JP6349957B2 - Slag filling for producing lithium transition metal composite oxide and method for producing lithium transition metal composite oxide - Google Patents

Slag filling for producing lithium transition metal composite oxide and method for producing lithium transition metal composite oxide Download PDF

Info

Publication number
JP6349957B2
JP6349957B2 JP2014105003A JP2014105003A JP6349957B2 JP 6349957 B2 JP6349957 B2 JP 6349957B2 JP 2014105003 A JP2014105003 A JP 2014105003A JP 2014105003 A JP2014105003 A JP 2014105003A JP 6349957 B2 JP6349957 B2 JP 6349957B2
Authority
JP
Japan
Prior art keywords
transition metal
composite oxide
mortar
metal composite
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014105003A
Other languages
Japanese (ja)
Other versions
JP2015218098A (en
Inventor
川上 裕二
裕二 川上
知倫 二瓶
知倫 二瓶
心 今泉
心 今泉
山口 直之
直之 山口
白石 隆
白石  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014105003A priority Critical patent/JP6349957B2/en
Publication of JP2015218098A publication Critical patent/JP2015218098A/en
Application granted granted Critical
Publication of JP6349957B2 publication Critical patent/JP6349957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム遷移金属複合酸化物の製造方法に関する技術であり、とくに、工業的に製造する際の量産性を向上させるリチウム遷移金属複合酸化物製造用匣鉢充填物およびリチウム遷移金属複合酸化物の製造方法に関する。   The present invention relates to a method for producing a lithium transition metal composite oxide, and more particularly, a slag filling for producing a lithium transition metal composite oxide and a lithium transition metal composite oxidation for improving mass productivity in industrial production. The present invention relates to a method for manufacturing a product.

近年、携帯電話、ノートパソコン等の小型電子機器、あるいは車載用電池の急速な拡大とともに、充放電可能な電源として、非水系電解質二次電池、特にリチウムイオン二次電池の需要が急激に伸びている。非水系電解質二次電池の正極材料としては、リチウムコバルト複合酸化物やリチウムニッケル複合酸化物などのリチウム遷移金属複合酸化物が広く用いられている。   In recent years, demand for non-aqueous electrolyte secondary batteries, especially lithium ion secondary batteries, has rapidly increased as a power source that can be charged and discharged, along with the rapid expansion of small electronic devices such as mobile phones and notebook computers, and in-vehicle batteries. Yes. As positive electrode materials for non-aqueous electrolyte secondary batteries, lithium transition metal composite oxides such as lithium cobalt composite oxide and lithium nickel composite oxide are widely used.

通常、リチウム遷移金属複合酸化物は、リチウム化合物と遷移金属化合物を混合し焼成することにより、製造されている。しかるに、リチウム遷移金属複合酸化物は、合成時の焼成時間が長くなり、生産性が悪いという問題点がある。とくにリチウムニッケル複合酸化物は、リチウムコバルト複合酸化物に比べて、電池としての容量を高められるという利点を持つものの、分解温度が低いために、合成時の温度が上げられず、合成時の焼成時間が長くなり、さらに生産性が悪いという問題点がある。   Usually, a lithium transition metal composite oxide is produced by mixing and baking a lithium compound and a transition metal compound. However, the lithium transition metal composite oxide has a problem in that the firing time during synthesis becomes long and the productivity is poor. In particular, lithium nickel composite oxide has the advantage that the capacity of the battery can be increased compared to lithium cobalt composite oxide, but because the decomposition temperature is low, the temperature at the time of synthesis cannot be raised, and the firing at the time of synthesis. There is a problem that time is increased and productivity is further deteriorated.

これまで、特許文献1〜3に記載されているように、リチウム遷移金属複合酸化物の焼成による合成について、多数の提案がなされている。
さらに、特許文献4では、ニッケル複合酸化物と水酸化リチウムとからなり、原料混合物を40mm以上と厚い焼成前層厚として焼成する工業的な生産工程において、450℃以上650℃以下の温度範囲を、通過時間(hr)=焼成前層厚(mm)×0.0387−1.3477の式から求められる通過時間を下回らない最小時間で通過させ、かつ 、650℃を超え、800℃以下の最高温度を4時間以上保持することが提案されている。
So far, as described in Patent Documents 1 to 3, many proposals have been made for the synthesis of lithium transition metal composite oxides by firing.
Furthermore, in patent document 4, in the industrial production process which consists of nickel complex oxide and lithium hydroxide, and bakes a raw material mixture as 40 mm or more thick layer thickness before baking, the temperature range of 450 degreeC or more and 650 degrees C or less is set. , Passage time (hr) = layer thickness before firing (mm) × 0.0387-1.3477 The passage time is less than the passage time determined from the formula, and the maximum is over 650 ° C. and below 800 ° C. It has been proposed to maintain the temperature for more than 4 hours.

また、焼成時の生産性を向上させるため、匣鉢内の充填方法についても提案されている。たとえば、特許文献5では、匣鉢内に収容された被加熱物を、加熱炉内を移動させつつ加熱処理する加熱方法において、匣鉢内に収容された被加熱物の表層に凹部を設けて加熱処理し、表層部からの熱の吸収や表層部への熱の排出を効率よく行うことによって、匣鉢内の粉体の位置による温度差が抑制され、発生ガスの排出効率が改善されることが提案されている。   Moreover, in order to improve the productivity at the time of baking, the filling method in a mortar has also been proposed. For example, in Patent Document 5, in a heating method in which an object to be heated contained in a sagger is heated while moving in a heating furnace, a recess is provided on the surface layer of the object to be heated accommodated in the sagger. By heat-treating and efficiently absorbing heat from the surface layer part and discharging heat to the surface layer part, the temperature difference due to the position of the powder in the mortar is suppressed, and the discharge efficiency of the generated gas is improved. It has been proposed.

特許文献6では、匣鉢の内部に乾燥した粉体を所定量供給した上、粉体表面に所定位置まで第1の押え板を降下させ、匣鉢に振動を加えて粉体表面を第1の押さえ板の下面形状に従って中央が窪んだ形状に成形し、成形された粉体表面を第2の押さえ板により更に圧下して中央が窪んだ形状に圧密成形する。これにより、焼成工程の生産性の向上と焼成品質の向上とを図ることを提案している。   In Patent Document 6, a predetermined amount of dry powder is supplied to the inside of the mortar, the first presser plate is lowered to a predetermined position on the powder surface, and vibration is applied to the mortar to place the powder surface on the first surface. In accordance with the shape of the lower surface of the pressing plate, the center is formed into a recessed shape, and the formed powder surface is further reduced by the second pressing plate to be compacted into a shape in which the center is recessed. Thus, it has been proposed to improve the productivity of the firing process and improve the firing quality.

しかしながら、特許文献1〜3の従来技術においては、原料組成、焼成温度範囲、および焼成時間などを規定することが記載されているが、大量に処理される実際の工業的な生産工程において、電池性能を劣化させない範囲で最大の生産性を得られる焼成条件の詳細について十分に開示されたものではない。
また、特許文献4は、工業的規模における生産が可能な合成時間と焼成原料の充填量との関係を、記載しているものの、まだ改善の余地があり更なる生産性が望まれている。
特許文献5および6においては、匣鉢への充填形状の検討がなされているが、焼成後の物性についての詳細な検討はなされておらず、電池性能と生産性を両立させているとは言い難い。
However, in the prior arts of Patent Documents 1 to 3, it is described that the raw material composition, the firing temperature range, the firing time, and the like are specified, but in an actual industrial production process that is processed in large quantities, the battery The details of the firing conditions for obtaining the maximum productivity within a range not deteriorating the performance are not sufficiently disclosed.
Moreover, although patent document 4 has described the relationship between the synthesis time which can be produced on an industrial scale, and the filling amount of a baking raw material, there is still room for improvement and the further productivity is desired.
In Patent Documents 5 and 6, the filling shape into the mortar has been studied, but detailed examination of the physical properties after firing has not been made, and it is said that both battery performance and productivity are achieved. hard.

特開2002−170562号公報JP 2002-170562 A 特開2000−173599号公報JP 2000-173599 A 特開2008−117729号公報JP 2008-117729 A 特開2010−24085号公報JP 2010-24085 A 特開2011−168434号公報JP 2011-168434 A 特開2011−235450号公報JP 2011-235450 A

本発明は、上記事情に鑑み、リチウム遷移金属複合酸化物の電池性能を劣化させることなく、焼成時の生産性を向上させることが可能な匣鉢充填物と、該匣鉢充填物を用いたリチウム遷移金属複合酸化物の製造方法を提供することを目的とする。   In view of the above circumstances, the present invention uses a mortar filling that can improve productivity during firing without deteriorating battery performance of the lithium transition metal composite oxide, and the mortar filling. It aims at providing the manufacturing method of lithium transition metal complex oxide.

本発明者は、上述した目的を達成するために検討を重ねた結果、遷移金属複合水酸化物もしくは遷移金属複合酸化物とリチウム化合物が混合された原料混合物が充填された匣鉢充填物の開放面に適切な幅を有するスリットを形成することで、焼成雰囲気中からの酸素を原料混合物に効率よく供給させるとともに、反応生成ガスの排出を促進して匣鉢充填物全体の反応を均一にすることができ、生産性を向上させることが可能であるとの知見を得て、以下の発明を完成したものである。   As a result of repeated studies to achieve the above-mentioned object, the present inventor has released a mortar filling filled with a transition metal composite hydroxide or a raw material mixture in which a transition metal composite oxide and a lithium compound are mixed. By forming a slit having an appropriate width on the surface, oxygen from the firing atmosphere can be efficiently supplied to the raw material mixture, and the reaction product gas can be exhausted to make the reaction of the entire mortar filling uniform. The following invention has been completed with the knowledge that productivity can be improved.

第1発明のリチウム遷移金属複合酸化物製造用匣鉢充填物は、リチウム遷移金属複合酸化物を製造する焼成に用いられ、遷移金属複合水酸化物もしくは遷移金属複合酸化物とリチウム化合物が混合された原料混合物が匣鉢内に充填された匣鉢充填物であって、前記匣鉢充填物の形状は、直方体もしくは四角柱であり、前記匣鉢充填物における原料混合物のかさ密度が0.5〜2.2g/cmであり、前記匣鉢充填物には上面から下方に向かうスリット溝が形成されており、前記スリット溝は、前記匣鉢充填物の上面と平行な断面において放射状もしくは網目状に形成されたものであり、該スリット溝は、その開口部が2本の平行線で画定されるアスペクト比が10以上の細長開口面であり、その溝形状が前記細長開口面が深さ方向に延びる溝であり、前記スリット溝の面積(S1)が幅(Ws)×長さ(Ls)×溝数で求められ、匣鉢充填物の上面の面積(S2)が幅(W1)×幅(W2)で求められるものであり、前記スリット溝の面積(S1)を匣鉢充填物の上面の面積(S2)で除したスリット面積比(S1/S2)が0.05〜0.30であり、前記匣鉢内における前記原料混合物の充填深さは30〜100mmであり、前記スリット溝の深さは匣鉢内における前記原料混合物の充填深さの50%以上であることを特徴とする
発明のリチウム遷移金属複合酸化物製造用匣鉢充填物は、前記原料混合物が、遷移金属複合酸化物とリチウム化合物の混合物であることを特徴とする。
発明のリチウム遷移金属複合酸化物製造用匣鉢充填物は、第1または第2発明において、前記リチウム遷移金属複合酸化物は、一般式:LiNi1−y−z(式中、Mは、CoおよびMnから選ばれた少なくとも1種の元素を示し、Nは、AlまたはTiから選ばれた少なくとも1種の元素を示す。xは、0.90〜1.10であり、yは、0.05〜0.35であり、かつ、Zは、0.005〜0.05である。)で表される組成を有するものであることを特徴とする。
発明のリチウム遷移金属複合酸化物製造用匣鉢充填物の製造方法は、リチウム遷移金属複合酸化物を製造する焼成に用いられ、遷移金属複合水酸化物もしくは遷移金属複合酸化物とリチウム化合物が混合された原料混合物が匣鉢内に充填された匣鉢充填物の製造方法であって、かさ密度が0.5〜2.2g/cm前記原料混合物を前記匣鉢内における前記原料混合物の充填深さが30〜100mmとなるように匣鉢に充填する工程と、
匣鉢の開放面から細長開口面が深さ方向に延びるスリット溝を形成する薄板を備えた押し具を圧入する工程と、該押し具の先端を、匣鉢の開放面から匣鉢内の充填深さの50%以上まで圧入するする工程とを含み、前記匣鉢充填物の形状は、直方体もしくは四角柱であり、前記スリット溝は、前記匣鉢充填物の上面と平行な断面において放射状もしくは網目状に形成されたものであり、該スリット溝は、その開口部が2本の平行線で画定されるアスペクト比が10以上の細長開口面であり、その溝形状が前記細長開口面が深さ方向に延びる溝であり、前記スリット溝の面積(S1)が幅(Ws)×長さ(Ls)×溝数で求められ、匣鉢充填物の上面の面積(S2)が幅(W1)×幅(W2)で求められるものであり、前記スリット溝の面積(S1)を匣鉢充填物の上面の面積(S2)で除したスリット面積比(S1/S2)が0.05〜0.30であることを特徴とする。
発明のリチウム遷移金属複合酸化物の製造方法は、非水系電解質二次電池用の正極活物質として用いられるリチウム遷移金属複合酸化物の製造方法であって、第4発明に記載のリチウム遷移金属複合酸化物製造用匣鉢充填物を、700〜1000℃の温度で焼成することを特徴とする。
The mortar filling for producing a lithium transition metal composite oxide according to the first invention is used for firing for producing a lithium transition metal composite oxide, and a transition metal composite hydroxide or transition metal composite oxide and a lithium compound are mixed. The raw material mixture is filled in a mortar , and the shape of the mortar filling is a rectangular parallelepiped or a square pillar, and the bulk density of the raw material mixture in the mortar filling is 0.5. ˜2.2 g / cm 3 , and a slit groove extending downward from the upper surface is formed in the mortar filling, and the slit groove is radial or meshed in a cross section parallel to the upper surface of the mortar filling. The slit groove is an elongated opening surface whose aspect ratio is defined by two parallel lines and the aspect ratio is 10 or more, and the groove shape is the depth of the elongated opening surface. Extending in the direction The area (S1) of the slit groove is obtained by width (Ws) × length (Ls) × number of grooves, and the area (S2) of the upper surface of the mortar filling is width (W1) × width (W2). The slit area ratio (S1 / S2) obtained by dividing the area (S1) of the slit groove by the area (S2) of the upper surface of the mortar filling is 0.05 to 0.30, The filling depth of the raw material mixture in the mortar is 30 to 100 mm, and the depth of the slit groove is 50% or more of the filling depth of the raw material mixture in the mortar .
Lithium transition metal composite oxide prepared for sagger filler of the second invention, before Symbol raw material mixture, characterized in that a mixture of a transition metal composite oxide and the lithium compound.
In the first or second invention , the slag filling for producing a lithium transition metal composite oxide of the third invention is the lithium transition metal composite oxide according to the general formula: Li x Ni 1-yz M y N z O 2 (wherein M represents at least one element selected from Co and Mn, N represents at least one element selected from Al or Ti, and x represents 0.90 to 1) .10, y is 0.05 to 0.35, and Z is 0.005 to 0.05.)
The method for producing a mortar filling for producing a lithium transition metal composite oxide according to a fourth aspect of the invention is used for firing to produce a lithium transition metal composite oxide, and includes a transition metal composite hydroxide or a transition metal composite oxide and a lithium compound. there raw material mixture is mixed by a method for producing a sagger filler filled in Napishtim bowl, the bulk density is the raw material mixture 0.5~2.2g / cm 3 in the Napishtim bowl material Filling the mortar so that the filling depth of the mixture is 30 to 100 mm ;
A step of press-fitting the pusher having a thin plate forming a slit groove extending from the open face of the sagger in an elongated opening surface depth direction, the distal end of the pusher, the filling of Napishtim- bowl from the open surface of the sagger Press-fitting to 50% or more of the depth, and the shape of the mortar filling is a rectangular parallelepiped or a quadrangular prism, and the slit groove is radial in a cross section parallel to the upper surface of the mortar filling or The slit groove is an elongated opening surface having an opening ratio defined by two parallel lines and an aspect ratio of 10 or more, and the groove shape is deep in the elongated opening surface. It is a groove extending in the vertical direction, the area (S1) of the slit groove is obtained by width (Ws) × length (Ls) × number of grooves, and the area (S2) of the upper surface of the mortar filling is the width (W1). × Width (W2) is required and the area of the slit groove (S ) By dividing the slit area ratio in the area of the upper surface of the sagger packing (S2) (S1 / S2) is characterized in that 0.05 to 0.30.
A method for producing a lithium transition metal composite oxide according to a fifth invention is a method for producing a lithium transition metal composite oxide used as a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the lithium transition metal according to the fourth invention is used. The slag filling for metal complex oxide production is characterized by firing at a temperature of 700 to 1000 ° C.

第1発明によれば、つぎの効果を奏する。
(a)前記匣鉢充填物における原料混合物のかさ密度が0.5〜2.2g/cmであることから、スリット溝形成工程において、押し具を原料混合物に押し込みやすい。
(b)前記スリット溝の面積(S1)を匣鉢充填物の上面の面積(S2)で除したスリット面積比(S1/S2)が0.05〜0.30であることから、充填物内へ酸素を十分に供給することができる。
(c)前記匣鉢内における前記原料混合物の充填深さは30〜100mmであることから、匣鉢の容量を必要以上に大きくすることもなく、スリット溝の形成も容易に行える。
(d)前記スリット溝の深さは匣鉢内における前記原料混合物の充填深さの50%以上であることから、匣鉢底部まで酸素を十分に供給することが可能となり、匣鉢内における合成反応をより均一にすることができる。さらに、スリット溝を充填物下部まで深く入れることで、焼成物の塊を小さくすることにより、粉砕性を向上させることができる。
(e)放射状もしくは網目状に形成されたスリット溝は、充填物内へ酸素を均一に供給して反応をさらに均一化させることができる。とくに、放射状に形成されたスリット溝は、焼成時の収縮により匣鉢内の側面と充填物との間で隙間が生じるため、焼成後の充填物の取り出しが容易になる。また、網目状に形成されたスリット溝は、焼成物の塊を小さくすることができ、焼成後の充填物の取り出しが容易になるので、好ましい。
(f)充填物が直方体もしくは四角柱であると、充填物間の隙間を最小限にできるため、焼成炉に入れる充填物を増加させて生産性を向上させることができる。
)上記(a)〜()の効果が相乗することで、原料混合物への酸素の拡散を向上させ、合成反応を促進することを可能とするとともに、反応速度を向上させることで、生産性を大幅に向上させることができる。
According to the first invention, the following effects are obtained.
(A) Since the bulk density of the raw material mixture in the mortar filling is 0.5 to 2.2 g / cm 3, it is easy to push the pressing tool into the raw material mixture in the slit groove forming step.
(B) Since the slit area ratio (S1 / S2) obtained by dividing the area (S1) of the slit groove by the area (S2) of the upper surface of the mortar filling is 0.05 to 0.30, Oxygen can be supplied sufficiently.
(C) Since the filling depth of the raw material mixture in the mortar is 30 to 100 mm, the slit groove can be easily formed without increasing the capacity of the mortar more than necessary.
(D) Since the depth of the slit groove is 50% or more of the filling depth of the raw material mixture in the mortar, oxygen can be sufficiently supplied to the bottom of the mortar, and synthesis in the mortar The reaction can be made more uniform. Furthermore, pulverization can be improved by reducing the lump of the fired product by inserting the slit groove deeply into the lower part of the filling.
(E) The slit grooves formed in a radial shape or a network shape can uniformly supply oxygen into the packing to further uniform the reaction. In particular, since the slit grooves formed in a radial shape generate a gap between the side surface in the mortar and the filler due to shrinkage during firing, it is easy to take out the filler after firing. In addition, the slit grooves formed in a mesh shape are preferable because the lump of the fired product can be made small and the filling material after firing can be easily taken out.
(F) When the packing is a rectangular parallelepiped or a quadrangular prism, the gap between the packings can be minimized, so that the number of packings put in the firing furnace can be increased and the productivity can be improved.
( G ) By synergizing the effects of the above (a) to ( f ), it is possible to improve the diffusion of oxygen to the raw material mixture, promote the synthesis reaction, and improve the reaction rate, Productivity can be greatly improved.

発明によれば、原料混合物が遷移金属複合酸化物とリチウム化合物の混合物であるので、焼成時に発生する水蒸気を減少させ、水蒸気の放出により酸素が追い出されるために生じるスリット溝内への酸素供給の減少を抑制できる。このため、原料混合物にさらに充分な酸素を供給することができる。
発明によれば、原料混合物がニッケルを含むリチウム遷移金属複合酸化物であるときでも、スリット溝からの酸素供給により最適な熱履歴と雰囲気を与えて、副反応を抑制した合成反応を行わせることができる。
発明によれば、つぎの効果を奏する。
(a)前記匣鉢充填物における原料混合物のかさ密度が0.5〜2.2g/cm であることから、スリット溝形成工程において、押し具を原料混合物に押し込みやすい。
(b)前記スリット溝の面積(S1)を匣鉢充填物の上面の面積(S2)で除したスリット面積比(S1/S2)が0.05〜0.30であることから、充填物内へ酸素を十分に供給することができる。
(c)前記匣鉢内における前記原料混合物の充填深さは30〜100mmであることから、匣鉢の容量を必要以上に大きくすることもなく、スリット溝の形成も容易に行える。
(d)前記スリット溝の深さは匣鉢内における前記原料混合物の充填深さの50%以上であることから、匣鉢底部まで酸素を十分に供給することが可能となり、匣鉢内における合成反応をより均一にすることができる。さらに、スリット溝を充填物下部まで深く入れることで、焼成物の塊を小さくすることにより、粉砕性を向上させることができる。
(e)放射状もしくは網目状に形成されたスリット溝は、充填物内へ酸素を均一に供給して反応をさらに均一化させることができる。とくに、放射状に形成されたスリット溝は、焼成時の収縮により匣鉢内の側面と充填物との間で隙間が生じるため、焼成後の充填物の取り出しが容易になる。また、網目状に形成されたスリット溝は、焼成物の塊を小さくすることができ、焼成後の充填物の取り出しが容易になるので、好ましい。
(f)充填物が直方体もしくは四角柱であると、充填物間の隙間を最小限にできるため、焼成炉に入れる充填物を増加させて生産性を向上させることができる。
(g)上記(a)〜(f)の効果が相乗することで、原料混合物への酸素の拡散を向上させ、合成反応を促進することを可能とするとともに、反応速度を向上させることで、生産性を大幅に向上させることができる。
発明によれば、電池材料として使用可能な結晶成長が充分行われ、匣鉢充填物の上下部分間におけるリチウム遷移金属複合酸化物の物性変動を小さくでき、高い電池性能が得られる。
According to the second invention, since the raw material mixture is a mixture of a transition metal composite oxide and a lithium compound, the amount of water vapor generated during firing is reduced, and oxygen is expelled by the release of water vapor. Reduces supply. For this reason, more sufficient oxygen can be supplied to the raw material mixture.
According to the third invention, even when the raw material mixture is a lithium transition metal composite oxide containing nickel, a synthesis reaction in which an optimal heat history and atmosphere are given by supplying oxygen from the slit groove and side reactions are suppressed is performed. Can be made.
According to the fourth invention, the following effects are obtained.
(A) Since the bulk density of the raw material mixture in the mortar filling is 0.5 to 2.2 g / cm 3, it is easy to push the pressing tool into the raw material mixture in the slit groove forming step.
(B) Since the slit area ratio (S1 / S2) obtained by dividing the area (S1) of the slit groove by the area (S2) of the upper surface of the mortar filling is 0.05 to 0.30, Oxygen can be supplied sufficiently.
(C) Since the filling depth of the raw material mixture in the mortar is 30 to 100 mm, the slit groove can be easily formed without increasing the capacity of the mortar more than necessary.
(D) Since the depth of the slit groove is 50% or more of the filling depth of the raw material mixture in the mortar, oxygen can be sufficiently supplied to the bottom of the mortar, and synthesis in the mortar The reaction can be made more uniform. Furthermore, pulverization can be improved by reducing the lump of the fired product by inserting the slit groove deeply into the lower part of the filling.
(E) The slit grooves formed in a radial shape or a network shape can uniformly supply oxygen into the packing to further uniform the reaction. In particular, since the slit grooves formed in a radial shape generate a gap between the side surface in the mortar and the filler due to shrinkage during firing, it is easy to take out the filler after firing. In addition, the slit grooves formed in a mesh shape are preferable because the lump of the fired product can be made small and the filling material after firing can be easily taken out.
(F) When the packing is a rectangular parallelepiped or a quadrangular prism, the gap between the packings can be minimized, so that the number of packings put in the firing furnace can be increased and the productivity can be improved.
(G) By synergizing the effects of (a) to (f) above, it is possible to improve the diffusion of oxygen into the raw material mixture, promote the synthesis reaction, and improve the reaction rate. Productivity can be greatly improved.
According to the fifth aspect of the present invention, crystal growth that can be used as a battery material is sufficiently performed, the physical property variation of the lithium transition metal composite oxide between the upper and lower portions of the mortar filling can be reduced, and high battery performance can be obtained.

本発明の実施例1の説明図であって、(A)は押し具の平面図、(B)は押し具の側面図、(C)は匣鉢充填物の斜視図である。It is explanatory drawing of Example 1 of this invention, Comprising: (A) is a top view of a pushing tool, (B) is a side view of a pushing tool, (C) is a perspective view of a mortar filling. 本発明の実施例2で使用する押し具の平面図である。It is a top view of the pushing tool used in Example 2 of the present invention. 本発明の実施例3の説明図であって、(A)は押し具の平面図、(B)は押し具の側面図、(C)は匣鉢充填物の斜視図である。It is explanatory drawing of Example 3 of this invention, (A) is a top view of a pushing tool, (B) is a side view of a pushing tool, (C) is a perspective view of a mortar filling. 本発明の実施例4で使用する押し具の平面図である。It is a top view of the pushing tool used in Example 4 of this invention. 実施例1〜4の実験結果を示す表1である。It is Table 1 which shows the experimental result of Examples 1-4. 本発明に係るリチウム遷移金属複合酸化物の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the lithium transition metal complex oxide which concerns on this invention.

本発明の実施形態を説明する前に、リチウム遷移金属複合酸化物の製造法に要求される技術的事項を整理しておく。
リチウム遷移金属の工業的生産においては、一般的にプッシャー炉やローラーハース炉などのように、連続的に焼成可能な炉を使用する。たとえば、セラミック製の焼成容器(いわゆる匣鉢)に、遷移金属複合水酸化物もしくは遷移金属複合酸化物とリチウム化合物からなる原料混合物を充填し、所定温度に調節された炉の中で移動させることにより、原料混合物に最適な熱履歴と雰囲気を与え、合成反応を行わせる。
Prior to describing embodiments of the present invention, technical matters required for a method for producing a lithium transition metal composite oxide will be summarized.
In industrial production of lithium transition metals, a furnace that can be continuously fired is generally used, such as a pusher furnace or a roller hearth furnace. For example, a ceramic firing container (so-called mortar) is filled with a transition metal composite hydroxide or a raw material mixture composed of a transition metal composite oxide and a lithium compound and moved in a furnace adjusted to a predetermined temperature. Thus, an optimum thermal history and atmosphere are given to the raw material mixture, and a synthesis reaction is performed.

連続的な焼成を可能とする構造の炉において、工業的に生産性を向上させる手段としては、炉の通過時間を速くするか、セラミック製の容器に充填する原料混合物の量を多くするという方法が一般的である。   As a means of industrially improving productivity in a furnace having a structure capable of continuous firing, a method of increasing the passage time of the furnace or increasing the amount of the raw material mixture filled in the ceramic container Is common.

炉の通過時間を速める方法においては、通過時間をあまり速めると、リチウム遷移金属複合酸化物の合成反応に時間が足りず、匣鉢内の充填物における上下部分間において物性変動が大きいものになる。また、電池材料として使用可能な結晶成長が行われなくなり、電池性能が劣化するという問題がある。
例えば、リチウムニッケル複合酸化物の合成における水酸化リチウムとニッケル複合酸化物との反応は、450℃付近から開始する。また、水酸化リチウムの融点は、480℃付近にあり、水酸化リチウムが溶融しながら、ニッケル複合酸化物と反応する。水酸化リチウムとニッケル複合酸化物の反応は、原料混合物の昇温にしたがって進行するが、セラミック容器の底部へ十分な酸素拡散が行われない場合、未反応の溶融した水酸化リチウムが残留してしまい、炭酸ガスと反応して炭酸リチウム(LiCO)が生じる。炭酸リチウムが生成された場合、電池での使用においてこれが高温時にガスを発生させ、電池を膨張させる問題に発展する。
In the method of accelerating the passage time of the furnace, if the passage time is made too fast, there is not enough time for the synthesis reaction of the lithium transition metal composite oxide, and the physical property fluctuation is large between the upper and lower parts in the filling in the sagger. . Moreover, there is a problem that crystal growth that can be used as a battery material is not performed, and battery performance deteriorates.
For example, the reaction of lithium hydroxide and nickel composite oxide in the synthesis of lithium nickel composite oxide starts from around 450 ° C. Further, the melting point of lithium hydroxide is around 480 ° C., and the lithium hydroxide reacts with the nickel composite oxide while melting. The reaction between lithium hydroxide and nickel composite oxide proceeds as the temperature of the raw material mixture increases. However, if sufficient oxygen diffusion is not performed at the bottom of the ceramic container, unreacted molten lithium hydroxide remains. Therefore, it reacts with carbon dioxide gas to produce lithium carbonate (Li 2 CO 3 ). When lithium carbonate is produced, it develops into a problem that in use in a battery, it generates gas at high temperatures and causes the battery to expand.

また、合成においてさらに昇温して650℃に到達した時点で、未反応の水酸化リチウムとニッケル複合酸化物が存在し、かつ、酸素が不足している場合は、LiNi10のような異相を生成する副反応が起こり、生成するリチウムニッケル複合酸化物結晶中に、電池反応時にLiイオンの移動を妨げる異相が生じ、電池性能の劣化を招く。 Further, when the temperature is further increased in the synthesis and reaches 650 ° C., when unreacted lithium hydroxide and nickel composite oxide exist and oxygen is insufficient, Li 2 Ni 8 O 10 Such a side reaction that generates a heterogeneous phase occurs, and in the resulting lithium nickel composite oxide crystal, a heterogeneous phase that hinders the movement of Li ions during the battery reaction occurs, leading to deterioration of battery performance.

以上の理由により、匣鉢内の原料混合物を均一に反応させ、電池材料に適したリチウム遷移金属複合酸化物を得るためには、遷移金属複合水酸化物もしくは遷移金属複合酸化物とリチウム化合物からなる原料混合物が反応する温度範囲、例えば、リチウムニッケル複合酸化物の合成においては450℃以上650℃以下の温度範囲で、匣鉢の底部まで酸素拡散を行わせることが重要となる。   For the above reasons, in order to uniformly react the raw material mixture in the sagger and obtain a lithium transition metal composite oxide suitable for battery materials, a transition metal composite hydroxide or a transition metal composite oxide and a lithium compound are used. In the synthesis of the lithium nickel composite oxide, for example, in the synthesis of the lithium nickel composite oxide, it is important to allow oxygen diffusion to the bottom of the sagger in the temperature range of 450 ° C. or higher and 650 ° C. or lower.

一方、匣鉢内に原料混合物を充填して焼成を行う場合、匣鉢の底部へ酸素が拡散するまでの時間は、匣鉢内の原料混合物の層厚と、焼成時の酸素濃度、雰囲気や原料混合物の打ち込みの圧力などに依存する。したがって、リチウム遷移金属の合成反応では、酸素の拡散が律速となり、焼成雰囲気中の酸素が合成反応に十分な濃度となっていても、単純に充填した、あるいは、過剰に圧密した場合、匣鉢の底部まで酸素が拡散せず、電池反応を阻害する結晶が混入してしまう。   On the other hand, when baking is performed with the raw material mixture filled in the mortar, the time until oxygen diffuses into the bottom of the mortar is determined by the layer thickness of the raw material mixture in the mortar, the oxygen concentration at the time of baking, the atmosphere, It depends on the driving pressure of the raw material mixture. Therefore, in the lithium transition metal synthesis reaction, the diffusion of oxygen becomes rate limiting, and even if the oxygen in the firing atmosphere has a sufficient concentration for the synthesis reaction, if it is simply filled or excessively consolidated, Oxygen does not diffuse to the bottom of the substrate, and crystals that inhibit the battery reaction are mixed.

(本発明の技術的特徴)
本発明は、匣鉢充填物にスリット溝を形成して、原料混合物への酸素の拡散を向上させ、合成反応を促進することを可能とするとともに、反応速度を向上させることで、生産性を大幅に向上させるものである。さらに、スリット溝を充填物下部まで深く入れることで、焼成物の塊を小さくすることにより、粉砕性を向上させ、さらに生産性を向上させるという点に技術的特徴が存する。
(Technical features of the present invention)
The present invention forms a slit groove in the mortar filling to improve the diffusion of oxygen into the raw material mixture, facilitate the synthesis reaction, and improve the reaction rate, thereby improving productivity. This is a significant improvement. Furthermore, there is a technical feature in that the slit groove is inserted deeply into the lower portion of the filling material to reduce the mass of the fired product, thereby improving the grindability and further improving the productivity.

(製造工程)
図6に基づき、匣鉢充填物の成形・焼成工程の全体を簡単に説明する。
まず、充填工程Iにおいて、匣鉢2に原料混合物Fを充填する。ついで、スリット溝成形工程IIで、匣鉢2内の原料混合物mにスリット溝sを形成する。具体的には押し具1を原料混合物mに押し込んで、スリット溝sを形成する。このようにして、スリット溝sが形成された原料混合物mは匣鉢充填物Fとして匣鉢2に入れられたまま、ローラーハース炉等の連続焼成炉に入れられ、焼成される。焼成を終えると、リチウム遷移金属複合酸化物が得られる。
(Manufacturing process)
Based on FIG. 6, the whole molding and baking process of the mortar filling will be briefly described.
First, in the filling step I, the raw material mixture F is filled in the mortar 2. Next, slit grooves s are formed in the raw material mixture m in the mortar 2 in the slit groove forming step II. Specifically, the pushing tool 1 is pushed into the raw material mixture m to form the slit groove s. In this way, the raw material mixture m in which the slit grooves s are formed is placed in a continuous firing furnace such as a roller hearth furnace while being placed in the bowl 2 as the bowl filling F. When firing is finished, a lithium transition metal composite oxide is obtained.

(押し具と匣鉢充填物)
つぎに、押し具1とそれによりスリット溝sが形成された匣鉢充填物Fを説明する。
(1)図1の(A)、(B)に示す押し具1Aは、基盤11の下面にスリット形成用の4本の薄板1a、1b、1c、1dを取付けたもので、4本の薄板1a、1b、1c、1dはそれらの中心位置で交差し、放射状に延びるように配置されている。中心点からみると、8枚の薄板が半径方向外側に延びた形状となっている。この4枚のスリット形成用薄板1a〜1dを匣鉢2内の原料混合物Fに押し込むと、図1(C)に示すような、放射線状に延びた4本のスリットsが形成された匣鉢充填物Fが得られる。
(Pressing tool and bowl filling)
Next, the pressing tool 1 and the mortar filling F in which the slit groove s is formed will be described.
(1) A pusher 1A shown in FIGS. 1A and 1B has four thin plates 1a, 1b, 1c, and 1d for slit formation attached to the lower surface of a base 11, and is composed of four thin plates. 1a, 1b, 1c, and 1d intersect with each other at their center positions and are arranged to extend radially. When viewed from the center point, the eight thin plates extend radially outward. When these four slit-forming thin plates 1a to 1d are pushed into the raw material mixture F in the mortar 2, the mortar in which four slits s extending radially are formed as shown in FIG. Filling F is obtained.

(2)図2に示す押し具1Bは、スリット形成用の薄板の数を図1の押し具1Aよりも増やしたものである。
すなわち、図1の押し具1Aが4枚の薄板1a〜1dを使っているのに対し、更に薄板1e〜1hを追加し、8枚の薄板1a〜1hを用いたものとなっている。各薄板1a〜1hは中心点から半径方向外側に延びた形状となっている。この押し具1Bを使うと匣鉢充填物Fにも中心から8枚のスリット溝sが延びたものが得られる。
(2) The pusher 1B shown in FIG. 2 is obtained by increasing the number of slit-forming thin plates as compared with the pusher 1A shown in FIG.
That is, the pressing tool 1A of FIG. 1 uses four thin plates 1a to 1d, but further adds thin plates 1e to 1h, and uses eight thin plates 1a to 1h. Each of the thin plates 1a to 1h has a shape extending radially outward from the center point. When this pusher 1B is used, the mortar filling F can be obtained with eight slit grooves s extending from the center.

(3)図3の(A)、(B)の押し具1Cは、図1の押し具1Aに半球状の球面突起1sを取付けたものである。すなわち、4枚の薄板1a〜1dが交差する中心点と同心位置に半球状の球面突起1Sを形成している。
この押し具1Cを用いてスリット溝sを形成すると、図3(C)に示すように、放射状に延びる4本のスリット溝sの中心に半球状の凹所hが形成された匣鉢充填物Fが得られる。
(3) The pressing tool 1C of FIGS. 3A and 3B is obtained by attaching a hemispherical spherical protrusion 1s to the pressing tool 1A of FIG. That is, the hemispherical spherical protrusion 1S is formed at a position concentric with the center point where the four thin plates 1a to 1d intersect.
When the slit groove s is formed using the pressing tool 1C, as shown in FIG. 3C, the mortar filling in which a hemispherical recess h is formed at the center of the four slit grooves s extending radially. F is obtained.

(4)図4の押し具1Dは、基盤11の下面に一方向(図面では上下方向)に延びる複数枚の薄板1aと、他方向(図面では左右方向)に延び前記薄板1a、1a間に接続された複数の短い薄板1b、1cが取付けられている。
図4では、薄板1bと薄板1cが形成される位置が異なり、図に示す上下位置も異なり、左右位置でも交互に位置するように異なっている。
このように、縦横に延びる薄板で形成された形状を、本明細書では網目状という。なお、網目の形状は図4に図示するものに限らず、これ以外の形状のものであってよい。
匣鉢充填物Fに形成されるスリット溝は、図4の薄板1a、1b、1c反転形状となる。
(4) The pressing tool 1D shown in FIG. 4 includes a plurality of thin plates 1a extending in one direction (vertical direction in the drawing) on the lower surface of the base 11, and extending in the other direction (horizontal direction in the drawing) between the thin plates 1a and 1a. A plurality of short thin plates 1b and 1c connected to each other are attached.
In FIG. 4, the positions where the thin plate 1b and the thin plate 1c are formed are different, the vertical positions shown in the figure are also different, and the horizontal positions are also alternately positioned.
Thus, the shape formed by the thin plate extended vertically and horizontally is called mesh shape in this specification. The shape of the mesh is not limited to that shown in FIG. 4 and may be other shapes.
The slit grooves formed in the mortar filling F are in the shape of the thin plates 1a, 1b, 1c inverted in FIG.

本発明で用いられる匣鉢は、上面が開放された形状であればよいのであるが、焼成炉内での充填度を高くするためには、図6に符号2で示す枡形の四角形容器であることが好ましい。なお、匣鉢2の四側面と底面は閉塞されているが、上面は開放されているので、この上面を開放面ということがある。   The mortar used in the present invention only needs to have a shape with an open upper surface, but in order to increase the degree of filling in the firing furnace, it is a bowl-shaped rectangular container indicated by reference numeral 2 in FIG. It is preferable. In addition, although the four side surfaces and the bottom surface of the mortar 2 are closed, the top surface is open, so this top surface may be referred to as an open surface.

上記のような四角形容器を密に焼成炉配置することで主として上面と下面から加熱され、匣鉢充填物が均一に加熱されるため、得られるリチウム遷移金属複合酸化物の均一性が向上する。
このような匣鉢2に原料混合物mが充填されるが、充填完了後のものを匣鉢充填物Fという。
匣鉢充填物Fの形状は、匣鉢2が四角形容器であることから、直方体あるいは四角柱となる。このような直方体あるいは四角柱は、充填物間の隙間を最小限にできるため、焼成炉に入れる充填物を増加させて生産性を向上させることができるので好ましい。
By arranging the rectangular containers as described above densely in the firing furnace, the mixture is heated mainly from the upper surface and the lower surface, and the mortar filling is uniformly heated, so that the uniformity of the obtained lithium transition metal composite oxide is improved.
Such a mortar 2 is filled with the raw material mixture m.
The shape of the mortar filling F is a rectangular parallelepiped or a quadrangular prism since the mortar 2 is a rectangular container. Such a rectangular parallelepiped or quadrangular column is preferable because the gap between the fillers can be minimized, and the productivity can be improved by increasing the number of fillers to be placed in the firing furnace.

本発明の匣鉢充填物F(以下、単に充填物Fともいう)では、匣鉢充填物Fの上面から下方に向ってスリット溝sが形成されている。これにより、充填物F内への酸素の供給量が増加し、酸素の拡散が大幅に向上する。
スリット溝sは、アスペクト比10以上、好ましくは20以上の溝であることが好ましい。ここでいうアスペクト比とは、図1(C)に示す充填物Fを例にとって説明すると、スリット溝sにおける幅Ws対長さLsの比である。アスペクト比が10未満、たとえば正方形や真円、あるいは棒状の凹みでは、充填物内への酸素の供給量を十分なものとしようとすると、多数の凹みが必要であり、匣鉢内への原料混合物の充填量が減少して生産性が低下する。
In the mortar filling F of the present invention (hereinafter also simply referred to as filling F), slit grooves s are formed from the upper surface of the mortar filling F downward. Thereby, the supply amount of oxygen into the filling material F increases, and the diffusion of oxygen is greatly improved.
The slit groove s is preferably a groove having an aspect ratio of 10 or more, preferably 20 or more. The aspect ratio here is, for example, the ratio of the width Ws to the length Ls in the slit groove s in the case of the filler F shown in FIG. If the aspect ratio is less than 10, for example, a square, a perfect circle, or a rod-shaped dent, a large number of dents are required to supply a sufficient amount of oxygen into the filling material. The filling amount of the mixture is reduced and the productivity is lowered.

スリット溝sは、スリット溝の面積(S1)を充填物上面の面積(S2)で除した値をスリット面積比(S1/S2)としたとき、スリット面積比が0.05〜0.30である。
スリット溝の面積(S1)は、図1(C)の匣鉢充填物Fの場合、匣鉢充填物Fの上面におけるスリットsの断面面積であり、アスペクト比が十分に大きいため、スリット溝sの幅Ws×長さLs×溝数4で求めてよい。また開放面の面積(S2)、すなわち匣鉢充填物Fの上面の面積(S2)は、同じく幅W1×幅W2で求められる。
The slit groove s has a slit area ratio of 0.05 to 0.30, where a value obtained by dividing the area (S1) of the slit groove by the area (S2) of the upper surface of the filling is the slit area ratio (S1 / S2). is there.
In the case of the mortar filling F of FIG. 1C, the slit groove area (S1) is the cross-sectional area of the slit s on the upper surface of the mortar filling F, and the aspect ratio is sufficiently large. The width Ws × the length Ls × the number of grooves 4 may be obtained. Moreover, the area (S2) of an open surface, ie, the area (S2) of the upper surface of the mortar filling F, is similarly calculated | required by width W1 x width W2.

上記スリット面積比を採用したときは、これにより、充填物F内へ酸素を十分に供給することができ、高い合成反応が行われる。スリット面積比が0.05未満では、充填物F内への酸素の供給が不足する。一方、スリット面積比が0.30を超えると、匣鉢内への原料混合物mの充填量が減少するため、生産性が低下する。   When the slit area ratio is adopted, oxygen can be sufficiently supplied into the filler F, and a high synthesis reaction is performed. When the slit area ratio is less than 0.05, the supply of oxygen into the filling F is insufficient. On the other hand, when the slit area ratio exceeds 0.30, the filling amount of the raw material mixture m into the mortar decreases, and thus the productivity decreases.

また、前記スリット溝sは、充填物F内へ酸素を均一に供給して反応を均一化させるため、放射状もしくは網目状に形成されていることが好ましい。とくに放射状に形成されたスリット溝sは、焼成時の収縮により匣鉢内の側面と充填物との間で隙間が生じるため、焼成後の充填物の取り出しが容易になるので、好ましい。また、網目状に形成されたスリット溝sは、焼成物の塊を小さくすることができ、焼成後の充填物の取り出しが容易になるので、好ましい。   In addition, the slit grooves s are preferably formed in a radial shape or a mesh shape in order to uniformly supply oxygen into the filling material F to make the reaction uniform. Particularly, the radially formed slit grooves s are preferable because a gap is formed between the side surface in the mortar and the filling material due to shrinkage during firing, and thus it becomes easy to take out the filling material after firing. Moreover, the slit grooves s formed in a mesh shape are preferable because the lump of the fired product can be made small and the filling material after firing can be easily taken out.

さらに、前記スリット溝sの深さHは、匣鉢2内の充填深さの50%以上であることが好ましい。スリット溝sの深さを充填深さの50%以上とすることで、匣鉢2底部まで酸素を十分に供給することが可能となり、匣鉢2内における合成反応をより均一にすることができる。一方、スリット溝sの深さが充填深さの50%未満では、匣鉢上面と下面との間で合成反応に差が生じ、上下部分で得られるリチウム遷移金属複合酸に物性変動が生じることがある。また、スリット溝を充填物下部まで深く入れることで、粉砕性を向上させ、焼成物の塊を小さくすることが可能であり、さらに生産性を向上させることができる。   Furthermore, the depth H of the slit groove s is preferably 50% or more of the filling depth in the mortar 2. By making the depth of the slit groove s 50% or more of the filling depth, oxygen can be sufficiently supplied to the bottom of the mortar 2 and the synthesis reaction in the mortar 2 can be made more uniform. . On the other hand, when the depth of the slit groove s is less than 50% of the filling depth, a difference occurs in the synthesis reaction between the upper surface and the lower surface of the mortar, and physical property fluctuations occur in the lithium transition metal composite acid obtained in the upper and lower portions. There is. Further, by deeply inserting the slit groove to the lower part of the filling material, it is possible to improve the pulverization property, to reduce the mass of the fired product, and to further improve the productivity.

前記匣鉢2内の充填深さは、スリット溝sの形成により匣鉢2内への酸素供給が促進されるため、焼成炉での焼成が可能であれば特に限定されるものではないが、30〜100mmであることが好ましい。充填深さが30mm未満であると、生産性が低下する。また、充填深さが100mmを超えると、スリット溝sを形成した充填物が崩れてスリット溝sの形成が困難になることがある。充填深さが上記範囲であると、匣鉢の容量を必要以上に大きくすることもなく、スリット溝の形成も容易に行える。   The filling depth in the mortar 2 is not particularly limited as long as it can be baked in a calcination furnace, since the oxygen supply into the mortar 2 is promoted by the formation of the slit groove s. It is preferable that it is 30-100 mm. If the filling depth is less than 30 mm, the productivity is lowered. Moreover, when the filling depth exceeds 100 mm, the filling material in which the slit grooves s are formed may collapse and it may be difficult to form the slit grooves s. When the filling depth is within the above range, the slit groove can be easily formed without increasing the capacity of the mortar more than necessary.

匣鉢2に充填された原料混合物のかさ密度は0.5〜2.2g/cmが好ましい。
前記かさ密度が0.5g/cm未満では、焼成容器へ一定量充填する際に必要な匣鉢の必要容量が大きくなりすぎて、生産性を著しく低下させる。一方、かさ密度が2.2g/cmを超えると、原料混合物が密に詰まることで酸素拡散が遅くなり、焼成に必要な時間が延びて生産性が低下する。かさ密度が上記範囲であれば、押し具の圧入によっても原料混合物が密に詰まらないので酸素供給が充分に行われる。
The bulk density of the raw material mixture filled in the mortar 2 is preferably 0.5 to 2.2 g / cm 3 .
When the bulk density is less than 0.5 g / cm 3 , the necessary capacity of the sagger required for filling the firing container with a certain amount becomes too large, and the productivity is remarkably lowered. On the other hand, when the bulk density exceeds 2.2 g / cm 3 , the raw material mixture is densely packed, so that the oxygen diffusion is slowed down, and the time required for firing is extended to reduce the productivity. When the bulk density is in the above range, the raw material mixture is not clogged densely even by press-fitting of the pressing tool, so that oxygen is sufficiently supplied.

(原料混合物)
前記原料混合物は、前記遷移金属複合水酸化物を熱処理することにより得られる遷移金属複合酸化物とリチウム化合物の混合物であることが好ましい。遷移金属複合酸化物とリチウム化合物を混合することにより、リチウム化合物と反応する際に発生する水蒸気を減少させ、水蒸気の放出により酸素が追い出されるために生じるスリット溝内への酸素供給の減少を抑制できる。このため、原料混合物にさらに充分な酸素を供給することができる。
(Raw material mixture)
The raw material mixture is preferably a mixture of a transition metal composite oxide and a lithium compound obtained by heat-treating the transition metal composite hydroxide. By mixing the transition metal composite oxide and the lithium compound, the water vapor generated when reacting with the lithium compound is reduced, and the decrease in oxygen supply into the slit groove caused by the expulsion of oxygen due to the release of water vapor is suppressed. it can. For this reason, more sufficient oxygen can be supplied to the raw material mixture.

本発明の充填物は、種々のリチウム遷移金属複合酸化物の製造に適用可能であるが、特に、下記一般式で表されるリチウムニッケル複合酸化物の製造に適用することが好適である。このようなリチウムニッケル複合酸化物は、ニッケル含有量が多いため、他のリチウムニッケル複合酸化物よりも上記異相を生成する副反応が生じやすい。しかしながら本発明では、スリット溝からの酸素供給により最適な熱履歴と雰囲気を与えて、副反応を抑制した合成反応を行わせることができる。したがって、スリット溝形成による酸素供給の向上により、副反応を抑制して良好な電池特性を有するリチウムニッケル複合酸化物を容易に得ることができる。
一般式:LiNi1−y−z
(式中、Mは、CoおよびMnから選ばれた少なくとも1種の元素を示し、Nは、AlまたはTiから選ばれた少なくとも1種の元素を示す。xは、0.90〜1.10であり、yは、0.05〜0.35であり、かつ、Zは、0.005〜0.05である。)
The filler of the present invention can be applied to the production of various lithium transition metal composite oxides, and is particularly preferably applied to the production of lithium nickel composite oxides represented by the following general formula. Since such a lithium nickel composite oxide has a high nickel content, a side reaction that generates the heterogeneous phase is more likely to occur than other lithium nickel composite oxides. However, in the present invention, an optimum heat history and atmosphere can be provided by supplying oxygen from the slit groove, and a synthesis reaction in which side reactions are suppressed can be performed. Therefore, by improving the oxygen supply by forming the slit grooves, it is possible to easily obtain a lithium nickel composite oxide having good battery characteristics while suppressing side reactions.
General formula: Li x Ni 1-yz M y N z O 2
(In the formula, M represents at least one element selected from Co and Mn, N represents at least one element selected from Al or Ti, and x represents 0.90 to 1.10. Y is from 0.05 to 0.35, and Z is from 0.005 to 0.05.)

上記一般式で表される組成のリチウムニッケル複合酸化物の製造において、原料混合物を構成するニッケル水複合酸化物もしくはニッケル複合酸化物の状態は任意である。例えば、ニッケル複合酸化物が、酸化ニッケルに前記添加元素MおよびNのいずれもが固溶している結晶構造を有するもの、酸化ニッケルに添加元素Mのみが固溶し、これと添加元素Nの酸化物、水酸化物、含水酸化物等を混合したもの、ないしは、酸化ニッケルに前記添加元素Mのみが固溶し、かかる酸化ニッケル粒子(二次粒子)の表面に添加元素Nの酸化物、水酸化物、含水酸化物等を被覆または表面吸着させたもののいずれの状態でもよい。   In the production of the lithium nickel composite oxide having the composition represented by the above general formula, the state of the nickel water composite oxide or the nickel composite oxide constituting the raw material mixture is arbitrary. For example, the nickel composite oxide has a crystal structure in which both of the additive elements M and N are dissolved in nickel oxide, or only the additive element M is dissolved in nickel oxide. A mixture of oxide, hydroxide, hydrated oxide, or the like, or only the additive element M is dissolved in nickel oxide, and the oxide of the additive element N is formed on the surface of the nickel oxide particles (secondary particles). Any state in which a hydroxide, a hydrated oxide, or the like is coated or surface-adsorbed may be used.

これらの状態は、公知のニッケル複合酸化物の製造方法に基づいて得ることができる。例えば、ニッケルと添加元素MおよびNを共沈させて、ニッケル複合水酸化物を得て、該ニッケル複合水酸化物を酸化焙焼させることにより、添加元素MおよびNのいずれもが酸化ニッケルに固溶している結晶構造のニッケル複合酸化物が得られる。また、ニッケルと添加元素Mを共沈させて、ニッケル複合水酸化物を得て、該ニッケル複合水酸化物を酸化焙焼して、得られた焙焼物と添加元素Nを混合することにより、酸化ニッケルに添加元素Mのみが固溶し、これと添加元素Nの酸化物、水酸化物、含水酸化物等を混合した状態のニッケル複合水酸化物が得られる。さらに、ニッケルと添加元素Mを共沈させて、ニッケル複合水酸化物を得て、該ニッケル複合水酸化物を酸化焙焼して、得られた焙焼物の表面に添加元素Nを析出させる、ないしは、ニッケル複合水酸化物の表面に添加元素Nを析出させて、その後、該ニッケル複合水酸化物を酸化焙焼することにより、酸化ニッケルに前記添加元素Mのみが固溶し、かかる酸化ニッケル粒子(二次粒子)の表面に添加元素Nの酸化物、水酸化物、含水酸化物等を被覆または表面吸着させた状態のニッケル複合酸化物が得られる。   These states can be obtained based on a known method for producing a nickel composite oxide. For example, nickel and additive elements M and N are coprecipitated to obtain a nickel composite hydroxide, and the nickel composite hydroxide is oxidized and roasted so that both of the additive elements M and N are converted into nickel oxide. A nickel composite oxide having a solid crystal structure is obtained. Further, by coprecipitating nickel and additive element M to obtain a nickel composite hydroxide, oxidizing and roasting the nickel composite hydroxide, and mixing the obtained roast and additive element N, Only the additive element M is solid-solved in nickel oxide, and a nickel composite hydroxide in a state where the oxide, hydroxide, hydrated oxide and the like of the additive element N are mixed is obtained. Furthermore, nickel and additive element M are co-precipitated to obtain a nickel composite hydroxide, the nickel composite hydroxide is oxidized and roasted, and additive element N is deposited on the surface of the obtained baked product. Alternatively, the additive element N is deposited on the surface of the nickel composite hydroxide, and then the nickel composite hydroxide is oxidized and roasted, so that only the additive element M is dissolved in the nickel oxide. A nickel composite oxide in which the surface of the particles (secondary particles) is coated or adsorbed with an oxide, hydroxide, hydrated oxide, etc. of the additive element N is obtained.

(製造工程の詳細)
つぎに、図6に示す各工程の詳述を説明する。
(1)充填工程I
原料混合物mの匣鉢2への充填は、自由落下による充填することが好ましい。充填時に原料混合物を圧入すると、スリット溝の形成が困難になることがある。
充填後のかさ密度は、0.5〜2.2g/cmである。この範囲のかさ密度であると、スリット溝形成工程IIにおいて、押し具1を原料混合物mに押し込みやすい。また、押し具の圧入によっても原料混合物が密に、詰まらず、酸素供給が充分に行われる。
(Details of manufacturing process)
Next, details of each step shown in FIG. 6 will be described.
(1) Filling process I
The filling of the raw material mixture m into the mortar 2 is preferably performed by free fall. When the raw material mixture is press-fitted at the time of filling, it may be difficult to form slit grooves.
The bulk density after filling is 0.5 to 2.2 g / cm 3 . When the bulk density is within this range, it is easy to push the pusher 1 into the raw material mixture m in the slit groove forming step II. In addition, the raw material mixture is not clogged densely by the press-fitting of the pressing tool, and the oxygen supply is sufficiently performed.

(2)スリット溝形成工程II
匣鉢2内へ原料混合物mを充填した後、匣鉢2の開放面からスリット溝形状に対応する押し具1を圧入することによりスリット溝sを形成する。押し具1はスリット溝形状に対応する凸型となっているので、原料混合物mにスリット溝形状が転写され、スリット溝sが形成される。
(2) Slit groove forming process II
After filling the mortar 2 with the raw material mixture m, the slit groove s is formed by press-fitting the pusher 1 corresponding to the slit groove shape from the open surface of the mortar 2. Since the pressing tool 1 has a convex shape corresponding to the slit groove shape, the slit groove shape is transferred to the raw material mixture m to form the slit groove s.

この際、スリット溝sの深さHを開放面から匣鉢内の充填深さの50%以上とするため、押し具1の先端を、匣鉢2開放面から匣鉢内の充填深さの50%以上まで圧入することが好ましい。また、スリット溝の深さが適切であるので、匣鉢底部まで酸素を十分に供給することが可能となり、匣鉢2内における合成反応をより均一にすることができる。さらに、スリット溝を充填物下部まで深く入れることで、焼成物の塊を小さくすることにより、粉砕性を向上させ、さらに生産性を向上させるという点に技術的特徴が存する。   At this time, in order to set the depth H of the slit groove s to 50% or more of the filling depth in the mortar from the open surface, the tip of the pusher 1 is set to the filling depth in the mortar from the open surface of the mortar 2. It is preferable to press fit up to 50% or more. Moreover, since the depth of the slit groove is appropriate, oxygen can be sufficiently supplied to the bottom of the mortar, and the synthesis reaction in the mortar 2 can be made more uniform. Furthermore, there is a technical feature in that the slit groove is inserted deeply into the lower portion of the filling material to reduce the mass of the fired product, thereby improving the grindability and further improving the productivity.

(3)焼成工程III
本発明では、上記充填物を、700〜1000℃の温度で焼成することを特徴とする。
焼成温度が700℃を下廻ると、リチウム遷移金属複合酸化物の結晶性が低下するため、得られる正極活物質が用いられた電池の特性が低下する。一方、1000℃を上廻ると、正極活物質が焼結して粗大粒子が生成され、電池の特性が低下する。
焼成温度は、得ようとするリチウム遷移金属複合酸化物に応じて調整されるが、前記リチウムニッケル複合酸化物では、700〜800℃の温度で焼成することが好ましい。焼成温度を700〜800℃とすることで、合成で生成したリチウムニッケル複合酸化物の分解を抑制して、電池反応時にLiイオンの移動を妨げる結晶が混入しないリチウムニッケル複合酸化物が得られる。さらに、電池材料として使用可能な結晶成長が充分行われ、匣鉢充填物の上下部分間におけるリチウム遷移金属複合酸化物の物性変動を小さくでき、高い電池性能を実現できる。
(3) Firing step III
In the present invention, the filler is fired at a temperature of 700 to 1000 ° C.
When the firing temperature is lower than 700 ° C., the crystallinity of the lithium transition metal composite oxide is lowered, so that the characteristics of the battery using the obtained positive electrode active material are lowered. On the other hand, when the temperature exceeds 1000 ° C., the positive electrode active material is sintered and coarse particles are generated, and the battery characteristics deteriorate.
The firing temperature is adjusted according to the lithium transition metal composite oxide to be obtained. However, the lithium nickel composite oxide is preferably fired at a temperature of 700 to 800 ° C. By setting the firing temperature to 700 to 800 ° C., it is possible to obtain a lithium nickel composite oxide that suppresses decomposition of the lithium nickel composite oxide produced by synthesis and does not contain crystals that hinder the movement of Li ions during the battery reaction. Furthermore, the crystal growth that can be used as the battery material is sufficiently performed, and the physical property variation of the lithium transition metal composite oxide between the upper and lower portions of the mortar filling can be reduced, and high battery performance can be realized.

焼成時間は、前記焼成温度で2〜10時間保持することが好ましい。保持時間を2時間以上とすることで、生成するリチウムニッケル複合酸化物の結晶成長を十分なものとすることができ、さらに高い電池性能を実現できる。一方、10時間を超えて保持すると、結晶化が進み過ぎて特性が低下することがある。結晶を成長させ特性をさらに良好なものとするためには、前記焼成温度で2〜5時間保持することがより好ましい。   The firing time is preferably maintained at the firing temperature for 2 to 10 hours. By setting the holding time to 2 hours or longer, the crystal growth of the generated lithium nickel composite oxide can be made sufficient, and higher battery performance can be realized. On the other hand, if it is maintained for more than 10 hours, the crystallization may proceed excessively and the characteristics may deteriorate. In order to grow crystals and further improve the characteristics, it is more preferable to hold at the firing temperature for 2 to 5 hours.

また、原料混合物において合成反応が生じる温度範囲、例えば、前記リチウムニッケル複合酸化物においては450〜650℃の温度範囲を、1〜10℃/分の速度で昇温させることが好ましい。これにより、リチウム遷移金属複合酸化物の合成反応を十分に行わせて良好な電池特性を有する正極活物質を得ることができる。   Moreover, it is preferable to heat up the temperature range which a synthetic reaction produces in a raw material mixture, for example, the temperature range of 450-650 degreeC in the said lithium nickel composite oxide at a rate of 1-10 degree-C / min. Thereby, the synthesis reaction of lithium transition metal complex oxide is fully performed, and the positive electrode active material which has a favorable battery characteristic can be obtained.

充填物Fは前記焼成工程IIIでの焼成の後で、水洗いして濾過、乾燥されることが好ましい。この水洗いと濾過により、リチウム遷移金属複合酸化物の表面の不純物が除去され、電池容量と安全性を向上させることができる。
また、焼成後の焼成物は通常、強固な凝集体を形成しているため、粉砕工程時、設備への投入を考えると、凝集した塊を小さくすることが有効である。この粉砕には、充填深さ50%以上のスリット溝があると容易に行いやすい。
The filler F is preferably washed with water, filtered and dried after firing in the firing step III. By this washing and filtration, impurities on the surface of the lithium transition metal composite oxide are removed, and the battery capacity and safety can be improved.
In addition, since the fired product after firing usually forms a strong aggregate, it is effective to reduce the aggregated mass in consideration of charging into the equipment during the pulverization step. This pulverization is easily performed if there is a slit groove with a filling depth of 50% or more.

(リチウム遷移金属複合酸化物)
本発明の匣鉢充填物を用いたリチウム遷移金属複合酸化物の製造方法は、良好な電池特性を有するリチウム遷移金属複合酸化物を、高い生産性で合成することが可能であり、その工業的利用価値は極めて大きい。また、得られるリチウム遷移金属複合酸化物を用いれば、電池性能を劣化させることなく、優れた性能を有する電池を安定して大量に製造することが可能となる。
(Lithium transition metal composite oxide)
The method for producing a lithium transition metal composite oxide using the mortar filling of the present invention is capable of synthesizing a lithium transition metal composite oxide having good battery characteristics with high productivity. The utility value is extremely large. Further, by using the obtained lithium transition metal composite oxide, it is possible to stably manufacture a large number of batteries having excellent performance without deteriorating the battery performance.

以下に、本発明の具体的な実施例について説明する。ただし、本発明は、以下の実施例に何ら限定されるものではない。
ニッケル複合酸化物は以下に示す実施例および比較例に記載された方法で製造される。
表面リチウムの測定方法は、リチウムニッケル複合酸化物粉末10gに超純水を100mlまで添加し攪拌した後、 1mol/リットルの塩酸で滴定し第二中和点まで測定した。塩酸で中和されたアルカリ分をリチウムニッケル複合酸化物粉末表面のリチウムとして、滴定結果からリチウムニッケル複合酸化物に対するリチウムの質量比を求め、この値を表面リチウム量とした。合成反応が不十分になると表面に残留するリチウムが増加するため、表面リチウムを測定することで、合成反応の進行度を判断することが可能となる。
Specific examples of the present invention will be described below. However, the present invention is not limited to the following examples.
The nickel composite oxide is produced by the method described in the following examples and comparative examples.
The surface lithium was measured by adding ultrapure water to 10 g of lithium nickel composite oxide powder up to 100 ml and stirring, followed by titration with 1 mol / liter hydrochloric acid and measuring to the second neutralization point. The alkali content neutralized with hydrochloric acid was regarded as lithium on the surface of the lithium nickel composite oxide powder, and the mass ratio of lithium to the lithium nickel composite oxide was determined from the titration result, and this value was defined as the surface lithium amount. If the synthesis reaction becomes insufficient, the amount of lithium remaining on the surface increases, so that the progress of the synthesis reaction can be determined by measuring the surface lithium.

(実施例1)
酸化ニッケルにコバルトおよびアルミニウムが固溶している結晶構造を有する酸化ニッケルからなるニッケル複合酸化物(Ni0.82Co0.15Al0.03)210kgと、水酸化リチウム一水和物(LiOH・HO)120kgとを、攪拌混合機を使用し混合した。得られた原料混合物6kgを、内寸が280mm(幅)×280mm(幅)×90mm (深さ)のシリカアルミナ製の匣鉢2に充填したところ、原料混合物mの焼成前層厚 は80mmであった。その原料混合物に、図1に示す押し具(スリット比0.120)を用いて容器の底の位置まで押し込むことでスリット溝sを形成した。
その後、酸素濃度が70vol%に保持されたローラーハース炉(株式会社ノリタケカンパニー製)で焼成を行った。焼成時の温度パターンは、常温から450℃までを1.5時間かけて直線的に昇温し、その後、450℃から650℃までを、1.5時間かけて、直線的に昇温した。さらに、5時間かけて750℃まで昇温後、750℃で5時間、保持した。焼成後、冷却し、焼成物の上下をサンプリングし、ハンマーミルで粉砕後、目開き250μmのふるいでふるい、ふるい下の粉砕物の表面リチウム量滴定を行った。それぞれの表面リチウム量および差の結果を表1(図5)に示す。本結果から、上下共に表面リチウム量は低く、上下差は小さく、良好であった。
Example 1
210 kg of nickel composite oxide (Ni 0.82 Co 0.15 Al 0.03 O 2 ) made of nickel oxide having a crystal structure in which cobalt and aluminum are dissolved in nickel oxide, and lithium hydroxide monohydrate 120 kg of (LiOH.H 2 O) was mixed using a stirring mixer. When 6 kg of the obtained raw material mixture was filled in a silica alumina mortar 2 having an internal size of 280 mm (width) × 280 mm (width) × 90 mm (depth), the layer thickness of the raw material mixture m before firing was 80 mm. there were. A slit groove s was formed by pushing the raw material mixture to the bottom of the container using the pusher (slit ratio 0.120) shown in FIG.
Then, it baked with the roller hearth furnace (made by Noritake Co., Ltd.) by which oxygen concentration was hold | maintained at 70 vol%. The temperature pattern during firing was linearly increased from room temperature to 450 ° C. over 1.5 hours, and then linearly increased from 450 ° C. to 650 ° C. over 1.5 hours. Furthermore, after raising the temperature to 750 ° C. over 5 hours, the temperature was maintained at 750 ° C. for 5 hours. After firing, the product was cooled, the top and bottom of the fired product were sampled, ground with a hammer mill, sieved with a sieve having an opening of 250 μm, and the surface lithium content titration of the ground product under the sieve was performed. Table 1 (FIG. 5) shows the results of the respective surface lithium amounts and differences. From these results, the amount of surface lithium was low both in the upper and lower directions, and the difference in the upper and lower sides was small and good.

(実施例2)
図2に示す押し具(スリット面積比0.130)を用いた以外は実施例1と同様の条件で製造した。それぞれの表面リチウム量および差の結果を表1(図5)に示す。本結果においても、上下共に表面リチウム量は低く、上下差は小さく、良好であった。
(Example 2)
It manufactured on the conditions similar to Example 1 except having used the pressing tool (slit area ratio 0.130) shown in FIG. Table 1 (FIG. 5) shows the results of the respective surface lithium amounts and differences. Also in this result, the amount of surface lithium was low both in the upper and lower directions, and the difference between the upper and lower sides was small and good.

(実施例3)
図3に示す押し具(スリット面積比0.145)を用いた以外は実施例1と同様の条件で製造した。それぞれの表面リチウム量および差の結果を表1(図5)に示す。本結果においても、上下共に表面リチウム量は低く、上下差は小さく、良好であった。
(Example 3)
Manufactured under the same conditions as in Example 1 except that the pressing tool (slit area ratio 0.145) shown in FIG. 3 was used. Table 1 (FIG. 5) shows the results of the respective surface lithium amounts and differences. Also in this result, the amount of surface lithium was low both in the upper and lower directions, and the difference between the upper and lower sides was small and good.

(実施例4)
図1に示す押し具であって、スリット面積比0.060のものを用いた以外は実施例1と同様の条件で製造した。それぞれの表面リチウム量および差の結果を表1(図5)に示す。本結果においても、上下共に表面リチウム量は低く、上下差は小さく、良好であった。
Example 4
The pressing tool shown in FIG. 1 was manufactured under the same conditions as in Example 1 except that a slit area ratio of 0.060 was used. Table 1 (FIG. 5) shows the results of the respective surface lithium amounts and differences. Also in this result, the amount of surface lithium was low both in the upper and lower directions, and the difference between the upper and lower sides was small and good.

(実施例5)
図4に示す押し具(スリット面積比0.266)を用いた以外は実施例1と同様の条件で製造した。それぞれの表面リチウム量および差の結果を表1(図5)に示す。本結果においても、上下共に表面リチウム量は低く、上下差は小さく、良好であった。
(Example 5)
It manufactured on the conditions similar to Example 1 except having used the pressing tool (slit area ratio 0.266) shown in FIG. Table 1 (FIG. 5) shows the results of the respective surface lithium amounts and differences. Also in this result, the amount of surface lithium was low both in the upper and lower directions, and the difference between the upper and lower sides was small and good.

(比較例1)
押し具を使用せずに自由落下で原料混合物を盛った以外は実施例1と同様の条件で製造した。それぞれの表面リチウム量および差の結果を表1(図5)に示す。本結果から、上下共に表面リチウム量は高く、上下差も大きい。したがって、未反応の水酸化リチウム、炭酸リチウムの量が多いため、ガス発生を招き、電池を膨張させる可能性があった。
(Comparative Example 1)
It manufactured on the conditions similar to Example 1 except having accumulated the raw material mixture by free fall without using a pushing tool. Table 1 (FIG. 5) shows the results of the respective surface lithium amounts and differences. From this result, the amount of surface lithium is high both in the upper and lower directions, and the difference in upper and lower sides is also large. Therefore, since there are many amounts of unreacted lithium hydroxide and lithium carbonate, there is a possibility of causing gas generation and expanding the battery.

(比較例2)
押し具を使用せずに自由落下で原料混合物を盛ったものに圧力を掛けて特許文献6のように中央部が低く、縁の部分が高い形状にした以外は実施例1と同様の条件で製造した。それぞれの表面リチウム量および差の結果を表1(図5)に示す。本結果から、上下共に表面リチウム量は低いが、上下差は大きいため、良好とは言えない。
(Comparative Example 2)
Under the same conditions as in Example 1 except that a pressure was applied to a material mixture that was free-falling without using a pressing tool, and the center part was low and the edge part was high as in Patent Document 6. Manufactured. Table 1 (FIG. 5) shows the results of the respective surface lithium amounts and differences. From this result, although the amount of surface lithium is low both in the upper and lower directions, the difference between the upper and lower sides is large, so it cannot be said that it is good.

(本発明の利点)
上記実施例1〜5と比較例1、2との対比から分かるように、本発明のリチウムニッケル複合酸化物の製造方法は、50mm以上の所定の焼成前層厚として焼成物にスリットを形成することで、雰囲気中からの酸素を効率よく供給させ、焼成物全体の反応を均一にリチウムニッケル複合酸化物の製造することができ、リチウムニッケル複合酸化物の製造方法として好適である。
(Advantages of the present invention)
As can be seen from the comparison between Examples 1 to 5 and Comparative Examples 1 and 2, the lithium nickel composite oxide production method of the present invention forms a slit in the fired product with a predetermined pre-firing layer thickness of 50 mm or more. Thus, oxygen from the atmosphere can be efficiently supplied, and the reaction of the entire fired product can be uniformly produced as a lithium nickel composite oxide, which is suitable as a method for producing a lithium nickel composite oxide.

Claims (5)

リチウム遷移金属複合酸化物を製造する焼成に用いられ、遷移金属複合水酸化物もしくは遷移金属複合酸化物とリチウム化合物が混合された原料混合物が匣鉢内に充填された匣鉢充填物であって、
前記匣鉢充填物の形状は、直方体もしくは四角柱であり、
前記匣鉢充填物における原料混合物のかさ密度が0.5〜2.2g/cmであり、
前記匣鉢充填物には上面から下方に向かうスリット溝が形成されており、前記スリット溝は、前記匣鉢充填物の上面と平行な断面において放射状もしくは網目状に形成されたものであり、
該スリット溝は、その開口部が2本の平行線で画定されるアスペクト比が10以上の細長開口面であり、その溝形状が前記細長開口面が深さ方向に延びる溝であり、
前記スリット溝の面積(S1)が幅(Ws)×長さ(Ls)×溝数で求められ、匣鉢充填物の上面の面積(S2)が幅(W1)×幅(W2)で求められるものであり、
前記スリット溝の面積(S1)を匣鉢充填物の上面の面積(S2)で除したスリット面積比(S1/S2)が0.05〜0.30であり、
前記匣鉢内における前記原料混合物の充填深さは30〜100mmであり、前記スリット溝の深さは匣鉢内における前記原料混合物の充填深さの50%以上である
ことを特徴とするリチウム遷移金属複合酸化物製造用匣鉢充填物
It is used for firing to produce a lithium transition metal composite oxide, and is a mortar filling in which a raw material mixture in which a transition metal composite hydroxide or a transition metal composite oxide and a lithium compound are mixed is filled in the sagger. ,
The shape of the mortar filling is a rectangular parallelepiped or a quadrangular prism,
The bulk density of the raw material mixture in the mortar filling is 0.5 to 2.2 g / cm 3 ,
A slit groove directed downward from the upper surface is formed in the mortar filling, and the slit groove is formed in a radial or mesh shape in a cross section parallel to the upper surface of the mortar filling,
The slit groove is an elongated opening surface whose aspect ratio is defined by two parallel lines and has an aspect ratio of 10 or more, and the groove shape is a groove in which the elongated opening surface extends in the depth direction,
The area (S1) of the slit groove is obtained by width (Ws) × length (Ls) × number of grooves, and the area (S2) of the upper surface of the mortar filling is obtained by width (W1) × width (W2). Is,
The slit area ratio (S1 / S2) obtained by dividing the area (S1) of the slit groove by the area (S2) of the upper surface of the mortar filling is 0.05 to 0.30,
The lithium transition characterized in that the filling depth of the raw material mixture in the mortar is 30 to 100 mm, and the depth of the slit groove is 50% or more of the filling depth of the raw material mixture in the mortar. Slag filling for metal complex oxide production .
前記原料混合物が、遷移金属複合酸化物とリチウム化合物の混合物である
ことを特徴とする請求項1に記載のリチウム遷移金属複合酸化物製造用匣鉢充填物。
The raw material mixture, a transition metal composite oxide and the mixture of lithium transition metal composite oxide prepared for sagger packing according to claim 1, characterized in that the lithium compound.
前記リチウム遷移金属複合酸化物は、一般式:LiNi1−y−z(式中、Mは、CoおよびMnから選ばれた少なくとも1種の元素を示し、Nは、AlまたはTiから選ばれた少なくとも1種の元素を示す。xは、0.90〜1.10であり、yは、0.05〜0.35であり、かつ、Zは、0.005〜0.05である。)で表される組成を有するものである
ことを特徴とする請求項1または2に記載のリチウム遷移金属複合酸化物製造用匣鉢充填物。
The lithium transition metal composite oxide has a general formula: Li x Ni 1-yz M y N z O 2 (wherein M represents at least one element selected from Co and Mn, and N represents Represents at least one element selected from Al, Ti, x is 0.90 to 1.10, y is 0.05 to 0.35, and Z is 0.005. is 0.05.) and wherein the one having a composition represented by claim 1 or 2 lithium transition metal composite oxide prepared for sagger filler described.
リチウム遷移金属複合酸化物を製造する焼成に用いられ、遷移金属複合水酸化物もしくは遷移金属複合酸化物とリチウム化合物が混合された原料混合物が匣鉢内に充填された匣鉢充填物の製造方法であって、
かさ密度が0.5〜2.2g/cm前記原料混合物を前記匣鉢内における前記原料混合物の充填深さが30〜100mmとなるように匣鉢に充填する工程と、
匣鉢の開放面から細長開口面が深さ方向に延びるスリット溝を形成する薄板を備えた押し具を圧入する工程と、
押し具の先端を、匣鉢の開放面から匣鉢内の充填深さの50%以上まで圧入するする工程とを含み、
前記匣鉢充填物の形状は、直方体もしくは四角柱であり、
前記スリット溝は、前記匣鉢充填物の上面と平行な断面において放射状もしくは網目状に形成されたものであり、
該スリット溝は、その開口部が2本の平行線で画定されるアスペクト比が10以上の細長開口面であり、その溝形状が前記細長開口面が深さ方向に延びる溝であり、
前記スリット溝の面積(S1)が幅(Ws)×長さ(Ls)×溝数で求められ、匣鉢充填物の上面の面積(S2)が幅(W1)×幅(W2)で求められるものであり、
前記スリット溝の面積(S1)を匣鉢充填物の上面の面積(S2)で除したスリット面積比(S1/S2)が0.05〜0.30である
ことを特徴とするリチウム遷移金属複合酸化物製造用匣鉢充填物の製造方法。
A method for producing a mortar-filled product used in firing for producing a lithium transition metal composite oxide, wherein a transition metal composite hydroxide or a raw material mixture in which a transition metal composite oxide and a lithium compound are mixed is filled in the sagger Because
A step bulk density to filling the sagger as fill depth of the material mixture in the raw material mixture 0.5~2.2g / cm 3 the Napishtim- bowl is 30 to 100 mm,
A step of press-fitting a pressing tool including a thin plate that forms a slit groove in which the elongated opening surface extends in the depth direction from the open surface of the mortar ;
The tip of the pusher, and a step of press-fitting the open face of the sagger to 50% or more of the fill depth of Napishtim- bowl,
The shape of the mortar filling is a rectangular parallelepiped or a quadrangular prism,
The slit groove is formed in a radial or mesh shape in a cross section parallel to the upper surface of the mortar filling,
The slit groove is an elongated opening surface whose aspect ratio is defined by two parallel lines and has an aspect ratio of 10 or more, and the groove shape is a groove in which the elongated opening surface extends in the depth direction,
The area (S1) of the slit groove is obtained by width (Ws) × length (Ls) × number of grooves, and the area (S2) of the upper surface of the mortar filling is obtained by width (W1) × width (W2). Is,
A slit area ratio (S1 / S2) obtained by dividing the area (S1) of the slit groove by the area (S2) of the upper surface of the mortar filling is 0.05 to 0.30. A method for producing a mortar filling for producing a lithium transition metal composite oxide.
非水系電解質二次電池用の正極活物質として用いられるリチウム遷移金属複合酸化物の製造方法であって、
請求項に記載のリチウム遷移金属複合酸化物製造用匣鉢充填物を、700〜1000℃の温度で焼成する
ことを特徴とするリチウム遷移金属複合酸化物の製造方法。
A method for producing a lithium transition metal composite oxide used as a positive electrode active material for a non-aqueous electrolyte secondary battery,
A method for producing a lithium transition metal composite oxide, comprising firing the mortar filler for producing a lithium transition metal composite oxide according to claim 4 at a temperature of 700 to 1000 ° C.
JP2014105003A 2014-05-21 2014-05-21 Slag filling for producing lithium transition metal composite oxide and method for producing lithium transition metal composite oxide Active JP6349957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014105003A JP6349957B2 (en) 2014-05-21 2014-05-21 Slag filling for producing lithium transition metal composite oxide and method for producing lithium transition metal composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105003A JP6349957B2 (en) 2014-05-21 2014-05-21 Slag filling for producing lithium transition metal composite oxide and method for producing lithium transition metal composite oxide

Publications (2)

Publication Number Publication Date
JP2015218098A JP2015218098A (en) 2015-12-07
JP6349957B2 true JP6349957B2 (en) 2018-07-04

Family

ID=54777791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105003A Active JP6349957B2 (en) 2014-05-21 2014-05-21 Slag filling for producing lithium transition metal composite oxide and method for producing lithium transition metal composite oxide

Country Status (1)

Country Link
JP (1) JP6349957B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101988736B1 (en) 2017-09-28 2019-06-12 주식회사 포스코 Sagger for calcination of secondary battery active material and method for preparing the secondary battery active material using the same
KR101994380B1 (en) * 2017-12-01 2019-06-28 주식회사 포스코 Apparatus and method for heating secondary battery cathode material
JP7332124B2 (en) * 2018-03-28 2023-08-23 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery
JP7194891B2 (en) * 2018-03-28 2022-12-23 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery
JP7159589B2 (en) * 2018-03-28 2022-10-25 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery
JP7159588B2 (en) * 2018-03-28 2022-10-25 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact
CN113195415B (en) * 2018-12-28 2023-08-29 松下知识产权经营株式会社 Method for producing lithium-containing composite oxide
JP7237283B2 (en) * 2019-04-15 2023-03-13 住友金属鉱山株式会社 Fired product crusher
WO2023214548A1 (en) * 2022-05-02 2023-11-09 日本碍子株式会社 Powder filling device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226266A (en) * 1999-02-05 2000-08-15 Ngk Insulators Ltd Method for burning powder
JP5076448B2 (en) * 2006-11-08 2012-11-21 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2009227501A (en) * 2008-03-21 2009-10-08 Ngk Insulators Ltd Heating method using sagger
JP5534657B2 (en) * 2008-07-18 2014-07-02 住友金属鉱山株式会社 Method for producing lithium nickel composite oxide
JP2011168434A (en) * 2010-02-18 2011-09-01 Ngk Insulators Ltd Method of heating powder using sagger
JP2011181380A (en) * 2010-03-02 2011-09-15 Jx Nippon Mining & Metals Corp Calcination container, method of manufacturing cathode active material for lithium ion battery, cathode active material of lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP5460453B2 (en) * 2010-05-06 2014-04-02 日本碍子株式会社 How to fill powder in the bowl
JP5362132B2 (en) * 2012-01-20 2013-12-11 住友化学株式会社 Inorganic oxide powder, inorganic oxide-containing slurry, lithium ion secondary battery using the slurry, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015218098A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6349957B2 (en) Slag filling for producing lithium transition metal composite oxide and method for producing lithium transition metal composite oxide
KR101364907B1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
KR101330843B1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5569034B2 (en) Lithium hydroxide for producing lithium nickel composite oxide, method for producing the same, and method for producing lithium nickel composite oxide using the lithium hydroxide
KR20120132527A (en) Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
JP2023086812A (en) Molded body, manufacturing method of cathode active material for nonaqueous electrolyte secondary battery, and manufacturing method of nonaqueous electrolyte secondary battery
JP7444535B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded article
JP7069666B2 (en) Method for manufacturing lithium nickel composite oxide and method for manufacturing non-aqueous electrolyte secondary battery
CN108028375B (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP2008103100A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and its baking tool
KR101282014B1 (en) Manufacturing method of positive active material for lithium secondary battery and positive active material for lithium secondary battery made by the same
JP5534657B2 (en) Method for producing lithium nickel composite oxide
JP5353125B2 (en) Method for producing lithium nickel composite oxide
JP2020535612A (en) Refractory sack for firing secondary battery active material and manufacturing method of secondary battery active material using this
JP2020070232A (en) Sagger and sagger filling material, and manufacturing method of lithium metal composite oxide
JP6996262B2 (en) A method for producing lithium hydroxide for producing a lithium nickel composite oxide, a raw material for lithium hydroxide for producing a lithium nickel composite oxide, and a method for producing a lithium nickel composite oxide.
JP6749884B2 (en) Positive electrode material for lithium secondary batteries
JP2019175701A (en) Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
JP2019175697A (en) Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, and manufacturing method for non-aqueous electrolyte secondary battery
JP5397694B2 (en) Method for producing lithium nickel composite oxide
JPWO2018066633A1 (en) Titanium and / or germanium substituted lithium manganese based composite oxide and method for producing the same
JP7194891B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery
JP7110876B2 (en) Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery
JP7064717B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP2011181380A (en) Calcination container, method of manufacturing cathode active material for lithium ion battery, cathode active material of lithium ion battery, cathode for lithium ion battery, and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6349957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150