JP6347558B2 - Condensation or frost control carrier - Google Patents

Condensation or frost control carrier Download PDF

Info

Publication number
JP6347558B2
JP6347558B2 JP2016145955A JP2016145955A JP6347558B2 JP 6347558 B2 JP6347558 B2 JP 6347558B2 JP 2016145955 A JP2016145955 A JP 2016145955A JP 2016145955 A JP2016145955 A JP 2016145955A JP 6347558 B2 JP6347558 B2 JP 6347558B2
Authority
JP
Japan
Prior art keywords
carrier
heat exchange
frost
exchange surface
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016145955A
Other languages
Japanese (ja)
Other versions
JP2016200388A (en
Inventor
大久保 英敏
英敏 大久保
関 光雄
光雄 関
将 松下
将 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Natomics
Original Assignee
Natomics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natomics filed Critical Natomics
Priority to JP2016145955A priority Critical patent/JP6347558B2/en
Publication of JP2016200388A publication Critical patent/JP2016200388A/en
Application granted granted Critical
Publication of JP6347558B2 publication Critical patent/JP6347558B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、結露または着霜抑制用担体に関し、より詳細には、周囲との温度差が大きい熱交換面上での物質移動を防止することにより、メンテナンスフリーな熱交換面を提供可能であり、熱交換面を介して湿り空気を冷却したり、温度境界層内の氷点下以下の湿り空気から吸熱する場合において、熱交換面での高効率かつ安定的な冷却を可能とする結露または着霜抑制用担体に関する。   The present invention relates to a carrier for suppressing condensation or frost formation, and more specifically, it can provide a maintenance-free heat exchange surface by preventing mass transfer on a heat exchange surface having a large temperature difference from the surroundings. Condensation or frosting that enables highly efficient and stable cooling on the heat exchange surface when the humid air is cooled through the heat exchange surface or when absorbing heat from below the freezing point in the temperature boundary layer The present invention relates to a suppressive carrier.

熱交換面を介して、流体と湿り空気との間で熱交換を行う際、流体と湿り空気との間では、空気に接する側の熱交換面では、熱交換面温度が空気温度よりも低い場合には(以下、冷却面と記します)、結露、着霜あるいは氷結が頻繁に起きる。 When heat exchange is performed between the fluid and the humid air via the heat exchange surface, the heat exchange surface temperature is lower than the air temperature between the fluid and the humid air on the heat exchange surface on the side in contact with the air. In some cases (hereinafter referred to as the cooling surface), condensation, frost formation or freezing occurs frequently.

以下に、図3を参照しながら、着霜現象あるいは凝縮現象の発現条件について、説明する。
空気温度0℃以上で、雰囲気の水蒸気状態が水飽和雰囲気(以上も含む)での発生現象では、雰囲気中の凝縮核へ水蒸気が凝縮することにより水滴が発生し、その後冷却面上に落下堆積して、その水滴に水蒸気が凝縮して水滴が成長・合流を繰り返して、大きな水滴となり、重力に付着力が抗しきれなくなると、冷却面を流下(落下)する。
また、空気温度0℃以下-40℃以上で、雰囲気の水蒸気状態が水飽和雰囲気(以上も含む)での発生現象では、雰囲気中の凝縮核へ水蒸気が凝縮することにより過冷却水滴が発生し、その後冷却面上に落下堆積して過冷却水滴が成長・合流後、凍結し、その凍結氷粒子に水蒸気が昇華して着霜成長する現象となる。
また、同じ空気温度0℃以下-40℃以上で、雰囲気の水蒸気状態が氷飽和以上、水飽和以下の雰囲気での発生現象では、雰囲気中の昇華核へ水蒸気が昇華することにより氷晶が発生し、その後冷却面上に落下堆積して、その氷晶に水蒸気が昇華することにより着霜成長する現象となる。
Hereinafter, the conditions for the occurrence of the frosting phenomenon or the condensation phenomenon will be described with reference to FIG.
When the air temperature is 0 ° C or higher and the water vapor state of the atmosphere is a water saturated atmosphere (including the above), water droplets are generated by condensing water vapor to the condensation nuclei in the atmosphere, and then drop and accumulate on the cooling surface Then, water vapor condenses on the water droplets, and the water droplets grow and merge repeatedly to form large water droplets, and when the adhesive force cannot resist gravity, it flows down (falls) on the cooling surface.
In addition, when the air temperature is 0 ° C or lower and -40 ° C or higher, and the water vapor state of the atmosphere is a water saturated atmosphere (including the above), supercooled water droplets are generated by condensing water vapor to the condensation nuclei in the atmosphere. Then, it drops and accumulates on the cooling surface, and after the supercooled water droplets grow and merge, it freezes, and the frozen ice particles sublimate water vapor to cause frost growth.
In addition, in the same air temperature of 0 ° C or lower and -40 ° C or higher, and in the phenomenon where the water vapor state of the atmosphere is above ice saturation and below water saturation, ice crystals are generated by sublimation of water vapor to the sublimation nuclei in the atmosphere. After that, it falls and accumulates on the cooling surface, and water vapor sublimates to the ice crystals, resulting in a phenomenon of frost growth.

なお、ここで凝縮や昇華の現象をもう少し説明しておく。湿り空気を冷却したときに、空気中の水蒸気が飽和状態(水飽和という)となり、それ以上の水蒸気は気体でいられなくなり、凝縮が始まる。このときの空気温度を露点温度と言う。また、気温が0℃以下の場合には、水蒸気の飽和状態は氷飽和と水飽和の二つの飽和現象がある。これは、水の状態の飽和水蒸気量と比べ、氷の状態の飽和水蒸気量は小さいので、0℃以下の湿り空気において冷却をしていくと、氷飽和状態が先にはじまり、飽和水蒸気量以上の水蒸気は、昇華により空気中の氷晶核に氷結晶(氷晶という)として出現する。そのときの空気温度を、ここでは氷点温度と定義することにする。なお、低温下ではさらに冷却をすると水飽和状態となり、0℃以上と同じように凝縮が始まるが、空気温度が-40℃までの範囲では、凝縮液滴はすぐに凍結することなく過冷却液滴になる。このときの空気温度は、0℃以上と同じに露点温度という。そして時間経過とともに過冷却液滴は確率的に凍結をする。氷となった凍結粒子には、氷の水蒸気圧が周囲の水蒸気圧よりも低くなるため、より積極的に水蒸気がこの氷面に昇華するようになり、急激に霜結晶P4が成長を開始することになる。 Here, the phenomenon of condensation and sublimation will be explained a little more. When the humid air is cooled, the water vapor in the air becomes saturated (called water saturation), and no more water vapor can be contained in the gas, and condensation begins. The air temperature at this time is called dew point temperature. When the temperature is below 0 ° C, there are two saturation phenomena of water vapor saturation: ice saturation and water saturation. This is because the amount of saturated water vapor in the ice state is smaller than the amount of saturated water vapor in the water state, so when cooling in humid air below 0 ° C, the ice saturated state starts first, and the amount of saturated water vapor exceeds Water vapor appears as ice crystals (called ice crystals) in ice crystal nuclei in the air by sublimation. Here, the air temperature is defined as the freezing point temperature. Note that when further cooling is performed at low temperatures, water saturation occurs, and condensation begins in the same way as above 0 ° C. However, when the air temperature is up to -40 ° C, the condensed droplets do not freeze immediately and the supercooled liquid It becomes a drop. The air temperature at this time is called dew point temperature, which is the same as 0 ° C. or higher. The supercooled liquid droplets are stochastically frozen over time. The frozen particles become ice, and the water vapor pressure of the ice is lower than the surrounding water vapor pressure, so the water vapor sublimes more actively on this ice surface, and the frost crystal P4 starts to grow rapidly. It will be.

また、空気温度-40℃以下では、雰囲気中の水蒸気状態が水飽和雰囲気(以上も含む)での発生現象では、雰囲気中の凝結核へ水蒸気が凝縮するが即凍結粒子となり、その後冷却面上に落下堆積した凍結粒子が堆積して粉末状の着霜をする現象となる。なお、このとき冷却面が-40℃以下であるが雰囲気空気温度が-40℃以上の暖かいときには、堆積した粉末状の霜が厚くなり、その雰囲気にさらされる霜層の表面温度が-40℃以上になると、その霜に水蒸気が昇華して着霜成長する現象になることもある。
また、同じ空気温度-40℃以下で、雰囲気の水蒸気状態が氷飽和以上、水飽和以下の雰囲気での発生現象では、雰囲気の昇華核へ水蒸気が昇華することにより氷晶が発生し、その後冷却面上への落下堆積した氷晶に、水蒸気が昇華成長する着霜現象となる。
When the air temperature is -40 ° C or lower, the water vapor state in the atmosphere is a water-saturated atmosphere (including the above), and water vapor condenses on the condensation nuclei in the atmosphere, but immediately becomes frozen particles, and then on the cooling surface. The phenomenon is that the frozen particles that fall and accumulate on the surface accumulate and form powdery frost. At this time, when the cooling surface is -40 ° C or lower, but the ambient air temperature is warmer than -40 ° C, the accumulated powdery frost becomes thick, and the surface temperature of the frost layer exposed to the atmosphere is -40 ° C. If it becomes above, water vapor | steam sublimates to the frost and it may become a phenomenon which grows frost.
Also, in the phenomenon where the atmospheric temperature is -40 ° C or lower and the atmospheric water vapor state is above ice saturation and below water saturation, ice crystals are generated by sublimation of water vapor to the sublimation nuclei of the atmosphere, and then cooled. It becomes a frosting phenomenon in which water vapor sublimates and grows on ice crystals that fall and accumulate on the surface.

なお、上記の説明は冷却面近傍の温度境界層内の雰囲気中に凝結核や昇華核が存在したときのことを記載したが、冷却面上にも凝結核や昇華核は存在するので、その冷却面でもその凝結核や昇華核への凝縮や昇華などの現象は直接的に発生する。このように、空気中で過飽和現象が起きなくても、冷却面がその雰囲気相当となっていれば、冷却面で凝縮、昇華現象が起きると云うことになる。 In addition, although said description described that the condensation nucleus and the sublimation nucleus existed in the atmosphere in the temperature boundary layer of the cooling surface vicinity, since the condensation nucleus and the sublimation nucleus exist also on the cooling surface, the Even on the cooling surface, condensation, sublimation, and sublimation phenomena directly occur on the cooling surface. Thus, even if the supersaturation phenomenon does not occur in the air, if the cooling surface is equivalent to the atmosphere, condensation and sublimation phenomenon occurs on the cooling surface.

結露は、かび発生などの衛生面の低下、または腐食あるいは漏電、熱交換面の汚れ等の原因となる一方、着霜あるいは氷結は、氷解すれば結露と同様な問題が起きるが、霜層あるいは氷層は熱交換における熱抵抗層であり、物理的な厚みによる通風の阻害もあり、結露における熱交換面の液膜形成による熱抵抗層とともに熱交換量の低下の大きな原因になる。そのため、従来から、熱交換面の除霜あるいは除湿のいろいろな技術が行われてきている。 Condensation may cause deterioration of hygiene such as generation of fungi, or corrosion or leakage, contamination of the heat exchange surface, etc.On the other hand, frost formation or icing will cause problems similar to dew condensation when frosted. The ice layer is a heat resistance layer in heat exchange, and there is also an obstruction of ventilation due to physical thickness, which causes a large decrease in the amount of heat exchange together with the heat resistance layer due to liquid film formation on the heat exchange surface during condensation. Therefore, conventionally, various techniques for defrosting or dehumidifying the heat exchange surface have been performed.

この点、特許文献1には、多孔質材料を用いた調湿剤、あるいは結露防止剤が開示されている。
より詳細には、この調湿剤あるいは結露防止剤は、粒子自体が多孔質性を有する材料を用いることなしに、ナノメートルオーダーの微粒子が、その粒子間の空隙を損なうことなく充填、集積された構造体からなり、微粒子間に、ナノメートルサイズの空孔を有する多孔質材料が使用されており、細孔半径1nmから10nmの範囲にブロードな細孔分布を有する多孔質構造を有し、ケルビンの毛管凝縮理論に基づき、相対湿度75%から93%の領域で水蒸気吸着量の増加を示す。より具体的には、吸着等温線の立ち上がりは約80%付近であり、相対湿度75%から93%の範囲での吸湿量は、約12mass%であり、脱着等温線からは、相対湿度約70%において、相対湿度75%から93%の範囲で吸着していた水蒸気は放湿され、結露防止能力が回復される。
In this regard, Patent Document 1 discloses a humidity control agent or a dew condensation preventing agent using a porous material.
More specifically, in this humidity control agent or anti-condensation agent, fine particles of nanometer order are packed and accumulated without impairing voids between the particles without using a material having porous particles. A porous material having nanometer-sized pores between fine particles, having a porous structure having a broad pore distribution in a pore radius range of 1 nm to 10 nm, Based on Kelvin's capillary condensation theory, it shows an increase in water vapor adsorption in the region of relative humidity of 75% to 93%. More specifically, the rise of the adsorption isotherm is about 80%, the moisture absorption in the range of 75% to 93% relative humidity is about 12 mass%, and the relative humidity is about 70 from the desorption isotherm. %, The water vapor adsorbed in the range of 75% to 93% relative humidity is released and the dew condensation preventing ability is restored.

このような調湿剤、あるいは結露防止剤によれば、結露の原因である湿り空気中の水蒸気を吸着するとともに、脱着することにより結露防止能力を回復することで繰り返し使用可能であるが、細孔半径1nmから10nmであることから、湿り空気中の水蒸気を捕捉することは可能であるが、湿り空気が氷点下の温度の状態で、湿り空気中に過冷却凝縮液滴が生じるような場合には、過冷却凝縮液滴の径は少なくとも少なくとも1μmであることから、過冷却凝縮液滴を捕捉することにより、調湿あるいは結露防止を行うことはできない。
この点において、氷点下の湿り空気を扱う冷凍装置の湿り空気冷却器等のような場合に、周囲との温度差が大きい熱交換面上での物質移動を防止することにより、メンテナンスフリーな熱交換面を提供可能な熱交換面の保全方法の実現が要望されている。
According to such a humidity control agent or anti-condensation agent, it can be used repeatedly by adsorbing water vapor in the humid air that is the cause of dew condensation and recovering the anti-condensation ability by desorption. Since the pore radius is 1 nm to 10 nm, it is possible to capture water vapor in the humid air, but in the case where supercooled condensed droplets are generated in the humid air when the humid air is at a temperature below freezing point. Since the diameter of the supercooled condensed droplet is at least 1 μm, it is impossible to control humidity or prevent condensation by capturing the supercooled condensed droplet.
In this regard, maintenance-free heat exchange is prevented by preventing mass transfer on the heat exchange surface where the temperature difference from the surroundings is large, such as in humidifier coolers of refrigeration systems that handle humid air below freezing. Realization of a heat exchange surface maintenance method capable of providing a surface is desired.

一方、特に、湿り空気冷却器等湿り空気を氷点下に冷却する場合、あるいはLNG気化器等湿り空気から吸熱する場合等、湿り空気が氷点下となる際、熱交換面である冷却面には、結露でなく、着霜あるいは氷結が起こるが、霜層は熱伝導率が低いために熱抵抗層となるとともに、成長した霜が冷却対象である湿り空気の通風を阻害することがあり、総じて、熱交換効率が低下する原因となる。
この点、特許文献2には、機械的に霜を除去しやすくすることにより、凝固熱を利用しつつ、長時間の連続運転が可能な熱交換器が開示されている。より詳細には、この熱交換器は、湿り空気から熱を吸収しうる熱交換器であって、表面に微細な凸部および凹部を有し、凸部の上面に最小の幅が100μm以上500μm以下の平面部を有し、凹部の最小の幅が100μm以上1000μm以下である。熱交換器の表面に凸部および凹部を設けることにより、凸部の上面の平面部の上に垂直方向に霜結晶P4を成長させることができ、凸部の上は霜結晶P4が成長し、凹部の上は間隙となるため、全体として櫛歯状の霜結晶P4が形成される。このような形状は構造的に弱いため、例えばブラシやスクレーパー等機械的な除去手段で容易に払い落とすことができ、これにより、凝固熱を利用しつつ、長時間の連続運転が可能な熱交換器を提供することが可能となる。
On the other hand, especially when humid air such as a humid air cooler is cooled below the freezing point, or when absorbing heat from humid air such as an LNG vaporizer, when the humid air is below freezing point, the cooling surface that is the heat exchange surface has condensation. However, frost formation or icing occurs, but the frost layer becomes a heat resistance layer because of its low thermal conductivity, and the grown frost may impede the ventilation of the humid air that is to be cooled. This will cause a reduction in exchange efficiency.
In this regard, Patent Document 2 discloses a heat exchanger that can be continuously operated for a long time while utilizing heat of solidification by making it easy to mechanically remove frost. More specifically, this heat exchanger is a heat exchanger that can absorb heat from humid air, and has fine convex portions and concave portions on the surface, and a minimum width of 100 μm or more and 500 μm on the upper surface of the convex portion. It has the following plane portions, and the minimum width of the recess is 100 μm or more and 1000 μm or less. By providing convex portions and concave portions on the surface of the heat exchanger, it is possible to grow frost crystals P4 in the vertical direction on the flat portion on the upper surface of the convex portions, and frost crystals P4 grow on the convex portions, Since there is a gap above the recess, comb-like frost crystals P4 are formed as a whole. Since such a shape is structurally weak, it can be easily removed by mechanical removal means such as a brush or a scraper, thereby enabling heat exchange that enables continuous operation for a long time while using solidification heat. Can be provided.

さらに、特許文献3には、霜の成長を抑制する着霜防止部材が開示されている。より詳細には、この着霜防止部材は、部材の表面に、撥水性が高い撥水部及び撥水部に比較して親水性が高い親水部を所定のパターンで形成しており、撥水部は相対的に撥水性が高いため、霜が付着しにくく、一方、親水部は霜が付着し易い。したがって、撥水部では霜は大きく成長しないが、親水部では霜は大きく成長することから、親水部の霜は、大きく成長した後、湿り空気の流れに抗しきれなくなると崩壊し、再び成長・崩壊を繰り返す。このように、部材の表面に撥水部及び親水部を所定のパターンで形成することにより、霜の成長・崩壊の繰り返しを促進して霜の成長を抑制している。
しかしながら、特許文献2および特許文献3に開示されるような、熱交換面の表面加工あるいは表面処理により、着霜防止を達成する場合、そもそも、時間経過とともに着霜が生じてしまい、長時間に亘って着霜防止を維持するのが困難である一方、冷媒あるいは湿り空気の温度条件、湿度条件、あるいは湿り空気の流れ状態の変動に応じて、着霜状況は変化するところ、このような条件の変動に対して対処することが困難である。
さらには、湿り空気の着霜自体を防止することから、冷却面での着霜防止による顕熱交換の促進は達成可能であるが、水蒸気の相変化に伴う潜熱交換(凝固熱)を排除しており、トータル的な熱交換方法としては、必ずしも改善とはいえない。
Furthermore, Patent Literature 3 discloses a frost prevention member that suppresses frost growth. More specifically, the anti-frosting member has a water repellent part having a high water repellency and a hydrophilic part having a higher hydrophilicity than the water repellent part in a predetermined pattern on the surface of the member. Since the part has relatively high water repellency, it is difficult for frost to adhere to it, while the hydrophilic part tends to adhere to frost. Therefore, frost does not grow greatly in the water repellent part, but frost grows greatly in the hydrophilic part, so that the frost in the hydrophilic part grows large and then collapses when it cannot resist the flow of humid air and grows again. -Repeat the collapse. Thus, by forming the water repellent portion and the hydrophilic portion on the surface of the member in a predetermined pattern, the frost growth and collapse are promoted to suppress the frost growth.
However, when frost prevention is achieved by surface processing or surface treatment of the heat exchange surface as disclosed in Patent Document 2 and Patent Document 3, frost formation occurs over time, and it takes a long time. While it is difficult to maintain anti-frosting over time, the frosting condition changes depending on the temperature conditions, humidity conditions, or changes in the flow state of the humid air. It is difficult to deal with fluctuations in
Furthermore, since frosting of moist air itself is prevented, sensible heat exchange can be promoted by preventing frosting on the cooling surface, but latent heat exchange (solidification heat) associated with the phase change of water vapor is eliminated. The total heat exchange method is not necessarily an improvement.

この点、特許文献4には、冷却器の着霜低減装置が開示されている。より詳細には、この装置は、伝熱管に複数の平板状のフィンを接合した冷却用熱交換器の近傍に配置され、フィンの平面方向と直角もしくは平行に複数のノズルを有する噴射手段と、噴射手段を往復運動させる駆動手段とを具え、噴射手段がフィンの平面方向と平行もしくは直角に移動し、湿り空気を噴射する。複数のノズルを一列に並設し、フィンの平面方向と平行もしくは直角に移動させ、そのノズル列を冷却器のフィン面に沿って湿り空気を吐出することにより、冷却用熱交換器のフィン全域に湿り空気を噴射し、フィン表面に付着した霜に流体の圧力抗力を作用させて、その霜になる前の過冷却状態の水滴、および氷結した霜を除去することができるので、冷却装置の運転を停止させることなく、少ない湿り空気吐出量で着霜低減する結果、冷却の運転効率を高く維持でき、除霜防止および除霜の運転コストを低減することができる。 In this regard, Patent Document 4 discloses a frost reduction device for a cooler. More specifically, this apparatus is disposed in the vicinity of a cooling heat exchanger in which a plurality of plate-like fins are joined to a heat transfer tube, and has an injection means having a plurality of nozzles perpendicular to or parallel to the plane direction of the fins, Drive means for reciprocating the injection means, and the injection means moves parallel or perpendicular to the plane direction of the fins to inject the humid air. By arranging a plurality of nozzles in a row and moving them parallel or perpendicular to the plane direction of the fins, and discharging the humid air along the fin surfaces of the cooler, the entire fin area of the cooling heat exchanger Wet air is injected onto the fin surface, and the pressure resistance of the fluid acts on the frost attached to the fin surface, so that the water droplets in the supercooled state and the frozen frost before becoming frost can be removed. As a result of reducing frost formation with a small discharge amount of moist air without stopping operation, cooling operation efficiency can be maintained high, and defrost prevention and defrost operation costs can be reduced.

しかしながら、この冷却器の着霜低減装置は、フィン表面に着霜した霜に対して湿り空気を噴射することにより強制的に霜を除去するもので、そもそも、着霜自体を防止するものでなく、フィン表面に着霜した霜を利霜することができず、冷却用熱交換器の近傍に別途着霜低減装置を配置する関係から、ノズル開口が塞がされないように保守する必要もある。 However, this frost reduction device of the cooler forcibly removes frost by injecting moist air against the frost frosted on the fin surface, and does not prevent frost formation in the first place. Since the frost formed on the fin surface cannot be frosted, it is necessary to perform maintenance so that the nozzle opening is not blocked due to the separate arrangement of the frost reduction device in the vicinity of the cooling heat exchanger.

この点、特許文献5および6には、自動車のフロントガラスに氷または霜が張り付いた際、あるいは雪が降り積もった際に、フロントガラスから氷雪を除去する氷霜または氷雪除去ネットが開示されている。
より詳細には、この氷霜または氷雪除去ネットは、所定の線材の幅および所定のメッシュの幅を具備する平面格子状に配置された線材からなり、自動車のフロントガラスに直接敷設しておくものである。
このような氷霜または氷雪除去ネットによれば、メッシュ開口部内に形成する氷、霜ありはメッシュ開口部に降り積もる雪をネットと一体化し、ネットを引張り、あるいは剥ぎ取ることにより、メッシュ開口部を通じてフロントガラスに形成される氷、霜あるいは降り積もった雪をネットごと除去するものである。
そのため、除去すべき氷、霜あるいは雪をネットと一体化するために、形成される氷、霜あるいは雪の厚みに応じて、線材の幅を決定し、線材の氷、霜あるいは雪に対する付着力に応じて、メッシュの幅を決定している。
In this regard, Patent Documents 5 and 6 disclose an ice frost or ice / snow removal net that removes ice / snow from the windshield when ice or frost adheres to the windshield of an automobile or when snow has accumulated. .
More specifically, this ice / frost or ice / snow removal net is made of wire rods arranged in a planar grid pattern having a predetermined wire width and a predetermined mesh width, and is directly laid on the windshield of an automobile. It is.
According to such an ice frost or ice / snow removal net, the ice or frost formed in the mesh opening is integrated with the net and the snow falling on the mesh opening is integrated with the net, and the net is pulled or peeled through the mesh opening. It removes the ice, frost, or accumulated snow formed on the windshield together with the net.
Therefore, in order to integrate the ice, frost or snow to be removed with the net, the width of the wire is determined according to the thickness of the formed ice, frost or snow, and the adhesion of the wire to ice, frost or snow is determined. The mesh width is determined accordingly.

より具体的には、氷、霜あるいは雪の厚みが3ミリ程度であれば、線材の幅を2ミリ以上6ミリ以下、メッシュの幅を10ミリ以上50ミリ以下と設定し(特許文献5)、氷、霜あるいは雪の厚みが2ミリ以下であれば、線材の幅を0,5ミリ以上2ミリ未満、メッシュの幅を1ミリ以上10ミリ以下と設定している(特許文献6)。
いずれにしても、氷霜または氷雪除去ネットは、駐車場の屋根がある車のフロントガラスには着霜がない現象のように、自動車のフロントガラスへの氷霜または氷雪の形成を、簡易的に形成したネットによりネット上に一体化した氷霜または氷雪を、ネットごと引っ張り、あるいは剥ぎ取ることにより、氷霜または氷雪を除去するものに過ぎない。
More specifically, if the thickness of ice, frost, or snow is about 3 mm, the wire width is set to 2 mm to 6 mm and the mesh width is set to 10 mm to 50 mm (Patent Document 5). If the thickness of ice, frost or snow is 2 mm or less, the wire width is set to 0.5 mm or more and less than 2 mm, and the mesh width is set to 1 mm or more and 10 mm or less (Patent Document 6).
In any case, the ice frost or ice / snow removal net simplifies the formation of ice frost or snow on the car windshield, as in the case of a car windshield with no parking roof. The ice frost or ice snow integrated on the net by the net formed in (1) above is merely removed by pulling or peeling the net together with the net.

以上のように、従来の熱交換面は、長期的な熱交換面の保全ができないし、冷却面の熱交換の経時的維持もできるものではない。
以上のように、これらの凝縮、着霜などの現象を、冷却面と区別させて作用させる発想は、開示はおろか示唆すらなされていない。
As described above, the conventional heat exchanging surface cannot maintain the heat exchanging surface for a long time and cannot maintain the heat exchanging of the cooling surface with time.
As described above, the idea of causing these phenomena such as condensation and frost formation to act separately from the cooling surface is not disclosed or even suggested.

特許第4599592号公報Japanese Patent No. 4599592 特開2012−82989号公報JP 2012-82989 A 特開2003−240487号公報JP 2003-240487 A 特開2008−64326号公報JP 2008-64326 A 実用新案登録第3160488号公報Utility Model Registration No. 3160488 特許第4224121号公報Japanese Patent No. 4224121

以上の技術的問題点に鑑み、本発明の目的は、周囲との温度差が大きい熱交換面上での物質移動を防止することにより、メンテナンスフリーな熱交換面を提供可能であり、熱交換面を介して、熱交換面を介して湿り空気を冷却したり、温度境界層内の氷点下以下の湿り空気から吸熱する場合において、熱交換面での高効率かつ安定的な冷却を可能とする結露または着霜抑制用担体を提供することにある。   In view of the above technical problems, the object of the present invention is to provide a maintenance-free heat exchange surface by preventing mass transfer on the heat exchange surface with a large temperature difference from the surroundings, and heat exchange Enables efficient and stable cooling on the heat exchange surface when the humid air is cooled via the heat exchange surface or when absorbing heat from below the freezing point in the temperature boundary layer. The object is to provide a carrier for suppressing condensation or frost formation.

本発明は、この熱交換面での、凝縮、着霜、氷結の現象に着目し、これらの昇華・凝縮・凍結の現象を、冷却面に作用させるのではなく、冷却面と区別して作用させることを発想するものである。 The present invention pays attention to the phenomenon of condensation, frost formation, and icing on the heat exchange surface, and causes these sublimation / condensation / freezing phenomena to act separately from the cooling surface instead of acting on the cooling surface. It is an idea.

また、前記担体は、平面状であり、定形もしくは不定形の断面をした、所定の幅と開口を交互に配列する構成をもち、冷却用熱交換面からの所定の深さを有する平面状担体とするのでもよい。 Further, the carrier is planar, has a regular or irregular cross section, has a configuration in which predetermined widths and openings are alternately arranged, and has a predetermined depth from the cooling heat exchange surface. It may be.

さらに、平面状担体は、メッシュ状であり、所定メッシュ開口幅、所定線材幅および厚みを有するのでもよい。 Further, the planar carrier is mesh-shaped and may have a predetermined mesh opening width, a predetermined wire width and thickness.

さらにまた、平面状担体のサイズは、担体の幅が100μm以上2000μm以下、開口の幅は100μm以上1000μm以下とし、担体の温度境界層側の表面から冷却用熱交換面までの深さは、100μm以上とするのでもよい。 Furthermore, the size of the planar carrier is such that the width of the carrier is 100 μm or more and 2000 μm or less, the width of the opening is 100 μm or more and 1000 μm or less, and the depth from the surface on the temperature boundary layer side of the carrier to the heat exchange surface for cooling is 100 μm. It may be the above.

加えて、前記担体は、定形もしくは不定形の断面をした所定長さの繊維を、不織布状に重ね合わせて、空隙をもった立体的な構成をなした立体状担体とするのでもよい。 In addition, the carrier may be a three-dimensional carrier having a three-dimensional structure having voids by superposing fibers of a predetermined length having a regular or irregular cross section in a nonwoven fabric shape.

また、前記立体状担体を、温度境界層外の主気流中にも一部を配置できるように厚くし、気流を境界層内の担体内に誘導することにより、冷却用熱交換面の伝熱促進させるのでもよい。 In addition, the three-dimensional carrier is thickened so that a part of the three-dimensional carrier can be disposed in the main airflow outside the temperature boundary layer, and the airflow is guided into the carrier inside the boundary layer, so that the heat transfer on the heat exchange surface for cooling is performed. It may be promoted.

さらに、前記平面状担体を冷却用熱交換面の熱流方向に区分けして複数層配置し、
該複数層のうちの熱流方向上流側を温度境界層外の主気流中に配置し、熱流方向に隣接する平面状担体において、気流を境界層内の担体内に誘導するように、互いの開口が重なり合うように配置することにより、冷却用熱交換面の伝熱促進させるのでもよい。
Further, the planar carrier is divided into a plurality of layers in the heat flow direction of the cooling heat exchange surface,
The upstream side of the plurality of layers in the heat flow direction is disposed in the main airflow outside the temperature boundary layer, and in the planar carrier adjacent to the heat flow direction, the openings are mutually open so as to guide the airflow into the carrier in the boundary layer. It is also possible to promote heat transfer on the heat exchange surface for cooling by arranging them so as to overlap each other.

さらにまた、前記担体の表面に撥水性処理を施すことにより、担体の表面性状を変えて、担体面での水蒸気の昇華、凝縮にかかる除湿性能の向上と、液状における状態で開口を塞ぐことのないようにするのでもよい。 Furthermore, by subjecting the surface of the carrier to a water repellency treatment, the surface property of the carrier is changed to improve the dehumidifying performance related to sublimation and condensation of water vapor on the carrier surface, and to close the opening in a liquid state. It may be avoided.

加えて、前記担体の表面に吸着性能を有する構成にすることにより、担体の表面性状を変えて、担体面での水蒸気の昇華、凝縮にかかる除湿性能を向上させるのでもよい。 In addition, by adopting a structure having adsorption performance on the surface of the carrier, the surface property of the carrier may be changed to improve the dehumidification performance for water vapor sublimation and condensation on the carrier surface.

また、前記担体に高吸水性樹脂の繊維を利用し、担体の性状として吸水性、保水性、毛管吸水性などを高めたことにより、担体面での水蒸気の昇華、凝縮にかかる除湿性能を向上させるのでもよい。 In addition, the use of high water-absorbent resin fibers as the carrier and improved water absorption, water retention, capillary water absorption, etc. as the properties of the carrier improve the dehumidification performance for water vapor sublimation and condensation on the carrier surface. It may be allowed.

本発明の第1実施形態を図面を参照しながら、以下に詳細に説明する。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
A first embodiment of the present invention will be described below in detail with reference to the drawings.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

本発明の実施形態について、熱交換器HXにより、冷媒を用いて空気を氷点以下に冷却する場合を例として、図面を参照しながら、以下に説明する。 Embodiments of the present invention will be described below with reference to the drawings, taking as an example a case where air is cooled below the freezing point using a refrigerant by a heat exchanger HX.

図1に示すように、熱交換器HXの外側の湿り空気の雰囲気中に開口をもった平面状担体が配置されている。
熱交換器HXは、板厚tを有し、内部に温度Tcの冷媒を流し、熱交換器HXの外表面が熱交換面Sを形成する。
冷却面をながれる湿り空気の温度Tmは、熱交換面Sの表面に形成された温度境界層Bを経て、緩やかな温度分布を描き冷却面の低い温度Toutにいたる温度分布を形成している。以下、空気温度が0℃以下、―40℃以上の状態で説明することにする。
As shown in FIG. 1, a planar carrier having an opening is disposed in an atmosphere of humid air outside the heat exchanger HX.
The heat exchanger HX has a plate thickness t, allows a refrigerant having a temperature Tc to flow therein, and forms the heat exchange surface S on the outer surface of the heat exchanger HX.
The temperature Tm of the humid air that flows along the cooling surface passes through the temperature boundary layer B formed on the surface of the heat exchange surface S, forms a gentle temperature distribution, and forms a temperature distribution that reaches the low temperature Tout of the cooling surface. In the following description, the air temperature is 0 ° C. or lower and −40 ° C. or higher.

このとき、温度境界層BL内に開口をもった平面上の担体であるCを熱交換面Sと隙間を空けて形成したときに、担体Cの反熱交換面Sの境界層内では、湿り空気中の水蒸気が温度低下により飽和状態(空気が露点温度になり)になり、空気中の凝縮核に凝縮が発生する。その浮遊している凝縮液滴P1は、担体Cの表面に落下堆積し、担体C表面に液滴群を形成する。液滴群は、さらなる落下堆積してくる液滴を合流したり、あるいは雰囲気の水蒸気を凝縮して大きな液滴になる。液滴は過冷却している場合が多いが、100μmくらいになると過冷却が解消するようになり、凍結した氷面となる。そうなると、氷面に対して、水蒸気が昇華するようになり、霜結晶P4が急激に形成するようになる。霜が形成されることにより、開口Oは塞がれ、通気性のある霜の密生した状態になる。そうなると、湿り空気中の水蒸気は、霜結晶P4に成長するようになり、この霜結晶P4表面に食われて、開口Oを通過して熱交換面Sへ到達する水蒸気量が減少し、熱交換面Sで霜が成長することはなくなる。 At this time, when C, which is a flat carrier having an opening in the temperature boundary layer BL, is formed with a gap from the heat exchange surface S, in the boundary layer of the anti-heat exchange surface S of the carrier C, wetting occurs. The water vapor in the air becomes saturated due to a temperature drop (air becomes the dew point temperature), and condensation occurs in the condensation nuclei in the air. The floating condensed droplets P1 fall and accumulate on the surface of the carrier C, and form droplets on the surface of the carrier C. The droplet group merges further falling and deposited droplets or condenses water vapor in the atmosphere into large droplets. In many cases, the droplets are supercooled, but when the thickness is about 100 μm, the supercooling is canceled and the ice surface becomes frozen. As a result, water vapor sublimates on the ice surface, and frost crystals P4 are rapidly formed. By forming frost, the opening O is closed, and the air-permeable frost is densely formed. When this happens, the water vapor in the humid air grows into the frost crystals P4 and is eaten by the surface of the frost crystals P4, reducing the amount of water vapor passing through the opening O and reaching the heat exchange surface S, thereby exchanging heat. Frost will no longer grow on surface S.

この状態により、境界層内に設置した担体C表面での霜成長により、熱交換面Sは安定的に、最初からの顕熱交換としての熱交換が安定的に実施されることになる。熱交換面Sに霜結晶P4が成長する現象では、霜層による熱抵抗増大により、漸次伝熱量が低下してくるが、それがなくなり、安定した熱交換ができることになる。また、担体C面では、着霜による潜熱交換が従来の熱交換面Sでの状態と同じようにできるので、全体としては熱交換面Sだけの着霜成長状態の熱交換よりも、熱交換量が増える結果となる。 In this state, heat exchange as the sensible heat exchange from the beginning is stably performed on the heat exchange surface S by frost growth on the surface of the carrier C installed in the boundary layer. In the phenomenon in which the frost crystal P4 grows on the heat exchange surface S, the amount of heat transfer gradually decreases due to the increase in thermal resistance due to the frost layer, but this disappears and stable heat exchange can be performed. In addition, on the carrier C surface, latent heat exchange by frost formation can be performed in the same way as in the state of the conventional heat exchange surface S. Therefore, overall heat exchange is more than heat exchange in the frost growth state of only the heat exchange surface S. The result is an increased amount.

このように、熱交換面Sの温度境界層BL内に、まったく新しい発想で、開口Oをもった担体Cを形成することにより、担体C面での潜熱交換と本来の熱交換面Sでの顕熱交換とに、熱交換を分離することによる、新しい熱交換形態を実施できた。 Thus, in the temperature boundary layer BL of the heat exchange surface S, by forming a carrier C having an opening O with a completely new concept, latent heat exchange on the carrier C surface and the original heat exchange surface S A new heat exchange mode was achieved by separating heat exchange from sensible heat exchange.

なお、ここで説明している温度境界層BLであるが、温度境界層BLの厚さは設置環境により変化するものである。通常は、その環境温度や流体的な流れによって説明されるが、それは、ここでは省略する。ここで説明したいのは、図2(A)のように、温度境界層BL内になにもない状態での温度境界層BLがあったとき、図1のような境界層内での担体C面へ成長する霜層を説明する。図2(B)のように、図2(A)の薄い境界層が、担体Cを入れることにより、境界層が厚くなる状態を示している。また、霜成長がするようになると、さらに境界層は厚く変化するのを図2(C)に示す。このように、もともとの何もない境界層内において担体Cの設置と霜の成長ができる場合もあるだろうが、境界層が非常に薄い場合でも、担体Cの熱伝導率が空気に比して大きいときには、境界層がそれにつれて厚く変化することがあることを示した。このことにより、この担体Cを従来の境界層内に一部でも設置できれば、このように変化成長することが可能であり、この現象の利用性が大きくなるものと考えている。   In addition, although it is temperature boundary layer BL demonstrated here, the thickness of temperature boundary layer BL changes with installation environments. Usually, it is explained by its environmental temperature and fluid flow, which is omitted here. As shown in FIG. 2 (A), when there is a temperature boundary layer BL in the state where there is nothing in the temperature boundary layer BL, the carrier C in the boundary layer as shown in FIG. A frost layer growing on the surface will be described. As shown in FIG. 2 (B), the thin boundary layer in FIG. 2 (A) shows a state in which the boundary layer becomes thicker when the carrier C is inserted. Further, FIG. 2 (C) shows that the boundary layer further changes in thickness as frost grows. In this way, there may be cases where the carrier C can be installed and frost grows in the original boundary layer, but even if the boundary layer is very thin, the thermal conductivity of the carrier C is in comparison with air. When it was large, it was shown that the boundary layer might change thicker accordingly. Thus, if this carrier C can be installed even in a part of the conventional boundary layer, it is possible to grow in this way, and the utilization of this phenomenon is considered to increase.

(1)着霜現象や凝縮現象の発現条件について
図3を参照しながら、着霜現象や凝縮現象の発現条件について説明する。
空気温度0℃以上で、雰囲気の水蒸気状態が水飽和雰囲気(以上も含む)での発生現象(領域A)では、雰囲気中の凝縮核へ水蒸気が凝縮することにより水滴が発生し、その後熱交換面S上に落下堆積して、その水滴に水蒸気が凝縮して水滴が成長・合流を繰り返して、大きな水滴となり、重力に付着力が抗しきれなくなると、熱交換面Sを流下(落下)する。
また、空気温度0℃以下-40℃以上で、雰囲気の水蒸気状態が水飽和雰囲気(以上も含む)での発生現象(領域C)では、雰囲気中の凝縮核へ水蒸気が凝縮することにより過冷却水滴P3が発生し、その後熱交換面S上に落下堆積して過冷却水滴P3が成長・合流後、凍結し、その凍結氷粒子に水蒸気が昇華して着霜成長する。
また、同じ空気温度0℃以下-40℃以上で、雰囲気の水蒸気状態が氷飽和以上、水飽和以下の雰囲気での発生現象(領域B)では、雰囲気中の昇華核へ水蒸気が昇華することにより氷晶が発生し、その後熱交換面S上に落下堆積して、その氷晶に水蒸気が昇華することにより着霜成長する。
(1) Conditions for expression of frost phenomenon and condensation phenomenon Conditions for expression of frost phenomenon and condensation phenomenon will be described with reference to FIG.
When the air temperature is 0 ° C or higher and the atmospheric water vapor state is a water-saturated atmosphere (including the above) (region A), water droplets are generated by condensing water vapor to the condensation nuclei in the atmosphere, and then heat exchange When water drops condense on the surface S, water vapor condenses on the water droplets, and the water droplets grow and merge repeatedly to form large water droplets that flow down the heat exchange surface S (drop) when the adhesion force cannot resist gravity. To do.
In addition, when the air temperature is 0 ° C or lower and -40 ° C or higher and the atmosphere is in a water-saturated atmosphere (including the above) (region C), supercooling occurs when water vapor condenses on the condensation nuclei in the atmosphere. Water droplets P3 are generated, and then fall and accumulate on the heat exchange surface S, and the supercooled water droplets P3 grow and merge, then freeze, and water vapor sublimates on the frozen ice particles to grow frost.
Also, in the generation phenomenon (area B) in the atmosphere with the same air temperature of 0 ° C or lower and -40 ° C or higher and the atmospheric water vapor state is above ice saturation and below water saturation, the water vapor sublimates to the sublimation nuclei in the atmosphere. Ice crystals are generated, and then fallen and deposited on the heat exchange surface S, and water vapor sublimates on the ice crystals to grow frost.

なお、ここで凝縮や昇華の現象をもう少し説明しておく。湿り空気を冷却したときに、空気中の水蒸気が飽和状態(水飽和という)となり、それ以上の水蒸気は気体でいられなくなり、凝縮が始まる。このときの空気温度を露点温度と言う。また、気温が0℃以下の場合には、水蒸気の飽和状態は氷飽和と水飽和の二つの飽和現象がある。これは、水の状態の飽和水蒸気量と比べ、氷の状態の飽和水蒸気量は小さいので、0℃以下の湿り空気において冷却をしていくと、氷飽和状態が先にはじまり飽和水蒸気量以上の水蒸気は、昇華により空気中の氷晶核に氷結晶(氷晶という)として出現する。そのときの空気温度を、ここでは氷点温度と定義することにする。 Here, the phenomenon of condensation and sublimation will be explained a little more. When the humid air is cooled, the water vapor in the air becomes saturated (called water saturation), and no more water vapor can be contained in the gas, and condensation begins. The air temperature at this time is called dew point temperature. When the temperature is below 0 ° C, there are two saturation phenomena of water vapor saturation: ice saturation and water saturation. This is because the amount of saturated water vapor in the ice state is smaller than the amount of saturated water vapor in the water state, so when cooling in humid air below 0 ° C, the ice saturated state starts first and the amount of saturated water vapor exceeds the amount of saturated water vapor. Water vapor appears as ice crystals (called ice crystals) in ice crystal nuclei in the air by sublimation. Here, the air temperature is defined as the freezing point temperature.

なお、低温下ではさらに冷却をすると水飽和状態となり、0℃以上と同じように凝縮が始まるが、空気温度が-40℃までの範囲では、凝縮液滴P1はすぐに凍結することなく過冷却水滴P3になる。このときの空気温度は、0℃以上と同じに露点温度という。そして時間経過とともに過冷却水滴P3は確率的に凍結をする。氷となった凍結粒子には、氷の水蒸気圧が周囲の水蒸気圧よりも低くなるため、より積極的に水蒸気がこの氷面に昇華するようになり、急激に霜結晶P4が成長を開始することになる。 Note that when further cooling is performed at low temperatures, water saturation occurs, and condensation begins in the same manner as above 0 ° C. However, when the air temperature is in the range of -40 ° C, the condensed droplet P1 does not freeze immediately but is supercooled. It becomes a water droplet P3. The air temperature at this time is called dew point temperature, which is the same as 0 ° C. or higher. Then, the supercooled water droplet P3 is stochastically frozen over time. The frozen particles become ice, and the water vapor pressure of the ice is lower than the surrounding water vapor pressure, so the water vapor sublimes more actively on this ice surface, and the frost crystal P4 starts to grow rapidly. It will be.

また、空気温度-40℃以下では、雰囲気中の水蒸気状態が水飽和雰囲気(以上も含む)での発生現象(領域D)では、雰囲気中の凝結核へ水蒸気が凝縮するが即凍結粒子となり、その後熱交換面S上に落下堆積した凍結粒子が堆積して粉末状の着霜をする。
なお、このとき熱交換面Sが-40℃以下であるが雰囲気空気温度が-40℃以上の暖かいときには、堆積した粉末状の霜が厚くなり、その雰囲気にさらされる霜層の表面温度が-40℃以上になるときには、その霜に水蒸気が昇華して着霜成長することもある。
また、同じ空気温度-40℃以下で、雰囲気の水蒸気状態が氷飽和以上、水飽和以下の雰囲気での発生現象(領域E)では、雰囲気の昇華核へ水蒸気が昇華することにより氷晶が発生し、その後熱交換面S上への落下堆積した氷晶に、水蒸気が昇華成長する着霜現象となる。
In addition, when the air temperature is -40 ° C or lower, the water vapor state in the atmosphere is a water-saturated atmosphere (including the above). Thereafter, the frozen particles that have fallen and deposited on the heat exchange surface S accumulate and form a powdery frost.
At this time, when the heat exchange surface S is -40 ° C or lower, but the ambient air temperature is warmer than -40 ° C, the accumulated powdery frost becomes thick, and the surface temperature of the frost layer exposed to the atmosphere is- When the temperature exceeds 40 ° C., water vapor may sublimate to the frost, and frost growth may occur.
Also, in the phenomenon (area E) in the atmosphere with the same air temperature of -40 ° C or lower and the atmospheric water vapor state is above ice saturation or below water saturation, ice crystals are generated by sublimation of water vapor to the sublimation nucleus of the atmosphere. Then, a frosting phenomenon occurs in which water vapor sublimates and grows on ice crystals that have fallen and deposited on the heat exchange surface S.

なお、上記の説明は熱交換面S近傍の温度境界層BL内の雰囲気中に凝結核や昇華核が存在したときのことを記載したが、熱交換面S上にも凝結核や昇華核は存在するので、その熱交換面Sでもその凝結核や昇華核への凝縮や昇華などの現象は直接的に発生する。空気中で過飽和現象が起きなくても、熱交換面Sがその雰囲気相当となっていれば、熱交換面Sで凝縮、昇華現象は起きる。つまり、温度境界層BLの雰囲気が過飽和になっていなくても、担体Cの表面温度がその雰囲気相当の過飽和状態となっていれば、担体C表面だけで、凝縮や昇華の現象が起きる。 In addition, although said description described that the condensation nucleus and the sublimation nucleus existed in the atmosphere in the temperature boundary layer BL near the heat exchange surface S, the condensation nucleus and the sublimation nucleus are also on the heat exchange surface S. Therefore, even on the heat exchange surface S, phenomena such as condensation and sublimation to the condensed nuclei and sublimation nuclei directly occur. Even if the supersaturation phenomenon does not occur in the air, the condensation and sublimation phenomenon occurs on the heat exchange surface S if the heat exchange surface S is equivalent to the atmosphere. That is, even if the atmosphere of the temperature boundary layer BL is not supersaturated, condensation and sublimation occur only on the surface of the carrier C if the surface temperature of the carrier C is in a supersaturated state corresponding to the atmosphere.

(2)温度境界層BL内の担体Cへの着霜と熱交換面Sへ着霜成長しない現象について
この現象はまだ解明されていないが、以下のように、推測される。
過冷却が発生するー40℃以上で説明すれば、図4に示すように、最初の状態図4(A)では担体Cを含めてその雰囲気にはたくさんの凝結核や昇華核が存在するので、過飽和状態になり雰囲気中での凝縮液滴P1などが浮遊する状態になる。その後、図4(B)のように、担体C面や熱交換面Sに凝縮液滴P1などは堆積し、水蒸気供給により凝縮や昇華などにより熱交換面Sで液滴は成長する。つぎに図4(C)のように、合流を繰り返した大きな過冷却水滴P3となった後に凍結した粒子になる。そうなると、氷粒子であるから空気中の水蒸気はその氷粒子に昇華して、図4(D)のように、霜の成長が始まる。その段階では担体C面での急激な成長が始まるので、雰囲気の水蒸気はその面に食われて、熱交換面S雰囲気への水蒸気流入量が減少して過飽和現象が緩和される。
さらに霜が成長すると、図4(E)のように、担体C間の上部にも霜成長してしまうので、担体Cと熱交換面S間には多量の水蒸気流入はできなくなり、結果的に担体C面での水蒸気の着霜成長となり、熱交換面Sの水蒸気の着霜成長はしないことになる。ただし、対流は存在するので熱交換面Sでは着霜のない顕熱交換が維持されるので、顕熱交換量は初期の状態を維持できることになる。このことにより、担体C面での潜熱交換とあわせて、最良な熱交換形態が可能となる。
(2) This phenomenon has not been clarified yet regarding the phenomenon of frost formation on the carrier C in the temperature boundary layer BL and frost growth on the heat exchange surface S, but it is presumed as follows.
If it is explained above 40 ° C where supercooling occurs, as shown in Fig. 4, in the first state diagram 4 (A), there are many condensation nuclei and sublimation nuclei in the atmosphere including carrier C. Then, it becomes supersaturated and the condensed droplet P1 etc. in the atmosphere float. Thereafter, as shown in FIG. 4B, the condensed droplets P1 and the like are deposited on the carrier C surface and the heat exchange surface S, and the droplets grow on the heat exchange surface S due to condensation and sublimation by supplying water vapor. Next, as shown in FIG. 4 (C), the particles become frozen after becoming large supercooled water droplets P3 which are repeatedly joined. Then, since it is an ice particle, water vapor in the air sublimates to the ice particle, and frost growth starts as shown in FIG. 4 (D). At that stage, since the rapid growth on the surface of the support C starts, the water vapor in the atmosphere is eaten by that surface, and the amount of water vapor flowing into the heat exchange surface S atmosphere is reduced, thereby mitigating the supersaturation phenomenon.
As frost grows, frost grows on the upper part between the carriers C as shown in FIG. 4 (E), so that a large amount of water vapor cannot flow between the carrier C and the heat exchange surface S. It becomes the frost growth of water vapor on the carrier C surface, and the frost growth of water vapor on the heat exchange surface S does not occur. However, since convection exists, sensible heat exchange without frost formation is maintained on the heat exchange surface S, so that the sensible heat exchange amount can maintain the initial state. This enables the best heat exchange mode together with latent heat exchange on the carrier C surface.

なお、熱交換面Sと並行に担体C面を形成することによる現象を説明したが、着霜成長により水蒸気が熱交換面Sで過飽和を形成しないので、熱交換面Sでの着霜成長がなくせたのがそのメカニズムであるから、より積極的に熱交換面Sの伝熱促進のために境界層を破壊する流れを構成する伝熱促進体を利用しても、最終的に担体Cにより水蒸気を取り去ってやると、熱交換面Sは対流がより大きくなった分、顕熱交換としての伝熱促進が図れることになる。
例えば、図5Aのように、担体Cを構成した外側に板状の伝熱促進体を設置すると、流体の流れの一部を担体C側に誘導し担体Cの開口Oを通過する流体流れを促進することができ、熱交換面Sでの着霜防止と伝熱促進を図ることができる。図5Bには、図5Aの担体Cと伝熱促進体の構成を、担体Cだけで構成した例を示す。通常の平面状担体Cを流れ方向に区分けし、その上流側の一部を境界層の外側に配置したものである。
In addition, although the phenomenon by forming the support | carrier C surface in parallel with the heat exchange surface S was demonstrated, since water vapor | steam does not form supersaturation in the heat exchange surface S by frost growth, frost growth on the heat exchange surface S is carried out. Because the mechanism that was lost, even if a heat transfer facilitator that constitutes a flow that breaks the boundary layer in order to more actively promote heat transfer on the heat exchange surface S is used, it will ultimately depend on the carrier C. When the water vapor is removed, the heat exchange surface S can promote heat transfer as sensible heat exchange as the convection becomes larger.
For example, as shown in FIG. 5A, when a plate-like heat transfer promoting body is installed outside the carrier C, a part of the fluid flow is guided to the carrier C side, and the fluid flow passing through the opening O of the carrier C is changed. Therefore, frost formation on the heat exchange surface S can be prevented and heat transfer can be promoted. FIG. 5B shows an example in which the carrier C and the heat transfer promoting body of FIG. A normal planar carrier C is divided in the flow direction, and a part of the upstream side thereof is arranged outside the boundary layer.

(3)着霜成長現象における担体C形状とサイズおよび開口Oと熱交換面Sの関係について
担体Cの形状とサイズおよび開口Oと、熱交換面Sとの関係について、図6A・B・Cで説明する。0℃以下-40℃以上の雰囲気での着霜成長における担体Cについては、凝縮水滴が堆積して、過冷却水滴P3群が形成されるようなサイズでよく、断面形状は任意である。開口Oは担体Cに成長した霜層が成長段階で、開口Oを塞ぐ程度が好ましい。
霜層成長により、担体C間の開口Oを両端の担体C上の霜成長により開口Oを塞ぐイメージで良い。また、担体Cの深さについては、任意であり、担体Cと熱交換面Sの空間が開いていることが重要で、熱交換面Sに担体Cが設置されている場合には、熱交換面Sの顕熱交換する面積が減るので、担体Cにより潜熱交換と顕熱交換を分離する場合には、離すのが重要と考える。
なお、熱交換面Sと担体Cとの間の空間については開口Oを通過する水蒸気の問題として説明してきたが、図示している空間の左右の方から水蒸気の侵入はないものとしている。熱交換面Sの形態は、熱交換器HXにより千差万別であるから、具体的にはここでは、説明しないが、熱交換器HX形態により具体的に侵入を防止するように形成するのは当然である。
(3) Relationship between the shape and size of the carrier C and the opening O and the heat exchange surface S in the frost growth phenomenon The relationship between the shape and size of the carrier C and the opening O and the heat exchange surface S is shown in FIGS. I will explain it. The carrier C in frost growth in an atmosphere of 0 ° C. or lower and −40 ° C. or higher may have such a size that condensed water droplets are deposited to form a supercooled water droplet P3 group, and the cross-sectional shape is arbitrary. It is preferable that the opening O closes the opening O when the frost layer grown on the carrier C is in the growth stage.
An image in which the opening O between the carriers C is blocked by the frost growth on the carriers C at both ends may be used. The depth of the carrier C is arbitrary, and it is important that the space between the carrier C and the heat exchange surface S is open. If the carrier C is installed on the heat exchange surface S, the heat exchange is performed. Since the area of the surface S where sensible heat is exchanged is reduced, it is important to separate the latent heat exchange and the sensible heat exchange when separated by the carrier C.
Although the space between the heat exchange surface S and the carrier C has been described as a problem of water vapor passing through the opening O, it is assumed that water vapor does not enter from the left and right sides of the illustrated space. Since the form of the heat exchange surface S varies depending on the heat exchanger HX, it is not specifically described here, but it is specifically formed to prevent intrusion by the heat exchanger HX form. Is natural.

具体的な担体C形状の断面の例を図6A・B・Cに示す。担体Cの断面は任意であり、図6A・B・Cに示すようにどんな形状でもよい。平面状担体Cに開口Oをあけた構成であるから、それには、機械的な切削や、放電加工やサンドブラスト、エッチングなどの方法により開口Oを形成してもよいし、プレス加工によってもよい。方法を特定するものではない。また、金網などのワイヤーメッシュ状のものや、パンチングメタルやメタルラス(エキスパンドメタル)などを利用してもよい。 Specific examples of the cross-section of the carrier C shape are shown in FIGS. The cross section of the carrier C is arbitrary, and may have any shape as shown in FIGS. Since the opening O is formed in the planar carrier C, the opening O may be formed by a method such as mechanical cutting, electric discharge machining, sandblasting, etching, or press working. It does not specify a method. Moreover, you may utilize wire mesh-shaped things, such as a wire mesh, a punching metal, a metal lath (expanded metal), etc.

具体的なサイズについて、担体Cの幅Wは100μm以上2000μm以下、開口Oの幅Lは100μm以上1000μm以下。担体Cの表面から熱交換面Sまでの深さは、100μm以上とする。また、平面的な配列である必要はなく、図7Aに示すように、不織布状の担体Cでもよい。この不織布状によれば、熱交換面Sに隙間を空けることなく設置しても機能的には問題なく作用する点で有利である。さらに、図7Bのように境界層の外まで設置するような構成では、境界層外の担体C部分は、伝熱促進体として機能するようにすることもできる。 Regarding specific sizes, the width W of the carrier C is 100 μm or more and 2000 μm or less, and the width L of the opening O is 100 μm or more and 1000 μm or less. The depth from the surface of the carrier C to the heat exchange surface S is 100 μm or more. Further, it is not necessary to have a planar arrangement, and a non-woven carrier C may be used as shown in FIG. 7A. This non-woven fabric is advantageous in that even if it is installed on the heat exchange surface S without leaving a gap, it will function without problems in terms of functionality. Further, in the configuration in which the outside of the boundary layer is installed as shown in FIG. 7B, the carrier C portion outside the boundary layer may function as a heat transfer promoting body.

(4)担体C面の成長した霜の処理について
凝縮や昇華による担体Cでの除湿により、熱交換面Sの凝縮や昇華を抑制することが基本的なことであるが、もう一つ重要なのは、0℃以下の現象での担体C面へ成長した霜の処理である。霜は経時的には、厚く成長して熱抵抗層になり、その成長が減少してくるし、空気の通過を阻害するようになり熱交換不良が発生してくるので、現象の持続のためには、霜の処理が必要である。霜の処理は、「熱交換面Sの保全」「利霜」「潜熱・顕熱交換の分離」それぞれにおいて、処理が異なる。
「熱交換面Sの保全」や「潜熱・顕熱交換の分離」では、それぞれ目的が熱交換面S、熱交換面Sと担体C面での熱交換にあり、霜の処理については目的外である。
したがって、どんな処理をしても問題ないので、その方法は多岐にわたる。
即ち、従来からの方法であるデフロスト方法(ホットガス、散水、オフサイクル、電気ヒータ、ブライン散布など)でもよい。新しい考えである、ジェット噴流利用のエアーノズルや、機械的な処理であるブラシによる処理などでも良いものと考える。また、担体Cを振動させてもよい。
(4) About treatment of frost grown on the carrier C surface It is fundamental to suppress condensation and sublimation of the heat exchange surface S by dehumidification of the carrier C by condensation and sublimation, but another important thing is This is a treatment of frost grown on the surface of the carrier C due to a phenomenon of 0 ° C. or lower. Over time, frost grows thick and becomes a heat resistance layer, and its growth decreases, and it inhibits the passage of air and causes poor heat exchange. Need frost treatment. The frost treatment is different in each of “maintenance of heat exchange surface S”, “frosting”, and “separation of latent heat / sensible heat exchange”.
In “Maintenance of heat exchange surface S” and “Separation of latent heat and sensible heat exchange”, the purpose is heat exchange surface S, heat exchange on heat exchange surface S and carrier C surface, respectively, and frost treatment is not the purpose It is.
Therefore, there is no problem in any processing, and the method is diverse.
That is, a conventional defrosting method (hot gas, watering, off-cycle, electric heater, brine spraying, etc.) may be used. It is possible to use a new idea such as an air nozzle using a jet jet or a mechanical treatment with a brush. Further, the carrier C may be vibrated.

「利霜」の目的の場合には、霜を蓄熱体というとらえ方になるので、二次的な利用を図る必要がある。そのため、経時的に担体C面に増えた着霜物を新しい霜の付いていない担体Cと経時的に交換し、着霜物の付着した担体Cは、所定利用もしくは処理場所に移動して、物理的な剥離方法であるジェット噴流や振動、機械的な剥離であるブラシなどによる剥離を行い、利用方法に供する。また、蓄熱体としての利用を考えたときには、その利用方法によっては、そのまま担体Cごと利用してもよい。   In the case of the purpose of “frosting”, since frost is regarded as a heat storage body, it is necessary to make secondary use. Therefore, the frost that has increased on the surface of the carrier C over time is replaced with a carrier C that does not have new frost over time, and the carrier C to which the frost has adhered is moved to a predetermined use or processing place, Peeling with a jet jet or vibration, which is a physical peeling method, or a brush, which is mechanical peeling, is used for use. When considering use as a heat storage body, the carrier C may be used as it is depending on the method of use.

「潜熱・顕熱交換の分離」で潜熱交換などを高効率で持続させたい場合には、担体C面の着霜成長により霜の処理を高効率で行う必要があるので、その場合には、担体Cを交換してもよい。 If you want to maintain high-efficiency latent heat exchange with `` separation of latent heat and sensible heat exchange '', it is necessary to perform frost treatment with high efficiency by frost growth on the carrier C surface. The carrier C may be exchanged.

以下に、第2実施形態を図8を参照しながら、説明する。本実施形態との特徴は、結露現象における担体Cと熱交換面Sとの関係について、特定した点にある。
0℃以上での結露現象について、その担体Cと熱交換面Sとの関係に関し、熱交換面Sは基本的には縦面である。凝縮液滴P1が重力落下するように作用するためには、この条件が必要である。図8に示すように、重力落下する場合の現象と担体Cとの関係について、一般的に熱交換面Sの凝縮現象の問題は、その凝縮液滴P1の表面張力により、熱交換面Sに水膜を形成することによる熱交換面Sの伝熱の低下である。それを、本発明では熱交換面Sの境界層内に担体Cを設置することにより、担体C面で凝縮液滴P1を処理し、担体C面を重力落下していくことにより、熱交換面Sでは、液膜のない良好は熱交換が持続的に発現できる。担体C面での凝縮現象による潜熱交換も加味されているので、熱交換面Sだけでの熱交換よりも、高効率な熱交換現象となる。なお、担体Cの表面処理として撥水加工などをすると、滴状凝縮現象がおこり、より凝縮の熱伝達が向上することができるし、液滴も水滴径が小さい状態で重力落下するようになるので、良好な凝縮現象が発現できる。また、開口Oを液滴が塞ぐこともなくなる。
Below, 2nd Embodiment is described, referring FIG. The feature of this embodiment is that the relationship between the carrier C and the heat exchange surface S in the dew condensation phenomenon is specified.
Regarding the dew condensation phenomenon at 0 ° C. or higher, regarding the relationship between the carrier C and the heat exchange surface S, the heat exchange surface S is basically a vertical surface. This condition is necessary for the condensed droplet P1 to act so as to drop by gravity. As shown in FIG. 8, regarding the relationship between the phenomenon of gravity drop and the carrier C, the problem of the condensation phenomenon of the heat exchange surface S is generally caused by the surface tension of the condensed droplet P1 on the heat exchange surface S. This is a decrease in heat transfer on the heat exchange surface S due to the formation of a water film. In the present invention, by installing the carrier C in the boundary layer of the heat exchange surface S, the condensed liquid droplet P1 is processed on the surface of the carrier C, and the carrier C surface is dropped by gravity, whereby the heat exchange surface. With S, good heat exchange can be sustained without any liquid film. Since the latent heat exchange due to the condensation phenomenon on the surface of the carrier C is also taken into account, the heat exchange phenomenon is more efficient than the heat exchange only on the heat exchange surface S. In addition, when water repellent treatment or the like is performed as the surface treatment of the carrier C, a droplet condensation phenomenon occurs, heat transfer of condensation can be further improved, and droplets also drop by gravity with a small droplet diameter. Therefore, a good condensation phenomenon can be expressed. Further, the liquid droplet does not block the opening O.

担体Cの幅W、開口Oの幅L、深さの関係について、第1実施形態の着霜現象と異なり、開口O部分が閉塞するような二次的な成長が期待できないので、水蒸気が開口Oを通って熱交換面Sに到達しやすいので、本来は、開口Oサイズは着霜よりも小さくする必要があると推察される。なお、担体C表面で凝縮により雰囲気の水蒸気を減じているので、開口Oを通過したあとの熱交換面Sとの空間での雰囲気の水蒸気は減少し、積極的に熱交換面Sで結露するようなことは無くなると予想される。
Unlike the frosting phenomenon of the first embodiment, since the secondary growth in which the opening O portion is blocked cannot be expected, the relationship between the width W of the carrier C, the width L of the opening O, and the depth cannot be expected. Since it is easy to reach the heat exchange surface S through O, it is presumed that the size of the opening O needs to be smaller than frost formation. In addition, since the water vapor in the atmosphere is reduced by condensation on the surface of the carrier C, the water vapor in the atmosphere in the space with the heat exchange surface S after passing through the opening O is reduced, and positive condensation is generated on the heat exchange surface S. This is expected to disappear.

本発明者らは、熱交換面S上に霜結晶P4が付着しない現象を実現することを目的として、境界層内に微小物体を設置し、境界層内で発生する凝縮および凝固を利用して、境界層内で霜結晶P4を成長させ、これを制御する霜結晶P4の抑制技術を関する実験を行い、本発明の有効性を確認した。
(1) 実験装置および方法
本研究では、温度境界層BL内に金網を設置し、 金網上で霜結晶P4を成長させ、熱交換面S表面上での着霜の抑制に関する検討を行った。
実験小屋および実験小室内の空気の温・湿度を一定に保つための恒温恒湿系統装置、測定系統装置、観察系統装置および伝熱部によって形成した。実験小室内は空調機、加湿機、除湿機、ヒーターによって温・湿度を制御し、実験小室に設置したアスマン通風乾湿球湿度計によって温・湿度を測定した。
For the purpose of realizing the phenomenon that the frost crystals P4 do not adhere on the heat exchange surface S, the present inventors have installed a micro object in the boundary layer, utilizing the condensation and solidification generated in the boundary layer. In addition, an experiment relating to a technology for suppressing the frost crystal P4 that controls the growth of the frost crystal P4 in the boundary layer was conducted, and the effectiveness of the present invention was confirmed.
(1) Experimental apparatus and method
In this study, a wire mesh was installed in the temperature boundary layer BL, and frost crystals P4 were grown on the wire mesh to investigate the suppression of frost formation on the heat exchange surface S surface.
It was formed by a constant temperature and humidity system device, a measurement system device, an observation system device, and a heat transfer unit for keeping the temperature and humidity of the air in the experimental cabin and the experimental room constant. The temperature and humidity of the experimental room were controlled by an air conditioner, humidifier, dehumidifier, and heater, and the temperature and humidity were measured by an Asman ventilated wet and dry bulb hygrometer installed in the experimental room.

(1−1)霜結晶P4の観察
本研究で使用した金網の写真および3D 画像を図9、図10に示した。金網は、100 メッシュの平織りで、線径が100μm、 目開きが150μm であり、 材質はSUS304 である。熱交換面Sは鏡面に研磨した無酸素銅製熱交換面S(静置液滴の接触角θ = 62° )であり、 熱交換面S上に図10に示した金網を載せて固定した。さらに、熱交換面Sと金網の間に空間を設け、境界層内に微小物体が設置されている条件とした。霜結晶P4生成・成長の観察は、デジタルマイクロスコープを用いて金網側および熱交換面S側にそれぞれ焦点を合わせて画像を取り込み、解析ソフトを用いて画像処理を行った。実験条件は、熱交換面S温度tw = -25°C、熱交換面S姿勢Θ = 0°(水平上向き)である。
(1―2) 熱流束
着霜現象は熱交換面S上に付着する霜層が時間的に変化するため非定常である。本研究では、熱交換面S温度が時間的に変化する条件で実験を行った。熱交換面Sは無酸素銅製であり、熱交換面Sが昇温する際の温度履歴を測定して、集中熱定数系近似によって熱流束qf [W/m2]を求めた。
図11に伝熱部の概略を示した。伝熱部は鏡面に研磨した横40 mm×縦18 mm、厚さ10 mm の無酸素銅製板を5 枚並べた。伝熱板の側面および裏面は、布入りベークライトを用いて断熱した。熱交換面裏側は、断熱材としてイソウール(熱伝導率k = 0.07W/(m・K)、400℃)を用いた。また、ベークライトから伝熱部への熱移動を極力小さくするために、測定部の上下、側面に無酸素銅板を埋め込んだ。伝熱部を所定の初期温度まで冷却する際には、伝熱部をポリエチレンシートで覆い、実験開始時まで着霜が起こらないようにした。実験はデュワー瓶に入れた冷却用エタノールを液体窒素で任意の温度に調節し、そこに、浸漬して所定の温度に冷却した。熱交換面S表面温度を10分間一定に保持した後、実験小室に鉛直に取り付けることによって実験を開始した。本研究で熱流束を評価する場合、熱損失を考慮する必要があるが、熱損失は伝熱部を断熱材で作成したカバーで覆った状態で実験を行い、実験条件ごとに測定を行った。
実験条件は、湿り空気温度ta = -25℃、熱交換面S初期温度two = -40℃、熱交換面S表面のぬれ性θ = 62°、前縁からの距離y = 41、61、81、101mmである。
(1-1) Observation of frost crystal P4
The photographs and 3D images of the wire mesh used in this study are shown in FIGS. The wire mesh is a 100 mesh plain weave with a wire diameter of 100 μm, an opening of 150 μm, and the material is SUS304. The heat exchange surface S is a heat exchange surface S made of oxygen-free copper polished on a mirror surface (contact angle θ of stationary droplet = 62 °), and the metal mesh shown in FIG. Furthermore, a space was provided between the heat exchange surface S and the wire mesh, and the condition was set such that a minute object was installed in the boundary layer. The observation of frost crystal P4 generation / growth was performed by using a digital microscope to capture images on the wire mesh side and the heat exchange surface S side, and to perform image processing using analysis software. The experimental conditions are the heat exchange surface S temperature tw = −25 ° C. and the heat exchange surface S orientation Θ = 0 ° (horizontal upward).
(1-2) Heat flux
The frosting phenomenon is unsteady because the frost layer adhering to the heat exchange surface S changes with time. In this study, the experiment was performed under the condition that the S temperature of the heat exchange surface changes with time. The heat exchange surface S is made of oxygen-free copper. The temperature history when the temperature of the heat exchange surface S rises was measured, and the heat flux qf [W / m2] was obtained by the concentrated heat constant system approximation.
FIG. 11 shows an outline of the heat transfer section. The heat transfer section was composed of five anoxic copper plates polished 40 mm wide x 18 mm long and 10 mm thick polished on a mirror surface. The side surface and the back surface of the heat transfer plate were insulated using a bakelite with cloth. Isowool (thermal conductivity k = 0.07 W / (m · K), 400 ° C.) was used as the heat insulating material on the back side of the heat exchange surface. In order to minimize the heat transfer from the bakelite to the heat transfer section, oxygen-free copper plates were embedded on the top and bottom and side surfaces of the measurement section. When cooling the heat transfer portion to a predetermined initial temperature, the heat transfer portion was covered with a polyethylene sheet so that frost formation did not occur until the start of the experiment. In the experiment, ethanol for cooling contained in a Dewar bottle was adjusted to an arbitrary temperature with liquid nitrogen, and was immersed in the ethanol to be cooled to a predetermined temperature. After maintaining the surface temperature of the heat exchange surface S constant for 10 minutes, the experiment was started by attaching it vertically to the experimental chamber. When evaluating the heat flux in this study, it is necessary to consider heat loss, but the heat loss was measured with the heat transfer part covered with a cover made of heat insulating material and measured for each experimental condition. .
Experimental conditions are humid air temperature ta = -25 ° C, heat exchange surface S initial temperature two = -40 ° C, heat exchange surface S surface wettability θ = 62 °, distance from leading edge y = 41, 61, 81 101mm.

(2) 実験結果および考察
(2―1)霜結晶P4の生成・成長機構
本発明者らは、過冷却水滴P3の寸法に着目し、数百ミクロンの微細な凹凸面を人工的に熱交換面S表面に付与することによって熱交換面S表面性状を変化させ、(熱交換面S表面の一部ではあるが、)熱交換面S表面上に霜結晶P4を成長させないことに成功した。現在、霜結晶P4が付着しない領域は熱交換面S表面全体の75%に達している。冷却却面表面に格子状の微細な溝加工を施した場合の霜結晶P4の生成・成長過程を観察した結果の代表例を図12に示した。
格子状の溝加工を施した場合、凸部は正方形であるが、実験開始後、凸部表面に過冷却水滴P3が発生し、過冷却水滴P3同士が合体して大きくなる。合体を繰り返した過冷却水滴P3は、正方形の凸部表面に1個となり、過冷却解消後、丘状の氷となった。実験開始15分後までは過冷却状態であり、中央部に照明の白い輪が確認できる。次に、丘状の氷から複数の霜結晶P4が発生した。なお、霜結晶P4が成長する際にも、溝部分には霜結晶P4が確認できなかった。
以上の観察結果に基づき、境界層内で霜結晶P4を成長させることを検討した。まず、境界層内に設置する微小物体として、図12の凸部と同程度の寸法である金網を選定し、これを熱交換面S上に設置した。図10に示した金網を平滑な熱交換面S上に載せた場合の霜結晶P4生成時の観察結果を図13に示した。なお、観察は熱交換面S表面上方から行った。観察の結果、まず、熱交換面S表面および金網表面上に過冷却水滴P3が生成し、過冷却解消後、金網側は丘状の氷から複数の霜結晶P4が発生することを確認した。一方、熱交換面S表面側は霜結晶P4を確認することはできなかった。また、金網を熱交換面Sから取り外すと、金網に付着している霜はすぐに融解した。また、金網と接触していた熱交換面S上での霜結晶P4の成長を確認することはできなかった。図14に霜結晶P4の生成・成長機構のスケッチ図を示した。霜結晶P4は金網の凸部が最も結晶の成長速度が早く、熱交換面S表面上には過冷却解消後、球状の氷が付着するが、この寸法は150μm 以下と微小であり、霜結晶P4が成長することは無かった。
(2) Experimental results and discussion
(2-1) Formation and growth mechanism of frost crystal P4
The inventors pay attention to the size of the supercooled water droplet P3 and change the surface property of the heat exchange surface S by artificially imparting a minute uneven surface of several hundred microns to the surface of the heat exchange surface S (heat We succeeded in preventing frost crystals P4 from growing on the heat exchange surface S surface (although part of the exchange surface S surface). At present, the region where the frost crystals P4 do not adhere reaches 75% of the entire surface of the heat exchange surface S. A representative example of the result of observing the generation / growth process of the frost crystal P4 when the lattice-shaped fine grooves are formed on the cooling rejection surface is shown in FIG.
When the grid-like groove processing is performed, the convex portion is square, but after the start of the experiment, supercooled water droplets P3 are generated on the surface of the convex portion, and the supercooled water droplets P3 coalesce and become larger. The supercooled water droplet P3 which repeated the coalescence became one on the surface of the square convex part, and became hill-shaped ice after the supercooling was eliminated. Up to 15 minutes after the start of the experiment, it is in a supercooled state, and a white ring of illumination can be confirmed in the center. Next, a plurality of frost crystals P4 were generated from the hill-shaped ice. Even when the frost crystal P4 grew, the frost crystal P4 could not be confirmed in the groove portion.
Based on the above observation results, we studied the growth of frost crystals P4 in the boundary layer. First, as a minute object to be installed in the boundary layer, a wire mesh having the same size as the convex portion in FIG. 12 was selected, and this was installed on the heat exchange surface S. FIG. 13 shows the observation result when the frost crystal P4 is generated when the wire mesh shown in FIG. 10 is placed on the smooth heat exchange surface S. Note that the observation was performed from above the surface of the heat exchange surface S. As a result of observation, first, it was confirmed that supercooled water droplets P3 were generated on the surface of the heat exchange surface S and the surface of the wire mesh, and after the supercooling was eliminated, a plurality of frost crystals P4 were generated from the hill-shaped ice on the wire mesh side. On the other hand, frost crystals P4 could not be confirmed on the heat exchange surface S surface side. Further, when the wire mesh was removed from the heat exchange surface S, the frost adhering to the wire mesh immediately melted. Further, the growth of frost crystals P4 on the heat exchange surface S that had been in contact with the wire mesh could not be confirmed. FIG. 14 shows a sketch diagram of the frost crystal P4 generation / growth mechanism. In the frost crystal P4, the convex part of the wire mesh has the fastest crystal growth rate, and after the supercooling is eliminated, spherical ice adheres to the surface of the heat exchange surface S, but this dimension is as small as 150 μm or less, and the frost crystal P4 never grew.

次に、図13の観察で使用した金網と熱交換面S表面との間に空間を設け、実験を行った。側面からの観察結果を図15、観察結果に基づいて作成したスケッチ図を図16にそれぞれ示した。これらの図に示したように、霜結晶P4は金網面上から生成・成長し、熱交換面S上には霜結晶P4が生成・成長しないことが確認できた。
以上の結果から、本研究で提案する霜結晶P4の生成・成長機構を制御する方法の有効性が確認できたと考える。さらに、金網を取り去った時点で、熱交換面S表面に霜層が成長していなかったことから、熱交換面S表面への着霜を防止することも実現できたと考える。
Next, an experiment was conducted by providing a space between the wire mesh used in the observation of FIG. 13 and the heat exchange surface S surface. FIG. 15 shows the observation results from the side, and FIG. 16 shows the sketches created based on the observation results. As shown in these figures, it was confirmed that the frost crystals P4 were generated and grown from the wire mesh surface, and the frost crystals P4 were not generated and grown on the heat exchange surface S.
From the above results, we believe that the effectiveness of the proposed method for controlling the formation and growth mechanism of frost crystals P4 was confirmed. Furthermore, since the frost layer did not grow on the surface of the heat exchange surface S when the wire mesh was removed, it is considered that frost formation on the surface of the heat exchange surface S could be prevented.

(2―2)着霜を伴う熱移動
境界層内に金網を設置した場合と設置していない(平滑面)場合の実験を行い、実験結果の比較検討を行った。熱流束と熱交換面S温度の関係を図17に示した。なお、金網を取り付けた場合の熱交換面S温度は金網の表面温度ではなく、無酸素銅製伝熱部の表面温度とした。図から明らかなように、いずれの場合においても熱流束に顕著な変化はないことから、金網が熱流束に及ぼす影響は少ないことが確認できた。
図18に霜層表面位置を基準とした温度境界層BL内の温度分布を示した。なお、霜層表面は霜層厚さの測定位置とした。霜結晶P4が付着する熱交換面Sは水平上向きである。熱交換面Sは横50mm×縦50mm の無酸素銅製角柱の端面であり、表面に厚さ1mm の銅板をエポシキ製接着剤により付加して熱交換面S表面とした。熱交換面S表面温度は、 この銅板の裏側にCA 熱電対(素線形100μm)を接着し、温度を測定した。 霜層表面温度は熱電対測定した。熱電対は断熱効果のあるベークライト製の支持部に弓形に張り、金属製の支持棒を介して熱交換面Sに対して水平および垂直方向に移動可能なトラバース装置に取り付けた。測定はデジタル顕微鏡を用いて境界層内の温度を測定しながら、霜層厚さの測定位置における湿り空気部の温度を霜層表面温度と定義して測定した。伝熱部は側面を発泡ウレタンおよびシリコン系接着剤で断熱されており、この伝熱部本体をダンプラー製の実験小室内に設置した。金網を取り付けた場合も霜層表面温度は0 ℃よりも低い温度であり、霜結晶P4が成長できることが確認できた。
(2-2) Heat transfer with frost formation
Experiments were conducted with and without a wire mesh in the boundary layer (smooth surface), and the results were compared. The relationship between the heat flux and the heat exchange surface S temperature is shown in FIG. Note that the heat exchange surface S temperature when the wire mesh was attached was not the surface temperature of the wire mesh but the surface temperature of the oxygen-free copper heat transfer section. As is clear from the figure, since there was no significant change in the heat flux in any case, it was confirmed that the influence of the wire mesh on the heat flux was small.
FIG. 18 shows the temperature distribution in the temperature boundary layer BL with the frost layer surface position as a reference. In addition, the frost layer surface was made into the measurement position of frost layer thickness. The heat exchange surface S to which the frost crystals P4 adhere is horizontally upward. The heat exchange surface S is the end face of an oxygen-free copper prism with a width of 50 mm and a height of 50 mm, and a 1 mm thick copper plate was added to the surface with an Epoxy adhesive to make the surface of the heat exchange surface S. The surface temperature of the heat exchange surface S was measured by bonding a CA thermocouple (elementary linear 100 μm) to the back side of the copper plate. The frost layer surface temperature was measured by a thermocouple. The thermocouple was attached to a traverse apparatus that was movable in a horizontal and vertical direction with respect to the heat exchanging surface S via a metal support bar, attached to a support portion made of bakelite having a heat insulation effect. The measurement was performed by measuring the temperature in the boundary layer using a digital microscope while defining the temperature of the humid air portion at the measurement position of the frost layer thickness as the frost layer surface temperature. The side of the heat transfer unit is insulated with urethane foam and silicon adhesive, and the heat transfer unit main body was installed in an experimental chamber made by Dumpler. Even when a metal mesh was attached, the surface temperature of the frost layer was lower than 0 ° C., and it was confirmed that frost crystals P4 could grow.

以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。
たとえば、本実施形態において、熱交換面の温度に応じて定まる温度境界層BL内に平面状担体Cやメッシュ状担体Cを配置することにより、温度境界層BL内で除湿する場合として説明したが、それに限定されることなく、温度境界層BL内で除湿する限り、平面状担体Cやメッシュ状担体Cを配置しなくてもよい。
たとえば、本実施形態において、熱交換面の温度に応じて定まる温度境界層BL内にメッシュ状担体Cを配置することにより、メッシュ状担体Cの表面上で着霜させ、着霜した霜を成長させたうえで、担体Cを交換する場合として説明したが、それに限定されることなく、他の物理的な着霜成長できるものを配置することにより、熱交換面上での着霜あるいは結露が防止可能であればよい。
The embodiments of the present invention have been described in detail above, but various modifications or changes can be made by those skilled in the art without departing from the scope of the present invention.
For example, in the present embodiment, a case has been described in which dehumidification is performed in the temperature boundary layer BL by disposing the planar carrier C and the mesh carrier C in the temperature boundary layer BL determined according to the temperature of the heat exchange surface. Without being limited thereto, the planar carrier C and the mesh-like carrier C may not be disposed as long as dehumidification is performed in the temperature boundary layer BL.
For example, in the present embodiment, by arranging the mesh carrier C in the temperature boundary layer BL determined according to the temperature of the heat exchange surface, the mesh carrier C is frosted on the surface of the mesh carrier C, and the frost formed is grown. In addition, the case where the carrier C is replaced has been described. However, the present invention is not limited to this, and by placing another material that can grow frost on the surface, frost formation or condensation on the heat exchange surface can be achieved. It only needs to be preventable.

本発明の第1実施形態に係る概略側面図である。1 is a schematic side view according to a first embodiment of the present invention. 本発明の第1実施形態について、担体C上への着霜状況に応じた温度分布を示す模式図である。It is a schematic diagram which shows temperature distribution according to the frosting condition on the support | carrier C about 1st Embodiment of this invention. 水飽和線および氷飽和線を用いて、着霜現象および凝縮現象の発現を示す概念グラフである。It is a conceptual graph which shows the expression of a frost phenomenon and a condensation phenomenon using a water saturation line and an ice saturation line. 本発明の第1実施形態について、担体C上への着霜状況を示す模式図である。It is a schematic diagram which shows the frost formation condition on the support | carrier C about 1st Embodiment of this invention. 本発明の第1実施形態に対する担体Cの変形例を示す模式図である。It is a schematic diagram which shows the modification of the support | carrier C with respect to 1st Embodiment of this invention. 本発明の第1実施形態に対する担体Cの変形例を示す模式図である。It is a schematic diagram which shows the modification of the support | carrier C with respect to 1st Embodiment of this invention. 本発明の第1実施形態に対する担体Cのさらなる変形例を示す模式図である。It is a schematic diagram which shows the further modification of the support | carrier C with respect to 1st Embodiment of this invention. 本発明の第1実施形態に対する担体Cのさらなる変形例を示す模式図である。It is a schematic diagram which shows the further modification of the support | carrier C with respect to 1st Embodiment of this invention. 本発明の第1実施形態に対する担体Cのさらなる変形例を示す模式図である。It is a schematic diagram which shows the further modification of the support | carrier C with respect to 1st Embodiment of this invention. 本発明の第1実施形態に対する担体Cのなおさらなる変形例を示す模式図である。FIG. 6 is a schematic diagram showing still another modification example of the carrier C with respect to the first embodiment of the present invention. 本発明の第1実施形態に対する担体Cのなおさらなる変形例を示す模式図である。FIG. 6 is a schematic diagram showing still another modification example of the carrier C with respect to the first embodiment of the present invention. 本発明の第2実施形態に係る担体C表面での凝縮現象と熱交換面Sとを示す概念図である。It is a conceptual diagram which shows the condensation phenomenon and the heat exchange surface S on the surface of the support | carrier C which concern on 2nd Embodiment of this invention. 本発明の実施例における金網の平面写真である。It is a plane photograph of the wire mesh in the Example of this invention. 本発明の実施例における金網のコンピューター3D画像である。It is a computer 3D image of the wire mesh in the Example of this invention. 本発明の実施例における金網を示す平面図および側面図である。It is the top view and side view which show the wire mesh in the Example of this invention. 本発明の実施例において、熱交換面S表面に溝加工をした場合の霜結晶P4の生成成長過程を示す図である。In the Example of this invention, it is a figure which shows the production | generation growth process of the frost crystal | crystallization P4 at the time of carrying out a groove process on the heat exchange surface S surface. 本発明の実施例において、図9の金網を熱交換面S上に載置した場合の霜結晶P4の生成時の観察結果を示す図である。In the Example of this invention, it is a figure which shows the observation result at the time of the production | generation of the frost crystal | crystallization P4 at the time of mounting the wire mesh of FIG. 9 on the heat exchange surface S. 図13における霜結晶P4の生成および成長機構のスケッチ図である。It is a sketch figure of the production | generation and growth mechanism of the frost crystal | crystallization P4 in FIG. 本発明の実施例において、図9の金網と熱交換面Sとの間に間隔を設けた場合の霜結晶P4の生成時の観察結果を側面から示す図である。In the Example of this invention, it is a figure which shows the observation result at the time of the production | generation of the frost crystal | crystallization P4 at the time of providing a space | interval between the metal-mesh of FIG. 9, and the heat exchange surface S from a side surface. 図15における霜結晶P4の生成および成長機構のスケッチ図である。It is a sketch figure of the production | generation and growth mechanism of the frost crystal | crystallization P4 in FIG. 本発明の実施例において、境界層内に金網を設置した場合と、設置しない場合とにおいて、熱流束と熱交換面S温度の関係を示すグラフである。In the Example of this invention, it is a graph which shows the relationship between a heat flux and the heat exchange surface S temperature when the metal mesh is installed in the boundary layer and when it is not installed. 本発明の実施例において、霜層表面位置を基準とした温度境界層BL内の温度分布を示すグラフである。In the Example of this invention, it is a graph which shows the temperature distribution in the temperature boundary layer BL on the basis of the frost layer surface position.

HX 熱交換器
C 担体
S 熱交換面
O 開口
N 伝熱促進体
BL 温度境界層
Tc 冷媒温度
Tin 熱交換器の内表面側温度
Tout 熱交換器の外表面側温度
Tair 湿り空気温度
Tm 主気流温度
W メッシュ幅
L 開口幅
t 熱交換器の肉厚
Y 間隔
P1 凝縮液滴
P3 過冷却水滴
P4 霜
HX heat exchanger
C carrier
S Heat exchange surface
O opening
N Heat transfer accelerator
BL temperature boundary layer
Tc Refrigerant temperature
Tin inner surface temperature of heat exchanger
Tout Heat exchanger outer surface temperature
Tair humid air temperature
Tm Main air temperature
W mesh width
L opening width
t Heat exchanger wall thickness
Y interval
P1 condensed droplet
P3 Supercooled water droplets
P4 frost

Claims (11)

表面での着霜により塞がれる程度の大きさを備え、厚み方向に貫通する開口を有し、湿り空気より高い熱伝導率を有する担体であって、湿り空気に接する冷却用熱交換面に対して面対向配置することにより、前記担体の少なくとも一部が、冷却用熱交換面の温度および湿り空気による気流に応じて定まる温度境界層内に位置することが可能なように、前記冷却用熱交換面と該担体の前記冷却用熱交換面と対向する面との間の間隔が設定され、それにより、前記冷却用熱交換面に対向する面と反対側の担体表面が、変化成長した前記温度境界層内に配置された状態において、該担体表面に湿り空気中の水蒸気を凝縮もしくは昇華させることにより、湿り空気を除湿させ、それにより、冷却用熱交換面上での結露または着霜を抑制することを特徴とする担体。 A carrier having a size enough to be blocked by frost formation on the surface, having an opening penetrating in the thickness direction, and having a thermal conductivity higher than that of humid air, on a cooling heat exchange surface in contact with the humid air On the other hand, by arranging the surfaces facing each other , at least a part of the carrier can be positioned in a temperature boundary layer determined according to the temperature of the heat exchange surface for cooling and the air flow by the humid air . An interval between the heat exchange surface and the surface of the carrier facing the cooling heat exchange surface is set, whereby the surface of the carrier opposite to the surface opposed to the cooling heat exchange surface has changed and grown. In the state of being arranged in the temperature boundary layer, the wet air is dehumidified by condensing or sublimating water vapor in the humid air on the surface of the carrier, thereby dew condensation or frost formation on the heat exchange surface for cooling. It is characterized by suppressing Carrier that. 前記冷却用熱交換面と前記担体の前記冷却用熱交換面と対向する面との間にスぺ−スが形成されるように、前記担体が前記冷却用熱交換面に載置される、請求項1に記載の担体。 The carrier is placed on the cooling heat exchange surface such that a space is formed between the cooling heat exchange surface and a surface of the carrier facing the cooling heat exchange surface; The carrier according to claim 1. 前記担体は、平面状であり、定形もしくは不定形の断面をした、所定の幅と前開口を交互に配列する構成をもち、冷却用熱交換面からの所定の深さを有する平面状担体とする、請求項1または2に記載の担体。 The carrier is a planar and a fixed form or irregular cross-section, has the configuration of arranging alternately before Symbol opening and a predetermined width, a planar carrier having a predetermined depth from the cooling heat exchanger surface The carrier according to claim 1 or 2. 平面状担体は、メッシュ状であり、所定メッシュ開口幅、所定線材幅および厚みを有することを特徴とする、請求項3に記載の担体。 The carrier according to claim 3, wherein the planar carrier has a mesh shape and has a predetermined mesh opening width, a predetermined wire width and a thickness. 平面状担体のサイズは、担体の幅が100μm以上2000μm以下、前記開口の幅は100μm以上1000μm以下とし、担体の温度境界層側の表面から冷却用熱交換面までの深さは、100μm以上とすることを特徴とする、請求項4に記載の担体。 The size of the planar carrier is such that the width of the carrier is 100 μm or more and 2000 μm or less, the width of the opening is 100 μm or more and 1000 μm or less, and the depth from the surface on the temperature boundary layer side of the carrier to the heat exchange surface for cooling is 100 μm or more. The carrier according to claim 4, wherein: 前記担体は、定形もしくは不定形の断面をした所定長さの繊維を、不織布状に重ね合わせて、空隙をもった立体的な構成をなした立体状担体とする、請求項3に記載の担体。 4. The carrier according to claim 3, wherein the carrier is a three-dimensional carrier having a three-dimensional structure having voids by superposing fibers of a predetermined length having a regular or irregular cross section in a nonwoven fabric shape. . 前記立体状担体を、温度境界層外の主気流中にも一部を配置できるように厚くし、気流を境界層内の担体内に誘導することにより、冷却用熱交換面の伝熱促進させたことを特徴とする、請求項6に記載の担体。 The three-dimensional carrier is thickened so that a part of the three-dimensional carrier can be arranged in the main airflow outside the temperature boundary layer, and heat transfer is promoted on the heat exchange surface for cooling by guiding the airflow into the carrier inside the boundary layer. The carrier according to claim 6, wherein 前記平面状担体を冷却用熱交換面の熱流方向に区分けして複数層配置し、該複数層のうちの熱流方向上流側を温度境界層外の主気流中に配置し、熱流方向に隣接する平面状担体において、気流を境界層内の担体内に誘導するように、互いの前記開口が重なり合うように配置することにより、冷却用熱交換面の伝熱促進させたことを特徴とする、請求項3ないし7のいずれか1項に記載の担体。 The planar carrier is divided into a plurality of layers arranged in the heat flow direction of the cooling heat exchange surface, and the upstream side of the heat flow direction of the plurality of layers is arranged in the main airflow outside the temperature boundary layer, and is adjacent to the heat flow direction. In the planar carrier, heat transfer is promoted on the heat exchange surface for cooling by arranging the openings so as to overlap each other so as to guide the air flow into the carrier in the boundary layer. Item 8. The carrier according to any one of Items 3 to 7. 前記担体の表面に撥水性処理を施すことにより、担体の表面性状を変えて、担体面での水蒸気の昇華、凝縮にかかる除湿性能の向上と、液状における状態で前記開口を塞ぐことのないようにしたことを特徴とする、請求項3に記載の担体。 By applying a water repellency treatment to the surface of the carrier, the surface property of the carrier is changed, so that the dehumidification performance for water vapor sublimation and condensation on the carrier surface is improved and the opening is not blocked in a liquid state. The carrier according to claim 3, wherein 前記担体の表面に吸着性能を有する構成にすることにより、担体の表面性状を変えて、担体面での水蒸気の昇華、凝縮にかかる除湿性能を向上させたことを特徴とする、請求項3に記載の担体。 The structure according to claim 3, wherein the surface property of the carrier is changed to improve the dehumidifying performance related to sublimation and condensation of water vapor on the surface of the carrier by adopting a structure having adsorption performance on the surface of the carrier. The carrier described. 前記担体に高吸水性樹脂の繊維を利用し、担体の性状として吸水性、保水性、毛管吸水性などを高めたことにより、担体面での水蒸気の昇華、凝縮にかかる除湿性能を向上させたことを特徴とする、請求項3に記載の担体。 Utilizing high water-absorbent resin fibers for the carrier, and enhancing the water absorption, water retention, capillary water absorption, etc. as the properties of the carrier, the dehumidification performance for water vapor sublimation and condensation on the carrier surface has been improved. The carrier according to claim 3, wherein
JP2016145955A 2016-07-26 2016-07-26 Condensation or frost control carrier Expired - Fee Related JP6347558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016145955A JP6347558B2 (en) 2016-07-26 2016-07-26 Condensation or frost control carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145955A JP6347558B2 (en) 2016-07-26 2016-07-26 Condensation or frost control carrier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016098524A Division JP6022099B1 (en) 2016-05-17 2016-05-17 Condensation or frost control carrier and heat exchanger having the carrier

Publications (2)

Publication Number Publication Date
JP2016200388A JP2016200388A (en) 2016-12-01
JP6347558B2 true JP6347558B2 (en) 2018-06-27

Family

ID=57422852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145955A Expired - Fee Related JP6347558B2 (en) 2016-07-26 2016-07-26 Condensation or frost control carrier

Country Status (1)

Country Link
JP (1) JP6347558B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116878812B (en) * 2023-09-08 2023-11-17 中国空气动力研究与发展中心计算空气动力研究所 Round tube frosting experimental model and experimental method for observing frosting from axial direction

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2943460A (en) * 1955-07-05 1960-07-05 North American Aviation Inc Ice prevention in air conditioning systems
US3233424A (en) * 1964-08-14 1966-02-08 Dual Jet Refrigeration Company Frost collecting means for refrigerated structures
JPS5041159U (en) * 1973-08-10 1975-04-25
JPS5610673A (en) * 1979-07-03 1981-02-03 Hitoshi Karashima Refrigerated cold storage display case
JPS5612777U (en) * 1979-07-06 1981-02-03
JPS6375467A (en) * 1986-09-19 1988-04-05 三洋電機株式会社 Simple defroster
JPH08178572A (en) * 1994-12-27 1996-07-12 Daikin Ind Ltd Finned heat exchanger and manufacture
JP5940226B2 (en) * 2013-10-15 2016-06-29 株式会社Natomics Heat exchange surface maintenance method and humid air cooling method

Also Published As

Publication number Publication date
JP2016200388A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5940226B2 (en) Heat exchange surface maintenance method and humid air cooling method
Kim et al. Frosting characteristics on hydrophobic and superhydrophobic surfaces: A review
CA2554512C (en) Plate heat and mass exchanger with edge extension
JP5604295B2 (en) Structure and method for ambient air vaporizer
JP5989961B2 (en) Heat exchanger
WO2012147288A1 (en) Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate
JP2007532855A (en) Thermal mass exchange machine
JP6347558B2 (en) Condensation or frost control carrier
US10605546B2 (en) Heat exchanger
JP6022099B1 (en) Condensation or frost control carrier and heat exchanger having the carrier
JP2006342979A (en) Outdoor unit of air-cooled type cooling device
JP4899036B2 (en) Exhaust heat suppression device for air-cooled cooling system and air-cooled cooling system
JPH06317366A (en) Air cooler for refrigerator
JP2023516913A (en) ventilator
Dong et al. Experimental study on the characteristics of frost formation and defrosting water retention between vertical double surfaces with different wettability
Ahmadi et al. Condensation Frosting
Betz The Role of Droplet Dynamics in Condensation Frosting
JP4288795B2 (en) Ice heat storage device
JP2021092380A (en) Heat exchanger for exchanging heat with air and plate material to which droplet adheres
KR200474574Y1 (en) a frost prevention system for heat exchanger
JP2723558B2 (en) Heat exchanger
Yao et al. Spatial Control of Frost Formation on Surfaces with Millimetric Serrated Features
JPS5989965A (en) Evaporator with corrugated fin
JPS5918633B2 (en) heat exchange equipment
JPS6036555B2 (en) heat exchange equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180407

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6347558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees