JPH02192597A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH02192597A
JPH02192597A JP1234489A JP1234489A JPH02192597A JP H02192597 A JPH02192597 A JP H02192597A JP 1234489 A JP1234489 A JP 1234489A JP 1234489 A JP1234489 A JP 1234489A JP H02192597 A JPH02192597 A JP H02192597A
Authority
JP
Japan
Prior art keywords
fin
water repellent
heat exchanger
water
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1234489A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tsuda
津田 善之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP1234489A priority Critical patent/JPH02192597A/en
Publication of JPH02192597A publication Critical patent/JPH02192597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To delay blockading due to the layer of frost and eliminate the deterioration of heating capacity when heating operation is reopened after defrosting by employing a water repellent fin member, with fine grooves, as a plate fin. CONSTITUTION:The main body of a heat exchanger is constituted by a method wherein a heat transfer tube penetrating hole is bored on a plate type fin 5 made of aluminum, on which a water repellent film 6 is applied on the surface thereof and fine grooves 7 are formed, fin collars 2 are established with equal intervals to penetrate a heat transfer tube 3 made of copper and, thereafter, the tube 3 is fixed and adhered to the plate type fin 5 by means of expanding or the like. Ethylene tetrafluoride resin coating having the pure water contact angle of 110 deg., for example, is used as the water repellent film. Either one of water repellent coatings such as the copolymer resin coating of ethylene tetrafluoride and propylene hexafluoride, silicon resin coating and the like or water repellent surface treatment coated with fatty acid such as stearic acid, lauric acid and the like may be employed as a water repellent surface treatment material. The width and the depth of the fine grooves are not specified especially but the effect of capillary phenomenon is higher when the grooves are provided with more acute angle.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調機器、冷凍冷蔵機器などの冷却システム
に使用される熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger used in cooling systems such as air conditioning equipment, freezing and refrigeration equipment, and the like.

従来の技術 近年、空調機器においては冷暖房機種いわゆるヒートポ
ンプが年々増加し、暖房運転時の室外側熱交換器への着
霜が問題となってきている。又、冷凍冷蔵機器において
も同様の問題を抱えておシ、熱交換器そのものの着霜対
策が切望されている。
BACKGROUND OF THE INVENTION In recent years, the number of air conditioning equipment, so-called heat pumps, has been increasing year by year, and frost formation on outdoor heat exchangers during heating operation has become a problem. In addition, similar problems occur in freezing and refrigerating equipment, and there is a strong need for measures against frosting of the heat exchanger itself.

以下図面を参照しながら従来の熱交換器の一例について
説明する。第3図は、従来の熱交換器の一部側面断面図
を、第4図は上面断面図を示す。
An example of a conventional heat exchanger will be described below with reference to the drawings. FIG. 3 shows a partial side sectional view of a conventional heat exchanger, and FIG. 4 shows a top sectional view.

鉄、銅、アルミニウム等金属薄板である板状フィン1に
、伝熱管挿通孔を穿設すると共にフィンカラー2を等間
隔に立ち上げ、これに銅、ア!レミニウム等の金属管で
ある伝熱管3を挿通後、拡管等の手段により板状フィン
1に密着固定しである。
Heat exchanger tube insertion holes are bored in the plate-shaped fin 1, which is a thin metal plate such as iron, copper, or aluminum, and fin collars 2 are set up at equal intervals, and copper, a! After the heat transfer tube 3, which is a metal tube such as reminium, is inserted, it is tightly fixed to the plate-shaped fin 1 by means such as tube expansion.

伝熱管3内部に冷媒を流動させ、その熱を伝熱管3に密
着・固定されたフィンカラー2からフィン1に伝えられ
る。一方、白抜き矢印4方向より気体を流動させフィン
1上を通過する際に気体と伝熱管3とフィン1との温度
差によυ熱の授受が行われ、この作用により冷媒と気体
との熱交換が連続的に行われるものである。
A refrigerant is made to flow inside the heat exchanger tube 3, and the heat is transmitted to the fins 1 from the fin collar 2 which is closely attached and fixed to the heat exchanger tube 3. On the other hand, when the gas flows in the direction of the four outlined arrows and passes over the fins 1, υ heat is exchanged due to the temperature difference between the gas, the heat transfer tubes 3, and the fins 1, and due to this action, the refrigerant and the gas Heat exchange is performed continuously.

発明が解決しようとする課題 上記作用の中で、ヒートポンプの暖房運転時の室外側熱
交換器を例に取れば、白抜き矢印4方向よシの流入気体
の温度が低い場合、熱交換器の内部を流動する冷媒の蒸
発温度が0℃以下となり、フィン表面や伝熱管周シのフ
ィンカラ一部にまず凝縮水が発生する。フィン表面が親
水性の場合は、その凝縮水は膜状となシ、早期に氷結し
、運転時間と共に着霜が進み、霜が成長するにつれ、フ
ィン間が目詰まシし、気体の流動抵抗となり、熱交換器
の通風抵抗を招き、ひいては空気と冷媒との熱交換を妨
げる。又、フィン表面が撥水性の場合は、その凝縮水は
液滴状となシ、フィン表面温度がかなシ低下しても液滴
の状態で、比較的長時間保持される。この液滴の密度は
、霜と比較し、数倍大きい。この液滴もやがては氷結し
、霜となる。
Problems to be Solved by the Invention Among the above effects, taking an outdoor heat exchanger as an example during heating operation of a heat pump, if the temperature of the inflowing gas in the four directions of the white arrows is low, the temperature of the heat exchanger will decrease. The evaporation temperature of the refrigerant flowing inside becomes 0° C. or lower, and condensed water is first generated on the fin surface and a portion of the fin collar around the heat transfer tube. If the fin surface is hydrophilic, the condensed water forms a film and freezes early. As the operating time progresses, frost formation progresses. As the frost grows, the spaces between the fins become clogged, reducing gas flow resistance. This causes ventilation resistance in the heat exchanger, which in turn impedes heat exchange between the air and the refrigerant. Further, when the fin surface is water repellent, the condensed water does not form into droplets, and even if the fin surface temperature drops considerably, it remains in the droplet state for a relatively long time. The density of this droplet is several times greater compared to frost. These droplets eventually freeze, forming frost.

従って親水性表面に成長する霜に比べ撥水性表面に成長
する霜の方が高密度である。すなわち、フィン間が霜に
より目詰シに至る時間が長くなる。
Therefore, the frost that grows on a water-repellent surface is denser than the frost that grows on a hydrophilic surface. In other words, it takes longer for the fins to become clogged due to frost.

しかし、暖房運転を中断して逆サイクル等の手段によシ
除霜運転を行なった後は、フィン表面が撥水性であるた
め、その除霜水滴がフィン表面に液滴として残留する場
合がある。従って、除霜後、運転を再開した場合は、そ
の残留した水滴が最初から通風抵抗となシ、暖房能力の
低下となるという問題がある。従って、高密度の霜を形
成する撥水性表面であシ、かつ除霜後水滴を残留させる
ことの無いフィン材料で構成されたフィン間の目詰り時
間が短く、除霜後運転再開後も通風抵抗が少く暖房能力
低下の無い熱交換器を開発する必要がある。
However, after heating operation is interrupted and defrosting operation is performed by means such as reverse cycle, the defrosting water droplets may remain on the fin surface as droplets because the fin surface is water repellent. . Therefore, when the operation is restarted after defrosting, there is a problem that the remaining water droplets create ventilation resistance from the beginning, resulting in a decrease in heating capacity. Therefore, the time for clogging between the fins, which are made of a water-repellent surface that forms high-density frost and does not leave water droplets behind after defrosting, is short, allowing ventilation even after restarting operation after defrosting. It is necessary to develop a heat exchanger with low resistance and no reduction in heating capacity.

尚、ここで撥水性というのは、板状フィンの材料である
鉄、銅、アルミニウム等金属薄板の無処理表面のもつ表
面張力よシも高いものを言い、純水との接触角で表わす
と500以上である表面を言い、又親水性とは、純水と
の接触角で50’未満である表面を言う。
Note that water repellency here refers to a surface tension that is higher than that of the untreated surface of thin metal sheets such as iron, copper, and aluminum, which are the materials of the plate-shaped fins, and is expressed in terms of the contact angle with pure water. 500 or more, and hydrophilicity refers to a surface whose contact angle with pure water is less than 50'.

課題を解決するだめの手段 上記課題を解決するため、本発明は一定間隔で多数並行
に並べられ、その間を気流が流動する板状フィンと、こ
の板状フィンに直角に挿通された伝熱管とから成る熱交
換器において、撥水性で且つ微細溝を形成したフィン材
を板状フィンとして用いるものである。
Means for Solving the Problems In order to solve the above problems, the present invention comprises a plurality of plate-shaped fins arranged in parallel at regular intervals and through which airflow flows, and a heat transfer tube inserted through the plate-shaped fins at right angles. In this heat exchanger, a water-repellent fin material with fine grooves formed therein is used as the plate-like fins.

作   用 ヒートポンプの暖房運転時の室外側熱交換器についてフ
ィン表面温度が0・℃以下となり空気中の水分が付着す
る場合、表面温度がかなシ低い場合でもいきなり露化せ
ず、−旦凝縮水として付着し、滴状の液体水分として長
時間保持される。その後、水分が氷結し、その上に霜が
付着し、着霜が進む。
Function When the fin surface temperature of the outdoor heat exchanger during heating operation of a heat pump is below 0°C and moisture in the air adheres to it, the condensed water does not suddenly become exposed even if the surface temperature is very low, and the condensed water It adheres as liquid moisture and is retained for a long time as droplets of liquid moisture. After that, the water freezes, frost forms on top of it, and frost formation progresses.

このだめ、本発明の構成のように板状フィンに撥水性で
且つ微細溝を形成することによシその撥水性効果により
集中する空気中の水分は、霜と比較し密度が数倍大きい
液体水分としてフィン表面に付着し、親水性表面に比べ
、フィン間が霜により目詰シに至る時間が長くなる。又
、除霜運転を行った後は、フィン表面に残留した液滴が
フィン表面に形成した微細溝に、毛細現象によシ、引っ
張られ、フィン表面から下方にすみやかに落下し、フィ
ン表面に残留することがなく、除霜後、運転を再開した
場合でも通風抵抗とならず、暖房能力を低下させること
はない。
However, by forming the plate-like fins with water repellency and fine grooves as in the structure of the present invention, the moisture in the air that is concentrated due to the water repellency effect becomes a liquid whose density is several times higher than that of frost. It adheres to the fin surface as moisture, and compared to a hydrophilic surface, it takes longer for the fins to become clogged due to frost. In addition, after defrosting operation, the droplets remaining on the fin surface are pulled by the fine grooves formed on the fin surface by capillary phenomenon, quickly fall downward from the fin surface, and drop onto the fin surface. It does not remain behind, and even when operation is resumed after defrosting, it does not create ventilation resistance and does not reduce heating capacity.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。第1図は、本発明の一実施例の熱交換器の一
部側面断面図を、第2図は、上面断面図を示したもので
ある。第1図、第2図において、表面に撥水性皮膜6を
施し、微細満了を形成したアルミニウム製板状フィン5
に伝熱管挿通孔を穿設すると共に、フィンカラー2を等
間隔に立ち上げ、これに銅製伝熱管3を挿通後、拡管等
の手段によシ板状フィン5に密着固定し、本体を構成し
である。以下、その作用について説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a partial side sectional view of a heat exchanger according to an embodiment of the present invention, and FIG. 2 shows a top sectional view. In FIG. 1 and FIG. 2, an aluminum plate-shaped fin 5 with a water-repellent coating 6 formed on the surface and a fine expiry formed thereon.
At the same time, heat exchanger tube insertion holes are bored in the fin collars 2, and the fin collars 2 are stood up at equal intervals, and after inserting the copper heat exchanger tubes 3 through them, they are tightly fixed to the plate-like fins 5 by means such as tube expansion, thereby forming the main body. It is. The effect will be explained below.

伝熱管3内部に冷媒を流動させ、その熱を伝熱管に密着
固定されたフィンカラー2からフィン5上に伝えられ、
熱交換器に気体を流動させフィン上を通過させて、気体
とフィン5と伝熱管3との温度差により熱の授受が行わ
れ、冷媒と気体との熱交換が連続的に行われる。熱交換
器に流入する空気は冷却され、フィン表面上空気中の水
分が凝縮してくる。しかし、フィン表面が撥水性である
ためフィン表面が0℃以下でも、フィン表面で氷結する
ことはなく、液体の水分の形で保持される。
A refrigerant is made to flow inside the heat exchanger tube 3, and the heat is transmitted from the fin collar 2 closely fixed to the heat exchanger tube onto the fins 5,
Gas is caused to flow through the heat exchanger and passed over the fins, and heat is exchanged due to the temperature difference between the gas, the fins 5, and the heat transfer tubes 3, and heat exchange between the refrigerant and the gas is continuously performed. The air flowing into the heat exchanger is cooled, and moisture in the air condenses on the fin surfaces. However, since the fin surface is water repellent, even if the fin surface is below 0° C., it will not freeze on the fin surface and will be retained in the form of liquid water.

霜層に比較し、液体水分は密度が数倍大きい。又、この
水分が氷結後も、氷結水が分散しているため、霜も分散
し、霜層の高さ方向への成長は抑えられる。従って熱交
換器の霜による閉塞を大幅に遅らすことができる。又、
除霜後も、板状フィンε上に残留した水滴が、微細溝7
に毛細管現象により引っ張られ、すみやかに下方へ流れ
落ち、板状フィン6上に残留することはなく、暖房運転
を再開した場合でも通風抵抗とならず、暖房能力を低下
させることはない。
Compared to the frost layer, liquid moisture is several times more dense. Further, even after this water freezes, the frozen water is dispersed, so the frost is also dispersed, and the growth of the frost layer in the height direction is suppressed. Therefore, blockage of the heat exchanger due to frost can be significantly delayed. or,
Even after defrosting, water droplets remaining on the plate-like fins ε remain in the fine grooves 7.
It is pulled by capillary action, quickly flows downward, and does not remain on the plate-like fins 6, and even when heating operation is restarted, it does not create ventilation resistance and does not reduce heating performance.

尚、本実施例による撥水性皮膜としては、純水接触角1
1o0の47フ化エチレン樹脂塗料を用いた。撥水性表
面処理材料としては、47フ化エチレン及び6フツ化プ
ロピVンの共重合樹脂塗料。
The water-repellent film according to this example has a pure water contact angle of 1
A 1o0 47 fluoride ethylene resin paint was used. As a water-repellent surface treatment material, a copolymer resin paint of 47-ethylene fluoride and propylene hexafluoride is used.

シリコン樹脂塗料等の撥水性塗料、ステアリン酸。Water-repellent paints such as silicone resin paints, stearic acid.

ラウリン酸等の脂肪酸を表面に処理したもの等撥水性が
あれば何れも可能である。
Any material with water repellency, such as one whose surface is treated with fatty acids such as lauric acid, is possible.

又、微細溝については、溝幅、深さは特に指定はしない
が溝が鋭角的であるほど毛管限象の効果は高い。溝間隔
は狭い場合、表面の撥水効果がうすれ、広い場合は、液
滴残留が多いため、0.1〜1.0H程度が望ましい。
Regarding the fine grooves, although the width and depth of the grooves are not particularly specified, the more acute the grooves are, the higher the effect of capillary confinement is. If the groove spacing is narrow, the water repellent effect on the surface will be weakened, and if it is wide, there will be a lot of droplets remaining, so it is desirable that the groove spacing is about 0.1 to 1.0H.

以上のように、本実施例によれば、板状フィンに撥水性
で且つ微細溝を形成したフィンをヒートポンプの熱交換
器に適用することにより、霜層による熱交換器の閉塞を
遅らせるとともに、除霜後も、フィン上に水滴が残留せ
ず、暖房運転再開後の通風抵抗増加が無く、暖房能力の
低下も無くなる。
As described above, according to this embodiment, by applying water-repellent plate-shaped fins with fine grooves formed to the heat exchanger of a heat pump, clogging of the heat exchanger by a layer of frost is delayed, and Even after defrosting, water droplets do not remain on the fins, there is no increase in ventilation resistance after heating operation is resumed, and there is no decrease in heating capacity.

発明の効果 以上のように本発明は、一定間隔で多数平行に並べられ
、その間を気流が流動する板状フィンと、この板状フィ
ンに直角に挿通された伝熱管とから成り、表面が撥水性
で且つ微細溝を形成したフィン材を用いて板状フィンを
形成した熱交換器であるため、霜層による閉塞を遅らせ
るとともに、除霜後の暖房運転再開後も暖房能力の低下
を無くすことができる。
Effects of the Invention As described above, the present invention consists of a large number of plate-shaped fins arranged in parallel at regular intervals, through which airflow flows, and a heat transfer tube inserted at right angles to the plate-shaped fins. Since the heat exchanger has plate-shaped fins made of water-based fin material with fine grooves, it delays blockage due to frost layer and prevents the heating capacity from decreasing even after heating operation resumes after defrosting. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の熱交換器の部分側面断面、
第2図は同部分上面断面図、第3図は従来例の部分側面
断面図、第4図は同部分上面断面図である。 1.5・・・・・・板状フィン、6・・・・・・撥水性
皮膜、7・・・・・・微細溝。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第1
図 5−擁林フイン 7−微細溝 第 図 第
FIG. 1 shows a partial side cross section of a heat exchanger according to an embodiment of the present invention.
2 is a top sectional view of the same portion, FIG. 3 is a partial side sectional view of the conventional example, and FIG. 4 is a top sectional view of the same portion. 1.5... Plate fin, 6... Water repellent film, 7... Fine groove. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1st
Figure 5 - Retaining forest fin 7 - Fine groove diagram

Claims (1)

【特許請求の範囲】[Claims] 一定間隔で多数平行に並べられその間を気流が流動する
板状フィンと、この板状フィンに直角に挿通された伝熱
管とからなり、前記板状フィンを撥水性皮膜を設け且つ
微細溝を形成したフィン材で構成したことを特徴とする
熱交換器。
Consisting of a large number of plate-shaped fins arranged in parallel at regular intervals and through which airflow flows, and a heat transfer tube inserted through the plate-shaped fins at right angles, the plate-shaped fins are coated with a water-repellent coating and have fine grooves formed therein. A heat exchanger characterized in that it is made of a fin material.
JP1234489A 1989-01-20 1989-01-20 Heat exchanger Pending JPH02192597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1234489A JPH02192597A (en) 1989-01-20 1989-01-20 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1234489A JPH02192597A (en) 1989-01-20 1989-01-20 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH02192597A true JPH02192597A (en) 1990-07-30

Family

ID=11802667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234489A Pending JPH02192597A (en) 1989-01-20 1989-01-20 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH02192597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178584B2 (en) * 1997-12-04 2007-02-20 Korea Institute Of Science And Technology Plasma polymerization enhancement of surface of metal for use in refrigerating and air conditioning
JP2015193922A (en) * 2014-03-24 2015-11-05 三菱重工業株式会社 Liquid repellent surface fine structure, production method thereof, heat exchanger, and component of air conditioner
JP2015197229A (en) * 2014-03-31 2015-11-09 三菱重工業株式会社 Heat exchanger and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178584B2 (en) * 1997-12-04 2007-02-20 Korea Institute Of Science And Technology Plasma polymerization enhancement of surface of metal for use in refrigerating and air conditioning
JP2015193922A (en) * 2014-03-24 2015-11-05 三菱重工業株式会社 Liquid repellent surface fine structure, production method thereof, heat exchanger, and component of air conditioner
JP2015197229A (en) * 2014-03-31 2015-11-09 三菱重工業株式会社 Heat exchanger and air conditioner

Similar Documents

Publication Publication Date Title
EP1780492B1 (en) Refrigeration unit
US6098420A (en) Absorption chiller and heat exchanger tube used the same
KR20140145504A (en) Heat exchanger and outdoor unit for air-conditioner having the same
JP2003240487A (en) Frosting-preventive member, and heat-exchanger
JPH02192597A (en) Heat exchanger
JP2006046695A (en) Refrigerating device
KR101102009B1 (en) Heat Exchanger for Air conditioner
JPH10274493A (en) Heat-exchanger
JPH05322470A (en) Heat exchanger
JPH06147784A (en) Heat exchanger tube
JPH02122198A (en) Heat exchanger
JP2001248951A (en) Refrigerator, and manufacturing method for evaporator for refrigerator chamber for use in former
JPH08152287A (en) Heat exchanger
JPS6338890A (en) Heat exchanger
JPS62155493A (en) Heat exchanger with fins
JPH109786A (en) Finned heat exchanger
JP3761262B2 (en) Finned heat exchanger
JP5460474B2 (en) Heat exchanger, and air conditioner and refrigerator provided with this heat exchanger
JPH04371796A (en) Heat exchanger
JPH0345893A (en) Fin material for heat exchanger
JPH0230696Y2 (en)
JPH109784A (en) Finned heat exchanger
JPH03244679A (en) Water-repellent coating composition and heat exchanger coated with water-repellent coating composition
KR102023994B1 (en) Heat exchanger
JPH03102124A (en) Heat exchanger