JP6350405B2 - Method for producing oxide single crystal - Google Patents

Method for producing oxide single crystal Download PDF

Info

Publication number
JP6350405B2
JP6350405B2 JP2015121748A JP2015121748A JP6350405B2 JP 6350405 B2 JP6350405 B2 JP 6350405B2 JP 2015121748 A JP2015121748 A JP 2015121748A JP 2015121748 A JP2015121748 A JP 2015121748A JP 6350405 B2 JP6350405 B2 JP 6350405B2
Authority
JP
Japan
Prior art keywords
single crystal
raw material
crystal
material melt
sggg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015121748A
Other languages
Japanese (ja)
Other versions
JP2017007873A (en
Inventor
辰宮 一樹
一樹 辰宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015121748A priority Critical patent/JP6350405B2/en
Publication of JP2017007873A publication Critical patent/JP2017007873A/en
Application granted granted Critical
Publication of JP6350405B2 publication Critical patent/JP6350405B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、酸化物単結晶の製造方法に関する。   The present invention relates to a method for producing an oxide single crystal.

従来から酸化物単結晶が各種用途に用いられているが、エピタキシャル成長に用いる種基板結晶等については、その格子定数の範囲について厳しい要求がなされる場合がある。   Conventionally, oxide single crystals have been used for various applications, but there are cases where strict requirements are imposed on the range of lattice constants of seed substrate crystals and the like used for epitaxial growth.

例えば、通信用光アイソレータに使われるBi−RIG(ビスマス置換型希土類鉄ガーネット)薄膜結晶は、SGGG(Substituted Gadolinium Gallium Garnet)基板を種基板結晶として、液相エピタキシャル成長法を用いて育成される。上記Bi−RIG薄膜結晶の育成を安定させるために、種基板結晶であるSGGGの格子定数の範囲には厳しい要求がある。   For example, a Bi-RIG (bismuth-substituted rare earth iron garnet) thin film crystal used for a communication optical isolator is grown by using a liquid phase epitaxial growth method using a SGGG (Substituted Gadolinium Gallium Garnet) substrate as a seed substrate crystal. In order to stabilize the growth of the Bi-RIG thin film crystal, there is a strict requirement for the range of the lattice constant of SGGG that is the seed substrate crystal.

SGGG結晶の育成は融液法で行われ、中でも引き上げ法がよく用いられている。引上げ法によりSGGG結晶を育成する場合、まず坩堝に予め混合したGd、Ga、MgO、ZrO、CaCOを所定量仕込み、高周波炉等により坩堝内の原料を加熱溶融し、原料融液を得る。そして、坩堝内の原料融液に種結晶を接触させ、種結晶を回転させながら、徐々に引き上げて単結晶を育成することができる。 The SGGG crystal is grown by the melt method, and the pulling method is often used. When growing an SGGG crystal by the pulling method, first, a predetermined amount of Gd 2 O 3 , Ga 2 O 3 , MgO, ZrO 2 and CaCO 3 mixed in advance in a crucible is charged, and the raw material in the crucible is heated and melted in a high-frequency furnace or the like. A raw material melt is obtained. The seed crystal is brought into contact with the raw material melt in the crucible, and the single crystal can be grown by gradually pulling up while rotating the seed crystal.

各原料の坩堝への仕込み量は、育成するSGGG結晶の目的とする格子定数の仕様範囲(12.496±0.001Å)によって決定され、実験を重ねて最適な仕込み量を求める。   The amount of each raw material charged into the crucible is determined by the target lattice constant specification range (12.496 ± 0.001%) of the SGGG crystal to be grown, and an optimum amount of charging is obtained through repeated experiments.

例えば、特許文献1には、Gd、CaO、Ga、MgO、ZrOおよびAO(AはSi、Ge、またはTiから選択される元素)の所定量をるつぼ中に仕込んで高周波誘導で加熱溶融したのち、この融液からチョクラルスキー法で単結晶を引上げることによって酸化物ガーネット結晶を製造することが開示されている。 For example, in Patent Document 1, a predetermined amount of Gd 2 O 3 , CaO, Ga 2 O 3 , MgO, ZrO 2 and AO 2 (A is an element selected from Si, Ge, or Ti) is charged in a crucible. It is disclosed that oxide garnet crystals are produced by heating and melting by high frequency induction and then pulling a single crystal from this melt by the Czochralski method.

特公平07−076156号公報Japanese Patent Publication No. 07-076156

しかしながら、本発明の発明者らが試験を行ったところ、特許文献1のように、特定の配合率の原料を用いても、得られるSGGG結晶の格子定数が大きくばらつき、所望の格子定数のSGGG結晶を得られない場合があった。また、SGGG結晶以外にも、酸化ガリウムを含む原料を用い、融液法により酸化物単結晶を育成した場合に格子定数が大きくばらつき、所望の格子定数の結晶が得られない場合があった。   However, when the inventors of the present invention conducted a test, as in Patent Document 1, even when a raw material having a specific blending ratio was used, the lattice constant of the SGGG crystal obtained varied greatly, and SGGG having a desired lattice constant was obtained. In some cases, crystals could not be obtained. In addition to SGGG crystals, when a raw material containing gallium oxide is used and an oxide single crystal is grown by a melt method, the lattice constant varies greatly, and crystals having a desired lattice constant may not be obtained.

そこで、本発明の一側面では上記従来技術が有する問題に鑑み、酸化ガリウムを含む原料を用い、融液法により酸化物単結晶を育成した場合に、所望の格子定数を有する酸化物単結晶が得られる酸化物単結晶の製造方法を提供することを目的とする。   Thus, in view of the above-described problems of the conventional technology, an oxide single crystal having a desired lattice constant is obtained when a single crystal containing gallium oxide is used to grow an oxide single crystal by a melt method. It aims at providing the manufacturing method of the oxide single crystal obtained.

上記課題を解決するため本発明の一態様によれば、Gd と、CaCO と、Ga と、MgOと、ZrO とからなる原料を用いた、融液法による酸化物単結晶の製造方法であって、
製造する酸化物単結晶の融点をTmとした場合に、
原料融液の形成から、単結晶の育成が終了するまで、原料融液の表面温度Tが、以下の式(1)を満たすように制御する酸化物単結晶の製造方法を提供することができる。
In order to solve the above problems, according to one embodiment of the present invention, an oxide by a melt method using a raw material composed of Gd 2 O 3 , CaCO 3 , Ga 2 O 3 , MgO, and ZrO 2 is used. A method for producing a single crystal comprising:
When the melting point of the oxide single crystal to be produced is Tm,
From the formation of the raw material melt until the growth of the single crystal is completed, it is possible to provide a method for producing an oxide single crystal in which the surface temperature T of the raw material melt is controlled so as to satisfy the following formula (1). .

Tm+5≦T≦Tm+30 ・・・(1)
Tm + 5 ≦ T ≦ Tm + 30 (1)

本発明の一態様によれば、酸化ガリウムを含む原料を用い、融液法により酸化物単結晶を育成した場合に、所望の格子定数を有する酸化物単結晶が得られる酸化物単結晶の製造方法を提供することができる。   According to one embodiment of the present invention, an oxide single crystal having a desired lattice constant is obtained when an oxide single crystal is grown by a melt method using a raw material containing gallium oxide. A method can be provided.

単結晶育成装置の構成例。The structural example of a single crystal growth apparatus.

以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not departed from the scope of the present invention. Various modifications and substitutions can be made.

本実施形態の酸化物単結晶の製造方法の一構成例について以下に説明する。   One structural example of the manufacturing method of the oxide single crystal of this embodiment is demonstrated below.

本実施形態の酸化物単結晶の製造方法は、酸化ガリウムを含む原料を用いた、融液法による酸化物単結晶の製造方法に関する。
そして、製造する酸化物単結晶の融点をTmとした場合に、原料融液の表面温度Tが、以下の式(1)を満たすように制御することができる。
T≦Tm+30 ・・・(1)
本発明の発明者らは、酸化ガリウムを含む原料を用い、融液法により酸化物単結晶を育成した場合に格子定数が大きくばらつく原因について、原料融液の表面温度に着目して検討を行った。
The manufacturing method of the oxide single crystal of this embodiment is related with the manufacturing method of the oxide single crystal by the melt method using the raw material containing a gallium oxide.
And when melting | fusing point of the oxide single crystal to manufacture is set to Tm, it can control so that the surface temperature T of raw material melt may satisfy | fill the following formula | equation (1).
T ≦ Tm + 30 (1)
The inventors of the present invention have studied the cause of the large variation in lattice constant when a single crystal containing gallium oxide is used to grow an oxide single crystal by the melt method, focusing on the surface temperature of the raw material melt. It was.

具体的には、酸化ガリウムを含む原料を用いて育成を行う単結晶として、SGGG結晶の場合を例に検討を行った。検討に当たっては、図1に示した引上げ法による単結晶育成装置によりSGGG結晶の育成を複数回行い、単結晶育成時の原料融液の表面の最高温度と、育成したSGGG結晶の格子定数とについて測定を行った。測定の結果から、原料融液表面の最高温度と、育成する単結晶の格子定数との相関の有無について検討した。   Specifically, the case of an SGGG crystal was examined as an example of a single crystal grown using a raw material containing gallium oxide. In the examination, the SGGG crystal is grown a plurality of times by the pulling method single crystal growth apparatus shown in FIG. 1, and the maximum temperature of the surface of the raw material melt during the single crystal growth and the lattice constant of the grown SGGG crystal Measurements were made. From the measurement results, the existence of a correlation between the maximum temperature of the raw material melt surface and the lattice constant of the single crystal to be grown was examined.

ここで、図1に示した引上げ法による単結晶育成装置の構成について説明する。   Here, the structure of the single crystal growing apparatus by the pulling method shown in FIG. 1 will be described.

なお、図1は単結晶育成装置10内に設けた坩堝11の中心軸を通る面における断面を模式的に示している。   FIG. 1 schematically shows a cross section in a plane passing through the central axis of the crucible 11 provided in the single crystal growing apparatus 10.

図1に示した引上げ法による単結晶育成装置10は、単結晶用原料を入れる坩堝11を炉体15内の坩堝軸12の上に配置している。そして、単結晶用原料を加熱融解するために、坩堝11を囲むように(高周波)加熱コイル13が配置されている。加熱コイル13の周囲には、断熱材14が炉体15の内面に沿って設けられている。また、坩堝11上部に上下動可能な引き上げ軸16が、断熱材14を貫通する形で設けられている。   In the single crystal growing apparatus 10 by the pulling method shown in FIG. 1, a crucible 11 into which a single crystal raw material is placed is disposed on a crucible shaft 12 in a furnace body 15. In order to heat and melt the single crystal raw material, a (high frequency) heating coil 13 is disposed so as to surround the crucible 11. A heat insulating material 14 is provided around the inner surface of the furnace body 15 around the heating coil 13. In addition, a pulling shaft 16 that can move up and down is provided above the crucible 11 so as to penetrate the heat insulating material 14.

引上げ軸16の先端部には種結晶18を取り付けることができ、種結晶18を坩堝11内で形成した原料融液17の表面に接触させた後、引上げ軸16により種結晶18を回転させながら引き上げることで、結晶19を育成できる。   A seed crystal 18 can be attached to the tip of the pulling shaft 16. The seed crystal 18 is brought into contact with the surface of the raw material melt 17 formed in the crucible 11, and then the seed crystal 18 is rotated by the pulling shaft 16. By pulling up, the crystal 19 can be grown.

なお、図1に示した単結晶育成装置10には、図示しない観察窓が設けられており、該観察窓から、原料融液17の表面温度を放射温度計により測定できるように構成されている。   The single crystal growth apparatus 10 shown in FIG. 1 is provided with an observation window (not shown) so that the surface temperature of the raw material melt 17 can be measured from the observation window with a radiation thermometer. .

そして、図1に示した単結晶育成装置10を用いて、SGGG結晶の育成を複数回行い、
SGGG結晶の育成に当たってはまず、単結晶育成装置10の坩堝11内に、表1に示した組成の原料粉末を充填した後、加熱コイル13により加熱し、原料融液17を形成した。そして原料融液17の表面に種結晶18を接触させた後、引上げ軸16により種結晶を回転させながら徐々に引上げ、SGGG結晶の育成を行った。
Then, the SGGG crystal is grown a plurality of times using the single crystal growth apparatus 10 shown in FIG.
In growing the SGGG crystal, first, the raw material powder having the composition shown in Table 1 was filled in the crucible 11 of the single crystal growing apparatus 10 and then heated by the heating coil 13 to form the raw material melt 17. Then, after bringing the seed crystal 18 into contact with the surface of the raw material melt 17, the SGGG crystal was grown by gradually pulling the seed crystal while rotating the seed crystal by the pulling shaft 16.

なお、坩堝11に充填した原料粉末としては、表1に示した組成になるように原料を秤量、混合後、1350℃で6時間仮焼してSGGGとしたものを用いている。   In addition, as raw material powder with which the crucible 11 was filled, the raw material was weighed and mixed so as to have the composition shown in Table 1, and then calcined at 1350 ° C. for 6 hours to obtain SGGG.

Figure 0006350405
SGGG結晶を複数回育成したところ、原料融液表面の最高温度は、SGGGの融点1730℃よりも2℃〜70℃高く、この範囲内でロット毎に原料融液表面の最高温度が異なっていた。そして、得られたSGGG結晶の格子定数はロット毎にばらついていることが確認できた。以上の結果から原料融液表面の最高温度と、育成する単結晶の格子定数との間に相関があることが認められた。原料融液表面の最高温度の変化に伴い、ロット毎に格子定数が変わる原因としては、原料中に含まれる酸化ガリウムの蒸発量が一定ではないために、融液組成も異なり格子定数が安定しないためと考えられる。
Figure 0006350405
When SGGG crystal was grown several times, the maximum temperature of the raw material melt surface was 2 ° C to 70 ° C higher than the melting point of SGGG 1730 ° C, and the maximum temperature of the raw material melt surface was different for each lot within this range. . And it was confirmed that the lattice constant of the obtained SGGG crystal varies from lot to lot. From the above results, it was confirmed that there was a correlation between the maximum temperature of the raw material melt surface and the lattice constant of the single crystal to be grown. The reason why the lattice constant changes from lot to lot as the maximum temperature of the raw material melt surface changes is that the evaporation rate of gallium oxide contained in the raw material is not constant, so the melt composition is different and the lattice constant is not stable. This is probably because of this.

そこで、原料粉末が融解するときの酸化ガリウムの蒸発量を安定させるため、原料融液の表面温度がSGGGの融点+30℃以下になるように原料融液の温度を制御した点以外は上述の場合と同様にしてSGGG結晶を育成した。   Therefore, in order to stabilize the evaporation amount of gallium oxide when the raw material powder is melted, the above-described case is performed except that the temperature of the raw material melt is controlled so that the surface temperature of the raw material melt is equal to or lower than the melting point of SGGG + 30 ° C. In the same manner, SGGG crystals were grown.

坩堝11内の原料を融解させるときにSGGGの融点に対して原料融液の表面温度が上昇しすぎないように加熱コイル13に印加する高周波出力を調整した結果、原料が融解したときの原料融液の表面の最高温度は1740℃であった。得た結晶を内周刃でウエハー状に切り出し、格子定数を測定したところ12.496Åであった。これは格子定数の仕様範囲である12.496±0.001Åの範囲内であることが確認できた。そのウエハーをICP分析したところGa重量%は38.6%であり、原料粉末と同じ組成になっていることが確認できた。   As a result of adjusting the high frequency output applied to the heating coil 13 so that the surface temperature of the raw material melt does not rise too much with respect to the melting point of SGGG when the raw material in the crucible 11 is melted, the raw material melt when the raw material is melted is adjusted. The maximum temperature of the liquid surface was 1740 ° C. The obtained crystal was cut into a wafer shape with an inner peripheral blade and the lattice constant was measured to be 12.496 mm. This was confirmed to be within the range of 12.496 ± 0.001 mm which is the specification range of the lattice constant. ICP analysis of the wafer showed Ga weight% of 38.6%, confirming that it had the same composition as the raw material powder.

以上の結果から、酸化ガリウムを含む原料を用いた、融液法による酸化物単結晶の製造において、製造する酸化物単結晶の融点Tmと、原料融液の表面温度Tとが、以下の式(1)を満たすように制御することで所望の格子定数の酸化物単結晶が得られることを確認できた。   From the above results, in the production of an oxide single crystal by a melt method using a raw material containing gallium oxide, the melting point Tm of the oxide single crystal to be produced and the surface temperature T of the raw material melt are expressed by the following equations: It was confirmed that an oxide single crystal having a desired lattice constant can be obtained by controlling so as to satisfy (1).

T≦Tm+30 ・・・(1)
なお、原料融液の表面温度は、原料融液の形成から、単結晶の育成が終了するまで、上記範囲を充足することが好ましい。単結晶の育成が終了するとは、例えば引上げ法の場合であれば原料融液から、育成した単結晶を切り離す時を意味する。
T ≦ Tm + 30 (1)
The surface temperature of the raw material melt preferably satisfies the above range from the formation of the raw material melt until the growth of the single crystal is completed. The completion of single crystal growth means, for example, when the grown single crystal is separated from the raw material melt in the case of a pulling method.

本発明の発明者らのさらなる検討によれば、原料融液の表面温度Tが、以下の式(2)を満たすように制御することで、より確実に所望の格子定数の酸化物単結晶が得られる。   According to further studies by the inventors of the present invention, by controlling the surface temperature T of the raw material melt to satisfy the following formula (2), an oxide single crystal having a desired lattice constant can be more reliably obtained. can get.

T≦Tm+20 ・・・(2)
なお、原料融液の表面温度Tの下限値は特に限定されるものではないが、原料融液の状態を安定して保つことができるようにTm≦Tを満たすことが好ましく、Tm+5≦Tを満たすことがより好ましい。
T ≦ Tm + 20 (2)
The lower limit of the surface temperature T of the raw material melt is not particularly limited, but it is preferable to satisfy Tm ≦ T so that the state of the raw material melt can be stably maintained, and Tm + 5 ≦ T is satisfied. It is more preferable to satisfy.

ここまで、本実施形態の酸化物単結晶の製造方法について、SGGG結晶を引上げ法により育成する場合を例に説明したが、係る形態に限定されるものではなく、酸化ガリウムを含む原料を用いた、融液法による酸化物単結晶の製造方法に適用できる。これは、既述のように、原料融液の表面温度が高くなることにより、酸化ガリウムが蒸発し、組成がずれる結果、従来は所望の格子定数の単結晶が得られていなかった。しかしながら、原料融液の表面温度を所定の範囲内とすることで酸化ガリウムの蒸発を抑制することができ、係る現象は融液法全般で生じることだからである。   Up to this point, the method for producing an oxide single crystal according to the present embodiment has been described with respect to an example in which an SGGG crystal is grown by a pulling method. However, the present invention is not limited to such a form, and a raw material containing gallium oxide is used. It can be applied to a method for producing an oxide single crystal by a melt method. As described above, as a result of the surface temperature of the raw material melt becoming higher, the gallium oxide is evaporated and the composition is shifted. As a result, conventionally, a single crystal having a desired lattice constant has not been obtained. However, it is because the evaporation of gallium oxide can be suppressed by keeping the surface temperature of the raw material melt within a predetermined range, and this phenomenon occurs in the entire melt method.

以上のように、本実施形態の酸化物単結晶の製造方法において製造する酸化物単結晶の種類は特に限定されるものではない。しかしながら、得られた単結晶について、その格子定数が所定の範囲にあることが要求される用途の酸化物単結晶の製造に適用することが好ましい。   As described above, the type of oxide single crystal manufactured in the method for manufacturing an oxide single crystal of the present embodiment is not particularly limited. However, it is preferable to apply the obtained single crystal to the production of an oxide single crystal for uses where the lattice constant is required to be within a predetermined range.

そして、既述のようにエピタキシャル成長に用いる種結晶基板等については、その格子定数の範囲について厳しい要求がなされる場合がある。このため、本実施形態の酸化物単結晶の製造方法により製造する酸化物単結晶は、エピタキシャル成長用の種結晶基板の原料となる単結晶であることが好ましい。特に、本実施形態の酸化物単結晶の製造方法により製造する酸化物単結晶は、Bi−RIG(ビスマス置換型希土類鉄ガーネット)薄膜結晶育成等に用いることができるガリウム・ガドリニウム・ガーネット結晶であることがより好ましい。なお、ここでいうガリウム・ガドリニウム・ガーネット結晶には、GdGa12結晶以外にも、その一部を置換したSGGG結晶、具体的には例えば(GdCa)(GaMgZr)12等の結晶も含まれる。 As described above, for the seed crystal substrate and the like used for epitaxial growth, there are cases where strict requirements are made regarding the range of the lattice constant. For this reason, it is preferable that the oxide single crystal manufactured with the manufacturing method of the oxide single crystal of this embodiment is a single crystal used as the raw material of the seed crystal substrate for epitaxial growth. In particular, the oxide single crystal manufactured by the oxide single crystal manufacturing method of the present embodiment is a gallium / gadolinium / garnet crystal that can be used for Bi-RIG (bismuth-substituted rare earth iron garnet) thin film crystal growth and the like. It is more preferable. In addition, the gallium / gadolinium / garnet crystal referred to here includes, in addition to the Gd 3 Ga 5 O 12 crystal, an SGGG crystal in which a part thereof is substituted, specifically (GdCa) 3 (GaMgZr) 5 O 12 or the like. These crystals are also included.

以下に具体的な実施例、比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
図1に示した単結晶育成装置10を用いて、SGGG単結晶の育成を行った。
Specific examples and comparative examples will be described below, but the present invention is not limited to these examples.
[Example 1]
The SGGG single crystal was grown using the single crystal growth apparatus 10 shown in FIG.

坩堝11として、直径150mm、高さ150mmのイリジウム製るつぼを用意した。そして、坩堝11に、予め混合したGd、Ga、MgO、ZrO、CaCOを表1に示す比率となるように秤量、混合し、予め1350℃で6時間仮焼した原料粉末を充填した。 As the crucible 11, an iridium crucible having a diameter of 150 mm and a height of 150 mm was prepared. Then, premixed Gd 2 O 3 , Ga 2 O 3 , MgO, ZrO 2 , and CaCO 3 were weighed and mixed in the crucible 11 so as to have the ratio shown in Table 1, and pre-calcined at 1350 ° C. for 6 hours. The raw material powder was filled.

そして、単結晶育成装置10内の坩堝軸12上に坩堝11を設置し、加熱コイル13に高周波出力を印加することで、坩堝11内の原料粉末を1730℃以上に加熱し、原料融液17を形成した。原料融液17を形成後、単結晶の育成が終了するまで、原料融液17の表面温度が育成するSGGGの融点より過剰に高くならないように高周波出力を制御した。具体的には、原料融液を形成後、単結晶の育成を終了するまで、原料融液の表面温度が、育成するSGGG結晶の融点より5℃高い温度以下となるように制御した。このため、本実施例において、原料融液を形成後、単結晶の育成を終了するまで、すなわち、育成結晶と、原料融液とを切り離すまで、原料融液の表面の最高温度は、育成したSGGG結晶の融点より5℃高い温度であった。   Then, the crucible 11 is placed on the crucible shaft 12 in the single crystal growth apparatus 10, and a high frequency output is applied to the heating coil 13, whereby the raw material powder in the crucible 11 is heated to 1730 ° C. or more, and the raw material melt 17 Formed. After the raw material melt 17 was formed, the high frequency output was controlled so that the surface temperature of the raw material melt 17 was not excessively higher than the melting point of SGGG to be grown until the growth of the single crystal was completed. Specifically, after the raw material melt was formed, the surface temperature of the raw material melt was controlled to be 5 ° C. or lower than the melting point of the SGGG crystal to be grown until the growth of the single crystal was completed. Therefore, in this example, the maximum temperature of the surface of the raw material melt was grown until the growth of the single crystal was completed after the formation of the raw material melt, that is, until the growth crystal and the raw material melt were separated. The temperature was 5 ° C. higher than the melting point of SGGG crystals.

原料融液の表面温度は、単結晶育成装置10に設けられた図示しない観察窓から放射温度計により測定を行った。   The surface temperature of the raw material melt was measured with a radiation thermometer from an observation window (not shown) provided in the single crystal growing apparatus 10.

原料融液17を形成後、原料融液17の表面に種結晶18を接触させ、種結晶18を回転させながら、徐々に引き上げることで結晶19として、SGGG結晶を育成した。   After forming the raw material melt 17, an SGGG crystal was grown as a crystal 19 by bringing the seed crystal 18 into contact with the surface of the raw material melt 17 and gradually raising the seed crystal 18 while rotating the seed crystal 18.

得られた単結晶を内周刃でウエハー状に切り出し、4軸X線回折計(PANalytical社製 型式:X‘Pert PRO MRD)を用いて格子定数を測定したところ12.496Åであった。従って、格子定数の仕様範囲である12.496±0.001Åの範囲内であり、所望の格子定数の単結晶が得られていることが確認できた。   The obtained single crystal was cut into a wafer shape with an inner peripheral blade, and the lattice constant was measured using a 4-axis X-ray diffractometer (Model: X'Pert PRO MRD, manufactured by PANalytical), which was 12.496 mm. Therefore, it was confirmed that a single crystal having a desired lattice constant was obtained within the range of 12.496 ± 0.001% which is the specification range of the lattice constant.

また、ウエハーをICP発光分析装置(島津製作所社製 型式:ICPS−8100)により分析したところGaは38.7重量%であり、原料粉末中の組成とほぼ同じであることが確認できた。   Further, when the wafer was analyzed by an ICP emission analyzer (model: ICPS-8100, manufactured by Shimadzu Corporation), Ga was 38.7% by weight, and it was confirmed that it was almost the same as the composition in the raw material powder.

結果を表2に示す。
[実施例2]
原料融液を形成後、単結晶の育成を終了するまで、原料融液の表面温度が、育成するSGGG結晶の融点より20℃高い温度以下となるように制御した点を除いては実施例1と同様にしてSGGG結晶の製造を行った。なお、原料融液の表面の最高温度は、SGGG結晶の融点より20℃高い温度であった。
The results are shown in Table 2.
[Example 2]
Example 1 except that the surface temperature of the raw material melt was controlled to be 20 ° C. or higher than the melting point of the SGGG crystal to be grown until the growth of the single crystal was completed after the raw material melt was formed. In the same manner, SGGG crystals were produced. The maximum temperature on the surface of the raw material melt was 20 ° C. higher than the melting point of the SGGG crystal.

得られた単結晶を内周刃でウエハー状に切り出し、4軸X線回折計を用いて格子定数を測定したところ12.496Åであった。従って、格子定数の仕様範囲である12.496±0.001Åの範囲内であり、所望の格子定数の単結晶が得られていることが確認できた。   The obtained single crystal was cut into a wafer shape with an inner peripheral blade and the lattice constant was measured using a 4-axis X-ray diffractometer to find 12.496 mm. Therefore, it was confirmed that a single crystal having a desired lattice constant was obtained within the range of 12.496 ± 0.001% which is the specification range of the lattice constant.

また、ウエハーをICP発光分析装置により分析したところGaは38.6重量%であり、原料粉末中の組成と同じであることが確認できた。   Further, when the wafer was analyzed by an ICP emission spectrometer, Ga was 38.6% by weight, and it was confirmed that it was the same as the composition in the raw material powder.

結果を表2に示す。
[実施例3]
原料融液を形成後、単結晶の育成を終了するまで、原料融液の表面温度が、育成するSGGG結晶の融点より30℃高い温度以下となるように制御した点を除いては実施例1と同様にしてSGGG結晶の製造を行った。なお、原料融液の表面の最高温度は、SGGG結晶の融点より30℃高い温度であった。
The results are shown in Table 2.
[Example 3]
Example 1 except that the surface temperature of the raw material melt was controlled to be 30 ° C. higher than the melting point of the SGGG crystal to be grown until the growth of the single crystal was completed after the raw material melt was formed. In the same manner, SGGG crystals were produced. The maximum temperature on the surface of the raw material melt was 30 ° C. higher than the melting point of the SGGG crystal.

得られた単結晶を内周刃でウエハー状に切り出し、4軸X線回折計を用いて格子定数を測定したところ12.497Åであった。従って、格子定数の仕様範囲である12.496±0.001Åの範囲内であり、所望の格子定数の単結晶が得られていることが確認できた。   The obtained single crystal was cut into a wafer shape with an inner peripheral blade and the lattice constant was measured using a 4-axis X-ray diffractometer to find 12.497 mm. Therefore, it was confirmed that a single crystal having a desired lattice constant was obtained within the range of 12.496 ± 0.001% which is the specification range of the lattice constant.

また、ウエハーをICP発光分析装置により分析したところGaは38.5重量%であり、原料粉末中の組成とほぼ同じであることが確認できた。   Further, when the wafer was analyzed by an ICP emission spectrometer, Ga was 38.5% by weight, and it was confirmed that it was almost the same as the composition in the raw material powder.

結果を表2に示す。
[比較例1]
原料融液を形成後、単結晶の育成を終了するまで、原料融液の表面温度が、育成するSGGG結晶の融点より50℃高い温度以下となるように制御した点を除いては実施例1と同様にしてSGGG結晶の製造を行った。なお、原料融液の表面の最高温度は、SGGG結晶の融点より50℃高い温度であった。
The results are shown in Table 2.
[Comparative Example 1]
Example 1 except that the surface temperature of the raw material melt was controlled to be not more than 50 ° C. higher than the melting point of the SGGG crystal to be grown until the growth of the single crystal was completed after the raw material melt was formed. In the same manner, SGGG crystals were produced. The maximum temperature on the surface of the raw material melt was 50 ° C. higher than the melting point of the SGGG crystal.

得られた単結晶を内周刃でウエハー状に切り出し、4軸X線回折計を用いて格子定数を測定したところ12.500Åであった。従って、格子定数の仕様範囲である12.496±0.001Åの範囲外となった。   The obtained single crystal was cut into a wafer shape with an inner peripheral blade, and the lattice constant was measured using a 4-axis X-ray diffractometer. Therefore, it was outside the range of 12.496 ± 0.001 mm which is the specification range of the lattice constant.

また、ウエハーをICP発光分析装置により分析したところGaは38.1重量%であり、原料粉末中の組成とのずれが大きくなっていることを確認できた。   Further, when the wafer was analyzed by an ICP emission spectrometer, Ga was 38.1% by weight, and it was confirmed that the deviation from the composition in the raw material powder was large.

結果を表2に示す。
[比較例2]
原料融液を形成後、単結晶の育成を終了するまで、原料融液の表面温度が、育成するSGGG結晶の融点より35℃高い温度以下となるように制御した点を除いては実施例1と同様にしてSGGG結晶の製造を行った。なお、原料融液の表面の最高温度は、SGGG結晶の融点より35℃高い温度であった。
The results are shown in Table 2.
[Comparative Example 2]
Example 1 except that the surface temperature of the raw material melt was controlled to be not more than 35 ° C. higher than the melting point of the SGGG crystal to be grown until the growth of the single crystal was completed after the raw material melt was formed. In the same manner, SGGG crystals were produced. The maximum temperature on the surface of the raw material melt was 35 ° C. higher than the melting point of the SGGG crystal.

得られた単結晶を内周刃でウエハー状に切り出し、4軸X線回折計を用いて格子定数を測定したところ12.498Åであった。従って、格子定数の仕様範囲である12.496±0.001Åの範囲外となった。   The obtained single crystal was cut into a wafer shape with an inner peripheral blade and the lattice constant was measured using a 4-axis X-ray diffractometer to find 12.498 mm. Therefore, it was outside the range of 12.496 ± 0.001 mm which is the specification range of the lattice constant.

また、ウエハーをICP発光分析装置により分析したところGaは38.4重量%であり、原料粉末中の組成とのずれが大きくなっていることを確認できた。   Further, when the wafer was analyzed with an ICP emission analyzer, Ga was 38.4% by weight, and it was confirmed that the deviation from the composition in the raw material powder was large.

結果を表2に示す。   The results are shown in Table 2.

Figure 0006350405
表2に示したように、実施例1〜実施例3においては格子定数の仕様範囲内のSGGG結晶を得られることが確認できた。特に実施例1、2においては、格子定数が、格子定数の仕様範囲の中央値となることが確認できた。
Figure 0006350405
As shown in Table 2, in Examples 1 to 3, it was confirmed that SGGG crystals within the lattice constant specification range could be obtained. In particular, in Examples 1 and 2, it was confirmed that the lattice constant was the median value of the specification range of the lattice constant.

これに対して、比較例1、2においては、格子定数の仕様範囲を超えた格子定数を有するSGGG結晶となることが確認できた。これはICP発光分析の結果からも明らかなように、単結晶育成中にGaが蒸散し、組成がずれたためと考えられる。   On the other hand, in Comparative Examples 1 and 2, it was confirmed that the SGGG crystal had a lattice constant exceeding the specification range of the lattice constant. As is apparent from the results of ICP emission analysis, this is thought to be because Ga was evaporated during single crystal growth and the composition shifted.

以上の結果と、単結晶を育成する際の原料融液の表面温度の最高温度との関係から、原料融液の表面温度を、育成する単結晶の融点+30℃以下とすることで、格子定数の仕様範囲内の単結晶、すなわち所望の格子定数を有する単結晶を育成できることが確認できた。特に、原料融液の表面温度を、育成する単結晶の融点+20℃以下とすることで、格子定数が、格子定数の仕様範囲の中央値となることが確認できた。   From the relationship between the above results and the maximum temperature of the surface temperature of the raw material melt when growing the single crystal, the surface temperature of the raw material melt is set to the melting point of the single crystal to be grown + 30 ° C. or less, thereby obtaining a lattice constant. It was confirmed that a single crystal within the specified range, that is, a single crystal having a desired lattice constant can be grown. In particular, it was confirmed that the lattice constant becomes the median value of the specification range of the lattice constant by setting the surface temperature of the raw material melt to the melting point of the single crystal to be grown + 20 ° C. or lower.

Claims (3)

Gd と、CaCO と、Ga と、MgOと、ZrO とからなる原料を用いた、融液法による酸化物単結晶の製造方法であって、
製造する酸化物単結晶の融点をTmとした場合に、
原料融液の形成から、単結晶の育成が終了するまで、原料融液の表面温度Tが、以下の式(1)を満たすように制御する酸化物単結晶の製造方法。
Tm+5≦T≦Tm+30 ・・・(1)
A method for producing an oxide single crystal by a melt method using a raw material composed of Gd 2 O 3 , CaCO 3 , Ga 2 O 3 , MgO, and ZrO 2 ,
When the melting point of the oxide single crystal to be produced is Tm,
A method for producing an oxide single crystal in which the surface temperature T of the raw material melt is controlled so as to satisfy the following formula (1) from the formation of the raw material melt until the growth of the single crystal is completed .
Tm + 5 ≦ T ≦ Tm + 30 (1)
原料融液の形成から、単結晶の育成が終了するまで、原料融液の表面温度Tが、以下の式(2)を満たすように制御する請求項1に記載の酸化物単結晶の製造方法。
Tm+5≦T≦Tm+20 ・・・(2)
The method for producing an oxide single crystal according to claim 1, wherein the surface temperature T of the raw material melt is controlled so as to satisfy the following formula (2) from the formation of the raw material melt until the growth of the single crystal is completed. .
Tm + 5 ≦ T ≦ Tm + 20 (2)
製造する酸化物単結晶がガリウム・ガドリニウム・ガーネット結晶である請求項1または2に記載の酸化物単結晶の製造方法。   The method for producing an oxide single crystal according to claim 1 or 2, wherein the oxide single crystal to be produced is a gallium / gadolinium / garnet crystal.
JP2015121748A 2015-06-17 2015-06-17 Method for producing oxide single crystal Expired - Fee Related JP6350405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121748A JP6350405B2 (en) 2015-06-17 2015-06-17 Method for producing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121748A JP6350405B2 (en) 2015-06-17 2015-06-17 Method for producing oxide single crystal

Publications (2)

Publication Number Publication Date
JP2017007873A JP2017007873A (en) 2017-01-12
JP6350405B2 true JP6350405B2 (en) 2018-07-04

Family

ID=57763305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121748A Expired - Fee Related JP6350405B2 (en) 2015-06-17 2015-06-17 Method for producing oxide single crystal

Country Status (1)

Country Link
JP (1) JP6350405B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143893A (en) * 1985-12-16 1987-06-27 Matsushita Electric Ind Co Ltd Growth of magneto-optical crystal
JPH07206594A (en) * 1994-01-17 1995-08-08 Namiki Precision Jewel Co Ltd Method for producing magnetic garnet
JPH08259368A (en) * 1995-03-24 1996-10-08 Fuji Elelctrochem Co Ltd Production of single crystal
JP2004323300A (en) * 2003-04-24 2004-11-18 Sumitomo Metal Mining Co Ltd Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method
DE102009043003A1 (en) * 2009-09-25 2011-04-07 Schott Ag Production of rare earth aluminum or gallium garnet crystals from a fluoride-containing melt and their use as an optical element for mirolithography and as a scintillator

Also Published As

Publication number Publication date
JP2017007873A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
CN103180492B (en) The raw material used in LGS type oxide material, its manufacture method and this manufacture method
JP5935764B2 (en) Garnet-type single crystal and manufacturing method thereof
WO2011049102A1 (en) Single crystal, process for producing same, optical isolator, and optical processor using same
US20140021418A1 (en) Bi-substituted rare earth iron garnet single crystal, method for producing same, and optical device
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP6436073B2 (en) Method for growing CaMgZr-substituted gadolinium / gallium / garnet single crystal
JP6350405B2 (en) Method for producing oxide single crystal
JP2017200864A (en) CaMgZr SUBSTITUTION TYPE GADOLINIUM-GALLIUM-GARNET (SGGG) SINGLE CRYSTAL, AND ITS REARING METHOD
JP2019182682A (en) Method for manufacturing nonmagnetic garnet single crystal
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP6500807B2 (en) Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP6922521B2 (en) How to grow non-magnetic garnet single crystal
JP6489574B2 (en) Crystal material and method for producing the same
CN108221052B (en) Preparation of large-size Zn4B6O13Method for single crystal
JP2005029400A (en) Garnet single crystal, its growing method, and garnet substrate for liquid-phase epitaxial growth method
EP3421647B1 (en) Crystal material and method for producing the same
JP6933424B1 (en) How to grow SGGG single crystal and SGGG single crystal
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP7017072B2 (en) How to grow a non-magnetic garnet single crystal
JP6819862B2 (en) Method for growing bismuth-substituted rare earth iron garnet single crystal film and bismuth-substituted rare earth iron garnet single crystal film
JP2018203563A (en) Production method of magnetostrictive material
Takeda et al. Effect of starting melt composition on growth of La 3 Ta 0.5 Ga 5.5 O 14 crystal
JP2018095486A (en) Bismuth-substituted type rare earth iron garnet crystal film, production method thereof, and optical isolator
JP2005089223A (en) Single crystal and its manufacturing method
JP6531665B2 (en) Method of identifying nonmagnetic garnet single crystal substrate and method of manufacturing substrate for Bi-substituted rare earth iron garnet single crystal film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6350405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees