であっても、Ndの添加効果が十分に得られない。従って、Nd量は0.001%以上とする。Nd量は、好ましくは0.002%以上、より好ましくは0.005%以上である。 If the amount of Nd is less than 0.001%, even if the amount of N, the amount of O, and the amount of S are reduced, the effect of adding Nd cannot be sufficiently obtained. Therefore, the Nd amount is 0.001% or more. The Nd amount is preferably 0.002% or more, more preferably 0.005% or more.
一方、Nd量が0.20%を超えると、添加効果が飽和するとともに、酸化物系介在物が生成して、強度、加工性、及び、経済性が低下する。従って、Nd量は0.20%以下とする。Nd量は、好ましくは0.18%以下であり、より好ましくは0.15%以下であり、更に好ましくは0.10%以下である。 On the other hand, when the amount of Nd exceeds 0.20%, the effect of addition is saturated and oxide inclusions are generated, and the strength, workability, and economy are lowered. Therefore, the Nd content is 0.20% or less. The amount of Nd is preferably 0.18% or less, more preferably 0.15% or less, and still more preferably 0.10% or less.
前述の有効M量Meffをより確保し易い点で、Nd量の範囲は、好ましくは0.002〜0.15%、より好ましくは、0.005〜0.10%である。 The range of the Nd amount is preferably 0.002 to 0.15%, and more preferably 0.005 to 0.10%, in that the effective M amount Meff is more easily secured.
本実施形態の鋼においては、本実施形態の鋼の優れた特性を確保するため、Zr、Bi、Sn、Sb、Pb、As、及びOを不純物元素として扱い、それら元素の量を制限する。 In the steel of this embodiment, in order to ensure the excellent characteristics of the steel of this embodiment, Zr, Bi, Sn, Sb, Pb, As, and O are treated as impurity elements, and the amounts of these elements are limited.
通常、ステンレス鋼の原料として、主に、合金鋼等のスクラップを用いるが、このスクラップには、少量ではあるが、Zr、Bi、Sn、Sb、Pb、及びAs(不純物6元素)が含まれている。これら不純物6元素が、ステンレス鋼(製品)に不可避的に混入する。 Usually, scraps such as alloy steel are mainly used as a raw material for stainless steel, but this scrap contains Zr, Bi, Sn, Sb, Pb, and As (impurity 6 elements), though in a small amount. ing. These six impurities are inevitably mixed in stainless steel (product).
また、ステンレス鋼の製造過程で、溶解設備等が他の合金の製造で汚染されていると、溶解設備等から不純物6元素がステンレス鋼(製品)に混入し、また、O(酸素)が、ステンレス鋼中に不可避的に残存する。 In addition, if the melting equipment is contaminated with other alloys in the manufacturing process of stainless steel, 6 elements of impurities are mixed into the stainless steel (product) from the melting equipment, and O (oxygen) Inevitably remains in stainless steel.
本実施形態の鋼においては、優れた高温強度及び耐応力腐食割れ性を確保するため、Zr、Bi、Sn、Sb、Pb、As、及びOを極力低減し、高純度鋼とする必要がある。 In the steel of this embodiment, in order to ensure excellent high-temperature strength and stress corrosion cracking resistance, it is necessary to reduce Zr, Bi, Sn, Sb, Pb, As, and O as much as possible to obtain high-purity steel. .
Zr:0.002%以下
Zrは、通常は混入しないが、スクラップ等、及び/又は、他の合金の製造で汚染された溶解設備等から混入し、酸化物及び窒化物を形成する。窒化物は、ラーベス相などの析出物が析出する核として機能する。
しかし、窒化物を核として塊状の析出物が析出すると、高温強度及び耐応力腐食割れ性が阻害される。
Zr: 0.002% or less Zr is not normally mixed, but is mixed from scraps and / or melting equipment contaminated by the production of other alloys to form oxides and nitrides. The nitride functions as a nucleus from which a precipitate such as a Laves phase is deposited.
However, when a massive precipitate is deposited with nitride as a nucleus, high-temperature strength and stress corrosion cracking resistance are hindered.
このように、Zrは、高温強度及び耐応力腐食割れ性に有害な元素である。このため、優れた高温強度及び耐応力腐食割れ性を確保するために導入した有効M量の関係式(式(1))においては、負の作用効果を考慮して、「−1.6・Zr」の項を設けた。 Thus, Zr is an element harmful to high temperature strength and stress corrosion cracking resistance. For this reason, in the relational expression (Equation (1)) of the effective M amount introduced in order to ensure excellent high-temperature strength and stress corrosion cracking resistance, “−1.6 · The term “Zr” was provided.
Zrは、少ないほど好ましいので、Zr量は、分析限界(0.001%)に近い0.002%を上限とする。Zr量は、好ましくは0.001%以下である。
Zr量は0%であってもよい。しかし、Zrは、不可避的に0.0001%程度は混入する場合がある。このため、製造コストの観点から、Zr量は、0.0001%以上であってもよい。
Since Zr is preferably as small as possible, the upper limit of the amount of Zr is 0.002% close to the analysis limit (0.001%). The amount of Zr is preferably 0.001% or less.
The amount of Zr may be 0%. However, Zr is inevitably mixed in by about 0.0001%. For this reason, from the viewpoint of manufacturing cost, the amount of Zr may be 0.0001% or more.
Bi:0.001%以下
Biは、通常は混入しないが、スクラップ等、及び/又は、他の合金の製造で汚染された溶解設備等から混入し、高温強度及び耐応力腐食割れ性を阻害する元素である。
Bi量は、極力低減する必要があるので、Bi量の上限を、分析限界の0.001%とする。
Bi量は0%であってもよい。しかし、Biは、不可避的に0.0001%程度は混入する場合がある。このため、製造コストの観点から、Bi量は、0.0001%以上であってもよい。
Bi: 0.001% or less Bi is not normally mixed, but is mixed from scraps and / or melting equipment contaminated by the production of other alloys, and inhibits high-temperature strength and stress corrosion cracking resistance. It is an element.
Since the Bi amount needs to be reduced as much as possible, the upper limit of the Bi amount is set to 0.001% of the analysis limit.
The amount of Bi may be 0%. However, Bi is inevitably mixed in by about 0.0001%. For this reason, from the viewpoint of manufacturing cost, the Bi amount may be 0.0001% or more.
Sn:0.010%以下
Sb:0.010%以下
Pb:0.001%以下
As:0.001%以下
Sn、Sb、Pb、及びAsは、スクラップ等、及び/又は、他の合金の製造で汚染された溶解設備等から容易に混入し、精錬過程で除去することが困難な元素である。
しかし、これらの元素の量は、極力低減しなければならない。
そこで、原料組成及び精錬限界を考慮して、Sn量及びSb量の上限を、それぞれ0.010%とする。Sn量及びSb量は、それぞれ、好ましくは0.005%以下である。
また、Pb量及びAs量の上限を、それぞれ0.001%とする。Pb及びAsは、それぞれ、好ましくは0.0005%以下である。
Sn: 0.010% or less Sb: 0.010% or less Pb: 0.001% or less As: 0.001% or less Sn, Sb, Pb, and As are scraps and / or other alloys. It is an element that is easily mixed in from the melting equipment contaminated with, and difficult to remove during the refining process.
However, the amount of these elements must be reduced as much as possible.
Therefore, considering the raw material composition and the refining limit, the upper limits of the Sn amount and the Sb amount are each 0.010%. Each of the Sn amount and the Sb amount is preferably 0.005% or less.
Further, the upper limit of the Pb amount and the As amount is 0.001%, respectively. Pb and As are each preferably 0.0005% or less.
Sn量、Sb量、Pb量、及びAs量は、いずれも0%であってもよい。
しかし、これらの元素は、不可避的に0.0001%程度は混入する場合がある。このため、製造コストの観点から、いずれの元素の量も、0.0001%以上であってもよい。
The Sn amount, Sb amount, Pb amount, and As amount may all be 0%.
However, these elements are inevitably mixed in by about 0.0001%. For this reason, from the viewpoint of production cost, the amount of any element may be 0.0001% or more.
Zr+Bi+Sn+Sb+Pb+As:0.020%以下
本発明鋼が、Zr、Bi、Sn、Sb、Pb、及びAs(不純物6元素)を、不可避的に含有する場合、Nd及びBの複合添加による相乗効果によって、優れた高温強度及び耐応力腐食割れ性を確保するためには、不純物6元素の含有量を個別に制限するだけでなく、不純物6元素の含有量の総和(Zr+Bi+Sn+Sb+Pb+As;ここで、各元素記号は、各元素の含有量を表す。)を0.020%以下に制限し、より高純度化を図る必要がある。
本実施形態の鋼では、不純物6元素の含有量の総和は、0.020%以下である。
不純物6元素の含有量の総和は、好ましくは0.015%以下、より好ましくは0.010%以下である。
一方、優れた高温強度及び耐応力腐食割れ性を確保する点で、不純物6元素の含有量の総和は、可能な限り少ないことが好ましい。このため、不純物6元素の含有量の総和の下限は0%である。
Zr + Bi + Sn + Sb + Pb + As: 0.020% or less When the steel of the present invention inevitably contains Zr, Bi, Sn, Sb, Pb, and As (impurities 6 elements), it is excellent due to the synergistic effect of the combined addition of Nd and B. In order to secure high temperature strength and stress corrosion cracking resistance, not only the content of the six impurities is individually limited, but also the total content of the six impurities (Zr + Bi + Sn + Sb + Pb + As; where each element symbol is It is necessary to limit the content of each element.) To 0.020% or less to achieve higher purity.
In the steel of the present embodiment, the total content of the six impurities is 0.020% or less.
The total content of the six impurity elements is preferably 0.015% or less, more preferably 0.010% or less.
On the other hand, it is preferable that the total content of the six impurities is as small as possible in terms of ensuring excellent high-temperature strength and stress corrosion cracking resistance. For this reason, the lower limit of the total content of the six impurities is 0%.
O:0.0090%以下
溶鋼の精錬後、不可避的に残存するO(酸素)は、非金属介在物量の指標となる元素である。
Oが0.0090%を超えると、Nd酸化物が生成してNdが消費されてしまい、微細な炭化物又はラーベス相が生成し、高温強度及び耐応力腐食割れ性の向上効果が得られない。従って、O量は、0.0090%以下とする。O量は、好ましくは0.0080%以下であり、より好ましくは0.0070%以下であり、更に好ましくは0.0050%以下である。
O: 0.0090% or less O (oxygen) inevitably remaining after refining molten steel is an element that serves as an index of the amount of non-metallic inclusions.
If O exceeds 0.0090%, Nd oxide is generated and Nd is consumed, fine carbides or Laves phases are generated, and the effect of improving the high temperature strength and stress corrosion cracking resistance cannot be obtained. Therefore, the O amount is set to 0.0090% or less. The amount of O is preferably 0.0080% or less, more preferably 0.0070% or less, and still more preferably 0.0050% or less.
O量は0%であってもよい。しかし、Oは、精錬後、不可避的に0.0001%程度は残留する場合がある。このため、製造コストの観点から、O量は、0.0001%以上であってもよい。 The amount of O may be 0%. However, O may inevitably remain about 0.0001% after refining. For this reason, from the viewpoint of manufacturing cost, the O amount may be 0.0001% or more.
本実施形態の鋼の成分組成は、Co、Ca、及び、Mgの1種又は2種以上、及び/又は、Nd以外のランタノイド元素、Y、Sc、Ta、Hf、及びReの1種又は2種以上を含有してもよい。
これらの元素はいずれも任意の元素である。このため、これらの元素の含有量は、それぞれ、0%であってもよい。
The composition of the steel of this embodiment is one or more of Co, Ca, and Mg, and / or one or two of lanthanoid elements other than Nd, Y, Sc, Ta, Hf, and Re. It may contain seeds or more.
These elements are all arbitrary elements. For this reason, the content of these elements may be 0%.
Co:0.80%以下
Coは、他の鋼を製造する際の汚染源となり得る。このため、Co量は、0.80%以下とする。Co量は、好ましくは0.60%以下である。
本実施形態の鋼はCoを含有する必要はないが(即ち、Co量は0%であってもよいが)、金属組織をより安定化させ、高温強度をより向上させる観点から、Coを含有してもよい。
本実施形態の鋼がCoを含有する場合、Co量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。
Co: 0.80% or less Co can be a source of contamination when manufacturing other steels. For this reason, the amount of Co is set to 0.80% or less. The amount of Co is preferably 0.60% or less.
Although the steel of this embodiment does not need to contain Co (that is, the amount of Co may be 0%), it contains Co from the viewpoint of further stabilizing the metal structure and further improving the high-temperature strength. May be.
When the steel of this embodiment contains Co, the amount of Co is preferably 0.01% or more, and more preferably 0.03% or more.
Ca:0.20%以下
Caは、任意の元素であり、Ca量は、0%であってもよい。
Caは、脱酸の仕上げとして添加され得る元素である。本実施形態の鋼はNdを含有するので、精錬過程において、Caによって脱酸することが好ましい。本実施形態の鋼がCaを含有する場合、脱酸効果をより効果的に得る観点から、Ca量は、好ましくは0.0001%以上であり、より好ましくは0.0010%以上である。
Ca: 0.20% or less Ca is an arbitrary element, and the amount of Ca may be 0%.
Ca is an element that can be added as a deoxidizing finish. Since the steel of this embodiment contains Nd, it is preferable to deoxidize with Ca in the refining process. In the case where the steel of the present embodiment contains Ca, the Ca content is preferably 0.0001% or more, more preferably 0.0010% or more from the viewpoint of obtaining a deoxidation effect more effectively.
一方、Ca量が0.20%を超えると、非金属介在物の量が増えて、高温強度、耐応力腐食割れ性、及び靭性が低下するので、Ca量は0.20%以下とする。Ca量は、好ましくは0.15%以下である。 On the other hand, if the Ca content exceeds 0.20%, the amount of non-metallic inclusions increases and the high-temperature strength, stress corrosion cracking resistance, and toughness decrease, so the Ca content is 0.20% or less. The amount of Ca is preferably 0.15% or less.
Mg:0.20%以下
Mgは、任意の元素であり、Mg量は、0%であってもよい。
Mgは、微量の添加で、高温強度や耐食性向上に寄与する元素である。本実施形態の鋼がMgを含有する場合、上記効果をより効果的に得る観点から、Mg量は、好ましくは0.0005%以上であり、より好ましくは0.0010%以上である。
Mg: 0.20% or less Mg is an arbitrary element, and the amount of Mg may be 0%.
Mg is an element that contributes to improvement in high-temperature strength and corrosion resistance with a small amount of addition. When the steel of this embodiment contains Mg, the amount of Mg is preferably 0.0005% or more, and more preferably 0.0010% or more from the viewpoint of obtaining the above effect more effectively.
一方、Mg量が0.20%を超えると、強度、靭性、耐食性、及び溶接性が低下するので、Mg量は0.20%以下とする。Mg量は、好ましくは0.15%以下である。 On the other hand, if the Mg content exceeds 0.20%, the strength, toughness, corrosion resistance, and weldability deteriorate, so the Mg content is 0.20% or less. The amount of Mg is preferably 0.15% or less.
Nd以外のランタノイド元素、Y、Sc、Ta、Hf、及びReの1種又は2種以上の合計:0.20%以下
Nd以外のランタノイド元素(即ち、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLu)、Y、Sc、Ta、Hf、及びReは、いずれも任意の元素であり、これらの元素の合計含有量は、0%であってもよい。
Nd以外のランタノイド元素、Y、Sc、Ta、Hf、及びReは、高価であるが、Nd及びBの複合添加による相乗効果を高める作用をなす元素である。本実施形態の鋼がこれらの元素の1種又は2種以上を含有する場合、これらの元素の合計含有量は、好ましくは0.001%以上であり、より好ましくは0.005%以上である。
Total of one or more of lanthanoid elements other than Nd, Y, Sc, Ta, Hf, and Re: 0.20% or less Lanthanoid elements other than Nd (ie, La, Ce, Pr, Pm, Sm, Eu) , Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), Y, Sc, Ta, Hf, and Re are all arbitrary elements, and the total content of these elements is 0%. It may be.
Although lanthanoid elements other than Nd, Y, Sc, Ta, Hf, and Re are expensive, they are elements that enhance the synergistic effect of the combined addition of Nd and B. When the steel of this embodiment contains one or more of these elements, the total content of these elements is preferably 0.001% or more, more preferably 0.005% or more. .
一方、Nd以外のランタノイド元素、Y、Sc、Ta、Hf、及びReの合計含有量が0.20%を超えると、非金属介在物の量が増えて、強度、靭性、耐食性、及び溶接性が低下するので、上記合計含有量は0.20%以下とする。上記合計含有量は、好ましくは0.15%以下である。 On the other hand, when the total content of lanthanoid elements other than Nd, Y, Sc, Ta, Hf, and Re exceeds 0.20%, the amount of non-metallic inclusions increases, resulting in strength, toughness, corrosion resistance, and weldability. Therefore, the total content is set to 0.20% or less. The total content is preferably 0.15% or less.
本実施形態の鋼の成分組成から上述した元素を除いた残部は、Fe及び不純物である。
ここでいう不純物は、上述した元素以外の元素の1種又は2種以上を指す。上述した元素以外の元素(不純物)の含有量は、各々、0.010%以下に制限されることが好ましく、0.001%以下に制限されることが好ましい。
The balance other than the above-described elements from the component composition of the steel of this embodiment is Fe and impurities.
An impurity here refers to 1 type, or 2 or more types of elements other than the element mentioned above. The contents of elements (impurities) other than the elements described above are each preferably limited to 0.010% or less, and preferably limited to 0.001% or less.
本実施形態の鋼の成分組成は、下記式(1)で定義する有効M量Meffが、0.0001〜0.250%である。
以下、有効M量Meffについて説明する。
As for the component composition of the steel of this embodiment, the effective M amount Meff defined by the following formula (1) is 0.0001 to 0.250%.
Hereinafter, the effective M amount Meff will be described.
有効M量Meff =Nd+13・(B−11・N/14)−1.6・Zr … 式(1)
(式(1)中、各元素記号は、各元素の含有量(質量%)を示す。)
Effective M amount Meff = Nd + 13 · (B-11 · N / 14) −1.6 · Zr (1)
(In the formula (1), each element symbol indicates the content (% by mass) of each element.)
有効M量Meffは、高温強度及び耐応力腐食割れ性の向上に必要不可欠な、NdとBとの量的関係を規定する指標である。 The effective M amount Meff is an index that defines the quantitative relationship between Nd and B, which is indispensable for improving high-temperature strength and stress corrosion cracking resistance.
有効M量Meffを定義する式(1)は、優れた高温強度及び耐応力腐食割れ性を確保する観点から、本発明者らが見出した関係式である。
式(1)は、基本的には、優れた高温強度及び耐応力腐食割れ性の確保に有効に機能するNdの量に、同じく有効に機能するBの量を加算し、かつ、優れた高温強度及び耐応力腐食割れ性の確保に有害なZrの量を減算する関係式である。
Expression (1) that defines the effective M amount Meff is a relational expression found by the present inventors from the viewpoint of securing excellent high-temperature strength and stress corrosion cracking resistance.
Formula (1) basically adds the amount of B that also functions effectively to the amount of Nd that functions effectively to ensure excellent high-temperature strength and stress corrosion cracking resistance, and has an excellent high temperature. It is a relational expression for subtracting the amount of Zr harmful to securing strength and stress corrosion cracking resistance.
本実施形態の鋼では、優れた高温強度及び耐応力腐食割れ性を確保するため、Nを可能な限り低減し、窒化物の生成を抑制する。
しかし、工業的に鋼を製造する場合、ある程度の量のNが、不可避的に鋼に混入する。鋼中に混入したNが、BNを形成すると、Bの作用効果を得ることができない。このため、Nと結合しないBを確保する必要がある。
In the steel of this embodiment, in order to ensure excellent high temperature strength and stress corrosion cracking resistance, N is reduced as much as possible to suppress the formation of nitrides.
However, when manufacturing steel industrially, a certain amount of N is inevitably mixed in the steel. If N mixed in the steel forms BN, the effect of B cannot be obtained. For this reason, it is necessary to secure B that is not bonded to N.
有効M量Meffを定義する上記式(1)において、「(B−11・N/14)」の部分は、有効に機能するBの量(即ち、添加したBのうちNと結合していないBの量)である。
上記式(1)では、「(B−11・N/14)」(Nと結合していないB量)を13倍して「13・(B−11・N/14)」とすることにより、有効に機能するBの量に重みを付ける。ここで、13倍は、Bの原子量(≒11)に対するNdの原子量(≒144)の比である。
上記式(1)では、上記で得られた「13・(B−11・N/14)」をNdの量に加算する(「Nd+13・(B−11・N/14)」)。Ndは、Bと同様に、優れた高温強度及び耐応力腐食割れ性の確保に有効に機能する元素である。
In the above formula (1) that defines the effective M amount Meff, the portion of “(B-11 · N / 14)” is not bound to N of the amount of B that functions effectively (that is, of the added B). B amount).
In the above formula (1), “(B-11 · N / 14)” (the amount of B not bonded to N) is multiplied by 13 to obtain “13 · (B-11 · N / 14)”. Weigh the amount of B that works effectively. Here, 13 times is the ratio of the atomic weight of Nd (≈144) to the atomic weight of B (≈11).
In the above formula (1), “13 · (B-11 · N / 14)” obtained above is added to the amount of Nd (“Nd + 13 · (B-11 · N / 14)”). Nd, like B, is an element that functions effectively to ensure excellent high-temperature strength and stress corrosion cracking resistance.
上記式(1)では、「Nd+13・(B−11・N/14)」に加え、優れた高温強度及び耐応力腐食割れ性の確保に有害なZrの量を減算する項「−1.6・Zr」が存在する。 In the above formula (1), in addition to “Nd + 13 · (B-11 · N / 14)”, the term “−1.6” which subtracts the amount of Zr harmful to securing excellent high temperature strength and stress corrosion cracking resistance.・ Zr ”exists.
不純物元素のZrは、窒化物及び酸化物を形成して、NdとBとの複合添加による相乗効果を減殺する作用をなす。
式(1)では、Zrの原子量(≒91)に対するNdの原子量(≒144)の比である1.6(≒144/91)をZr量に乗算して「1.6Zr」とすることにより、Zrの上記減殺効果に重みを付けている。
式(1)では、上記「1.6Zr」を、上記「Nd+13・(B−11・N/14)」から減算する。
The impurity element Zr forms nitrides and oxides and acts to reduce the synergistic effect of the combined addition of Nd and B.
In the formula (1), 1.6 (≈144 / 91), which is the ratio of the atomic weight of Nd (≈144) to the atomic weight of Zr (≈91), is multiplied by the Zr amount to obtain “1.6Zr”. , Zr weights the above-mentioned killing effect.
In the equation (1), the “1.6Zr” is subtracted from the “Nd + 13 · (B−11 · N / 14)”.
以上のように、式(1)で定義される有効M量Meffによって、優れた高温強度及び耐応力腐食割れ性を得るために必要なNd及びBの添加量、及び、優れた高温強度及び耐応力腐食割れ性の確保に有害なZrの制限量を定量化することができる(具体例については、実施例で詳述する)。 As described above, according to the effective M amount Meff defined by the formula (1), the addition amount of Nd and B necessary for obtaining excellent high temperature strength and stress corrosion cracking resistance, and excellent high temperature strength and resistance. It is possible to quantify the amount of Zr that is harmful to securing the stress corrosion cracking property (specific examples will be described in detail in Examples).
有効M量Meffが0.0001%未満であると、優れた高温強度及び耐応力腐食割れ性を得ることが困難である。このため、有効M量Meffは、0.0001%以上とする。有効M量Meffは、好ましくは0.001%以上であり、より好ましくは0.002%以上であり、更に好ましくは0.010%以上である。
なお、有効M量Meffは、N量又はZr量が多い場合には、負の値になることがある。
If the effective M amount Meff is less than 0.0001%, it is difficult to obtain excellent high-temperature strength and stress corrosion cracking resistance. For this reason, the effective M amount Meff is set to 0.0001% or more. The effective M amount Meff is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.010% or more.
The effective M amount Meff may be a negative value when the N amount or the Zr amount is large.
一方、有効M量Meffが0.250%を超えると、有効M量Meffによる高温強度及び耐応力腐食割れ性の向上効果が飽和して経済性が低下する他、強度、靭性、加工性、及び、溶接性が低下する。このため、有効M量Meffは、0.250%以下とする。有効M量Meffは、好ましくは0.200%以下、より好ましくは0.150%以下である。 On the other hand, if the effective M amount Meff exceeds 0.250%, the effect of improving the high temperature strength and stress corrosion cracking resistance due to the effective M amount Meff is saturated and the economy is reduced, and the strength, toughness, workability, and , Weldability decreases. For this reason, the effective M amount Meff is set to 0.250% or less. The effective M amount Meff is preferably 0.200% or less, more preferably 0.150% or less.
本実施形態の鋼の金属組織には特に制限はない。
本実施形態の鋼の金属組織は、高温強度(例えば700℃〜750℃の高温クリープ強度)をより向上させる観点から、粗粒の金属組織であることが好ましい。
具体的には、本実施形態の鋼は、金属組織のASTM結晶粒度番号が7以下であることが好ましい。
本実施形態の鋼の金属組織が、ASTM結晶粒度番号で7以下の粗粒組織であると、クリープの粒界すべり、結晶粒界を介する元素の拡散による金属組織の変化、及び、シグマ相の析出サイトの生成を抑制する効果が奏されると考えられる。
従って、本実施形態の鋼の金属組織が、ASTM結晶粒度番号で7以下の粗粒組織であることは、高温強度をより向上させる観点からみて好ましい。
There is no restriction | limiting in particular in the metal structure of steel of this embodiment.
The metal structure of the steel of the present embodiment is preferably a coarse-grained metal structure from the viewpoint of further improving the high temperature strength (for example, high temperature creep strength of 700 ° C. to 750 ° C.).
Specifically, the steel of this embodiment preferably has an ASTM grain size number of 7 or less in the metal structure.
When the metal structure of the steel of this embodiment is a coarse grain structure having an ASTM grain size number of 7 or less, the grain boundary slip of the creep, the change of the metal structure due to the diffusion of elements through the grain boundary, and the sigma phase It is considered that the effect of suppressing the formation of precipitation sites is exhibited.
Therefore, it is preferable from the viewpoint of further improving the high temperature strength that the metal structure of the steel of this embodiment is a coarse grain structure having an ASTM grain size number of 7 or less.
また、一般的な鋼では、鋼の金属組織が粗粒の金属組織であると、結晶粒界における不純物元素の偏析に起因し、応力腐食割れが生じやすくなる傾向がある。
しかし、本実施形態の鋼では、高純度化により、結晶粒界における不純物元素の偏析が低減されている。このため、本実施形態の鋼では、粗粒の金属組織である場合(例えば、金属組織のASTM結晶粒度番号が7以下である場合)においても、応力腐食割れが抑制される(即ち、優れた耐応力腐食割れ性が維持される)。
In general steel, if the metal structure of the steel is a coarse metal structure, stress corrosion cracking tends to occur due to segregation of impurity elements at the grain boundaries.
However, in the steel of this embodiment, the segregation of impurity elements at the grain boundaries is reduced due to the high purity. For this reason, in the steel of this embodiment, even when it is a coarse-grained metal structure (for example, when the ASTM crystal grain size number of a metal structure is 7 or less), stress corrosion cracking is suppressed (that is, excellent Stress corrosion cracking resistance is maintained).
以上の観点から、本実施形態の鋼の金属組織のASTM結晶粒度番号は、7以下であることが好ましく、6以下であることがより好ましい。
金属組織のASTM結晶粒度番号の下限には特に制限はないが、クリープ延性の低下及び溶接割れを抑制する観点から、金属組織のASTM結晶粒度番号の下限は、3であることが好ましい。
From the above viewpoint, the ASTM grain size number of the metal structure of the steel of this embodiment is preferably 7 or less, and more preferably 6 or less.
The lower limit of the ASTM grain size number of the metal structure is not particularly limited, but the lower limit of the ASTM grain size number of the metal structure is preferably 3 from the viewpoint of suppressing creep ductility and welding cracking.
本実施形態の鋼は、上述したとおり、高温強度(特に、クリープ破断強度)に優れる。
本実施形態の鋼の高温強度の具体的な範囲には特に制限はないが、本実施形態の鋼は、700℃、1万時間のクリープ破断強度が140MPa以上であることが好ましい。
As described above, the steel of this embodiment is excellent in high-temperature strength (particularly, creep rupture strength).
Although the specific range of the high temperature strength of the steel of this embodiment is not particularly limited, the steel of this embodiment preferably has a creep rupture strength at 700 ° C. for 10,000 hours of 140 MPa or more.
ここで、700℃は、実際の使用温度よりも高い温度である。
従って、700℃、1万時間のクリープ破断強度が140MPa以上であることは、高温特性に顕著に優れることを示している。
具体的には、700℃、1万時間のクリープ破断強度が140MPa以上である高温強度は、従来の18Cr系オーステナイトステンレス鋼として、世界で広く使われている347H鋼(18Cr−12Ni−Nb系)よりも、格段優れた高温強度である(例えば、後述の表3中、発明鋼1〜20及び比較鋼21参照)。
Here, 700 ° C. is a temperature higher than the actual use temperature.
Accordingly, the creep rupture strength at 700 ° C. and 10,000 hours of 140 MPa or more indicates that the high temperature characteristics are remarkably excellent.
Specifically, high temperature strength with a creep rupture strength of 140 MPa or more at 700 ° C. for 10,000 hours is 347H steel (18Cr-12Ni—Nb system) widely used in the world as a conventional 18Cr austenitic stainless steel. (See, for example, invention steels 1 to 20 and comparative steel 21 in Table 3 to be described later).
140MPa未満であるクリープ破断強度は、従来技術の延長で容易に達成できるが、140MPa以上であるクリープ破断強度は、従来技術の延長で達成することは困難である。
この点に関し、本実施形態の鋼によれば、成分組成の適性化、Nd量及びB量による有効M量Meffの適性化、不純物元素の量の制限による高純度化、等により、炭化物及びクリープ中に析出するラーベス相の微細析出により、実際の使用温度より高い700℃で、1万時間のクリープ破断強度140MPa以上(優れた高温強度)を達成できる。
A creep rupture strength of less than 140 MPa can be easily achieved by extension of the prior art, but a creep rupture strength of 140 MPa or more is difficult to achieve by extension of the prior art.
In this regard, according to the steel of the present embodiment, carbide and creep can be achieved by optimizing the component composition, optimizing the effective M amount Meff by the Nd amount and B amount, increasing the purity by limiting the amount of impurity elements, etc. By the fine precipitation of the Laves phase precipitated therein, a creep rupture strength of 140 MPa or more (excellent high temperature strength) at 10,000 hours can be achieved at 700 ° C. higher than the actual use temperature.
本実施形態の鋼を製造する方法には特に限定はなく、公知のオーステナイトステンレス鋼の製法を適宜採用できる。
本実施形態の鋼は、熱処理された鋼板又は鋼管であってもよい。
上記熱処理における加熱温度は、粗粒組織を得やすく、高温強度(例えばクリープ破断強度)を向上させ易い点で、1050〜1250℃が好ましく、1150℃〜1250℃がより好ましい。
熱処理における加熱後の冷却の態様には特に制限はなく、急冷(例えば水冷)であってもよいし、空冷であってもよいが、急冷が好ましく、水冷がより好ましい。
There is no limitation in particular in the method of manufacturing the steel of this embodiment, The manufacturing method of well-known austenitic stainless steel can be employ | adopted suitably.
The steel of this embodiment may be a heat-treated steel plate or steel pipe.
The heating temperature in the heat treatment is preferably from 1050 to 1250 ° C, more preferably from 1150 to 1250 ° C, from the viewpoint of easily obtaining a coarse-grained structure and improving high-temperature strength (for example, creep rupture strength).
The mode of cooling after heating in the heat treatment is not particularly limited, and may be rapid cooling (for example, water cooling) or air cooling, but rapid cooling is preferable, and water cooling is more preferable.
上記熱処理が施された鋼板又は鋼管は、例えば、上述した本実施形態の鋼における成分組成を有する鋼板又は鋼管を準備し、準備した鋼板又は鋼管を、例えば1050〜1250℃(好ましくは1150℃〜1250℃)に加熱し、次いで冷却することによって得られる。
上記成分組成を有する鋼板又は鋼管(熱処理前の鋼板又は鋼管)は、いずれも常法に従って準備できる。
上記成分組成を有する鋼管は、例えば、上述した成分組成を有する溶鋼を鋳造して鋼塊又は鋼片とし、得られた鋼塊又は鋼片に対し、熱間押出、熱間圧延、熱間鍛造、冷間引抜き、冷間圧延、冷間鍛造、及び切削加工からなる群から選択される少なくとも1種の加工を施すことによって準備できる。
The steel plate or steel pipe subjected to the heat treatment is prepared, for example, a steel plate or steel pipe having the component composition in the steel of the above-described embodiment, and the prepared steel plate or steel pipe is, for example, 1050 to 1250 ° C. (preferably 1150 ° C. to 1150 ° C. 1250 ° C.) and then cooled.
Any steel plate or steel pipe (steel plate or steel pipe before heat treatment) having the above component composition can be prepared according to a conventional method.
The steel pipe having the above component composition is, for example, cast a molten steel having the above-described component composition into a steel ingot or steel slab, and hot extrusion, hot rolling, hot forging to the obtained steel ingot or steel slab It can be prepared by performing at least one type of processing selected from the group consisting of cold drawing, cold rolling, cold forging, and cutting.
以上、本実施形態の鋼について説明した。
本実施形態の鋼の用途には特に制限はなく、本実施形態の鋼は、高温強度及び耐応力腐食割れ性の確保が要求されるあらゆる用途に適用できる。
本実施形態の鋼は、例えば、ボイラ、化学プラント等の耐熱耐圧熱交換器管又は配管;耐熱鍛造品;耐熱棒鋼;耐熱鋼板;等に好適な素材鋼である。
本実施形態の鋼は、特に、ボイラの内部に備えられる耐熱耐圧熱交換器管(例えば、外径30〜70mm、肉厚2〜15mmの耐熱耐圧熱交換器管)、又は、ボイラの配管(例えば、外径125〜850mm、肉厚20〜100mmの配管)の素材鋼として特に好適である。
The steel of this embodiment has been described above.
There is no restriction | limiting in particular in the use of the steel of this embodiment, The steel of this embodiment is applicable to all the uses as which ensuring of high temperature strength and stress corrosion cracking resistance is requested | required.
The steel of this embodiment is a material steel suitable for heat-resistant pressure-resistant heat exchanger tubes or pipes such as boilers and chemical plants; heat-resistant forged products; heat-resistant steel bars; heat-resistant steel plates;
The steel of this embodiment is particularly a heat-resistant pressure-resistant heat exchanger pipe (for example, a heat-resistant pressure-resistant heat exchanger pipe having an outer diameter of 30 to 70 mm and a wall thickness of 2 to 15 mm) provided in the boiler, or a boiler pipe ( For example, it is particularly suitable as a raw material steel having an outer diameter of 125 to 850 mm and a wall thickness of 20 to 100 mm.
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
本実施例では、表1及び表2(表1の続き)に成分組成を示す30種の鋼を溶製した。
表1及び表2中、鋼1〜20は、本発明の実施例である発明鋼(以下、それぞれ、発明鋼1〜20とも称する)であり、鋼21〜30は、比較例である比較鋼(以下、それぞれ、比較鋼21〜30とも称する)である。
In this example, 30 types of steels having component compositions shown in Tables 1 and 2 (continuation of Table 1) were melted.
In Tables 1 and 2, steels 1 to 20 are invention steels that are examples of the present invention (hereinafter also referred to as invention steels 1 to 20, respectively), and steels 21 to 30 are comparative steels that are comparative examples. (Hereinafter also referred to as comparative steels 21 to 30, respectively).
比較鋼21は、汎用の347H(18Cr−12Ni−Nb)鋼であり、従来技術と発明鋼1〜20とを比較するための標準材である。 The comparative steel 21 is a general-purpose 347H (18Cr-12Ni-Nb) steel, and is a standard material for comparing the prior art with the inventive steels 1 to 20.
発明鋼1〜20を溶製する際には、Fe源として、高炉転炉製錬と真空酸素脱ガス法による二次精錬とを経て得られた高純度のFeを用い、合金元素として、事前に分析された高純度の合金元素を用いた。更に、発明鋼1〜20を溶製する前に、発明鋼1〜20を溶製するための炉を十分洗浄し、不純物混入が起こらないように特別に配慮した。
発明鋼1〜20の作製においては、以上の特別な管理により、不純物6元素(具体的には、Zr、Bi、Sn、Sb、Pb、及びAs)、O量、N量などを制限し、Nd量及びB量を適切な範囲に制御した。
When inventing inventive steels 1-20, high purity Fe obtained through blast furnace converter smelting and secondary refining by vacuum oxygen degassing is used as the Fe source, The high-purity alloying elements analyzed in 1) were used. Furthermore, before melting the inventive steels 1 to 20, the furnace for melting the inventive steels 1 to 20 was thoroughly washed, and special consideration was given so as not to introduce impurities.
In the production of invention steels 1 to 20, by the above special management, 6 impurities (specifically, Zr, Bi, Sn, Sb, Pb, and As), O amount, N amount, etc. are limited, Nd amount and B amount were controlled within appropriate ranges.
比較鋼23〜30を溶製する際にも上記高純度のFe源を用いたが、比較鋼23〜30の溶製では、更に、以下のようにして成分組成を調整した。
比較鋼21、23、24、27、及び29を溶製する際には、意図的に、不純物6元素及びO(酸素)のうちの少なくとも1種を添加した。
比較鋼21、24、及び26を溶製する際には、意図的に、N(窒素)を添加した。
比較鋼21〜23、25、27、及び28を溶製する際には、B及びNdの少なくとも1種を無添加とした。
比較鋼21を溶製する際には、Cuの添加量を不足とし、Mo、W、V、及びTiを無添加とした。
比較鋼30を溶製する際には、Wの添加量を不足とした。
The high purity Fe source was also used when the comparative steels 23 to 30 were melted. However, in the melting of the comparative steels 23 to 30, the component composition was further adjusted as follows.
When the comparative steels 21, 23, 24, 27, and 29 were melted, at least one of the six impurities and O (oxygen) was intentionally added.
When the comparative steels 21, 24, and 26 were melted, N (nitrogen) was intentionally added.
When the comparative steels 21 to 23, 25, 27, and 28 were melted, at least one of B and Nd was not added.
When the comparative steel 21 was melted, the amount of Cu added was insufficient, and Mo, W, V, and Ti were not added.
When the comparative steel 30 was melted, the amount of W added was made insufficient.
−表1及び表2の説明−
・数値は、各元素の含有量(質量%)を示す。
・下線を付した数値は、本実施形態における化学組成の範囲外の数値である。
・各鋼において、表1及び表2に示した元素を除いた残部は、Fe及び不純物である。
・Meffは、前述の式(1)に基づき算出した。ここで、Zr量が0.001%未満(表2中では「<0.001」と表記)である鋼については、Zr量を0%として、Meffを算出した。
・小計(X)は、不純物6元素(具体的には、Zr、Bi、Sn、Sb、Pb、及びAs)の合計量(質量%)を示す。ここで、含有量が0.001%未満(表2中では「<0.001」と表記)の元素については、含有量0%として小計(X)を算出した。
-Explanation of Table 1 and Table 2-
-A numerical value shows content (mass%) of each element.
-The numerical value with an underline is a numerical value outside the range of the chemical composition in this embodiment.
-In each steel, the remainder except the element shown in Table 1 and Table 2 is Fe and impurities.
-Meff was calculated based on the above formula (1). Here, for a steel having a Zr content of less than 0.001% (indicated as “<0.001” in Table 2), Meff was calculated with the Zr content set to 0%.
Subtotal (X) indicates the total amount (mass%) of the six impurities (specifically, Zr, Bi, Sn, Sb, Pb, and As). Here, for elements with a content of less than 0.001% (indicated as “<0.001” in Table 2), a subtotal (X) was calculated with a content of 0%.
<試験材の製造及び熱処理(1200℃)>
表1及び表2に示した成分組成の鋼を真空溶解によって溶製し、鋳造することにより、50kgの鋼塊を得た。
得られた鋼塊を熱間鍛造することにより、厚さ15mmの鋼板を得た。
得られた厚さ15mmの鋼板の表面を切削加工することにより、厚さ約12mmの鋼板を得た。
得られた厚さ約12mmの鋼板に対し、約30%の断面減少率で冷間圧延を施すことにより、厚さ約8mmの板状の試験材を得た。
上記試験材を1200℃に加熱して15分保持し、保持後、水冷することにより、上記試験材に対し、1200℃の熱処理を施した。
<Manufacture of test materials and heat treatment (1200 ° C.)>
Steels having the component compositions shown in Tables 1 and 2 were melted by vacuum melting and cast to obtain 50 kg of steel ingots.
The obtained steel ingot was hot forged to obtain a steel plate having a thickness of 15 mm.
By cutting the surface of the obtained 15 mm thick steel sheet, a steel sheet having a thickness of about 12 mm was obtained.
The obtained steel sheet having a thickness of about 12 mm was subjected to cold rolling at a cross-section reduction rate of about 30% to obtain a plate-shaped test material having a thickness of about 8 mm.
The test material was heated to 1200 ° C. and held for 15 minutes. After holding, the test material was subjected to heat treatment at 1200 ° C. by water cooling.
<ASTM結晶粒度の測定>
上記熱処理後の試験材のASTM結晶粒度を、ASTM E112に準拠して測定した。ASTM結晶粒度の測定位置は、試験材の縦断面における肉厚中央部付近とした。
結果を表3に示す。
<Measurement of ASTM crystal grain size>
The ASTM crystal grain size of the test material after the heat treatment was measured according to ASTM E112. The measurement position of the ASTM crystal grain size was in the vicinity of the thickness center in the longitudinal section of the test material.
The results are shown in Table 3.
<高温強度の測定>
上記熱処理後の試験材から、試験材の長手方向を長手方向とする、φ6mm、平行部30mmのクリープ破断試験片を切り出した。このクリープ破断試験片を用い、700℃、1万時間以上の長時間のクリープ破断試験を実施し、高温強度として、700℃、1万時間のクリープ破断強度(MPa)を測定した。
結果を表3に示す。
<Measurement of high temperature strength>
A creep rupture test piece having a diameter of 6 mm and a parallel part of 30 mm was cut out from the test material after the heat treatment with the longitudinal direction of the test material as the longitudinal direction. Using this creep rupture test piece, a creep rupture test was conducted at 700 ° C. for 10,000 hours or longer, and the creep rupture strength (MPa) at 700 ° C. for 10,000 hours was measured as the high temperature strength.
The results are shown in Table 3.
<母材の応力腐食割れ試験>
上記熱処理後の試験材から、幅10mm×厚さ4mm×長さ40mmの腐食用試験片を切り出した。切り出した腐食用試験片を、以下、「母材」とする。
母材に対し、650℃で10時間、加熱時効処理を施した。
加熱時効処理後の母材に対し、ストラウス試験(ASTM A262、Practice E:鋭敏化評価)を実施し、深さ100μm以上の割れの有無を判断した。
以上の結果を、表3に示す。
<Stress corrosion cracking test of base metal>
A test piece for corrosion having a width of 10 mm, a thickness of 4 mm and a length of 40 mm was cut out from the test material after the heat treatment. The cut specimen for corrosion is hereinafter referred to as “base material”.
The base material was subjected to a heat aging treatment at 650 ° C. for 10 hours.
A Strauss test (ASTM A262, Practice E: sensitization evaluation) was performed on the base material after the heat aging treatment to determine the presence or absence of cracks having a depth of 100 μm or more.
The results are shown in Table 3.
<溶接HAZ(Heat Affected Zone)相当材の応力腐食割れ試験>
上記熱処理後の試験材から、幅10mm×厚さ4mm×長さ40mmの腐食用試験片を切り出した。
切り出した試験片を、グリーブル試験機(真空中、通電加熱)を用い、950℃、25秒加熱した。加熱後、Heを吹きつけて冷却することにより、溶接HAZ相当材(溶接熱影響部相当材)を得た。
得られた溶接HAZ相当材に対し、母材の応力腐食割れ試験と同様にして、加熱時効処理及びストラウス試験を実施し、深さ100μm以上の割れの有無を判断した。
結果を表3に示す。
<Stress corrosion cracking test of welded HAZ (Heat Affected Zone) equivalent material>
A test piece for corrosion having a width of 10 mm, a thickness of 4 mm and a length of 40 mm was cut out from the test material after the heat treatment.
The cut out test piece was heated at 950 ° C. for 25 seconds using a greeble tester (in vacuum, energization heating). After heating, He was blown and cooled to obtain a welded HAZ equivalent material (welded heat affected zone equivalent material).
The obtained welded HAZ-equivalent material was subjected to a heat aging treatment and a Strauss test in the same manner as the stress corrosion cracking test of the base material, and the presence or absence of cracks having a depth of 100 μm or more was judged.
The results are shown in Table 3.
表3に示すように、発明鋼1〜20及び比較鋼21〜30の金属組織は、いずれもASTM結晶粒度番号7以下の粗粒組織であった。 As shown in Table 3, all of the metal structures of Invention Steels 1 to 20 and Comparative Steels 21 to 30 were coarse grain structures having ASTM grain size number 7 or less.
表3に示すように、発明鋼1〜20の高温強度は、147MPa以上の優れた強度であり、比較鋼21(汎用の347H鋼)の高温強度の約1.5倍以上であった。
一方、比較鋼21〜30の高温強度は、137MPa以下の低強度であり、発明鋼1〜20の高温強度に比べて劣位であった。
As shown in Table 3, the high temperature strengths of the inventive steels 1 to 20 were excellent strengths of 147 MPa or higher, and were about 1.5 times or higher than the high temperature strength of the comparative steel 21 (general-purpose 347H steel).
On the other hand, the high-temperature strength of the comparative steels 21 to 30 was a low strength of 137 MPa or less, which was inferior to the high-temperature strength of the inventive steels 1 to 20.
表3に示すように、発明鋼1〜20では、発明鋼は、母材及び溶接HAZ相当材ともに、深さ100μm以上の割れは確認されなかった。これらの結果から、発明鋼1〜20は、優れた耐応力割れ性を有していることが実証された。
一方、比較鋼21〜28では、深さ100μm以上の割れが確認された。
As shown in Table 3, in the inventive steels 1 to 20, no cracks having a depth of 100 μm or more were found in the inventive steel in both the base material and the welded HAZ equivalent material. From these results, it was demonstrated that the inventive steels 1 to 20 have excellent stress cracking resistance.
On the other hand, in the comparative steels 21 to 28, a crack having a depth of 100 μm or more was confirmed.
より詳細には、BもNdも無添加である比較鋼21、並びに、Bは添加されているがNdが無添加である比較鋼22、23、25、及び27の結果から、Ndの添加が、高温強度及び耐応力腐食割れ性の向上に有効であることが実証された。 More specifically, from the results of Comparative Steel 21 in which neither B nor Nd is added, and Comparative Steels 22, 23, 25, and 27 in which B is added but Nd is not added, the addition of Nd is It was proved to be effective in improving high temperature strength and stress corrosion cracking resistance.
また、Nd及びBが複合添加されているものの、N量が過剰であり、Meffが0.0001質量%未満である比較鋼26の結果から、N量が0.0100%以下であり、Meffが0.0001〜0.250%であることが、高温強度及び耐応力腐食割れ性の向上に有効であることが実証された。 In addition, although Nd and B are added in combination, the amount of N is excessive, and the result of Comparative Steel 26 in which Meff is less than 0.0001% by mass indicates that the N amount is 0.0100% or less, and Meff is It has been demonstrated that 0.0001 to 0.250% is effective for improving the high-temperature strength and the stress corrosion cracking resistance.
また、Meffは0.0001〜0.25%の範囲内であるが、O量が0.0090%超であり、N量が0.0100%超である比較鋼24の結果から、O量が0.0090%以下であり、N量が0.0100%以下であることが、高温強度及び耐応力腐食割れ性の向上に有効であることが実証された。
比較鋼24の高温強度が低い理由は、Nd及びBが、それぞれ、酸化物又は窒化物として消費されてしまい、微細析出強化が発現しなかったため、と推測される。
Further, Meff is in the range of 0.0001 to 0.25%, but the amount of O is from the results of the comparative steel 24 in which the amount of O exceeds 0.0090% and the amount of N exceeds 0.0100%. It was demonstrated that the N content is 0.0090% or less and the N content is 0.0100% or less, which is effective for improving the high-temperature strength and the stress corrosion cracking resistance.
The reason why the high-temperature strength of the comparative steel 24 is low is presumed that Nd and B were consumed as oxides or nitrides, respectively, and fine precipitation strengthening did not occur.
また、比較鋼28の結果から、B量が0.0010%以上であることが、高温強度及び耐応力腐食割れ性の向上に有効であることが実証された。
また、比較鋼29の結果から、Zr量が0.002%以下であることが、高温強度の向上に有効であることが実証された。
また、比較鋼30の結果から、W量が2.00%以上であることが、高温強度の向上に有効であることが実証された。
Moreover, from the result of the comparative steel 28, it was proved that the B amount being 0.0010% or more is effective in improving the high temperature strength and the stress corrosion cracking resistance.
Moreover, from the result of the comparative steel 29, it was proved that the Zr amount being 0.002% or less is effective in improving the high temperature strength.
Moreover, from the result of the comparative steel 30, it was proved that the W amount is 2.00% or more effective in improving the high temperature strength.
<結晶粒度と応力腐食割れとの関係>
発明鋼1、10、及び17、並びに、比較鋼21及び23について、鋼の結晶粒度と応力腐食割れとの関係を調べるため、以下の試験を実施した。
<Relationship between grain size and stress corrosion cracking>
Inventive steels 1, 10, and 17 and comparative steels 21 and 23 were subjected to the following tests in order to investigate the relationship between the grain size of steel and stress corrosion cracking.
まず、上述した1200℃の熱処理が施された試験材について、上述した方法により、ASTM結晶粒度の測定、母材の応力腐食割れ試験、及び溶接HAZ相当材の応力腐食割れ試験を実施した。但し、ここでは、母材及び溶接HAZ相当材の応力腐食割れ試験において、割れの深さを実測するとともに、割れの状態を詳細に観察した。
結果を表4に示す。
First, with respect to the test material subjected to the above-described heat treatment at 1200 ° C., the ASTM crystal grain size measurement, the base material stress corrosion cracking test, and the welded HAZ equivalent material stress corrosion cracking test were performed by the above-described methods. However, here, in the stress corrosion cracking test of the base material and the welded HAZ equivalent material, the depth of the crack was measured and the state of the crack was observed in detail.
The results are shown in Table 4.
次に、上述した1200℃の熱処理が施される前の試験材を1125℃に加熱し、この温度で15分保持し、保持後、水冷することにより、上記試験材に対し、1125℃の熱処理を施した。
1125℃の熱処理が施された試験材について、1200℃の熱処理が施された試験材と同様にして、ASTM結晶粒度の測定、母材の応力腐食割れ試験、及び溶接HAZ相当材の応力腐食割れ試験を実施した。
結果を表4に示す。
Next, the test material before the above-described heat treatment at 1200 ° C. is heated to 1125 ° C., held at this temperature for 15 minutes, and then held and cooled with water, whereby the test material is heat treated at 1125 ° C. Was given.
For the test material subjected to heat treatment at 1125 ° C., ASTM grain size measurement, stress corrosion cracking test of base metal, and stress corrosion cracking of welded HAZ equivalent material in the same manner as the test material subjected to heat treatment at 1200 ° C. The test was conducted.
The results are shown in Table 4.
表4及び前述の表3に示した通り、発明鋼1、10、及び17、並びに、比較鋼21及び23において、1200℃で熱処理を施した試験材の金属組織は、ASTM結晶粒度番号7以下の粗粒組織であった。
一方、表4に示すように、発明鋼1、10、及び17、並びに、比較鋼21及び23において、1125℃で熱処理を施した試験材の金属組織は、ASTM粒度番号8以上の細粒組織となった。
As shown in Table 4 and Table 3 above, in the inventive steels 1, 10, and 17 and the comparative steels 21 and 23, the metal structure of the test material heat-treated at 1200 ° C. is ASTM grain size number 7 or less. The coarse-grained structure.
On the other hand, as shown in Table 4, in the inventive steels 1, 10, and 17 and the comparative steels 21 and 23, the metal structure of the test material heat-treated at 1125 ° C. is a fine-grained structure having an ASTM grain size number of 8 or more. It became.
また、表4に示すように、発明鋼1、10、及び17では、細粒組織(ASTM結晶粒度番号8以上)及び粗粒組織(ASTM結晶粒度番号7以下)のいずれである場合においても、比較鋼21及び23と比較して、応力腐食割れが十分に低減されていた。
これら発明鋼に対し、比較鋼21及び23では、細粒組織(ASTM結晶粒度番号8以上)及び粗粒組織(ASTM結晶粒度番号7以下)のいずれである場合においても、応力腐食割れ試験による割れの深さが2mm以上であり、顕著な応力腐食割れが発生した。特に、溶接HAZ相当材では、3mm以上の割れが多数発生した。
Moreover, as shown in Table 4, in the invention steels 1, 10, and 17, in any of the fine grain structure (ASTM crystal grain size number 8 or more) and the coarse grain structure (ASTM crystal grain size number 7 or less), Compared with the comparative steels 21 and 23, the stress corrosion cracking was sufficiently reduced.
In contrast to these invention steels, in comparative steels 21 and 23, cracking by the stress corrosion cracking test is possible in both cases of a fine grain structure (ASTM grain size number 8 or more) and a coarse grain structure (ASTM grain size number 7 or less). The depth of was 2 mm or more, and remarkable stress corrosion cracking occurred. In particular, many cracks of 3 mm or more occurred in the welded HAZ equivalent material.
以上のように、発明鋼1、10、及び17は、比較鋼21及び23と比較して、応力腐食割れが顕著に低減されていた。 As described above, the inventive steels 1, 10 and 17 had significantly reduced stress corrosion cracking compared to the comparative steels 21 and 23.
日本出願2015−114665の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of Japanese Application 2015-114665 is incorporated herein by reference.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.
Claims (4)
C :0.05〜0.13%、
Si:0.10〜1.00%、
Mn:0.10〜3.00%、
P :0.040%以下、
S :0.020%以下、
Cr:17.00〜19.00%、
Ni:12.00〜15.00%、
Cu:2.00〜4.00%、
Mo:0.01〜2.00%、
W :2.00〜5.00%、
2Mo+W:2.50〜5.00%、
V :0.01〜0.40%、
Ti:0.05〜0.50%、
Nb:0.15〜0.70%
Al:0.001〜0.040%、
B :0.0010〜0.0100%、
N :0.0010〜0.0100%、
Nd:0.001〜0.20%、
Zr:0.002%以下、
Bi:0.001%以下、
Sn:0.010%以下、
Sb:0.010%以下、
Pb:0.001%以下、
As:0.001%以下、
Zr+Bi+Sn+Sb+Pb+As:0.020%以下、
O :0.0090%以下、
Co:0.80%以下、
Ca:0.20%以下、
Mg:0.20%以下、
Nd以外のランタノイド元素、Y、Sc、Ta、Hf、及びReの1種又は2種以上:合計で0.20%以下、並びに、
残部:Fe及び不純物からなり、
下記式(1)で定義する有効M量Meffが0.002〜0.250%であり、
金属組織のASTM結晶粒度番号が9.6以下であるオーステナイトステンレス鋼。
有効M量Meff=Nd+13・(B−11・N/14)−1.6・Zr … 式(1)
(式(1)中、各元素記号は、各元素の含有量(質量%)を示す。) Ingredient composition is mass%,
C: 0.05 to 0.13%,
Si: 0.10 to 1.00%,
Mn: 0.10 to 3.00%,
P: 0.040% or less,
S: 0.020% or less,
Cr: 17.00-19.00%,
Ni: 12.00 to 15.00%,
Cu: 2.00 to 4.00%,
Mo: 0.01-2.00%,
W: 2.00 to 5.00%
2Mo + W: 2.50 to 5.00%,
V: 0.01-0.40%,
Ti: 0.05 to 0.50%,
Nb: 0.15 to 0.70%
Al: 0.001 to 0.040%,
B: 0.0010 to 0.0100%,
N: 0.0010 to 0.0100%,
Nd: 0.001 to 0.20%
Zr: 0.002% or less,
Bi: 0.001% or less,
Sn: 0.010% or less,
Sb: 0.010% or less,
Pb: 0.001% or less,
As: 0.001% or less,
Zr + Bi + Sn + Sb + Pb + As: 0.020% or less,
O: 0.0090% or less,
Co: 0.80% or less,
Ca: 0.20% or less,
Mg: 0.20% or less,
One or more of lanthanoid elements other than Nd, Y, Sc, Ta, Hf, and Re: 0.20% or less in total, and
The balance: Fe and impurities,
Effective M amount Meff which is defined by the following equation (1) is Ri from 0.002 to 0.250% der,
An austenitic stainless steel having an ASTM grain size number of 9.6 or less in metal structure .
Effective M amount Meff = Nd + 13 · (B-11 · N / 14) −1.6 · Zr (1)
(In the formula (1), each element symbol indicates the content (% by mass) of each element.)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015114665 | 2015-06-05 | ||
JP2015114665 | 2015-06-05 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016562286A Division JP6112270B1 (en) | 2015-06-05 | 2016-06-03 | Austenitic stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017089013A JP2017089013A (en) | 2017-05-25 |
JP6350686B2 true JP6350686B2 (en) | 2018-07-04 |
Family
ID=57440490
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016562286A Active JP6112270B1 (en) | 2015-06-05 | 2016-06-03 | Austenitic stainless steel |
JP2017009846A Active JP6350686B2 (en) | 2015-06-05 | 2017-01-23 | Austenitic stainless steel |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016562286A Active JP6112270B1 (en) | 2015-06-05 | 2016-06-03 | Austenitic stainless steel |
Country Status (8)
Country | Link |
---|---|
US (1) | US20170268085A1 (en) |
EP (1) | EP3178958B1 (en) |
JP (2) | JP6112270B1 (en) |
KR (1) | KR101934219B1 (en) |
CN (1) | CN106795610B (en) |
CA (1) | CA2954755C (en) |
ES (1) | ES2734051T3 (en) |
WO (1) | WO2016195106A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3318651B1 (en) * | 2015-07-01 | 2019-11-13 | Nippon Steel Corporation | Austenitic heat-resistant alloy and welded joint |
JP2017014575A (en) * | 2015-07-01 | 2017-01-19 | 新日鐵住金株式会社 | Austenitic heat resistant alloy and weldment structure |
CN107254641B (en) * | 2017-06-02 | 2019-03-19 | 江阴国润机械有限公司 | High temperature oxidation resisting fire grate segment and its casting mold and pouring technology |
KR102255016B1 (en) * | 2017-10-03 | 2021-05-24 | 닛폰세이테츠 가부시키가이샤 | Welding materials for austenitic heat-resistant steel, weld metals and welded structures, and methods of manufacturing welded metals and welded structures |
CN107747068B (en) * | 2017-10-20 | 2018-10-19 | 山西太钢不锈钢股份有限公司 | A kind of heat-resistance stainless steel seamless pipe and preparation method thereof |
JP6999479B2 (en) * | 2018-04-05 | 2022-02-04 | 日鉄ステンレス株式会社 | Complete austenitic stainless steel |
CN109355596B (en) * | 2018-12-22 | 2022-03-18 | 佛山培根细胞新材料有限公司 | Copper-hafnium-cobalt-containing high-corrosion-resistance austenitic stainless steel and processing and heat treatment method thereof |
JP7372537B2 (en) * | 2019-12-27 | 2023-11-01 | 日本製鉄株式会社 | Austenitic heat-resistant steel |
JP7307372B2 (en) * | 2020-01-10 | 2023-07-12 | 日本製鉄株式会社 | Austenitic stainless steel material |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3388998B2 (en) | 1995-12-20 | 2003-03-24 | 新日本製鐵株式会社 | High strength austenitic heat-resistant steel with excellent weldability |
JP3632672B2 (en) | 2002-03-08 | 2005-03-23 | 住友金属工業株式会社 | Austenitic stainless steel pipe excellent in steam oxidation resistance and manufacturing method thereof |
KR100532877B1 (en) * | 2002-04-17 | 2005-12-01 | 스미토모 긴조쿠 고교 가부시키가이샤 | Austenitic stainless steel excellent in high temperature strength and corrosion resistance, heat resistant pressurized parts, and the manufacturing method thereof |
WO2004111285A1 (en) * | 2003-06-10 | 2004-12-23 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel for hydrogen gas and method for production thereof |
JP2005023353A (en) | 2003-06-30 | 2005-01-27 | Sumitomo Metal Ind Ltd | Austenitic stainless steel for high temperature water environment |
CA2603681C (en) * | 2005-04-04 | 2011-07-05 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel |
JP4946242B2 (en) * | 2006-07-27 | 2012-06-06 | 住友金属工業株式会社 | Austenitic stainless steel welded joint and austenitic stainless steel welded material |
US8034198B2 (en) * | 2006-08-23 | 2011-10-11 | Nkk Tubes | Austenitic stainless steel tube for boiler with excellent resistance to high temperature steam oxidation |
WO2009044796A1 (en) * | 2007-10-03 | 2009-04-09 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel |
WO2009044802A1 (en) * | 2007-10-04 | 2009-04-09 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel |
WO2010041694A1 (en) * | 2008-10-07 | 2010-04-15 | 住友金属工業株式会社 | Sheet stainless steel for separators in solid polymer fuel cells, and solid polymer fuel cells using the same |
RU2511158C2 (en) * | 2010-06-09 | 2014-04-10 | Сумитомо Метал Индастриз, Лтд. | Pipe from austenitic stainless steel with perfect stability to steam oxidation, and method for its obtaining |
JP5670103B2 (en) | 2010-06-15 | 2015-02-18 | 山陽特殊製鋼株式会社 | High strength austenitic heat resistant steel |
JP5143960B1 (en) | 2011-05-11 | 2013-02-13 | 株式会社神戸製鋼所 | Heat-resistant austenitic stainless steel with excellent high-temperature strength and cyclic oxidation resistance |
KR101577149B1 (en) * | 2011-06-28 | 2015-12-11 | 신닛테츠스미킨 카부시키카이샤 | Austenitic stainless steel pipe |
JP5029788B1 (en) | 2011-11-18 | 2012-09-19 | 住友金属工業株式会社 | Austenitic stainless steel |
DE102012104260A1 (en) * | 2012-05-16 | 2013-11-21 | Bayerische Motoren Werke Aktiengesellschaft | Cost-reduced steel for hydrogen technology with high resistance to hydrogen-induced embrittlement |
JP5547789B2 (en) | 2012-10-30 | 2014-07-16 | 株式会社神戸製鋼所 | Austenitic stainless steel |
-
2016
- 2016-06-03 WO PCT/JP2016/066695 patent/WO2016195106A1/en active Application Filing
- 2016-06-03 CN CN201680002328.4A patent/CN106795610B/en not_active Expired - Fee Related
- 2016-06-03 CA CA2954755A patent/CA2954755C/en not_active Expired - Fee Related
- 2016-06-03 ES ES16803537T patent/ES2734051T3/en active Active
- 2016-06-03 JP JP2016562286A patent/JP6112270B1/en active Active
- 2016-06-03 US US15/505,388 patent/US20170268085A1/en not_active Abandoned
- 2016-06-03 EP EP16803537.6A patent/EP3178958B1/en not_active Not-in-force
- 2016-06-03 KR KR1020177002278A patent/KR101934219B1/en active IP Right Grant
-
2017
- 2017-01-23 JP JP2017009846A patent/JP6350686B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3178958A1 (en) | 2017-06-14 |
US20170268085A1 (en) | 2017-09-21 |
JP2017089013A (en) | 2017-05-25 |
KR20170020918A (en) | 2017-02-24 |
ES2734051T3 (en) | 2019-12-04 |
EP3178958B1 (en) | 2019-05-08 |
EP3178958A4 (en) | 2018-03-21 |
JPWO2016195106A1 (en) | 2017-06-22 |
CA2954755A1 (en) | 2016-12-08 |
CN106795610B (en) | 2018-09-21 |
CN106795610A (en) | 2017-05-31 |
KR101934219B1 (en) | 2018-12-31 |
JP6112270B1 (en) | 2017-04-12 |
WO2016195106A1 (en) | 2016-12-08 |
CA2954755C (en) | 2019-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6350686B2 (en) | Austenitic stainless steel | |
JP6369632B2 (en) | High Cr austenitic stainless steel | |
JP6904359B2 (en) | Austenitic stainless steel | |
WO2006109664A1 (en) | Ferritic heat-resistant steel | |
KR20140034928A (en) | Ni-based heat-resistant alloy | |
JP6384611B2 (en) | Austenitic heat resistant alloys and welded structures | |
KR20120053080A (en) | Ni-based alloy product and process for production thereof | |
JP5838933B2 (en) | Austenitic heat resistant steel | |
JP5846076B2 (en) | Austenitic heat-resistant alloy | |
JP5329632B2 (en) | Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel | |
KR102506230B1 (en) | Austenitic stainless steel | |
JP7024877B2 (en) | Steel materials and their manufacturing methods, as well as tanks | |
JP5741454B2 (en) | Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof | |
JP6795038B2 (en) | Austenitic heat-resistant alloy and welded joints using it | |
JP7265203B2 (en) | Austenitic heat resistant steel | |
JP2017020054A (en) | Stainless steel and stainless steel tube | |
JP4998014B2 (en) | Welding material for austenitic stainless steel, weld metal and welded joint using the same | |
JP6354281B2 (en) | Ferritic heat resistant steel pipe | |
JP2000301377A (en) | Welded joint of ferritic heat resistant steel and welding material | |
JP7295418B2 (en) | welding material | |
JP2013067843A (en) | Austenitic heat-resistant steel excellent in high-temperature strength, and manufacturing method of the same | |
RU2437746C1 (en) | Composition of wise for automated assembly | |
JP2021080510A (en) | Austenitic heat-resistant steel welded joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180521 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6350686 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |