JP2723558B2 - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2723558B2
JP2723558B2 JP63274885A JP27488588A JP2723558B2 JP 2723558 B2 JP2723558 B2 JP 2723558B2 JP 63274885 A JP63274885 A JP 63274885A JP 27488588 A JP27488588 A JP 27488588A JP 2723558 B2 JP2723558 B2 JP 2723558B2
Authority
JP
Japan
Prior art keywords
fin
water
heat exchanger
frost
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63274885A
Other languages
Japanese (ja)
Other versions
JPH02122198A (en
Inventor
善之 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP63274885A priority Critical patent/JP2723558B2/en
Publication of JPH02122198A publication Critical patent/JPH02122198A/en
Application granted granted Critical
Publication of JP2723558B2 publication Critical patent/JP2723558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調機器,冷凍冷蔵機器などの冷却システ
ムに使用される熱交換器に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used for a cooling system such as an air conditioner and a refrigerator.

従来の技術 近年、空調機器においては冷暖房機種いわゆるヒート
ポンプが年々増加し、暖房運転時の室外側熱交換器への
着霜が問題となってきている。又、冷凍冷蔵機器におい
ても同様の問題を抱えており、熱交換器そのものの着霜
対策が切望されている。
2. Description of the Related Art In recent years, the number of air conditioners in the form of heat pumps, so-called heat pumps, has been increasing year by year, and frost formation on the outdoor heat exchanger during heating operation has become a problem. In addition, freezers and refrigerators have similar problems, and there is an urgent need for measures against frost formation on the heat exchanger itself.

以下図面を参照しながら従来の熱交換器の一例につい
て説明する。第3図は、従来の熱交換器の一部側面断面
図を、第4図は正面断面図を示す。鉄,銅,アルミニウ
ム等金属薄板である板状フィン1に、伝熱管挿通孔を穿
設すると共にフィンカラー2を等間隔に立ち上げ、これ
に銅,アルミニウム等の金属管である伝熱管3を挿通
後、拡管等の手段により板状フィン1に密着固定してあ
る。伝熱管3内部に冷媒を流動させ、その熱を伝熱管3
に密着・固定されたフィンカラー2からフィン1に伝え
られる。一方、白抜き矢印4方向より気体を流動させフ
ィン1上を通過する際に気体と伝熱管3とフィン1との
温度差により熱の授受が行われ、この作用により冷媒と
気体との熱交換が連続的に行われるものである。
Hereinafter, an example of a conventional heat exchanger will be described with reference to the drawings. FIG. 3 is a partial side sectional view of a conventional heat exchanger, and FIG. 4 is a front sectional view. A heat transfer tube insertion hole is formed in a plate-like fin 1 which is a thin metal plate of iron, copper, aluminum or the like, and fin collars 2 are raised at equal intervals. After insertion, the fins 1 are tightly fixed to the plate-like fin 1 by means such as expansion. The refrigerant flows inside the heat transfer tube 3 and the heat is transferred to the heat transfer tube 3.
Is transmitted to the fin 1 from the fin collar 2 which is in close contact with and fixed to the fin 1. On the other hand, when the gas flows from the direction of the white arrow 4 and passes over the fins 1, heat is exchanged due to the temperature difference between the gas and the heat transfer tubes 3 and the fins 1. By this action, heat exchange between the refrigerant and the gas is performed. Are performed continuously.

発明が解決しようとする課題 上記作用の中で、ヒートポンプの暖房運転時の室外側
熱交換器を例に取れば、白抜き矢印4方向よりの流入気
体の温度が低い場合、熱交換器の内部を流動する冷媒の
蒸発温度が0℃以下となり、フィン表面や伝熱管周りの
フィンカラー部にまず凝縮水が発生する。フィン表面が
親水性の場合は、その凝縮水は膜状となり、早期に氷結
し、運転時間と共に着霜が進み、霜が成長するにつれ、
フィン間が目詰まりし、気体の流動抵抗となり、熱交換
器の通風抵抗を招き、ひいては空気と冷媒との熱交換を
妨げる。又、フィン表面が撥水性の場合は、その凝縮水
は液滴状となり、フィン表面温度がかなり低下しても液
滴の状態で、比較的長時間保持される。この液滴の密度
は、霜と比較し、数倍大きい。しかしこの液滴もやがて
は氷結し、その後、空気中の水分が霜として成長する。
この際、霜は氷結水上に集中して成長するため、氷結水
1ケ所当りの霜成長は大きく、霜高さ増加も著しく、フ
ィンの目詰まりに至る。従って、フィン表面が、親水
性,撥水性いずれの場合も、暖房運転を中断して逆サイ
クル等の手段により除霜運転を行なうべき回数は頻繁と
なる。
Problems to be Solved by the Invention In the above operation, taking the outdoor heat exchanger at the time of the heating operation of the heat pump as an example, if the temperature of the inflow gas from the white arrow 4 direction is low, the inside of the heat exchanger The condensed water is first generated on the fin surface and the fin collar around the heat transfer tube. When the fin surface is hydrophilic, the condensed water becomes a film, freezes early, and frost formation progresses with the operation time, and as the frost grows,
The space between the fins is clogged, resulting in gas flow resistance, causing draft resistance of the heat exchanger, and thus hindering heat exchange between air and the refrigerant. When the fin surface is water-repellent, the condensed water is in the form of droplets, and is kept in a droplet state for a relatively long time even if the fin surface temperature is considerably lowered. The density of this droplet is several times greater than that of frost. However, these droplets freeze in time, and then the moisture in the air grows as frost.
At this time, since the frost grows intensively on the icing water, the frost growth per icing water is large, the frost height increases remarkably, and the fins are clogged. Therefore, regardless of whether the fin surface is hydrophilic or water repellent, the number of times that the heating operation should be interrupted and the defrosting operation should be performed by means such as a reverse cycle is frequent.

すなわち、暖房能力の低下、暖房運転を中断すること
による不快感及びエネルギー効率が悪くなる等の問題点
があり、熱交換器への着霜を低減する必要がある。
That is, there are problems such as a decrease in the heating capacity, discomfort caused by interrupting the heating operation, and a decrease in energy efficiency, and it is necessary to reduce frost formation on the heat exchanger.

尚、ここで撥水性というのは、板状フィンの材料であ
る鉄,銅,アルミニウム等金属薄板の無処理表面のもつ
表面張力よりも高いものを言い、純水との接触角で表わ
すと50°以上である表面を言い、又親水性とは、純水と
の接触角50°未満である表面を言う。
Here, the term “water-repellent” refers to a material having a surface tension higher than the untreated surface of a thin metal plate such as iron, copper, or aluminum which is a material of the plate-like fin, and is expressed as a contact angle with pure water. ° or more, and hydrophilic means a surface with a contact angle with pure water of less than 50 °.

課題を解決するための手段 上記課題を解決するため、本発明は一定間隔で多数平
行に並べられ、その間を気流が流動する板状フィンと、
この板状フィンに直角に挿通された伝熱管とから成る熱
交換器において、撥水性で且つ微細凹凸を付与した表面
処理を施したフィン材を板状フィンとして用いるもので
ある。
Means for Solving the Problems In order to solve the above problems, the present invention is arranged in parallel at regular intervals, a plate-like fin through which the air flow flows,
In a heat exchanger including a heat transfer tube inserted at right angles to the plate-like fin, a fin material which has been subjected to a surface treatment which is water-repellent and has fine irregularities is used as the plate-like fin.

作用 フィン表面が撥水性である場合、フィン表面温度が0
℃以下となり、空気中の水分が付着する場合、表面温度
がかなり低い場合でもいきなり霜化せず、一旦凝縮水と
して付着し、滴状の液体水分として長時間保持される。
その後、水分が氷結し、その上に霜が付着し、着霜が進
む。このため、本発明の構成のように、板状フィンに撥
水性で且つ微細凹凸を付与した表面処理を施すことによ
り、その撥水性効果により集中する空気中の水分は、霜
と比較し密度が数倍大きい液体水分としてフィン表面に
付着するとともに微細凹凸が核となり、前記液体水分
は、細かく分散した形でフィン上に存在することにな
る。この水分もやがては氷結し、その後、集中してくる
空気中の水分は、氷結水上に霜として付着するものの、
それまでの間、隣接するフィン間の風路は大きく確保さ
れる。又、氷結水が分散しているため、その付着する霜
も分散し霜の高さ方向への成長は抑えられる。このこと
により、熱交換器としては、霜層によるフィン間の閉塞
を遅らせることができる。
When the fin surface is water repellent, the fin surface temperature is 0
° C or lower, and when moisture in the air adheres, even when the surface temperature is considerably low, it does not suddenly become frosted, but once adheres as condensed water, and is held as droplet-like liquid moisture for a long time.
Thereafter, the water freezes, and frost adheres thereon, and frost formation proceeds. For this reason, as in the configuration of the present invention, by performing a surface treatment that imparts water-repellent and fine irregularities to the plate-like fins, the moisture in the air that is concentrated due to its water-repellent effect has a density lower than that of frost. The liquid moisture adheres to the fin surface as liquid water several times larger, and the fine unevenness becomes a nucleus, and the liquid water exists on the fin in a finely dispersed form. This water eventually freezes, and then the water in the air that concentrates adheres to the frozen water as frost,
Until then, a large air path between adjacent fins is ensured. Further, since the frozen water is dispersed, the frost attached thereto is also dispersed, and the growth of the frost in the height direction is suppressed. Thereby, as a heat exchanger, blockage between the fins due to the frost layer can be delayed.

実施例 以下本発明の一実施例について図面を参照しながら説
明する。第1図は、本発明の一実施例の熱交換器の一部
側面断面図を、第2図は、正面断面図を示したものであ
る。第1図,第2図において、表面が撥水性で且つ微細
凹凸を付与した表面処理層6を設けたアルミニウム製板
状フィン5に、伝熱管挿通孔を穿設すると共に、フィン
カラー2を等間隔に立ち上げ、これに銅製伝熱管3を挿
通後、拡管等の手段により板状フィン5に密着固定し、
本体を構成してある。以下、その作用について説明す
る。伝熱管3内部に冷媒を流動させ、その熱を伝熱管に
密着固定されたフィンカラー2からフィン5上に伝えら
れ、熱交換器に気体を流動させフィン上を通過させて、
気体とフィン5と伝熱管3との温度差により熱の授受が
行われ、冷媒と気体との熱交換が連続的に行われる。熱
交換器に流入する空気は冷却されフィン表面上空気中の
水分が凝縮してくる。しかし、フィン表面が撥水性であ
るためフィン表面が0℃以下でも、フィン表面で氷結す
ることはなく、微細凹凸部7を核としてその周囲に液体
の水分の形で保持される。霜層に比較し、液体水分は密
度が数倍大きい。又、この水分が氷結後も、氷結水が分
散しているため、霜も分散し、霜層の高さ方向への成長
は抑えられる。従って熱交換器の霜による閉塞を大幅に
遅らすことができる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a partial side sectional view of a heat exchanger according to an embodiment of the present invention, and FIG. 2 is a front sectional view. 1 and 2, a heat transfer tube insertion hole is formed in an aluminum plate-like fin 5 provided with a surface treatment layer 6 having a water-repellent surface and fine irregularities. After being raised at intervals, the copper heat transfer tube 3 is inserted into the space, and then tightly fixed to the plate-like fin 5 by means such as expansion,
The main body is configured. Hereinafter, the operation will be described. The refrigerant is caused to flow inside the heat transfer tube 3, and the heat is transferred from the fin collar 2 tightly fixed to the heat transfer tube to the fins 5, causing the gas to flow through the heat exchanger and passing over the fins,
Exchange of heat is performed by the temperature difference between the gas, the fins 5, and the heat transfer tube 3, and heat exchange between the refrigerant and the gas is continuously performed. The air flowing into the heat exchanger is cooled and moisture in the air on the fin surface condenses. However, since the fin surface is water-repellent, even when the fin surface is 0 ° C. or lower, the fin surface does not freeze, and is held in the form of liquid moisture around the fine irregularities 7 as nuclei. Liquid moisture is several times as dense as frost layers. In addition, since the frozen water is dispersed even after the water is frozen, the frost is also dispersed, and the growth of the frost layer in the height direction is suppressed. Therefore, blockage of the heat exchanger due to frost can be greatly delayed.

尚、本実施例による撥水面としては純水接触角110°
の4フッ化エチレン樹脂塗料を用い、付与する微細凹凸
としては、プラズマエッチングを施すことにより実現し
た。
The water-repellent surface according to this embodiment has a pure water contact angle of 110 °.
The fine irregularities to be provided were realized by plasma etching using the tetrafluoroethylene resin paint.

撥水性表面処理材料としては、4フッ化エチレン及び
6フッ化プロピレンの共重合樹脂塗料,シリコン樹脂塗
料等の撥水性塗料,ステアリン酸,ラウリン酸等の脂肪
酸を表面に処理したもの等撥水性があれば何れも可能で
あり、微細凹凸付与方法は、他の粗面化法、例えば、コ
ロナ処理,機械的粗面化,セラミックス微粉末の塗料中
への分散等でも同様の効果が期待できる。ただし凹凸部
の最大高さは10μm以下、凹凸の頂点間の距離が10μm
以下である微細凹凸が効果を発揮する。凹凸部の最大高
さが10μm以上の場合、及び凹凸の頂点間の距離が10μ
m以上の場合は、水滴とフィン表面との実質接触面積が
大きく、結露水が大きく成長し、フィン間ブリッジが発
生しやすくなる。
Examples of the water-repellent surface treatment material include water-repellent paints such as copolymer resin paints of tetrafluoroethylene and hexafluoropropylene, silicone resin paints, and fatty acids such as stearic acid and lauric acid treated on the surface. Any method can be used as long as it is fine, and the same effect can be expected from the method for imparting fine irregularities by other surface roughening methods such as corona treatment, mechanical surface roughening, and dispersion of ceramic fine powder in the coating material. However, the maximum height of the irregularities is 10 μm or less, and the distance between the vertices of the irregularities is 10 μm.
The following fine irregularities exhibit the effect. When the maximum height of the irregularities is 10 μm or more, and the distance between the tops of the irregularities is 10 μm
In the case of m or more, the substantial contact area between the water droplet and the fin surface is large, the dew condensation water grows large, and the fin bridge is likely to be generated.

以上のように本実施例によれば板状フィンに、撥水性
で且つ微細凹凸を付与した表面処理を施すことにより、
霜層による熱交換器の閉塞を大幅に遅らせることができ
る。
As described above, according to this embodiment, the plate-like fins are subjected to surface treatment with water repellency and fine irregularities,
Blockage of the heat exchanger by the frost layer can be significantly delayed.

発明の効果 以上のように本発明は、一定間隔で、多数平行に並べ
られ、その間を気流が流動する板状フィンと、この板状
フィンに直角に挿通された伝熱管とから成り、表面が撥
水性で且つ微細凹凸を付与した表面処理を施したフィン
材を用いて板状フィンを形成した熱交換器であるため、
霜層による閉塞を大巾に遅らせることができる。
Effect of the Invention As described above, the present invention comprises a plurality of plate-shaped fins arranged at regular intervals in parallel, between which a gas flow flows, and a heat transfer tube inserted at a right angle to the plate-shaped fins, and the surface thereof is formed. Because it is a heat exchanger that has formed a plate-like fin using a fin material that has been subjected to surface treatment with water repellency and fine irregularities,
Blockage by the frost layer can be greatly delayed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の熱交換器の部分側面断面
図、第2図は同部分正面断面図、第3図は従来例の部分
側面断面図、第4図は同部分正面断面図である。 1,5……板状フィン、6……微細凹凸付与撥水性表面処
理層、7……微細凹凸部。
1 is a partial side sectional view of a heat exchanger according to an embodiment of the present invention, FIG. 2 is a partial front sectional view of the same, FIG. 3 is a partial side sectional view of a conventional example, and FIG. FIG. 1, 5: plate-like fins, 6: water-repellent surface treatment layer provided with fine irregularities, 7: fine irregularities.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一定間隔で多数平行に並べられ、その間を
気流が流動する板状フィンと、この板状フィンに直角に
挿通された伝熱管とからなり、前記板状フィンは撥水性
でかつ凹凸部の最大高さが10μm以下、凹凸の頂点間の
距離が10μm以下である微細凹凸を施したフィン材で構
成した熱交換器。
1. A plate-like fin, which is arranged in parallel at regular intervals and through which air flows, and a heat transfer tube inserted at right angles to the plate-like fin, wherein the plate-like fin is water-repellent and A heat exchanger made of a fin material having a fine unevenness in which the maximum height of the unevenness is 10 μm or less and the distance between the tops of the unevenness is 10 μm or less.
JP63274885A 1988-10-31 1988-10-31 Heat exchanger Expired - Lifetime JP2723558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274885A JP2723558B2 (en) 1988-10-31 1988-10-31 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274885A JP2723558B2 (en) 1988-10-31 1988-10-31 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH02122198A JPH02122198A (en) 1990-05-09
JP2723558B2 true JP2723558B2 (en) 1998-03-09

Family

ID=17547894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274885A Expired - Lifetime JP2723558B2 (en) 1988-10-31 1988-10-31 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2723558B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249298A (en) * 2007-03-30 2008-10-16 Daikin Ind Ltd Fin tube type heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996274A (en) * 1982-11-22 1984-06-02 Mitsubishi Alum Co Ltd Method for increasing surface area of thin al alloy plate
JPS6338890A (en) * 1986-08-01 1988-02-19 Matsushita Refrig Co Heat exchanger

Also Published As

Publication number Publication date
JPH02122198A (en) 1990-05-09

Similar Documents

Publication Publication Date Title
CN107782194A (en) A kind of hydrophobic heat abstractor of part
JP2723558B2 (en) Heat exchanger
JPH0271096A (en) Heat exchanger with fin
JP2017150756A (en) Heat exchanger and manufacturing method of fin
JP2020133933A (en) Defrosting device and refrigerator including the same
JPH10274493A (en) Heat-exchanger
KR101102009B1 (en) Heat Exchanger for Air conditioner
CN101865590B (en) Refrigeratory
JPH08152287A (en) Heat exchanger
JPH02192597A (en) Heat exchanger
JPS62155493A (en) Heat exchanger with fins
Suzuki et al. Energy saving in semiconductor fabs by out-air handling unit performance improvement
JPS6338890A (en) Heat exchanger
JPH0345893A (en) Fin material for heat exchanger
JP2506701B2 (en) Heat exchanger with fins
JPH0245727Y2 (en)
JPS62142990A (en) Heat exchanger
JP2803798B2 (en) Heat exchanger
JP2000180091A (en) Cooling coil having ultra-water repellent surface and indoor temperature regulator
JPH0674616A (en) Air cooler, refrigeration/cold storage plant and air cooling method therefor
CN205939823U (en) Become finned evaporator and refrigeration plant
JPH04371796A (en) Heat exchanger
CN112361696A (en) Evaporator with hydrophobic coating for refrigerator and preparation method thereof
JPS6252398A (en) Finned heat exchanger
CN1967096A (en) Evaporation type condenser