JP6348319B2 - Method for producing metal resin composite - Google Patents

Method for producing metal resin composite Download PDF

Info

Publication number
JP6348319B2
JP6348319B2 JP2014078961A JP2014078961A JP6348319B2 JP 6348319 B2 JP6348319 B2 JP 6348319B2 JP 2014078961 A JP2014078961 A JP 2014078961A JP 2014078961 A JP2014078961 A JP 2014078961A JP 6348319 B2 JP6348319 B2 JP 6348319B2
Authority
JP
Japan
Prior art keywords
metal
resin
plating layer
heat treatment
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014078961A
Other languages
Japanese (ja)
Other versions
JP2015199248A (en
Inventor
康宏 吉村
康宏 吉村
将希 関岡
将希 関岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Iron Works Co Ltd
Original Assignee
Toyoda Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Iron Works Co Ltd filed Critical Toyoda Iron Works Co Ltd
Priority to JP2014078961A priority Critical patent/JP6348319B2/en
Publication of JP2015199248A publication Critical patent/JP2015199248A/en
Application granted granted Critical
Publication of JP6348319B2 publication Critical patent/JP6348319B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、金属部材に樹脂部材が一体的に固着されている金属樹脂複合体に係り、特に、両者の固着強度を向上させる技術に関するものである。   The present invention relates to a metal-resin composite in which a resin member is integrally fixed to a metal member, and particularly relates to a technique for improving the fixing strength of both.

金属部材に樹脂部材が一体的に固着されている金属樹脂複合体が知られている。特許文献1に記載の部品はその一例で、金属部材は、母材金属の表面に亜鉛等の金属のめっき層が設けられたものであり、めっき層を溶融させない加熱条件で加熱することにより、そのめっき層の金属を母材金属と合金化させて表面を粗面化している。そして、その粗面化された金属部材に対して樹脂部材を一体成形することにより、金属部材の表面の凹凸に樹脂部材の一部が入り込むアンカー効果によって、樹脂部材が成形と同時に金属部材に一体的に固着されるようになっている。   A metal resin composite in which a resin member is integrally fixed to a metal member is known. The component described in Patent Document 1 is an example thereof, and the metal member is provided with a metal plating layer such as zinc on the surface of the base metal, and is heated under heating conditions that do not melt the plating layer. The metal of the plating layer is alloyed with the base metal to roughen the surface. Then, by integrally molding the resin member on the roughened metal member, the resin member is integrated with the metal member at the same time as molding due to the anchor effect that part of the resin member enters the irregularities on the surface of the metal member. It comes to be fixed.

特開2012−116126号公報JP 2012-116126 A

しかしながら、このような合金化による粗面化方法は、合金化の際の拡散速度の違いで表面に凹凸を生じさせるものであるため、その凹凸形状が比較的単純で必ずしも十分に満足できる固着強度が得られず、未だ改善の余地があった。   However, such a roughening method by alloying causes unevenness on the surface due to the difference in diffusion rate during alloying, and therefore the unevenness of the unevenness is relatively simple and the bond strength that is always sufficient can be satisfied. However, there was still room for improvement.

本発明は以上の事情を背景として為されたもので、その目的とするところは、金属部材に樹脂部材が一体的に固着されている金属樹脂複合体の製造方法において、金属部材と樹脂部材との固着強度を更に向上させることにある。 The present invention has been made against the background of the above circumstances. The object of the present invention is to provide a method for manufacturing a metal-resin composite in which a resin member is integrally fixed to a metal member. This is to further improve the fixing strength.

上記課題を解決するための、粗面化された金属部材の表面の凹凸に樹脂部材の一部が入り込んだ状態で、前記樹脂部材が前記金属部材に一体的に固着されている金属樹脂複合体の製造方法は、母材金属の表面に亜鉛を含む金属のめっき層が60g/mを超える付着量で付着されている金属素材を、前記めっき層の金属の融点よりも高い温度まで加熱することにより、前記めっき層の金属を蒸発させて表面を粗面化する熱処理工程と、前記熱処理工程を経た前記金属素材を前記金属部材として用いて、前記金属部材の表面に前記樹脂部材が一体的に固着されるように前記樹脂部材を一体成形する樹脂成形工程と、を有することを特徴とする。 In order to solve the above-described problem, a metal resin composite in which the resin member is integrally fixed to the metal member in a state in which a part of the resin member enters the irregularities on the surface of the roughened metal member the method of preparation is heating the deposited have Rukin genus material in an amount of deposited plating layer of a metal containing zinc on the surface of the base metal is more than 60 g / m 2, to a temperature higher than the melting point of the metal of the plating layer The resin member is integrated with the surface of the metal member by using a heat treatment step of evaporating the metal of the plating layer to roughen the surface and using the metal material that has undergone the heat treatment step as the metal member. And a resin molding step of integrally molding the resin member so as to be firmly fixed.

また、前記熱処理工程は、前記金属素材を少なくとも400℃から600℃までは20℃/minを超える昇温速度で昇温させて、前記めっき層の金属の融点よりも高い700℃以上まで加熱する加熱工程と、前記加熱工程に続いて、前記金属素材を700℃以上の加熱状態に保持する高温保持工程と、を含み、これら前記加熱工程及び高温保持工程は非酸化性雰囲気下で行われる、ことが好ましい
なお、上記温度は、金属素材の表面の温度である。
Further, the heat treatment step, pre-Symbol metal material from at least 400 ° C. to 600 ° C. is allowed to warm at a heating rate greater than 20 ° C. / min, heated to 700 ° C. or higher is higher than the melting point of the metal of the plating layer a heating step of, subsequent to said heating step, wherein the high temperature holding step of holding the metal material in the heated state of more than 700 ° C., these said heating step and a high temperature holding step is carried out under a non-oxidizing atmosphere , it is preferable.
The above temperature is the temperature of the surface of the metal material.

上記製造方法において、前記加熱工程及び前記高温保持工程は、10kPa以下で行われる、ことが好ましい。In the said manufacturing method, it is preferable that the said heating process and the said high temperature holding process are performed at 10 kPa or less.

上記製造方法において、前記樹脂部材は、強化繊維を熱可塑性樹脂に混入した繊維強化樹脂であり、前記樹脂成形工程は、前記金属部材を成形型に配置して前記繊維強化樹脂をその成形型内で射出成形することにより、前記樹脂部材を成形すると同時に前記金属部材の表面に一体的に固着させることが好ましいIn the above manufacturing method, before Symbol resin member is a fiber-reinforced resin mixed with reinforcing fibers in the thermoplastic resin, before Symbol resin molding step, the molding the fiber-reinforced resin by arranging the metal member into a mold by injection molding in a mold, it is preferable to integrally adhered to the surface of the resin member at the same time the metal member when molded.

上記製造方法において、前記金属素材は溶融亜鉛めっき鋼板で、前記熱処理工程に先立って予め所定形状にプレス成形されていることが好ましいIn the above manufacturing method, in the metallic material is hot-dip galvanized steel sheet, which is preferably pressed into a previously predetermined shape prior to the heat treatment step.

上記製造方法によれば、亜鉛を含む金属のめっき層が設けられた金属素材を、その金属の融点よりも高い温度まで加熱することにより、その金属を蒸発させて表面を粗面化したものが、金属部材として用いられ、その粗面化された表面に樹脂部材が一体的に固着されるため、金属部材に対する樹脂部材の固着強度が向上する。すなわち、亜鉛を含む金属が蒸発させられることによって表面が粗面化されているため、めっき層の金属を母材金属と合金化させる際の拡散速度のばらつきで粗面化する場合に比較して、表面の凹凸が複雑でより入り組んだ形状になり、アンカー効果により一層高い固着強度で樹脂部材を固着することができる。 According to the above manufacturing method, the metal material provided with the metal plating layer containing zinc is heated to a temperature higher than the melting point of the metal, thereby evaporating the metal and roughening the surface. Since the resin member is used as a metal member and is integrally fixed to the roughened surface, the fixing strength of the resin member to the metal member is improved. That is, the surface is roughened by evaporating the metal containing zinc, so compared to the case of roughening due to the variation in diffusion rate when the metal of the plating layer is alloyed with the base metal. The surface irregularities are complicated and more complicated, and the resin member can be fixed with a higher fixing strength due to the anchor effect.

また、金属素材を少なくとも400℃から600℃までは20℃/minを超える昇温速度で昇温させて700℃以上まで加熱し、その700℃以上の加熱状態に保持してめっき層の金属を蒸発させるため、その蒸発によって表面を適切に粗面化することができる。すなわち、昇温速度が20℃/min以下の場合には、母材金属とめっき層の金属とが合金化する割合が高くなるとともに、めっき層から蒸発する金属が少なくなって蒸発による粗面化の効果が十分に得られなくなる。これは、昇温速度が遅いと、金属素材の表面だけでなく内部の母材金属の温度も高くなるため、その母材金属とめっき層の金属とが合金化するようになるためと考えられる。 Further, at least 400 ° C. The metallic materials to 600 ° C. is allowed to warm at a heating rate greater than 20 ° C. / min and heated to 700 ° C. or higher, a metal plating layer held in a heated state above its 700 ° C. In order to evaporate, the surface can be appropriately roughened by the evaporation. That is, when the rate of temperature rise is 20 ° C./min or less, the ratio of alloying of the base metal and the metal of the plating layer is increased, and the metal evaporated from the plating layer is reduced to roughen the surface by evaporation. The effect of can not be obtained sufficiently. This is thought to be because if the rate of temperature rise is slow, the temperature of not only the surface of the metal material but also the temperature of the internal base metal becomes high, so that the base metal and the metal of the plating layer come to alloy. .

さらに、めっき層の付着量が60g/mを超えているため、そのめっき層の金属の蒸発による粗面化を適切に行うことができ、樹脂部材の固着強度を適切に向上させることができる。これは、めっき層の存在で母材金属の温度上昇が阻害され、合金化が抑制されるためと考えられる。また、熱処理工程は、非酸化性雰囲気下で行われるため、めっき層の金属の酸化が抑制され、そのめっき層の金属の蒸発により表面を適切に粗面化することができる。
上記製造方法によれば、熱処理工程は10kPa以下で行われる融点が低くなるため、比較的低温度でめっき層の金属の蒸発を制御して表面を適切に粗面化することができる。
Furthermore , since the adhesion amount of the plating layer exceeds 60 g / m 2 , the surface of the plating layer can be appropriately roughened by evaporation of the metal, and the fixing strength of the resin member can be appropriately improved. it can. This is presumably because the presence of the plating layer hinders the temperature rise of the base metal and suppresses alloying. The heat treatment step, since the dividing line in a non-oxidizing atmosphere, oxidation of the metal of the plating layer is suppressed, can be suitably roughened surface by evaporation of the metal of the plating layer.
According to the manufacturing method, the heat treatment step is performed at 10 kPa or less . Since the melting point becomes low, the surface can be appropriately roughened by controlling the evaporation of the metal of the plating layer at a relatively low temperature.

上記製造方法によれば、樹脂部材として繊維強化樹脂が用いられ、射出成形により金属部材と一体成形されて、成形と同時に一体的に固着されるため、所定の固着強度を有する金属樹脂複合体を簡単で且つ安価に製造できる。 According to the above manufacturing method, a fiber reinforced resin is used as the resin member, and is integrally formed with the metal member by injection molding and is integrally fixed simultaneously with the molding. Therefore, the metal resin composite having a predetermined fixing strength is obtained. Simple and inexpensive to manufacture.

上記製造方法によれば、金属素材が溶融亜鉛めっき鋼板で、予め所定形状にプレス成形した後に熱処理が行われるため、プレス成形性やプレス成形による表面変化を考慮することなく熱処理を行うことが可能で、表面をムラ無く粗面化して固着強度の高い金属樹脂複合体を安価に製造することができる。 According to the above manufacturing method, the metal material is a hot-dip galvanized steel sheet, and heat treatment is performed after press forming into a predetermined shape in advance, so heat treatment can be performed without considering press formability and surface changes due to press forming. Thus, it is possible to produce a metal resin composite having a high adhesion strength by roughening the surface without unevenness at a low cost.

本発明の一実施例である金属樹脂複合体の固着部分の断面模式図である。It is a cross-sectional schematic diagram of the adhering part of the metal resin composite which is one Example of this invention. 図1の金属樹脂複合体の製造工程を説明する図で、各工程の断面模式図を比較して示した図である。It is a figure explaining the manufacturing process of the metal resin composite of FIG. 1, and is the figure which compared and showed the cross-sectional schematic diagram of each process. 図1の金属樹脂複合体を構成している金属部材の素材である溶融亜鉛めっき鋼板の表面付近の断面写真である。It is a cross-sectional photograph of the surface vicinity of the hot dip galvanized steel plate which is a raw material of the metal member which comprises the metal resin composite of FIG. 図3の溶融亜鉛めっき鋼板を粗面化する熱処理時の温度プロファイルの一例を示す図である。It is a figure which shows an example of the temperature profile at the time of the heat processing which roughens the hot dip galvanized steel plate of FIG. 図4の熱処理により表面が粗面化された金属部材の表面付近の断面写真である。5 is a cross-sectional photograph of the vicinity of the surface of a metal member whose surface is roughened by the heat treatment of FIG. 4. 図5の金属部材の表面写真である。It is a surface photograph of the metal member of FIG. 蒸発および合金化により粗面化した表面付近の断面写真を比較して示した図である。It is the figure which compared and showed the cross-section photograph of the surface vicinity roughened by evaporation and alloying. 固着強度試験で用いた7種類の試験品を説明する図である。It is a figure explaining seven types of test goods used by the adhesion strength test. 図8の試験品の接合状態を説明する斜視図である。It is a perspective view explaining the joining state of the test article of FIG. 図8の固着強度試験の試験方法を説明する図である。It is a figure explaining the test method of the adhesion strength test of FIG. 図8の7種類の試験品の固着強度試験の試験結果を示した図である。It is the figure which showed the test result of the bond strength test of seven types of test products of FIG. 図8の試験品No2の金属部材と樹脂部材との境界部分の断面写真である。FIG. 9 is a cross-sectional photograph of a boundary portion between a metal member and a resin member of test product No. 2 in FIG. 8. 図8の試験品No1の金属部材と樹脂部材との境界部分の断面写真である。It is a cross-sectional photograph of the boundary part between the metal member and the resin member of the test article No1 in FIG.

本発明は、例えば射出成形やプレス成形等により合成樹脂材料に金属を埋設したり積層したりして成形する各種の電気部品、例えば電源装置や電極、接続端子などに好適に適用されるが、電気部品以外の金属樹脂複合体にも適用され得る。亜鉛を含む金属のめっき層が設けられた金属素材としては、溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板が好適に用いられるが、純亜鉛やFe−Zn合金の他にSb、Mg、Si、Ni、Al等の元素が微量に添加されためっき層でも良い。めっき層の付着量は、合金化を抑制しつつ蒸発により適切に粗面化する上で20g/m2 を超えることが望ましく、40g/m2 以上が一層好ましい。また、蒸発による粗面化のための処理時間や合金化を考慮すると、80g/m2 程度以下が適当である。 The present invention is suitably applied to various electrical parts that are molded by embedding or laminating a metal in a synthetic resin material by, for example, injection molding or press molding, for example, a power supply device, an electrode, a connection terminal, etc. The present invention can also be applied to metal resin composites other than electric parts. As a metal material provided with a metal plating layer containing zinc, a hot dip galvanized steel plate or an alloyed hot dip galvanized steel plate is preferably used. In addition to pure zinc or Fe—Zn alloy, Sb, Mg, Si, A plating layer to which an element such as Ni or Al is added in a trace amount may be used. The adhesion amount of the plating layer is desirably over 20 g / m 2, and more preferably 40 g / m 2 or more for appropriately roughening by evaporation while suppressing alloying. Further, considering the processing time for roughening by evaporation and alloying, about 80 g / m 2 or less is appropriate.

樹脂部材の樹脂材料としては、PP(ポリプロピレン)、PA6(ポリアミド)、PPS(ポリフェニレンスルフィド)等の熱可塑性樹脂が適当であるが、液状から固化するタイプの熱硬化性樹脂を用いることもできる。これ等の樹脂にガラス繊維や炭素繊維等の強化繊維を混入した繊維強化樹脂を用いることも可能である。   As the resin material of the resin member, a thermoplastic resin such as PP (polypropylene), PA6 (polyamide), PPS (polyphenylene sulfide), or the like is suitable, but a thermosetting resin that is solidified from a liquid can also be used. It is also possible to use a fiber reinforced resin in which a reinforced fiber such as glass fiber or carbon fiber is mixed in these resins.

熱工程では、合金化を抑制しつつめっき金属を蒸発させる上で、少なくとも400℃から600℃までは10℃/minを超える昇温速度で昇温させるが、15℃/min以上の昇温速度で昇温させることが望ましい。高温保持工程の保持温度は、例えば600℃〜900℃程度の範囲内が適当で、保持時間は、例えばめっき層の金属を略全部蒸発させることができるようにめっき層の付着量等に応じて適宜定められる。この保持温度は、600℃以上の略一定の温度であっても良いが、連続的に変化していても良い。融点は、熱処理を行う際の気圧によって変化するため、蒸発のための加熱温度も熱処理炉内の圧力(気圧)を考慮して適宜定められ、600℃以下の加熱処理で合金化を抑制しつつめっき金属を蒸発させることもできる。熱処理後は、例えば常温による自然冷却等により冷却される。 The pressurized thermal step, on evaporating a plating metal while suppressing alloying, but at least from 400 ° C. to 600 ° C. temperature is raised at a heating rate of greater than 10 ℃ / min, 15 ℃ / min or more heating It is desirable to raise the temperature at a speed. The holding temperature in the high temperature holding step is suitably in the range of, for example, about 600 ° C. to 900 ° C., and the holding time depends on the amount of plating layer deposited so that substantially all of the metal in the plating layer can be evaporated, for example. As appropriate. The holding temperature may be a substantially constant temperature of 600 ° C. or higher, but may be continuously changed. Since the melting point changes depending on the atmospheric pressure during the heat treatment, the heating temperature for evaporation is appropriately determined in consideration of the pressure (atmospheric pressure) in the heat treatment furnace, and alloying is suppressed by heat treatment at 600 ° C. or lower. The plating metal can also be evaporated. After the heat treatment, it is cooled by, for example, natural cooling at room temperature.

上記熱処理は、非酸化性雰囲気下で且つ20kPa以下の減圧状態で行うことが望ましいが、減圧状態の大気雰囲気下、或いは大気圧の非酸化性雰囲気下などで熱処理を行うことも可能である。非酸化性雰囲気は還元性雰囲気であっても良く、例えば窒素ガス雰囲気やアルゴンガス雰囲気、一酸化炭素ガス雰囲気などである。   The heat treatment is preferably performed in a non-oxidizing atmosphere and under a reduced pressure of 20 kPa or less. However, the heat treatment may be performed in a reduced-pressure air atmosphere or an atmospheric non-oxidizing atmosphere. The non-oxidizing atmosphere may be a reducing atmosphere, such as a nitrogen gas atmosphere, an argon gas atmosphere, or a carbon monoxide gas atmosphere.

以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明の一実施例である金属樹脂複合体10の断面模式図で、インサート成形により金属部材12の表面14に樹脂部材16を一体的に固着したものである。図2は、この金属樹脂複合体10の製造工程を説明する図で、各工程の断面模式図を比較して示した図であり、(a) は金属部材12の素材である金属素材20の断面図である。この金属素材20は、本実施例では母材金属である鋼板22上に純亜鉛のめっき層24が設けられた溶融亜鉛めっき鋼板で、予め目的形状にプレス成形されたプレス成形品である。図3は、この金属素材20の表面付近の断面写真で、純亜鉛のめっき層24の付着量(片面の付着量)は20g/m2 よりも多く、例えば40g/m2 〜80g/m2 の範囲内が適当で、本実施例では60g/m2 程度であり、めっき層24の平均厚さは6〜8.5μm程度である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a metal resin composite 10 according to one embodiment of the present invention, in which a resin member 16 is integrally fixed to a surface 14 of a metal member 12 by insert molding. FIG. 2 is a diagram for explaining the manufacturing process of the metal resin composite 10, and is a diagram showing comparison of cross-sectional schematic diagrams of each process. FIG. 2A is a diagram of the metal material 20 that is a material of the metal member 12. It is sectional drawing. The metal material 20 is a hot-dip galvanized steel sheet in which a pure zinc plating layer 24 is provided on a steel sheet 22 which is a base metal in this embodiment, and is a press-molded product that has been press-molded into a target shape in advance. FIG. 3 is a cross-sectional photograph of the vicinity of the surface of the metal material 20, and the amount of adhesion of the pure zinc plating layer 24 (the amount of adhesion on one side) is more than 20 g / m 2 , for example, 40 g / m 2 to 80 g / m 2. In this embodiment, it is about 60 g / m 2 , and the average thickness of the plating layer 24 is about 6 to 8.5 μm.

上記金属素材20に対して、図2(b) の粗面化熱処理を行い、めっき金属である亜鉛の融点よりも高い例えば600℃〜900℃程度まで加熱し、めっき層24の亜鉛を略全部蒸発させることにより、表面14が粗面化された前記金属部材12が得られる。この(b) の工程は、めっき層24の亜鉛を蒸発させて粗面化する熱処理工程で、例えば10kPa程度の真空状態で窒素ガス雰囲気の熱処理炉内で行われる。図4は、この熱処理工程における金属素材20の表面温度の温度プロファイルの一例であり、本実施例では約700℃まで加熱して粗面化している。図4において時間t3までが加熱工程で、時間t3〜t4は高温保持工程、時間t4以後は冷却工程であり、加熱工程において少なくとも400℃から600℃まで昇温させる加熱時間t1〜t2では、10℃/minを超える昇温速度で昇温させるように加熱する。本実施例では、略20℃/minの昇温速度で昇温するように600℃まで加熱し、その後は更に高い昇温速度で700℃まで加熱している。昇温速度が10℃/minを超えているため、内部の鋼板22の温度上昇の遅れでその鋼板22の鉄とめっき層24の亜鉛との合金化が抑制され、めっき層24の亜鉛の蒸発反応が優先的に行われる。時間t3〜t4の高温保持工程では、高温度によりめっき層24の亜鉛が更に蒸発して表面14が粗面化される。この高温保持工程でも蒸発が支配的に進行する。この高温保持工程の保持時間(t3〜t4)は、めっき層24の亜鉛が略完全に蒸発するようにめっき層24の付着量等に応じて適宜定められ、本実施例では2分程度である。また、その後は、熱処理炉から取り出し、例えば常温で自然冷却する。   The metal material 20 is subjected to the roughening heat treatment shown in FIG. 2 (b), and is heated to, for example, about 600 ° C. to 900 ° C., which is higher than the melting point of zinc, which is the plating metal. By evaporating, the metal member 12 having a roughened surface 14 is obtained. The step (b) is a heat treatment step for roughening the surface of the plating layer 24 by evaporating zinc, and is performed in a heat treatment furnace in a nitrogen gas atmosphere in a vacuum state of, for example, about 10 kPa. FIG. 4 is an example of a temperature profile of the surface temperature of the metal material 20 in this heat treatment step. In this embodiment, the surface is roughened by heating to about 700 ° C. In FIG. 4, the period up to time t3 is the heating process, the period from time t3 to t4 is the high temperature holding process, the period after time t4 is the cooling process, and in the heating process at heating time t1 to t2 where the temperature is raised from 400 ° C. to 600 ° C. Heating is performed so as to increase the temperature at a temperature increase rate exceeding ° C / min. In this embodiment, heating is performed up to 600 ° C. so that the temperature is raised at a temperature raising rate of about 20 ° C./min. Since the rate of temperature rise exceeds 10 ° C./min, alloying of iron of the steel plate 22 and zinc of the plating layer 24 is suppressed due to a delay in temperature rise of the internal steel plate 22, and evaporation of zinc in the plating layer 24 is suppressed. The reaction takes place preferentially. In the high temperature holding process from time t3 to t4, the zinc of the plating layer 24 is further evaporated by the high temperature, and the surface 14 is roughened. Even in this high temperature holding process, evaporation proceeds predominantly. The holding time (t3 to t4) in this high temperature holding step is appropriately determined according to the adhesion amount of the plating layer 24 so that the zinc of the plating layer 24 is almost completely evaporated, and is about 2 minutes in this embodiment. . After that, it is taken out from the heat treatment furnace and naturally cooled at room temperature, for example.

図5は、上記熱処理により表面14が粗面化された金属部材12の表面付近の断面写真で、図6は表面14に対して垂直方向から見た表面写真であり、特に図6から表面14が複雑で入り組んだ凹凸形状を成していることが分かる。また、図7は、蒸発によって粗面化した本発明品と合金化で粗面化した従来品の表面付近の断面写真を比較して示した図で、本発明品の方が凹凸が複雑で入り組んでおり、樹脂部材16を一体成形した場合により高いアンカー効果が期待できる。一方、この場合の本発明品の表面付近の元素分析を行ったところ、亜鉛は殆ど認められず、複雑な凹凸形状を含めて主成分は鉄であり、亜鉛の蒸発に伴って何らかの原因で鋼板22の表面が変質したものと考えられる。   FIG. 5 is a cross-sectional photograph of the vicinity of the surface of the metal member 12 whose surface 14 has been roughened by the heat treatment, and FIG. 6 is a surface photograph viewed from a direction perpendicular to the surface 14. It can be seen that has a complicated and intricate uneven shape. FIG. 7 is a cross-sectional view of the vicinity of the surface of the product of the present invention roughened by evaporation and the conventional product roughened by alloying. The product of the present invention is more complicated in unevenness. It is complicated, and a higher anchor effect can be expected when the resin member 16 is integrally formed. On the other hand, when elemental analysis was performed in the vicinity of the surface of the product of the present invention in this case, almost no zinc was observed, and the main component including the complex uneven shape was iron. It is considered that the surface of 22 was altered.

図2に戻って、上記粗面化熱処理によって得られた表面14が粗面化された金属部材12は、その後、(c) に示すように樹脂部材16がインサート成形されることにより、その樹脂部材16と一体化される。樹脂部材16は、例えばPPSやPA6等の熱可塑性樹脂で、ガラス繊維(GF)が混入された繊維強化樹脂である。そして、金属部材12を射出成形装置の成形型内にセットし、繊維強化樹脂を成形型内に射出して成形することにより、樹脂部材16が成形されると同時に金属部材12の表面14に一体的に固着される。表面14は、めっき層24の亜鉛の蒸発で粗面化されているため、複雑な凹凸形状に樹脂材料が入り込んで固化することにより、アンカー効果で樹脂部材16が高い固着強度で一体的に固着される。この(c) のインサート成形は樹脂成形工程である。   Returning to FIG. 2, the metal member 12 with the roughened surface 14 obtained by the roughening heat treatment is then subjected to resin molding by resin molding of the resin member 16 as shown in (c). It is integrated with the member 16. The resin member 16 is, for example, a thermoplastic resin such as PPS or PA6, and is a fiber reinforced resin mixed with glass fibers (GF). Then, the metal member 12 is set in the mold of the injection molding apparatus, and the fiber reinforced resin is injected into the mold to be molded, so that the resin member 16 is molded and at the same time integrated with the surface 14 of the metal member 12. Fixed. Since the surface 14 is roughened by the evaporation of zinc in the plating layer 24, the resin material 16 enters the complex uneven shape and solidifies, so that the resin member 16 is fixed integrally with a high fixing strength by the anchor effect. Is done. This insert molding (c) is a resin molding process.

このような本実施例の金属樹脂複合体10においては、亜鉛のめっき層24が設けられた金属素材20を、その亜鉛の融点よりも高い温度まで加熱することにより、その亜鉛を蒸発させて表面14を粗面化したものが、金属部材12として用いられ、その粗面化された表面14にインサート成形により樹脂部材16が一体的に固着されているため、金属部材12に対する樹脂部材16の固着強度が向上する。すなわち、めっき層24の亜鉛が蒸発させられることによって表面14が粗面化されているため、めっき層24の亜鉛と鋼板22の鉄とが合金化する際の拡散速度のばらつきで粗面化させる場合に比較して、表面14の凹凸が複雑でより入り組んだ形状になり、アンカー効果により一層高い固着強度で樹脂部材16を固着できる。   In such a metal resin composite 10 of this embodiment, the surface of the metal material 20 provided with the zinc plating layer 24 is heated by heating to a temperature higher than the melting point of the zinc, thereby evaporating the zinc. 14 is used as the metal member 12, and the resin member 16 is integrally fixed to the roughened surface 14 by insert molding, so that the resin member 16 is fixed to the metal member 12. Strength is improved. That is, since the surface 14 is roughened by evaporating the zinc of the plating layer 24, the surface of the plating layer 24 is roughened due to variations in diffusion rate when the zinc of the plating layer 24 and the iron of the steel plate 22 are alloyed. Compared to the case, the unevenness of the surface 14 becomes complicated and more complicated, and the resin member 16 can be fixed with a higher fixing strength by the anchor effect.

また、金属素材20を、600℃までは略20℃/minの昇温速度で昇温させて700℃程度まで加熱し、その700℃程度の加熱状態に保持してめっき層24の亜鉛を蒸発させるため、金属部材12の表面14を適切に粗面化することができる。すなわち、昇温速度が10℃/min以下の場合には、鋼板22の鉄とめっき層24の亜鉛とが合金化する割合が高くなるとともに、めっき層24から蒸発する亜鉛が少なくなって蒸発による粗面化の効果が十分に得られなくなる。これは、昇温速度が遅いと、金属素材20の表面だけでなく内部の鋼板22の温度も高くなるため、その鋼板22の鉄とめっき層24の亜鉛とが合金化するようになるためと考えられる。   Further, the metal material 20 is heated up to about 700 ° C. at a rate of temperature increase of about 20 ° C./min up to 600 ° C. and is heated to about 700 ° C., and kept in the heated state at about 700 ° C. to evaporate the zinc in the plating layer 24. Therefore, the surface 14 of the metal member 12 can be appropriately roughened. That is, when the heating rate is 10 ° C./min or less, the ratio of alloying of the iron of the steel plate 22 and the zinc of the plating layer 24 increases, and the amount of zinc evaporated from the plating layer 24 decreases, resulting in evaporation. The effect of roughening cannot be obtained sufficiently. This is because if the rate of temperature rise is slow, not only the surface of the metal material 20 but also the temperature of the internal steel plate 22 becomes high, so that iron of the steel plate 22 and zinc of the plating layer 24 are alloyed. Conceivable.

また、めっき層24の付着量が60g/m2 程度であるため、そのめっき層24の亜鉛の蒸発による粗面化を適切に行うことができ、樹脂部材16の固着強度を適切に向上させることができる。これは、めっき層24の存在で内部の鋼板22の温度上昇が阻害され、合金化が抑制されるためと考えられる。 Moreover, since the adhesion amount of the plating layer 24 is about 60 g / m 2 , the surface of the plating layer 24 can be appropriately roughened by evaporation of zinc, and the fixing strength of the resin member 16 can be appropriately improved. Can do. This is presumably because the presence of the plating layer 24 hinders the temperature rise of the internal steel plate 22 and suppresses alloying.

また、非酸化性の窒素ガス雰囲気下で且つ10kPa程度の真空状態で粗面化熱処理が行われるため、めっき層24の亜鉛の酸化が抑制され、そのめっき層24の亜鉛の蒸発により表面14を適切に粗面化することができる。真空状態で熱処理が行われることにより、融点が低くなるため、比較的低温度でめっき層24の亜鉛の蒸発を制御して表面14を適切に粗面化することができる。   Further, since the roughening heat treatment is performed in a non-oxidizing nitrogen gas atmosphere and in a vacuum state of about 10 kPa, oxidation of zinc in the plating layer 24 is suppressed, and the surface 14 is formed by evaporation of zinc in the plating layer 24. It can be appropriately roughened. Since the melting point is lowered by performing the heat treatment in a vacuum state, the surface 14 can be appropriately roughened by controlling the evaporation of zinc in the plating layer 24 at a relatively low temperature.

また、樹脂部材16として繊維強化樹脂が用いられ、射出成形により金属部材12と一体成形されて、成形と同時に金属部材12に一体的に固着されるため、所定の固着強度を有する金属樹脂複合体10を簡単で且つ安価に製造できる。   Further, a fiber reinforced resin is used as the resin member 16 and is integrally formed with the metal member 12 by injection molding and is integrally fixed to the metal member 12 at the same time as the molding, so that the metal resin composite having a predetermined fixing strength. 10 can be manufactured easily and inexpensively.

また、金属素材20が溶融亜鉛めっき鋼板で、予め所定形状にプレス成形した後に粗面化熱処理が行われるため、プレス成形性やプレス成形による表面変化を考慮することなく熱処理を行うことが可能で、表面14をムラ無く粗面化して固着強度の高い金属樹脂複合体10を安価に製造することができる。   In addition, since the metal material 20 is a hot-dip galvanized steel plate and is subjected to a surface roughening heat treatment after being previously press-formed into a predetermined shape, the heat treatment can be performed without considering press formability and surface changes due to press forming. The metal resin composite 10 having a high fixing strength can be produced at low cost by roughening the surface 14 without unevenness.

因に、図8に示す7種類の試験品No1〜No7を用意し、図9および図10に示す試験方法で固着強度(接合強度)を調べたところ、図11に示す結果が得られた。試験品No1〜No7における金属部材12の金属素材20は、「鋼板のめっき種類」の欄に示すように溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、または電気亜鉛めっき鋼板であり、「めっき付着量」は、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板は60g/m2 で、電気亜鉛めっき鋼板は20g/m2 である。金属素材20を粗面化熱処理する際の炉内雰囲気は、大気または窒素ガス雰囲気で、気圧は大気圧(100kPa)または真空(10kPa)で、加熱工程の600℃までの昇温速度は20℃/minまたは10℃/minで、高温保持工程の保持温度は900℃または700℃で、保持時間(t3〜t4)は4分または2分である。一方、樹脂部材16の材質は、ガラス繊維強化PPS樹脂(PPS−GF)、ガラス繊維強化PA6樹脂(PA6−GF)、またはガラス繊維強化PP樹脂(PP−GF)で、ガラス繊維の含有量は何れも40重量%である。 For example, seven types of test products No1 to No7 shown in FIG. 8 were prepared, and the adhesion strength (bonding strength) was examined by the test method shown in FIGS. 9 and 10, and the result shown in FIG. 11 was obtained. The metal material 20 of the metal member 12 in the test products No1 to No7 is a hot dip galvanized steel plate, an alloyed hot dip galvanized steel plate, or an electrogalvanized steel plate, as shown in the column “Plating type of steel plate”. “Amount” is 60 g / m 2 for hot-dip galvanized steel sheets and galvannealed steel sheets and 20 g / m 2 for electrogalvanized steel sheets. The atmosphere in the furnace when the metal material 20 is subjected to the roughening heat treatment is an air atmosphere or a nitrogen gas atmosphere, the atmospheric pressure is atmospheric pressure (100 kPa) or vacuum (10 kPa), and the heating rate up to 600 ° C. in the heating process is 20 ° C. / Min or 10 ° C./min, the holding temperature in the high temperature holding step is 900 ° C. or 700 ° C., and the holding time (t3 to t4) is 4 minutes or 2 minutes. On the other hand, the material of the resin member 16 is glass fiber reinforced PPS resin (PPS-GF), glass fiber reinforced PA6 resin (PA6-GF), or glass fiber reinforced PP resin (PP-GF). Both are 40% by weight.

そして、図9に示すように長方形の板状の金属部材12および樹脂部材16が部分的に重ね合わされて一体的に固着されるように、樹脂部材16をインサート成形することにより、各試験品TPを製作した。固着部分の幅寸法Wは20mm、重なり寸法Lは15mmであり、固着面積は20×15=300mm2 である。また、金属部材12の板厚は2mmで、樹脂部材16の板厚は2.3mmである。図10は、一対のクランプ32、34を有する引張試験装置30で、一方のクランプ32によって金属部材12を把持し、他方のクランプ34に把持された治具36に樹脂部材16を係止した状態で、それ等のクランプ32、34を互いに離間する方向へ引っ張り、最大引張荷重(せん断荷重)を固着強度として測定した。引張速度は5mm/minで、試験雰囲気は温度23℃、湿度50%である。 Then, as shown in FIG. 9, each test article TP is formed by insert molding the resin member 16 so that the rectangular plate-like metal member 12 and the resin member 16 are partially overlapped and fixed integrally. Was made. The width dimension W of the fixing portion is 20 mm, the overlapping dimension L is 15 mm, and the fixing area is 20 × 15 = 300 mm 2 . The plate thickness of the metal member 12 is 2 mm, and the plate thickness of the resin member 16 is 2.3 mm. FIG. 10 shows a tensile test apparatus 30 having a pair of clamps 32, 34 in which the metal member 12 is gripped by one clamp 32 and the resin member 16 is locked to a jig 36 gripped by the other clamp 34. Then, the clamps 32 and 34 were pulled away from each other, and the maximum tensile load (shear load) was measured as the fixing strength. The tensile speed is 5 mm / min, and the test atmosphere is a temperature of 23 ° C. and a humidity of 50%.

図11の試験結果において、「判定」の欄の「○」は合格、「×」は不合格で、1000N以上か否かによって判定した。この図11の試験品No6およびNo7の結果から明らかなように、金属素材20が溶融亜鉛めっき鋼板で、めっき付着量が60g/m2 、粗面化熱処理の際の炉内雰囲気が窒素ガス雰囲気で気圧が真空、加熱工程の昇温速度が20℃/min、高温保持工程の保持温度が700℃で、保持時間(t3〜t4)が2分の場合には、樹脂部材16がガラス繊維強化PA6樹脂(PA6−GF)であってもガラス繊維強化PP樹脂(PP−GF)であっても、固着界面で剥離することはなく、樹脂部材16が破壊する3500N以上の高い固着強度が得られた。特に、樹脂部材16がガラス繊維強化PA6樹脂の試験品No6では、5000N以上の非常に高い固着強度が得られる。前記実施例の金属樹脂複合体10は試験品No6と同じで、前記図5〜図7の写真は試験品No6に関するものである。 In the test results of FIG. 11, “◯” in the “determination” column is acceptable, and “x” is unacceptable, and the determination was made based on whether or not 1000 N or more. As is apparent from the results of the test products No. 6 and No. 7 in FIG. 11, the metal material 20 is a hot dip galvanized steel sheet, the plating adhesion amount is 60 g / m 2 , and the furnace atmosphere during the roughening heat treatment is a nitrogen gas atmosphere When the atmospheric pressure is vacuum, the heating rate in the heating process is 20 ° C./min, the holding temperature in the high temperature holding process is 700 ° C., and the holding time (t3 to t4) is 2 minutes, the resin member 16 is reinforced with glass fiber. Whether it is PA6 resin (PA6-GF) or glass fiber reinforced PP resin (PP-GF), it does not peel off at the fixing interface, and a high fixing strength of 3500 N or more at which the resin member 16 breaks is obtained. It was. In particular, when the resin member 16 is a test article No. 6 made of glass fiber reinforced PA6 resin, a very high fixing strength of 5000 N or more is obtained. The metal resin composite 10 of the above example is the same as the test product No 6, and the photographs in FIGS. 5 to 7 relate to the test product No 6.

試験品No6に比較して、粗面化熱処理の際の気圧が大気圧である点が相違する試験品No2の場合、固着界面で剥離するものの、2000N以上の固着強度が得られた。図12の断面写真は、この試験品No2に関するもので、母材金属である鋼板22(金属部材12)の表面14には複雑で入り組んだ凹凸が形成されており、その凹凸に食い込んだ状態で樹脂部材16が一体成形されている。元素分析の結果、凹凸部分では鉄および酸素が検出され、酸化鉄であると考えられる。その凹凸部の上には、部分的に僅かな隙間を隔てて亜鉛と酸素の酸化物層が形成されており、樹脂部材16の樹脂は凹凸部と酸化物層との間の隙間も埋め尽くしていた。   In the case of the test product No. 2 in which the atmospheric pressure during the roughening heat treatment is different from that of the test product No. 6 in the test product No. 2, although peeled at the fixing interface, a fixing strength of 2000 N or more was obtained. The cross-sectional photograph of FIG. 12 relates to this test product No. 2, and the surface 14 of the steel plate 22 (metal member 12), which is the base metal, has complex and intricate irregularities formed in the state of biting into the irregularities. The resin member 16 is integrally formed. As a result of elemental analysis, iron and oxygen are detected in the concavo-convex portion, which is considered to be iron oxide. On the uneven portion, an oxide layer of zinc and oxygen is partially formed with a slight gap therebetween, and the resin of the resin member 16 also fills the gap between the uneven portion and the oxide layer. It was.

上記試験品No2に比較して、金属素材20が合金化溶融亜鉛めっき鋼板である点が相違する試験品No3では、めっき層24がFe−Zn合金で、亜鉛の蒸発が阻害されるものの、1300N程度の固着強度が得られた。これは、めっき層24の表面近くでは亜鉛の割合が多くなり、蒸発によってある程度粗面化するものと考えられる。   In the test product No. 3 in which the metal material 20 is an alloyed hot-dip galvanized steel sheet as compared with the test product No. 2 above, the plating layer 24 is an Fe—Zn alloy and the zinc evaporation is inhibited, but 1300 N A degree of fixing strength was obtained. It is considered that this is because the ratio of zinc increases near the surface of the plating layer 24 and roughens to some extent by evaporation.

一方、粗面化熱処理の際の炉内雰囲気が大気で、気圧が大気圧の試験品No1の場合、めっき層24の表面に酸化物の膜が生じ、亜鉛の蒸発が阻害されて大部分が母材金属である鋼板22の鉄と合金化して、十分な固着強度が得られない。図13の断面写真は、この試験品No1に関するもので、元素分析によれば、樹脂部材16との境界部分に酸化亜鉛(ZnO)や酸化鉄(FeO)の層が認められ、その下にFe−Znの合金層が形成されている。   On the other hand, when the atmosphere in the furnace at the time of the roughening heat treatment is air and the test article No. 1 has an atmospheric pressure, an oxide film is formed on the surface of the plating layer 24, and the evaporation of zinc is hindered. It is alloyed with iron of the steel plate 22 which is a base metal, and sufficient fixing strength cannot be obtained. The cross-sectional photograph of FIG. 13 relates to this test sample No1, and according to elemental analysis, a layer of zinc oxide (ZnO) or iron oxide (FeO) is recognized at the boundary with the resin member 16, and Fe underneath is observed. An alloy layer of -Zn is formed.

金属素材20が電気亜鉛めっき鋼板で、めっき付着量が20g/m2 の試験品No4の場合、亜鉛の量が少ないため蒸発による粗面化が十分に行われず、インサート成形では金属部材12と樹脂部材16との固着そのものが不可であった。また、試験品No2に比較して、加熱工程の昇温速度が10℃/minである点が相違する試験品No5では、昇温速度が遅いためめっき層24の亜鉛が鋼板22の鉄と合金化する割合が多くなり、その分だけ亜鉛の蒸発が少なくなって粗面化が阻害され、十分な固着強度が得られない。 When the metal material 20 is an electrogalvanized steel plate and the test specimen No. 4 has a coating amount of 20 g / m 2 , the amount of zinc is small, so that roughening by evaporation is not performed sufficiently, and the metal member 12 and resin are not formed in insert molding. Adherence to the member 16 itself was impossible. Further, in the test product No. 5 in which the heating rate in the heating process is 10 ° C./min as compared with the test product No. 2, since the heating rate is slow, the zinc of the plating layer 24 is alloyed with the iron of the steel plate 22. Therefore, the amount of zinc is increased and the evaporation of zinc is reduced accordingly, roughening is hindered, and sufficient fixing strength cannot be obtained.

この試験結果から、金属素材20のめっき付着量は20g/m2 を超え、40g/m2 以上が望ましく、粗面化熱処理の際の炉内雰囲気は窒素ガス等の非酸化性雰囲気が望ましく、加熱工程の際の昇温速度は10℃/minを超え、15℃/min以上が望ましい。また、金属素材20としては、溶融亜鉛めっき鋼板でも合金化溶融亜鉛めっき鋼板でも良いが、めっき層24が純亜鉛の溶融亜鉛めっき鋼板の方が望ましく、粗面化熱処理の際の気圧は大気圧でも真空でも良いが、20kPa以下の減圧状態の方が望ましい。 From this test result, the plating amount of the metal material 20 exceeds 20 g / m 2 and is preferably 40 g / m 2 or more, and the furnace atmosphere during the roughening heat treatment is preferably a non-oxidizing atmosphere such as nitrogen gas, The rate of temperature increase during the heating step exceeds 10 ° C./min and is preferably 15 ° C./min or more. Further, the metal material 20 may be a hot dip galvanized steel sheet or an alloyed hot dip galvanized steel sheet, but the plated layer 24 is preferably a hot dip galvanized steel sheet of pure zinc, and the atmospheric pressure during the roughening heat treatment is atmospheric pressure. However, vacuum may be used, but a reduced pressure state of 20 kPa or less is desirable.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, these are one Embodiment to the last, This invention is implemented in the aspect which added the various change and improvement based on the knowledge of those skilled in the art. be able to.

10:金属樹脂複合体 12:金属部材 14:表面 16:樹脂部材 20:金属素材 22:鋼板(母材金属) 24:めっき層   10: Metal resin composite 12: Metal member 14: Surface 16: Resin member 20: Metal material 22: Steel plate (base metal) 24: Plating layer

Claims (4)

粗面化された金属部材の表面の凹凸に樹脂部材の一部が入り込んだ状態で、前記樹脂部材が前記金属部材に一体的に固着されている金属樹脂複合体の製造方法であって、
母材金属の表面に亜鉛を含む金属のめっき層が60g/mを超える付着量で付着されている金属素材を、前記めっき層の金属の融点よりも高い温度まで加熱することにより、前記めっき層の金属を蒸発させて表面を粗面化する熱処理工程と、
前記熱処理工程を経た前記金属素材を前記金属部材として用いて、前記金属部材の表面に前記樹脂部材が一体的に固着されるように前記樹脂部材を一体成形する樹脂成形工程と、を有し、
前記熱処理工程は、
前記金属素材を少なくとも400℃から600℃までは20℃/minを超える昇温速度で昇温させて、前記めっき層の金属の融点よりも高い700℃以上まで加熱する加熱工程と、
前記加熱工程に続いて、前記金属素材を700℃以上の加熱状態に保持する高温保持工程と、を含み、
これら前記加熱工程及び前記高温保持工程は非酸化性雰囲気下で行われる、
金属樹脂複合体の製造方法。
In a state in which a part of the resin member has entered the unevenness of the surface of the roughened metal member, the resin member is a method for producing a metal resin composite that is integrally fixed to the metal member,
By matrix-plated layer of a metal containing zinc on the surface of the metal heats the deposited have Rukin genus material at a coverage of more than 60 g / m 2, to a temperature higher than the melting point of the metal of the plating layer, wherein A heat treatment step of evaporating the metal of the plating layer to roughen the surface;
A resin molding step of integrally molding the resin member so that the resin member is integrally fixed to the surface of the metal member using the metal material that has undergone the heat treatment step as the metal member;
The heat treatment step includes
A heating step of heating the metal material to a temperature of at least 400 ° C. to 600 ° C. at a rate of temperature exceeding 20 ° C./min and heating to 700 ° C. or higher, which is higher than the melting point of the metal of the plating layer;
Following the heating step, a high temperature holding step of holding the metal material in a heated state of 700 ° C. or higher,
The heating step and the high temperature holding step are performed in a non-oxidizing atmosphere.
A method for producing a metal resin composite.
前記加熱工程及び高温保持工程は、10kPa以下で行われる、
求項に記載の金属樹脂複合体の製造方法。
The heating step and the high temperature holding step are performed at 10 kPa or less.
Method for producing a metal-resin composite according to Motomeko 1.
前記樹脂部材は、強化繊維を熱可塑性樹脂に混入した繊維強化樹脂であり、
前記樹脂成形工程は、前記金属部材を成形型に配置して前記繊維強化樹脂を該成形型内で射出成形することにより、前記樹脂部材を成形すると同時に前記金属部材の表面に一体的に固着させる
求項1又は2に記載の金属樹脂複合体の製造方法。
The resin member is a fiber reinforced resin in which a reinforced fiber is mixed in a thermoplastic resin,
The resin molding process, by injection molding the fiber reinforced resin in the forming die by placing the metal member in a mold, thereby integrally fixed to the surface of simultaneously the metal member when molding the resin member ,
Method for producing a metal-resin composite according to Motomeko 1 or 2.
前記金属素材は溶融亜鉛めっき鋼板で、前記熱処理工程に先立って予め所定形状にプレス成形されている
ことを特徴とする請求項の何れか1項に記載の金属樹脂複合体の製造方法。
The metal material is a hot dip galvanized steel sheet, and is pre-formed into a predetermined shape prior to the heat treatment step .
The method for producing a metal resin composite according to any one of claims 1 to 3 .
JP2014078961A 2014-04-07 2014-04-07 Method for producing metal resin composite Expired - Fee Related JP6348319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078961A JP6348319B2 (en) 2014-04-07 2014-04-07 Method for producing metal resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078961A JP6348319B2 (en) 2014-04-07 2014-04-07 Method for producing metal resin composite

Publications (2)

Publication Number Publication Date
JP2015199248A JP2015199248A (en) 2015-11-12
JP6348319B2 true JP6348319B2 (en) 2018-06-27

Family

ID=54551004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078961A Expired - Fee Related JP6348319B2 (en) 2014-04-07 2014-04-07 Method for producing metal resin composite

Country Status (1)

Country Link
JP (1) JP6348319B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398940B2 (en) 2015-10-07 2018-10-03 株式会社デンソー Rotation speed detector
JP2019188653A (en) * 2018-04-20 2019-10-31 株式会社ショーワ Manufacturing method of joined body and joined body manufactured by manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033324A (en) * 1983-07-31 1985-02-20 Matsushita Electric Works Ltd Manufacture of alloy material
JPS6077967A (en) * 1983-10-04 1985-05-02 Kawasaki Steel Corp Manufacture of alloyed hot dip galvanizing steel sheet having excellent painting property
JP3228674B2 (en) * 1995-03-16 2001-11-12 日本鋼管株式会社 Organic composite coated steel sheet with excellent press formability and rust resistance
JP3228675B2 (en) * 1995-03-17 2001-11-12 日本鋼管株式会社 Organic composite coated steel sheet with excellent press formability and corrosion resistance
JP3389059B2 (en) * 1997-06-05 2003-03-24 新日本製鐵株式会社 Method for producing surface-treated steel sheet excellent in fingerprint resistance and grounding property
JP4096524B2 (en) * 2001-06-07 2008-06-04 Jfeスチール株式会社 Organic coated steel sheet with excellent corrosion resistance in high temperature and high humidity environment
KR20150055111A (en) * 2008-01-28 2015-05-20 신닛테츠스미킨 카부시키카이샤 Galvannealed heat-treated steel material and process for producing the same
JP2011157579A (en) * 2010-01-29 2011-08-18 Nisshin Steel Co Ltd ROUGHENED HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET, METHOD FOR PRODUCING THE SAME, AND COMPOSITE OBTAINED BY JOINING HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET WITH THERMOPLASTIC RESIN MOLDED BODY, AND METHOD FOR PRODUCING THE SAME
JP2011174099A (en) * 2010-02-23 2011-09-08 Nisshin Steel Co Ltd Roughened hot-dip galvannealed steel sheet and method for manufacturing the same, and compound object with hot-dip galvannealed steel sheet and formed body of thermoplastic resin composition joined to each other and method for manufacturing the compound object
JP5555146B2 (en) * 2010-12-01 2014-07-23 株式会社日立製作所 Metal-resin composite structure and manufacturing method thereof, bus bar, module case, and resin connector part
JP5335126B1 (en) * 2012-03-30 2013-11-06 日新製鋼株式会社 Composite in which painted metal base material and molded body of thermoplastic resin composition are joined, and method for producing the same
JP6106972B2 (en) * 2012-07-10 2017-04-05 富士通株式会社 Composite manufacturing method, composite, and electronic device casing

Also Published As

Publication number Publication date
JP2015199248A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
TWI572478B (en) A copper foil composite body and a copper foil for the same, and a molded body and a method for producing the same
JP5915075B2 (en) Manufacturing method of laminated core
TWI707781B (en) Metal-resin composite molded article and production method thereof
WO2009131233A1 (en) Plated steel sheet and method of hot-pressing plated steel sheet
CN109423609B (en) Method for manufacturing composite material with carbon fiber core plated with alloy film
JP6348319B2 (en) Method for producing metal resin composite
WO2011081394A2 (en) Hot press forming process of plated steel and hot press formed articles using the same
DE502006006289D1 (en) METHOD FOR THE MELT EXTRACTION TEMPERATURE OF A STEEL FLAT PRODUCT OF HIGH-TIGHT STEEL
KR102627829B1 (en) hot stamp molding body
JP2014195831A (en) Coating solder material, and method of manufacturing the same
JPS63270459A (en) Bonding method for sputtering target
JP2016016584A (en) Aluminum composite material, composite structure and method for producing the same
JP7311750B2 (en) Metal-carbon fiber reinforced resin material composite and method for producing metal-carbon fiber reinforced resin material composite
KR102177892B1 (en) Chemical conversion-treated metal plate, surface-treated metal plate, composite member, and manufacturing method of chemical conversion-treated metal plate
JP6230792B2 (en) Painted metal preform, composite, and method for producing the same
JP2013023171A (en) Interior trim part for vehicle and method of manufacturing the same
US20240286365A1 (en) Method for producing a component and component herein
KR101439621B1 (en) Manufacturing method for hot press formed products and hot press formed products using the same
JP7159730B2 (en) Composite manufacturing method
JP6080807B2 (en) Painted metal preform, composite, and method for producing the same
JP2018520026A (en) Manufacturing method of sandwich structure
JP2020040368A (en) Method for manufacturing composite body of coated metal contouring material and resin material
JP2013234377A (en) Method for controlling temperature of hot dip plating bath and temperature control equipment, and method for manufacturing hot-dip galvanized steel sheet and manufacturing apparatus
WO2024062103A1 (en) Process for producing a composite component comprising at least one metal layer and one polymer layer
JP3000828U (en) Thermoplastic welding machine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150821

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180411

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180531

R150 Certificate of patent or registration of utility model

Ref document number: 6348319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees