JP6347004B1 - LNG ship evaporative gas reliquefaction method and system - Google Patents

LNG ship evaporative gas reliquefaction method and system Download PDF

Info

Publication number
JP6347004B1
JP6347004B1 JP2018009162A JP2018009162A JP6347004B1 JP 6347004 B1 JP6347004 B1 JP 6347004B1 JP 2018009162 A JP2018009162 A JP 2018009162A JP 2018009162 A JP2018009162 A JP 2018009162A JP 6347004 B1 JP6347004 B1 JP 6347004B1
Authority
JP
Japan
Prior art keywords
evaporative gas
gas
reliquefaction
heat exchanger
evaporative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018009162A
Other languages
Japanese (ja)
Other versions
JP2018119684A (en
Inventor
ウォン ジュン,ヘ
ウォン ジュン,ヘ
オク カン,ドン
オク カン,ドン
チェ リー,ジュン
チェ リー,ジュン
キュ チェ,ドン
キュ チェ,ドン
Original Assignee
デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド
デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170012151A external-priority patent/KR101858514B1/en
Priority claimed from KR1020170012754A external-priority patent/KR101867037B1/en
Application filed by デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド, デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド filed Critical デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド
Application granted granted Critical
Publication of JP6347004B1 publication Critical patent/JP6347004B1/en
Publication of JP2018119684A publication Critical patent/JP2018119684A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

【課題】LNG船の蒸発ガス再液化方法を開示する。
【解決手段】本発明のLNG船の蒸発ガス再液化方法は、1)蒸発ガスを圧縮するステップ;2)蒸発ガスを冷媒として前記1)ステップで圧縮した蒸発ガスを熱交換器で熱交換して冷却するステップ;3)前記2)ステップで冷却された流体を膨張させるステップ;及び4)前記1)のステップで圧縮した後で前記熱交換器に供給される再液化対象蒸発ガスの流量が変動しても再液化性能を安定的に維持するステップ;を含み、前記1)ステップ〜3)ステップを経て再液化された蒸発ガスの量がHYSYSによる計算値の50%以上で維持される。
【選択図】図1
An evaporative gas reliquefaction method for an LNG ship is disclosed.
A method for reliquefying an evaporative gas of an LNG ship according to the present invention includes: 1) a step of compressing the evaporative gas; 2) heat-exchanging the evaporative gas compressed in the step 1) with a heat exchanger using evaporative gas as a refrigerant. 3) a step of expanding the fluid cooled in the step 2); and 4) a flow rate of the reliquefied evaporation gas supplied to the heat exchanger after being compressed in the step 1). A step of stably maintaining reliquefaction performance even if it fluctuates, and the amount of evaporative gas reliquefied through steps 1) to 3) is maintained at 50% or more of the value calculated by HYSYS.
[Selection] Figure 1

Description

本発明は、LNG船の貯蔵タンク内部で発生した蒸発ガスのうち、エンジンで使用されずに余った余剰蒸発ガスを、蒸発ガス自体を冷媒として使用して再液化する方法及びシステムに関する。   The present invention relates to a method and system for re-liquefying surplus evaporative gas that has not been used in an engine out of evaporative gas generated inside a storage tank of an LNG ship using the evaporative gas itself as a refrigerant.

近年、液化天然ガス(LNG)などの液化ガスの消費量が世界的に急増しつつある。ガスを低温で液化した液化ガスは、ガスに比べて体積が非常に減少するため、貯蔵及び移送効率が高まるという長所がある。また、LNGなどの液化ガスは、液化工程中に大気汚染物質が除去または軽減され、燃焼時に大気汚染物質の排出が少なく、環境にやさしい燃料である。   In recent years, consumption of liquefied gas such as liquefied natural gas (LNG) has been rapidly increasing worldwide. The liquefied gas obtained by liquefying the gas at a low temperature has an advantage that the storage and transfer efficiency is improved because the volume is greatly reduced as compared with the gas. In addition, liquefied gas such as LNG is an environmentally friendly fuel in which air pollutants are removed or reduced during the liquefaction process, and the amount of air pollutants discharged is small during combustion.

LNGは、メタン(methane)が主成分である天然ガスを約−163℃に冷却し液化することで得られる無色透明な液体であり、天然ガスに比べて体積が約1/600である。したがって、天然ガスを液化して移送すると非常に効率的な移送が可能となる。   LNG is a colorless and transparent liquid obtained by cooling and liquefying natural gas mainly composed of methane to about −163 ° C., and its volume is about 1/600 compared to natural gas. Therefore, when natural gas is liquefied and transferred, very efficient transfer becomes possible.

しかし、天然ガスの液化温度は常圧で−163℃の極低温であり、LNGは温度変化に敏感であるからすぐ蒸発してしまう。そのため、LNGを貯蔵する貯蔵タンクには断熱処理が施されるが、外部熱が貯蔵タンクまで継続的に伝達されてLNGの輸送過程で貯蔵タンク内では継続的にLNGが自然気化して蒸発ガス(BOG)が発生する。   However, the liquefaction temperature of natural gas is an extremely low temperature of −163 ° C. at normal pressure, and LNG is easily evaporated because it is sensitive to temperature changes. Therefore, the storage tank for storing LNG is thermally insulated, but external heat is continuously transmitted to the storage tank, and LNG is naturally vaporized in the storage tank during the LNG transport process, resulting in evaporation gas. (BOG) occurs.

蒸発ガスは損失の1つであって、輸送効率において重要な問題である。また、貯蔵タンク内に蒸発ガスが蓄積されたらタンク内圧が過度に上昇し、極端な場合にはタンク破損の虞もある。したがって、貯蔵タンク内で発生する蒸発ガスを処理する様々な方法が研究され、最近では蒸発ガスを処理するために、蒸発ガスを再液化して貯蔵タンクに戻す方法、蒸発ガスを船舶のエンジンなどの燃料消費先のエネルギー源として使用する方法などが利用されている。   Evaporative gas is one of the losses and is an important issue in transportation efficiency. In addition, if evaporative gas accumulates in the storage tank, the tank internal pressure rises excessively, and in extreme cases, the tank may be damaged. Therefore, various methods for treating the evaporative gas generated in the storage tank have been studied. Recently, in order to process the evaporative gas, the evaporative gas is re-liquefied and returned to the storage tank, the evaporative gas is returned to the ship engine, etc. The method of using as an energy source of the fuel consumption destination is used.

蒸発ガスを再液化する方法には、別の冷媒を用いた冷凍サイクルを備えて蒸発ガスを冷媒と熱交換して再液化する方法、別の冷媒なしで蒸発ガス自体を冷媒にして再液化する方法などがある。特に、後者の方法を採用したシステムを部分再液化システム(Partial Re−liquefaction System、PRS)という。   The method for re-liquefying the evaporative gas includes a refrigeration cycle using another refrigerant and re-liquefying the evaporative gas by exchanging heat with the refrigerant, or re-liquefying the evaporative gas itself as a refrigerant without using another refrigerant. There are methods. In particular, a system that employs the latter method is referred to as a partial re-liquefaction system (PRS).

また、船舶で一般的に使用するエンジンのうち、天然ガスを燃料として使用することができるエンジンには、DFDE、X−DFエンジン、ME−GIエンジンなどのガス燃料エンジンがある。   Further, among engines generally used in ships, engines that can use natural gas as fuel include gas fuel engines such as DFDE, X-DF engine, and ME-GI engine.

DFDEは4ストローク機関であり、比較的低圧である6.5bar程度の圧力の天然ガスを燃焼空気入口に注入して、ピストンが上昇しながら圧縮するオットーサイクル(Otto Cycle)を採用している。   The DFDE is a four-stroke engine and employs an Otto cycle in which natural gas having a relatively low pressure of about 6.5 bar is injected into the combustion air inlet and the piston is compressed while rising.

X−DFエンジンは2ストローク機関であり、16bar程度の天然ガスを燃料として使用し、オットーサイクルを採用している。   The X-DF engine is a two-stroke engine that uses natural gas of about 16 bar as fuel and adopts the Otto cycle.

ME−GIエンジンは2ストローク機関であり、300bar程度の高圧天然ガスをピストンの上死点付近で燃焼室に直接噴射するディーゼルサイクル(Diesel Cycle)を採用している。   The ME-GI engine is a two-stroke engine and employs a diesel cycle in which high-pressure natural gas of about 300 bar is directly injected into the combustion chamber near the top dead center of the piston.

本発明は、再液化性能を安定化して再液化の効率と量を高めることができる、LNG船の蒸発ガス再液化方法及びシステムを提供する。   The present invention provides an evaporative gas reliquefaction method and system for an LNG ship that can stabilize the reliquefaction performance and increase the efficiency and amount of reliquefaction.

前記目的を達成するため本発明の実施形態では、1)蒸発ガスを圧縮するステップ;2)蒸発ガスを冷媒として、前記1)ステップで圧縮した蒸発ガスを熱交換器で熱交換して冷却するステップ;3)前記2)ステップで冷却された流体を膨張させるステップ;及び4)前記1)ステップで圧縮した後で前記熱交換器に供給される再液化対象蒸発ガスの流量が変動しても、再液化性能を安定的に維持するステップ;を含み、前記1)ステップ〜3)ステップを経て再液化された蒸発ガスの量がHYSYSによる計算値の50%以上で維持されるLNG船の蒸発ガス再液化方法が提供される。   In order to achieve the above object, in the embodiment of the present invention, 1) a step of compressing the evaporative gas; 2) using the evaporative gas as a refrigerant, the evaporative gas compressed in the step 1) is heat-exchanged by a heat exchanger and cooled. 3) a step of expanding the fluid cooled in the step 2); and 4) even if the flow rate of the reliquefied evaporative gas supplied to the heat exchanger after the compression in the step 1) fluctuates. And the step of stably maintaining the reliquefaction performance, and the amount of the evaporated gas reliquefied through the steps 1) to 3) is maintained at 50% or more of the value calculated by HYSYS. A gas reliquefaction method is provided.

前記LNG船の蒸発ガス再液化方法は、5)前記3)ステップで膨張された流体を気液分離するステップをさらに含むことができる。   The LNG ship evaporative gas reliquefaction method may further include 5) gas-liquid separation of the fluid expanded in step 3).

前記5)ステップで気液分離された気体成分は、蒸発ガスと合流して前記2)ステップで熱交換の冷媒として使用されるる。   The gas component separated in the gas-liquid step in the step 5) is combined with the evaporating gas and used as a heat exchange refrigerant in the step 2).

前記LNG船の蒸発ガス再液化方法において、LNG船の運航速度は10〜17knotであることを特徴とする。   In the evaporative gas reliquefaction method of the LNG ship, the operation speed of the LNG ship is 10 to 17 knots.

前記1)ステップで圧縮した蒸発ガスの一部はエンジンの燃料として使用され、前記エンジンの燃料として使用される蒸発ガスの流量が1,100〜2,660kg/hであることを特徴とする。   Part of the evaporative gas compressed in step 1) is used as engine fuel, and the flow rate of evaporative gas used as the engine fuel is 1,100 to 2,660 kg / h.

前記エンジンは、推進用エンジン及び発電用のエンジンを備える。   The engine includes a propulsion engine and a power generation engine.

前記LNG船の蒸発ガス再液化方法は、前記再液化対象蒸発ガスの流量が1,900〜3,300kg/hであることを特徴とする。   The LNG ship evaporative gas reliquefaction method is characterized in that a flow rate of the reliquefied evaporative gas is 1,900 to 3,300 kg / h.

前記LNG船の蒸発ガス再液化方法は、前記2)ステップで熱交換の冷媒として使用される蒸発ガスの流量を基準に、前記再液化対象蒸発ガスの流量の比が0.42〜0.72の範囲であることを特徴とする。   In the evaporative gas reliquefaction method of the LNG ship, the flow rate ratio of the evaporative gas to be reliquefied is 0.42 to 0.72 based on the flow rate of the evaporative gas used as the heat exchange refrigerant in the step 2). It is the range of these.

前記1)ステップで圧縮された蒸発ガスのうち、前記エンジンに送らない蒸発ガスを更に圧縮した後で前記熱交換器に送る。   Of the evaporated gas compressed in the step 1), the evaporated gas not sent to the engine is further compressed and then sent to the heat exchanger.

前記目的を達成するため本発明の他の実施形態では、1)蒸発ガスを圧縮するステップ;2)蒸発ガスを冷媒として、前記1)ステップで圧縮した蒸発ガスを熱交換して冷却するステップ;3)前記2)ステップで冷却された流体を膨張させるステップ;及び4)前記2)ステップで熱交換の冷媒として使用される蒸発ガスの流量が変動しても、再液化性能を安定的に維持するステップ;を含み、前記1)ステップ〜3)ステップを経て再液化された蒸発ガスの量がHYSYSによる計算値の50%以上で維持されるLNG船の蒸発ガス再液化方法が提供される。   In order to achieve the above object, in another embodiment of the present invention, 1) a step of compressing the evaporative gas; 2) a step of cooling the evaporative gas compressed in the step 1) by heat exchange using the evaporative gas as a refrigerant; 3) The step of expanding the fluid cooled in the step 2); and 4) The liquefaction performance is stably maintained even when the flow rate of the evaporative gas used as the heat exchange refrigerant in the step 2) fluctuates. An LNG ship evaporative gas reliquefaction method in which the amount of evaporative gas reliquefied through steps 1) to 3) is maintained at 50% or more of the value calculated by HYSYS.

前記LNG船の蒸発ガス再液化方法は、5)前記3)ステップで膨張された流体を気液分離するステップをさらに含み、前記5)ステップで気液分離された気体成分は蒸発ガスと合流して前記2)ステップで熱交換の冷媒として使用される。   The evaporative gas reliquefaction method of the LNG ship further includes 5) a step of gas-liquid separation of the fluid expanded in step 3), and the gas component separated in the step 5) joins the evaporative gas. And used as a heat exchange refrigerant in step 2).

前記目的を達成するため本発明の更に他の実施形態では、貯蔵タンクから排出される蒸発ガスを高圧で圧縮し、高圧圧縮蒸発ガスの全部または一部を前記貯蔵タンクから排出される蒸発ガスと熱交換器で熱交換するステップ;及び熱交換した高圧圧縮蒸発ガスを減圧するステップ;を含む、高圧ガス噴射エンジンを備えるLNG船の蒸発ガス再液化方法において、LNG船の運航条件の変更、再液化対象蒸発ガスの流量が変動しても、再液化性能を安定的に維持するステップを含み、再液化された蒸発ガスの量がHYSYSによる計算値の50%以上で維持される高圧ガス噴射エンジンを備えるLNG船の蒸発ガス再液化方法が提供される。   In order to achieve the above object, in another embodiment of the present invention, the evaporative gas discharged from the storage tank is compressed at a high pressure, and all or a part of the high-pressure compressed evaporative gas is discharged from the storage tank; In a method for reliquefying an evaporative gas of an LNG ship equipped with a high-pressure gas injection engine, the method further comprises: changing the operating conditions of the LNG ship, re-exchanging the heat-exchanged high-pressure compressed evaporative gas in the heat exchanger; A high pressure gas injection engine that includes a step of stably maintaining the reliquefaction performance even when the flow rate of the liquefied target evaporative gas varies, and the amount of the reliquefied evaporative gas is maintained at 50% or more of the value calculated by HYSYS An LNG ship evaporative gas reliquefaction method is provided.

前記高圧圧縮蒸発ガスは超臨界状態である。   The high-pressure compressed evaporative gas is in a supercritical state.

前記高圧圧縮蒸発ガスの圧力は100〜400baraである。   The pressure of the high-pressure compressed evaporative gas is 100 to 400 bara.

前記高圧圧縮蒸発ガスの圧力は150〜400baraである。   The pressure of the high-pressure compressed evaporative gas is 150 to 400 bara.

前記高圧圧縮蒸発ガスの圧力は150〜300baraである。   The pressure of the high-pressure compressed evaporative gas is 150 to 300 bara.

本発明は、再液化対象蒸発ガスの流量が変わっても再液化性能を安定的に維持する。   The present invention stably maintains the reliquefaction performance even if the flow rate of the reliquefied evaporation gas changes.

本発明の一実施形態では、熱交換器に供給される流体または熱交換器から排出される流体を分散させて、特定のブロックに冷媒が集中する現象を緩和する。   In one embodiment of the present invention, the fluid supplied to the heat exchanger or the fluid discharged from the heat exchanger is dispersed to alleviate the phenomenon that the refrigerant concentrates on a specific block.

本発明の一実施形態では、複数のブロック間だけでなく、各々のブロック内でも冷媒が均等に分散し、多孔板とコアの離隔を維持できる。特に、多孔板とコアが接触し、流路が塞がって流体のコアへの流動が阻害されることを防止する。   In one embodiment of the present invention, the refrigerant is evenly distributed not only between a plurality of blocks but also within each block, and the separation between the porous plate and the core can be maintained. In particular, the perforated plate and the core are in contact with each other, and the flow path is blocked to prevent the fluid from flowing into the core.

本発明の一実施形態では、多孔板を熱伸縮の解消ができるように熱交換器と結合させるため、極低温の蒸発ガスとの接触によって収縮しても、多孔板の屈曲と破損、多孔板の連結部分の破損を防止する。   In one embodiment of the present invention, the perforated plate is combined with a heat exchanger so that thermal expansion and contraction can be eliminated. To prevent damage to the connecting parts.

本発明の一実施形態では、熱交換器が流体に抵抗を与える形状のチャネルを備えるため、流体を分散させる別の部材の追加がなくても、特定のブロックに冷媒が集中する現象を緩和または防止する。   In one embodiment of the present invention, since the heat exchanger includes a channel shaped to resist the fluid, the phenomenon that the refrigerant concentrates on a specific block can be alleviated without adding another member that disperses the fluid. To prevent.

本発明の一実施形態に係る蒸発ガス再液化の概念を説明するための基本的なモデルを示す図である。It is a figure which shows the basic model for demonstrating the concept of the evaporative gas reliquefaction which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸発ガス再液化システムにおいて、再液化対象蒸発ガスの圧力が39bara、50bara〜120baraの範囲における10baraごとの各圧力である場合の高温流体と低温流体とのそれぞれの熱流量による温度変化を示したグラフである。In the evaporative gas reliquefaction system according to an embodiment of the present invention, each heat of the high temperature fluid and the low temperature fluid when the pressure of the revaporization target evaporative gas is each pressure of 10 bara in the range of 39 bara and 50 bara to 120 bara. It is the graph which showed the temperature change by flow volume. 本発明の一実施形態に係る蒸発ガス再液化システムにおいて、再液化対象蒸発ガスの圧力が130bara〜200baraの範囲における10baraごとの各圧力、及び300baraである場合の高温流体と低温流体とのそれぞれの熱流量による温度変化を示したグラフである。In the evaporative gas reliquefaction system according to the embodiment of the present invention, each pressure of 10 bara in the range of 130 bara to 200 bara, and each of the high temperature fluid and the low temperature fluid when the pressure of the evaporative gas to be reliquefied is 300 bara. It is the graph which showed the temperature change by a heat flow rate. 再液化対象蒸発ガスの圧力が39baraである場合における、本発明の一実施形態に係る蒸発ガス再液化システムの概略図である。It is the schematic of the evaporative gas reliquefaction system which concerns on one Embodiment of this invention in case the pressure of revaporization object evaporative gas is 39 bara. 再液化対象蒸発ガスの圧力が150baraである場合における、本発明の一実施形態に係る蒸発ガス再液化システムの概略図である。It is the schematic of the evaporative gas reliquefaction system which concerns on one Embodiment of this invention in case the pressure of evaporative gas for reliquefaction is 150 bara. 再液化対象蒸発ガスの圧力が300baraである場合における、本発明の一実施形態に係る蒸発ガス再液化システムの概略図である。It is the schematic of the evaporative gas reliquefaction system which concerns on one Embodiment of this invention in case the pressure of evaporative gas for reliquefaction is 300 bara. 表1の「再液化量」を39bara〜300baraの圧力範囲で示したグラフである。It is the graph which showed the "reliquefaction amount" of Table 1 in the pressure range of 39 bara-300 bara. 表1の「再液化量」を39bara〜300baraの圧力範囲で示したグラフである。It is the graph which showed the "reliquefaction amount" of Table 1 in the pressure range of 39 bara-300 bara. 従来のPCHEの概略図である。It is the schematic of conventional PCHE. 本発明の第1実施形態に係る熱交換器の概略図である。It is the schematic of the heat exchanger which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る熱交換器が備える第1隔壁または第2隔壁の概略図である。It is the schematic of the 1st partition or the 2nd partition with which the heat exchanger concerning a 2nd embodiment of the present invention is provided. 本発明の第2実施形態に係る熱交換器が備える第1隔壁と第1多孔板の概略図である。It is the schematic of the 1st partition and 1st perforated plate with which the heat exchanger which concerns on 2nd Embodiment of this invention is provided. 本発明の第2実施形態に係る熱交換器が備える第2隔壁と第2多孔板の概略図である。It is the schematic of the 2nd partition and 2nd perforated panel with which the heat exchanger which concerns on 2nd Embodiment of this invention is provided. 本発明の第2実施形態に係る熱交換器が備える第3隔壁または第4隔壁の概略図である。It is the schematic of the 3rd partition or the 4th partition with which the heat exchanger which concerns on 2nd Embodiment of this invention is provided. 本発明の第2実施形態に係る熱交換器が備える第3隔壁と第3多孔板の概略図である。It is the schematic of the 3rd partition and the 3rd perforated panel with which the heat exchanger concerning a 2nd embodiment of the present invention is provided. 本発明の第2実施形態に係る熱交換器が備える第4隔壁と第4多孔板の概略図である。It is the schematic of the 4th partition and the 4th perforated panel with which the heat exchanger concerning a 2nd embodiment of the present invention is provided. (a)は従来の熱交換器の冷媒の流れを示した概略図である。(b)は本発明の好ましい第1実施形態に係る熱交換器の冷媒の流れを示した概略図である。(c)は、本発明の好ましい第2実施形態に係る熱交換器の冷媒の流れを示した概略図である。(A) is the schematic which showed the flow of the refrigerant | coolant of the conventional heat exchanger. (B) is the schematic which showed the flow of the refrigerant | coolant of the heat exchanger which concerns on preferable 1st Embodiment of this invention. (C) is the schematic which showed the flow of the refrigerant | coolant of the heat exchanger which concerns on preferable 2nd Embodiment of this invention. (a)は熱交換器の内部温度を測定するために設置した温度センサの位置を示した概略図である。(b)は(a)に図示された位置で、温度センサがそれぞれ測定した熱交換器の内部の温度分布を示したグラフである。(A) is the schematic which showed the position of the temperature sensor installed in order to measure the internal temperature of a heat exchanger. (B) is the graph which showed the temperature distribution inside the heat exchanger which the temperature sensor measured in the position illustrated in (a), respectively. 本発明の好ましい第3実施形態に係る熱交換器の一部を示す概略図である。It is the schematic which shows a part of heat exchanger which concerns on preferable 3rd Embodiment of this invention. 図19のA部分を拡大した概略図である。It is the schematic which expanded the A part of FIG. 本発明の好ましい第4実施形態に係る熱交換器の一部を示す概略図である。It is the schematic which shows a part of heat exchanger which concerns on preferable 4th Embodiment of this invention. 図21のB部分を拡大した概略図である。It is the schematic which expanded the B section of FIG. (a)は熱交換器の全体形状の概略図である。(b)はブロックの概略図である。(c)は、チャネルプレートの概略図である。(A) is the schematic of the whole shape of a heat exchanger. (B) is a schematic diagram of a block. (C) is a schematic view of a channel plate. (a)は図23(c)に図示された低温流体用のチャネルプレートをC方向から見た様子の概略図である。(b)は従来の熱交換器の低温流体用のチャネルプレートのチャネルの概略図である。(c)は本発明の好ましい第5実施形態に係る熱交換器の低温流体用のチャネルプレートのチャネルの概略図である。(d)は本発明の好ましい第6実施形態に係る熱交換器の低温流体用のチャネルプレートのチャネルの概略図である。(A) is the schematic of a mode that the channel plate for low-temperature fluids illustrated in FIG.23 (c) was seen from C direction. (B) is the schematic of the channel of the channel plate for the cryogenic fluid of the conventional heat exchanger. (C) is the schematic of the channel of the channel plate for the cryogenic fluid of the heat exchanger which concerns on preferable 5th Embodiment of this invention. (D) is the schematic of the channel of the channel plate for the cryogenic fluid of the heat exchanger which concerns on preferable 6th Embodiment of this invention.

以下、添付した図面を参照して、本発明の実施形態の構成と作用を詳細に説明する。本発明は、天然ガスを燃料として使用するエンジンを搭載した船舶と液化ガス貯蔵タンクを備えた船舶などに様々な応用と適用が可能である。また、下記実施形態は、様々な他の形態に変形が可能であり、本発明の範囲は下記の実施形態に限定されない。   Hereinafter, the configuration and operation of an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The present invention can be applied to various applications and applications such as a ship equipped with an engine using natural gas as a fuel and a ship equipped with a liquefied gas storage tank. The following embodiments can be modified in various other forms, and the scope of the present invention is not limited to the following embodiments.

後述する本発明の蒸発ガス処理システムは、低温液体貨物または液化ガスを貯蔵する貯蔵タンクが設置された全種類の船舶と海洋構造物、例えば、LNG運搬船(LNG Carrier)、液化エタンガス運搬船(Liquefied Ethane Gas Carrier)、LNG RVなどの船舶をはじめ、LNG FPSO、LNG FSRUなどの海上構造物に適用することができる。ただし、後述の実施形態では、説明の便宜上、代表的な低温液体貨物である液化天然ガスを例に説明し、LNG船は、LNG運搬船、LNG RV、LNG FPSO、LNG FSRUなどを含む概念である。   The evaporative gas treatment system of the present invention to be described later includes all kinds of ships and offshore structures equipped with storage tanks for storing low-temperature liquid cargo or liquefied gas, such as LNG carrier, liquefied ethane gas carrier (Liquid Ethane carrier). It can be applied to marine structures such as LNG FPSO and LNG FSRU, as well as ships such as Gas Carrier) and LNG RV. However, in the embodiment described later, for the sake of convenience of explanation, liquefied natural gas that is a typical low-temperature liquid cargo will be described as an example, and the LNG ship is a concept including an LNG carrier ship, LNG RV, LNG FPSO, LNG FSRU, and the like. .

また、本発明の各ラインにおける流体は、システムの運用条件に応じて、液体状態、気液混合状態、気体状態、超臨界流体状態のいずれかの状態である。   The fluid in each line of the present invention is in a liquid state, a gas-liquid mixed state, a gas state, or a supercritical fluid state, depending on the operating conditions of the system.

図1は、本発明の一実施形態に係る蒸発ガス再液化の概念を説明するための基本的なモデルを示す。   FIG. 1 shows a basic model for explaining the concept of evaporative gas reliquefaction according to an embodiment of the present invention.

図1を参照すると、本発明は、貯蔵タンクから排出された蒸発ガス(1)を熱交換器に送って冷媒として使用した後に圧縮機で圧縮し、圧縮機で圧縮した蒸発ガスはエンジンの燃料として使用し(2)、エンジンの要求量を超えて余った余剰蒸発ガス(3)を熱交換器に送って、貯蔵タンクから排出された蒸発ガス(1)を冷媒として熱交換して冷却する。   Referring to FIG. 1, in the present invention, evaporative gas (1) discharged from a storage tank is sent to a heat exchanger and used as a refrigerant, and then compressed by a compressor. The evaporative gas compressed by the compressor is used as fuel for an engine. (2), surplus evaporative gas (3) surpassing the required amount of the engine is sent to the heat exchanger, and evaporative gas (1) discharged from the storage tank is heat-exchanged as a refrigerant for cooling. .

圧縮機で圧縮した後に熱交換器で冷却した再液化対象蒸発ガスは、減圧手段(例えば、膨張バルブ、膨張機)を通過した後、気液分離器によって液体成分と気体成分とに分離される。気液分離器で分離された液体成分は貯蔵タンクに戻され、気液分離器で分離された気体成分は貯蔵タンクから排出された蒸発ガス(1)と合流し冷媒として再び熱交換器に供給される。   The re-liquefied evaporative gas that has been compressed by the compressor and then cooled by the heat exchanger passes through a decompression means (for example, an expansion valve or an expander), and then is separated into a liquid component and a gas component by a gas-liquid separator. . The liquid component separated by the gas-liquid separator is returned to the storage tank, and the gas component separated by the gas-liquid separator merges with the evaporated gas (1) discharged from the storage tank and is supplied to the heat exchanger again as a refrigerant. Is done.

本発明は、蒸発ガスを再液化するために別の追加サイクルを使用するのではなく、貯蔵タンクから排出された蒸発ガス自体を冷媒として使用し蒸発ガスを再液化することを特徴とする。必要に応じて全蒸発ガスの再液化を保障するため、別の冷凍サイクルを備えることも可能である。別のサイクルを備えることで、追加装置と追加動力が必要となるのは短所であるが、ほぼ全量の蒸発ガスの再液化が保障される。   The invention is characterized in that, instead of using another additional cycle to reliquefy the evaporative gas, the evaporative gas discharged from the storage tank itself is used as a refrigerant to reliquefy the evaporative gas. A separate refrigeration cycle can be provided to ensure re-liquefaction of all evaporated gas as required. The provision of a separate cycle is disadvantageous in that it requires additional equipment and additional power, but re-liquefaction of almost the entire amount of evaporative gas is guaranteed.

本発明のように蒸発ガス自体を冷媒として使用して蒸発ガスを再液化するシステムの再液化性能は、再液化される蒸発ガス(以下、「再液化対象蒸発ガス」という。)の圧力によって大幅に異なるが、再液化対象蒸発ガスの圧力による再液化性能を調べる実験(以下、「実験1」とする。)結果は下記の通りである。   The reliquefaction performance of a system that reliquefies evaporative gas using the evaporative gas itself as a refrigerant as in the present invention is greatly dependent on the pressure of the reliquefied evaporative gas (hereinafter referred to as “reliquefied target evaporative gas”). The results of an experiment (hereinafter referred to as “Experiment 1”) for examining the reliquefaction performance by the pressure of the reliquefied target evaporating gas are as follows.

(実験1)
再液化対象蒸発ガスの圧力による再液化性能評価実験の条件は、下記の通りである。
(Experiment 1)
The conditions of the reliquefaction performance evaluation experiment by the pressure of the reliquefied target evaporating gas are as follows.

1.対象船舶:推進用エンジンである高圧ガス噴射エンジンと、発電用エンジンである低圧エンジンを備えたLPG運搬船。   1. Target ship: An LPG carrier equipped with a high-pressure gas injection engine that is a propulsion engine and a low-pressure engine that is a power generation engine.

2.プロセス計算プログラム:Aspen HYSYS V8.0   2. Process calculation program: Aspen HYSYS V8.0

3.物性値の計算式:Peng−Robinson方程式   3. Formulas for calculating physical properties: Peng-Robinson equation

4.蒸発ガスの量:170,000CBM(cubic meter)級のLPG運搬船で約3,500kg/h〜4,000kg/hの蒸発ガスが発生するため、本実験では3,800kg/hを適用する。   4). Amount of evaporation gas: Since an evaporation gas of about 3,500 kg / h to 4,000 kg / h is generated in a 170,000 CBM (cubic meter) class LPG carrier, 3,800 kg / h is applied in this experiment.

5.蒸発ガスの成分:貯蔵タンクから排出された蒸発ガスと圧縮機で圧縮した蒸発ガスの両方に、窒素(N)10%、メタン(CH)90%の組成を適用する。 5. Evaporative gas components: A composition of 10% nitrogen (N 2 ) and 90% methane (CH 4 ) is applied to both the evaporated gas discharged from the storage tank and the evaporated gas compressed by the compressor.

6.貯蔵タンクから排出された蒸発ガスの温度と圧力:圧力は1.06bara、温度は−120℃を適用する。   6). Temperature and pressure of the evaporative gas discharged from the storage tank: a pressure of 1.06 bara and a temperature of −120 ° C. are applied.

7.エンジンの燃料消費量:実際の船舶運航の際には経済性を考慮して、エンジンを低負荷で運転するが、本実験では推進用エンジンと発電用のエンジンで使用する蒸発ガスの総量が、貯蔵タンクで発生する蒸発ガス(3,800kg/h)の70%である2,660kg/hであると仮定する。   7). Engine fuel consumption: In actual ship operation, considering the economy, the engine is operated at a low load. In this experiment, the total amount of evaporative gas used in the propulsion engine and the power generation engine is Assume 2,660 kg / h, which is 70% of the evaporative gas (3,800 kg / h) generated in the storage tank.

8.圧縮機の容量:通常の圧縮機容量は、貯蔵タンクで発生する蒸発ガスの150%を超えないが、本計算では圧縮機の吸込流量を基準に、貯蔵タンクで発生する蒸発ガスの120%(3,800kg/h×120%=4,650kg/h)を適用する。   8). Compressor capacity: The normal compressor capacity does not exceed 150% of the evaporation gas generated in the storage tank, but in this calculation, 120% of the evaporation gas generated in the storage tank (based on the suction flow rate of the compressor) 3,800 kg / h × 120% = 4,650 kg / h) is applied.

9.熱交換器の性能:対数平均温度差(LMTD;Logarithmic Mean Temperature Difference)13℃以上、最小二乗法(Minimum Approach)3℃以上を適用する。   9. Performance of heat exchanger: logarithmic mean temperature difference (LMTD) 13 ° C or higher, minimum square method (Minimum Approach) 3 ° C or higher is applied.

熱交換器を設計する際には、熱交換器に流入する低温流体と高温流体の温度と熱流量は各々固定し、冷媒として使用する流体の温度が冷却する流体の温度より高くならないようにして(すなわち、熱流量による温度を示したグラフで、低温流体のグラフと高温流体のグラフが交差しないように)、対数平均温度差(LMTD;Logarithmic Mean Temperature Difference)を可能な限り小さくする。   When designing a heat exchanger, the temperature and heat flow of the low-temperature fluid and the high-temperature fluid flowing into the heat exchanger are fixed, and the temperature of the fluid used as the refrigerant should not be higher than the temperature of the cooling fluid. In other words, a logarithmic mean temperature difference (LMTD) is made as small as possible (so that the graph of the temperature by heat flow does not intersect the graph of the cold fluid and the graph of the hot fluid).

対数平均温度差(LMTD)は、高温流体と低温流体が互いに反対方向から注入して反対側に排出される熱交換方式の対向流である場合、低温流体が熱交換器を通過する前の温度をtc1、低温流体が熱交換器を通過した後の温度をtc2、高温流体が熱交換器を通過する前の温度をth1、高温流体が熱交換器を通過した後の温度をth2、d1=th2−tc1、d2=th1−tc2であるとした場合、(d2−d1)/ln(d2/d1)で表現される数値であり、対数平均温度差が小さいほど熱交換器の効率は高くなる。   The logarithm mean temperature difference (LMTD) is the temperature before the low temperature fluid passes through the heat exchanger when the high temperature fluid and the low temperature fluid are in opposite directions of the heat exchange system in which the high temperature fluid and the low temperature fluid are injected from opposite directions and discharged to the opposite side. Tc1, the temperature after the low temperature fluid passes through the heat exchanger, tc2, the temperature before the high temperature fluid passes through the heat exchanger, th1, the temperature after the high temperature fluid passes through the heat exchanger, th2, d1 = Assuming that th2−tc1 and d2 = th1−tc2, this is a numerical value expressed by (d2−d1) / ln (d2 / d1), and the efficiency of the heat exchanger increases as the logarithmic average temperature difference decreases. .

熱流量による温度を示したグラフにおける対数平均温度差(LMTD)は、冷媒として使用する低温流体と、冷媒と熱交換されて冷却する高温流体の間隔で表し、低温流体と高温流体の間隔が狭いほど対数平均温度差(LMTD)が少ないことを意味し、対数平均温度差(LMTD)が少ないのは熱交換器の効率が高いことを意味する。   The logarithm mean temperature difference (LMTD) in the graph showing the temperature by heat flow is expressed by the interval between the low-temperature fluid used as the refrigerant and the high-temperature fluid that is cooled by heat exchange with the refrigerant, and the interval between the low-temperature fluid and the high-temperature fluid is narrow. This means that the logarithm average temperature difference (LMTD) is small, and a low logarithm average temperature difference (LMTD) means that the efficiency of the heat exchanger is high.

前記1〜9の実験条件の熱力学計算は、再液化対象蒸発ガスの高圧圧縮が再液化性能に与える影響を定量的に提示するために実施した。蒸発ガスの圧力による再液化性能と熱交換器の冷却曲線の特性を検証するために、再液化対象蒸発ガスの圧力は、39bara、50bara〜200baraの範囲における10baraごとの各圧力、250bara及び300baraで各圧力別の再液化量と熱交換器の冷却曲線を熱力学的に計算した。   The thermodynamic calculation of the experimental conditions 1 to 9 was performed in order to quantitatively present the influence of high pressure compression of the reliquefied evaporation gas on the reliquefaction performance. In order to verify the characteristics of the reliquefaction performance by the pressure of the evaporating gas and the cooling curve of the heat exchanger, the pressure of the evaporating gas to be reliquefied is 39 bar, 50 bara to 200 bara, each 10 bara pressure, 250 bara and 300 bara. The reliquefaction amount for each pressure and the cooling curve of the heat exchanger were calculated thermodynamically.

図2は、本発明の一実施形態に係る蒸発ガス再液化システムにおいて、再液化対象蒸発ガスの圧力が39baraまたは50bara〜120baraの範囲における10baraごとの各圧力である場合の高温流体と低温流体との各々の熱流量による温度変化を示したグラフである。図3は、本発明の一実施形態に係る蒸発ガス再液化システムにおいて、再液化対象蒸発ガスの圧力が130bara〜200baraの範囲における10baraごとの各圧力または300baraである場合の高温流体と低温流体の各々の熱流量による温度変化を示したグラフである。   FIG. 2 is a schematic view of the evaporative gas reliquefaction system according to an embodiment of the present invention, in which the high temperature fluid and the low temperature fluid when the pressure of the revaporization target evaporative gas is 39 bara or 10 bara in a range of 50 bara to 120 bara. It is the graph which showed the temperature change by each heat flow. FIG. 3 is a schematic diagram of the evaporative gas reliquefaction system according to an embodiment of the present invention. It is the graph which showed the temperature change by each heat flow rate.

また、図4は、再液化対象蒸発ガスの圧力が39baraである場合の本発明の一実施形態に係る蒸発ガス再液化システムの概略図である。図5は、再液化対象蒸発ガスの圧力が150baraである場合の本発明の一実施形態に係る蒸発ガス再液化システムの概略図である。図6は、再液化対象蒸発ガスの圧力が300baraである場合の本発明の一実施形態に係る蒸発ガス再液化システムの概略図である。   FIG. 4 is a schematic diagram of an evaporative gas reliquefaction system according to an embodiment of the present invention when the pressure of the reliquefied evaporative gas is 39 bara. FIG. 5 is a schematic diagram of an evaporative gas reliquefaction system according to an embodiment of the present invention when the pressure of the reliquefied target evaporative gas is 150 bara. FIG. 6 is a schematic diagram of an evaporative gas reliquefaction system according to an embodiment of the present invention when the pressure of the reliquefied evaporative gas is 300 bara.

表1は、本発明の一実施形態に係る蒸発ガス再液化システムで、再液化対象蒸発ガスの圧力による再液化性能の計算値を示す。   Table 1 shows the calculated value of the reliquefaction performance depending on the pressure of the reliquefied target evaporative gas in the evaporative gas reliquefaction system according to the embodiment of the present invention.

Figure 0006347004
Figure 0006347004

また、図7及び図8は、前記表1の「再液化量」を39bara〜300baraの圧力範囲で示したグラフである。   7 and 8 are graphs showing the “reliquefaction amount” in Table 1 in a pressure range of 39 bara to 300 bara.

図2〜図8及び表1を参照した結果、再液化対象蒸発ガスの冷却曲線において、たとえ蒸発ガスの圧縮圧力が超臨界状態の区間であっても、50bara〜100baraの範囲では39baraの場合に見られた潜熱区間のような水平区間が徐々に減少しつつも存在することが確認され、圧縮圧力160baraで最大液化量(膨張前の冷却温度−122.4℃、再液化量1,174.6kg/h、再液化量の相対比率208.4%)を示すことが確認された。   As a result of referring to FIGS. 2 to 8 and Table 1, in the cooling curve of the evaporative gas to be reliquefied, even if the compression pressure of the evaporative gas is in the supercritical state, it is 39 bara in the range of 50 bara to 100 bara. It was confirmed that the horizontal section such as the latent heat section that was observed was gradually decreasing, and the maximum liquefaction amount (cooling temperature before expansion—122.4 ° C., reliquefaction amount 1,174. 6 kg / h, a relative ratio of reliquefaction amount of 208.4%) was confirmed.

再液化対象蒸発ガスが低圧の場合と高圧の場合において最も大きい差は膨張前の冷却温度である。図8から分かるように、圧力による冷却曲線の差のため、低圧の場合には膨張前の冷却温度で限界が発生して冷却温度を大幅に下げることができないのに対し、高圧の場合には貯蔵タンクから排出される蒸発ガスの温度近くまで冷却が可能である。   The largest difference between the case where the reliquefied evaporation gas is low pressure and high pressure is the cooling temperature before expansion. As can be seen from FIG. 8, due to the difference in the cooling curve due to pressure, in the case of low pressure, a limit occurs in the cooling temperature before expansion and the cooling temperature cannot be lowered significantly, whereas in the case of high pressure Cooling is possible to near the temperature of the evaporated gas discharged from the storage tank.

この差は、蒸発ガスの主成分であるメタン(methane、CH)の物性値の特性上、臨界圧力(純粋なメタンの場合は約47bara)以下では潜熱区間が存在し、その臨界圧力以上で潜熱区間と類似な区間が存在するが、減少していることがわかる。したがって、再液化量の観点では、蒸発ガスを再液化する場合には臨界圧力の47bara以上で実施することが好ましい。 This difference is due to the characteristics of the physical properties of methane (methane, CH 4 ), which is the main component of the evaporative gas. It can be seen that there is a section similar to the latent heat section, but it is decreasing. Therefore, from the viewpoint of the amount of reliquefaction, when revaporizing the evaporation gas, it is preferable to carry out at a critical pressure of 47 bara or higher.

一方、ME−GIエンジンは燃料ガスの供給圧力が150bara〜400bara(主に300baraで運転)の範囲であるが、図7及び表1の結果のように、再液化対象蒸発ガスの圧力が150〜170bara付近である場合に再液化量が最大値を示し、150〜300baraの間では液化量の変化がほぼないという点で、ME−GIエンジンに燃料を供給しながら蒸発ガスを再液化する場合には、再液化や燃料供給の制御が容易になるという利点がある。   On the other hand, the ME-GI engine has a fuel gas supply pressure in the range of 150 bara to 400 bara (mainly operated at 300 bara), but as shown in FIG. When re-liquefying evaporative gas while supplying fuel to the ME-GI engine, the re-liquefaction amount shows the maximum value in the vicinity of 170 bara and there is almost no change in the liquefaction amount between 150 and 300 bara. Has the advantage of easy reliquefaction and control of fuel supply.

表1の「再液化量」は、図4〜図6において、圧縮機(10)、熱交換器(20)、及び減圧装置(30)を通過した後に気液分離器(40)で分離した再液化された液化天然ガスの流量を示し、「再液化量の相対比率」は、再液化対象蒸発ガスが39baraである場合の再液化量に比べて各圧力における再液化量の相対比率(%)を表す。   The “reliquefaction amount” in Table 1 was separated by the gas-liquid separator (40) after passing through the compressor (10), the heat exchanger (20), and the decompression device (30) in FIGS. Indicates the flow rate of the liquefied liquefied natural gas, and the “relative ratio of the liquefied amount” indicates the relative ratio (% ).

一方、「再液化率」で再液化性能を示すことも可能であり、再液化率は再液化された液化天然ガスの流量を再液化対象蒸発ガス全体の流量で割った値を示す。すなわち、「再液化量」は再液化された液化天然ガスの絶対量を表し、「再液化率」は全体の再液化対象蒸発ガスのうち再液化された液化天然ガスの割合を表す。   On the other hand, it is also possible to indicate the reliquefaction performance by the “reliquefaction rate”, and the reliquefaction rate indicates a value obtained by dividing the flow rate of the reliquefied liquefied natural gas by the flow rate of the entire reliquefied evaporation gas. That is, “reliquefaction amount” represents the absolute amount of liquefied liquefied natural gas, and “reliquefaction rate” represents the proportion of liquefied natural gas that has been reliquefied out of the entire reliquefied evaporation gas.

一例として、船舶の速度が低くて推進用エンジンで蒸発ガスの使用量が少なくなると、再液化対象蒸発ガスの量が増加し、「再液化量」も増加する。しかし、前記実験1の条件では、冷媒として使用される流体である、貯蔵タンクから排出される蒸発ガスと気液分離器で分離した気体成分の合計が圧縮機の容量制限によりほぼ一定であるため、「再液化率」は減少する。   As an example, when the speed of the ship is low and the amount of evaporative gas used in the propulsion engine decreases, the amount of evaporative gas to be reliquefied increases and the “reliquefaction amount” also increases. However, under the conditions of Experiment 1, the total of the gas components separated by the gas-liquid separator and the evaporated gas discharged from the storage tank, which is the fluid used as the refrigerant, is almost constant due to the capacity limit of the compressor. The “reliquefaction rate” decreases.

前記実験1で圧縮機に流入する冷媒の流量は、貯蔵タンクで発生する蒸発ガス3,800kg/hの120%である4,560kg/hであり、この中で、エンジンの使用量2,660kg/h(ME−GIエンジン2,042kg/h+DFDG618kg/h)を除いた1,900kg/hが再液化対象蒸発ガスとなる。   In the experiment 1, the flow rate of the refrigerant flowing into the compressor is 4,560 kg / h, which is 120% of the 3,800 kg / h of the evaporating gas generated in the storage tank. Among these, the engine usage amount is 2,660 kg. 1,900 kg / h excluding / h (ME-GI engine 2,042 kg / h + DFDG 618 kg / h) is the reliquefied target evaporating gas.

再液化対象蒸発ガスの圧力を400baraまで高めて実験しても300baraの場合と大差はなく、150baraの場合と400baraの場合の再液化流量差は4%以内であった。   Even when the experiment was carried out by increasing the pressure of the re-liquefied evaporation gas to 400 bara, there was no significant difference from the case of 300 bara, and the difference in reliquefaction flow rate between 150 bara and 400 bara was within 4%.

一方、図2及び図3の各グラフにおいて、破線(上)で表示された高温流体は再液化対象蒸発ガスを意味し、実線(下)で表示された低温流体は貯蔵タンクから排出された蒸発ガス、すなわち冷媒を意味する。   On the other hand, in each graph of FIG.2 and FIG.3, the high temperature fluid displayed with the broken line (upper) means the re-liquefied evaporation gas, and the low temperature fluid displayed with the solid line (lower) is the evaporation discharged from the storage tank. It means gas, that is, refrigerant.

図2及び図3の各グラフで、熱流量は変化するが温度変化がない直線区間が潜熱区間であり、メタンは超臨界流体の状態で潜熱区間がない特性があるため、超臨界流体であるか否かによって再液化量は大幅に異なる。すなわち、再液化対象蒸発ガスが超臨界流体である場合には熱交換時に潜熱区間がないため、再液化流量及び再液化率が高くなる。   In each graph of FIG. 2 and FIG. 3, the straight section where the heat flow changes but the temperature does not change is the latent heat section, and methane is a supercritical fluid and has no latent heat section, so it is a supercritical fluid. The amount of reliquefaction varies greatly depending on whether or not That is, when the reliquefied target evaporating gas is a supercritical fluid, there is no latent heat section at the time of heat exchange, so the reliquefaction flow rate and reliquefaction rate are increased.

以上の結果をまとめると、再液化対象蒸発ガスが超臨界状態である場合に再液化性能が高く、特に100bara〜400baraの範囲で、好ましくは150bara〜400baraの範囲で、より好ましくは150bara〜300baraの範囲で再液化性能が高かった。   Summarizing the above results, the reliquefaction performance is high when the reliquefied evaporation gas is in a supercritical state, particularly in the range of 100 bara to 400 bara, preferably in the range of 150 bara to 400 bara, more preferably in the range of 150 bara to 300 bara. Reliquefaction performance was high in the range.

ME−GIエンジンの要求圧力が150bara〜400baraである点を考慮すると、ME−GIエンジンの要求圧力を満たすため圧縮した蒸発ガスを、そのまま再液化対象蒸発ガスとして使用する場合、再液化性能が高くなるため、ME−GIエンジンに燃料を供給するシステムと蒸発ガス自体を冷媒として使用する蒸発ガス再液化システムとを連携させると非常に有利な利点があることを確認できる。   Considering that the required pressure of the ME-GI engine is 150 bara to 400 bara, the reliquefaction performance is high when the evaporated gas compressed to satisfy the required pressure of the ME-GI engine is used as the reliquefied target evaporative gas as it is. Therefore, it can be confirmed that there is a very advantageous advantage when the system for supplying fuel to the ME-GI engine and the evaporative gas reliquefaction system using the evaporative gas itself as a refrigerant are linked.

一方、上述した実験1は再液化対象蒸発ガスの圧力による再液化性能をシミュレーションプログラムによって評価したものであり、続いてこの結果が熱交換器を使用する実際の再液化装置で同じ結果を示すか否かを調べるために、PCHE(Printed Circuit Heat Exchanger)を使用して実験(以下、「実験2」という。)した。   On the other hand, in Experiment 1 described above, the reliquefaction performance due to the pressure of the reliquefied target evaporative gas was evaluated by a simulation program, and then whether this result shows the same result in an actual reliquefaction apparatus using a heat exchanger? In order to investigate whether or not, an experiment (hereinafter, referred to as “Experiment 2”) was performed using PCHE (Printed Circuit Heat Exchanger).

(実験2)
実際の運航条件では蒸発ガスの発生量は一定であるが、エンジンで使用する蒸発ガスの量が変化するため、エンジンで使用されず余った再液化対象蒸発ガスの流量が変化する。したがって、実験2では、再液化対象蒸発ガスの流量を変えながら、実際の再液化装置の再液化性能を評価した。実験の便宜上、爆発性を有するメタンに代えて一般的に多く使用される窒素を冷媒として利用し、使用される窒素の温度は貯蔵タンクから排出された蒸発ガスと同様に調整し、その他の条件も前記実験1の1〜9の条件と同様に調整した。
(Experiment 2)
Under actual operating conditions, the amount of evaporative gas generated is constant, but the amount of evaporative gas used in the engine changes, so the flow rate of the remaining reliquefied evaporative gas that is not used in the engine changes. Therefore, in Experiment 2, the reliquefaction performance of the actual reliquefaction apparatus was evaluated while changing the flow rate of the reliquefaction target evaporative gas. For convenience of experiment, instead of explosive methane, nitrogen, which is generally used, is used as a refrigerant, and the temperature of the nitrogen used is adjusted in the same manner as the evaporative gas discharged from the storage tank, and other conditions Was also adjusted in the same manner as the conditions 1 to 9 in Experiment 1.

また、運航条件に応じて使用するME−GIエンジンの燃料消費量が変化するため、実際のLNG運搬船を想定して実験した。前記実験1の条件で、LNG運搬船のME−GIエンジンの大きさを25MW(12.5MW、2機)であると想定して最高速度で運航すれば約19.5knot(エンジンの燃料消費量は約3,800kg/h)で運航することができ、経済的速度で運航すれば約17knot(エンジンの燃料消費量は約2,660kg/h)で運航することになる。したがって、実際の運航条件を考慮すると、最高運航速度の19.5knot、経済的運航速度の17knot及び停泊状態(ME−GIエンジンの燃料消費量0、DFDGの燃料消費量618kg/h)がほとんどの運航条件になる。実験2では、これらの条件で各々の再液化性能を実験した。   Moreover, since the fuel consumption of the ME-GI engine used according to the operating conditions changes, the experiment was conducted assuming an actual LNG carrier. Assuming that the size of the ME-GI engine of the LNG carrier is 25 MW (12.5 MW, 2 aircraft) under the conditions of Experiment 1 above, it is about 19.5 knots (the fuel consumption of the engine is It can be operated at about 3,800 kg / h), and if operated at an economic speed, it will operate at about 17 knots (engine fuel consumption is about 2,660 kg / h). Therefore, considering the actual operating conditions, the maximum operating speed is 19.5 knots, the economic operating speed is 17 knots, and the berthing state (ME-GI engine fuel consumption 0, DFDG fuel consumption 618 kg / h) It becomes operational conditions. In Experiment 2, each reliquefaction performance was tested under these conditions.

冷媒と再液化対象蒸発ガスとして窒素を使用する場合には、再液化対象蒸発ガスの流量に関係なく、再液化性能が前記実験1の計算値とほぼ同じ水準であることが確認された。すなわち、LNG運搬船の運航速度に応じて推進用エンジンの蒸発ガス消費量が異なるため、再液化対象蒸発ガスの流量も変わるが、冷媒及び再液化対象蒸発ガスとして窒素を使用する場合には再液化対象蒸発ガスの流量に関係なく再液化性能が安定的に維持された。   When nitrogen was used as the refrigerant and the reliquefication target evaporative gas, it was confirmed that the reliquefaction performance was almost the same level as the calculated value of Experiment 1 regardless of the flow rate of the reliquefaction target evaporative gas. That is, the amount of evaporative gas consumed by the propulsion engine varies depending on the operating speed of the LNG carrier, so the flow rate of the evaporative gas subject to reliquefaction also changes. However, when nitrogen is used as the refrigerant and the evaporative gas subject to reliquefaction, Regardless of the flow rate of the target evaporative gas, the reliquefaction performance was stably maintained.

しかし、実際の蒸発ガス再液化システムでは、冷媒及び再液化対象蒸発ガスに窒素の代わりにメタン(すなわち、実際の貯蔵タンクで発生する蒸発ガス)を適用した場合には、LNG運搬船が停泊状態や、最高運航速度の付近(最高運航速度の条件ではLNG貯蔵タンクで発生する蒸発ガスのほとんどを燃料として使用することもある。)で再液化性能が前記実験1の計算値とほぼ同じ結果を示し、経済的運航速度である最高運航速度の燃料消費量の70%で船舶を運航する場合とそれ以下の速度で船舶を運航する場合には、再液化性能が理論的予想値の70%以下を示し、運航速度区間によっては再液化性能がより低い場合も確認された。すなわち、冷媒及び再液化対象蒸発ガスとして窒素の代わりにメタン(すなわち、実際の貯蔵タンクで発生する蒸発ガス)を使用する場合には、再液化対象蒸発ガスの流量によって再液化性能が理論上の計算値に達しない区間が存在した。   However, in an actual evaporative gas reliquefaction system, when methane (that is, evaporative gas generated in an actual storage tank) is applied to the refrigerant and evaporative gas to be reliquefied instead of nitrogen, the LNG carrier is In the vicinity of the maximum operation speed (most evaporative gas generated in the LNG storage tank may be used as fuel under the conditions of the maximum operation speed), the reliquefaction performance is almost the same as the calculated value in Experiment 1 above. When operating a ship at 70% of the fuel consumption of the maximum operating speed, which is the economic operating speed, and when operating a ship at a lower speed, the reliquefaction performance will be 70% or less of the theoretical expected value. It was confirmed that the reliquefaction performance was lower depending on the operation speed section. That is, when methane (that is, evaporation gas generated in an actual storage tank) is used instead of nitrogen as the refrigerant and reliquefaction target evaporation gas, the reliquefaction performance is theoretically determined by the flow rate of the reliquefaction target evaporation gas. There was an interval that did not reach the calculated value.

具体的に、実際の蒸発ガス再液化システムの再液化性能が理論的な計算値に達しない区間を例示すると下記の通りである。   Specifically, an example of a section where the reliquefaction performance of the actual evaporative gas reliquefaction system does not reach the theoretical calculation value is as follows.

1.25MWのME−GIエンジンを使用するLNG運搬船が10〜17knotの速度で運航する場合。   An LNG carrier using a 1.25 MW ME-GI engine operates at a speed of 10 to 17 knots.

2.貯蔵タンクで発生する蒸発ガスの流量が3,800kg/hであって、エンジン(推進用エンジンのME−GIエンジン+発電用エンジンのDFDG)で燃料として使用する蒸発ガスの流量が1,100〜2,660kg/hである場合。   2. The flow rate of evaporative gas generated in the storage tank is 3,800 kg / h, and the flow rate of evaporative gas used as fuel in the engine (ME-GI engine for propulsion engine + DFDG for power generation engine) is 1,100 to When it is 2,660 kg / h.

3.貯蔵タンクで発生する蒸発ガスの流量が3,800kg/hであって、再液化対象蒸発ガスの流量が1,900〜3,300kg/hである場合。   3. When the flow rate of the evaporative gas generated in the storage tank is 3,800 kg / h and the flow rate of the reliquefied evaporative gas is 1,900-3,300 kg / h.

4.冷媒として使用される蒸発ガス(気液分離器で分離した気体成分を含む。)の流量に対する再液化対象蒸発ガスの流量の比が0.42〜0.72の範囲である場合。   4). The ratio of the flow rate of the re-liquefied evaporative gas to the flow rate of the evaporating gas (including the gas component separated by the gas-liquid separator) used as the refrigerant is in the range of 0.42 to 0.72.

船舶の運航条件または再液化対象蒸発ガスの流量によって実際に測定される再液化量と理論的な計算値には大差があるため、この問題を解決する必要が生じた。再液化性能が低くなって再液化されない蒸発ガスが多くなると、蒸発ガスの外部排出と燃焼によるエネルギーの浪費、別の再液化サイクルによって再液化するなどの追加措置が必要になるという問題がある。このように、窒素と異なって蒸発ガスの再液化性能が理論的な予想値と大差があるのは、窒素と蒸発ガスの物性値の差に起因すると考えられる。   Since there is a large difference between the reliquefaction amount actually measured and the theoretical calculation value depending on the ship operating conditions or the flow rate of the evaporative gas to be reliquefied, it is necessary to solve this problem. If the re-liquefaction performance becomes low and the amount of evaporative gas that is not re-liquefied increases, there is a problem that additional measures such as waste of energy due to external discharge of evaporative gas and combustion, and re-liquefaction by another re-liquefaction cycle are required. Thus, unlike nitrogen, the reliquefaction performance of evaporative gas is significantly different from the theoretically expected value because of the difference in the physical property values of nitrogen and evaporative gas.

以上の結果からLNG運搬船の運航条件が変わっても、すなわち、再液化対象蒸発ガスの流量が変動しても、再液化性能を安定的に維持するステップが必要であることが分かる。   From the above results, it can be seen that even if the operating conditions of the LNG carrier change, that is, even if the flow rate of the reliquefied evaporative gas fluctuates, a step for stably maintaining the reliquefaction performance is necessary.

したがって、本発明の実施形態では、貯蔵タンクから排出される蒸発ガスを高圧で圧縮し、高圧圧縮蒸発ガスの全部または一部を分岐させて貯蔵タンクから排出される蒸発ガスと熱交換するステップ、及び熱交換した高圧圧縮蒸発ガスを減圧するステップを含む高圧ガス噴射エンジンを備えるLNG船の蒸発ガス再液化方法において、LNG船の運航条件が変更、または再液化対象蒸発ガスの流量が変動しても、再液化性能を安定的に維持するステップを含むことを特徴とする、高圧ガス噴射エンジンを備えるLNG船の蒸発ガス再液化方法を提供する。   Therefore, in the embodiment of the present invention, the step of compressing the evaporative gas discharged from the storage tank at high pressure, branching all or part of the high-pressure compressed evaporative gas and exchanging heat with the evaporated gas discharged from the storage tank, In the LNG ship evaporative gas reliquefaction method including the step of decompressing the heat exchanged high pressure compressed evaporative gas, the operating condition of the LNG ship is changed or the flow rate of the reliquefied evaporative gas is changed. The present invention also provides a method for re-liquefying an evaporative gas of an LNG ship equipped with a high-pressure gas injection engine, the method including a step of stably maintaining re-liquefaction performance.

また、LNG船に搭載されるエンジンが、高圧ガス噴射エンジンではなく、X−DFエンジンなどの比較的低圧の蒸発ガスを燃料として使用する場合には、低圧エンジンの燃料として供給するために圧縮した蒸発ガスのうち再液化過程を経由する余剰蒸発ガスを更に加圧した後で再液化する場合に本発明の利点がある。   In addition, when the engine mounted on the LNG ship uses a relatively low-pressure evaporative gas such as an X-DF engine as a fuel instead of a high-pressure gas injection engine, the engine is compressed to be supplied as fuel for the low-pressure engine. The present invention has an advantage in the case of re-liquefaction after further pressurizing excess evaporative gas passing through the re-liquefaction process.

前記再液化方法は、LNG船が10〜17knotの速度で運航すること、エンジン(推進用エンジン+発電用エンジン)の燃料として使用する蒸発ガスの流量が1,100〜2,660kg/hであること、再液化対象蒸発ガスの流量が1,900〜3,300kg/hであること、または冷媒として使用する蒸発ガス(気液分離器で分離した気体成分を含む。)の流量に対する再液化対象蒸発ガスの流量の比が0.42〜0.72の範囲であることを特徴とする。   In the reliquefaction method, the LNG ship operates at a speed of 10 to 17 knots, and the flow rate of evaporative gas used as fuel for the engine (propulsion engine + power generation engine) is 1,100 to 2,660 kg / h. That is, the reliquefaction target evaporative gas flow rate is 1,900-3,300 kg / h, or the reliquefaction target with respect to the evaporative gas flow rate (including gas components separated by the gas-liquid separator) used as the refrigerant. The ratio of the flow rate of the evaporation gas is in the range of 0.42 to 0.72.

前記再液化性能を安定的に維持するステップは、熱交換器の比熱比(Heat Capacity Ratio)が0.7〜1.2の範囲である場合に、再液化性能が安定的に維持されることを特徴とする。   The step of stably maintaining the reliquefaction performance is that the reliquefaction performance is stably maintained when the specific heat ratio of the heat exchanger is in the range of 0.7 to 1.2. It is characterized by.

比熱比をCR、高温流体(本発明では再液化対象蒸発ガス)の流量をm1、高温流体の比熱をc1、低温流体(本発明では冷媒として使用する蒸発ガス)の流量をm2、低温流体の比熱をc2とした場合、次式(1)を満足する。
CR=(m1×c1)/(m2×c2) (1)
The specific heat ratio is CR, the flow rate of the high temperature fluid (evaporation gas to be reliquefied in the present invention) is m1, the specific heat of the high temperature fluid is c1, the flow rate of the low temperature fluid (evaporation gas used as a refrigerant in the present invention) is m2, and the flow rate of the low temperature fluid When the specific heat is c2, the following formula (1) is satisfied.
CR = (m1 × c1) / (m2 × c2) (1)

前記実験2では、冷媒として使用する蒸発ガス(気液分離器で発生する気体成分を含む。)の量は一定に維持されて再液化対象蒸発ガスの量が変化する場合、すなわち、前記式(1)のm2は一定に維持されてm1が変化する場合に再液化性能が計算値に達しないことが確認されたが、それだけでなく、冷媒として使用する蒸発ガス(気液分離器で発生する気体成分を含む。)の量が変化しても、すなわち、前記式(1)でm2が変化しても再液化性能が計算値に達しないことが確認された。   In Experiment 2, when the amount of evaporating gas (including gas components generated in the gas-liquid separator) used as the refrigerant is kept constant and the amount of evaporating gas to be reliquefied changes, that is, 1) m2 was kept constant, and it was confirmed that the reliquefaction performance did not reach the calculated value when m1 changed. Not only that, but evaporative gas used as refrigerant (generated in gas-liquid separator) It was confirmed that the reliquefaction performance did not reach the calculated value even if the amount of gas component was changed), that is, even if m2 was changed in the equation (1).

したがって、本発明の再液化性能を安定的に維持するステップは、冷媒として使用する蒸発ガス(気液分離器で発生する気体成分を含む。)の量と、再液化対象蒸発ガスの量のうちいずれか1つ以上が変動する場合に、熱交換器の比熱比0.7〜1.2の範囲である場合にも再液化性能が安定的に維持されることを特徴とする。   Therefore, the step of stably maintaining the reliquefaction performance of the present invention includes the amount of evaporating gas used as a refrigerant (including gas components generated in the gas-liquid separator) and the amount of evaporating gas to be reliquefied. When any one or more fluctuates, the reliquefaction performance is stably maintained even when the specific heat ratio of the heat exchanger is in the range of 0.7 to 1.2.

また、前記再液化性能を安定的に維持するステップは、前記実験1の計算条件の再液化量が計算値の50%以上になるように維持することを特徴とする。好ましくは、前記計算値の60%、さらに好ましくは70%以上になるように維持することを特徴とする。再液化量が計算値の50%以下になると、LNG運搬船の運航時に運航条件によって、余った蒸発ガスをガス燃焼装置(GCU)で燃焼して捨てなければならないという問題がある。   The step of stably maintaining the reliquefaction performance is characterized in that the reliquefaction amount under the calculation condition of Experiment 1 is maintained at 50% or more of the calculated value. Preferably, the calculated value is maintained at 60%, more preferably 70% or more. When the amount of reliquefaction is 50% or less of the calculated value, there is a problem in that excess evaporative gas must be burned and discarded by a gas combustion unit (GCU) depending on the operating conditions during operation of the LNG carrier.

以上の結果からLNG運搬船の運航条件が変わっても、すなわち、再液化対象蒸発ガスの流量が変動しても、再液化性能を安定的に維持するステップが必要であることが分かる。   From the above results, it can be seen that even if the operating conditions of the LNG carrier change, that is, even if the flow rate of the reliquefied evaporative gas fluctuates, a step for stably maintaining the reliquefaction performance is necessary.

また、再液化性能が理論的な予想値と大差がある原因の1つは、2つ以上のブロックを結合した形態の熱交換器が原因であることが分かった。   In addition, it has been found that one of the reasons why the reliquefaction performance has a large difference from the theoretically expected value is due to a heat exchanger in which two or more blocks are combined.

実際のLNG蒸発ガス再液化システムに適用する熱交換器は、再液化対象蒸発ガスが高圧である場合に有利であるPCHEであり、KOBELCO社、ALfa Laval社、Heatric社などが製造していて、処理容量のため1つのブロックでは限界があり、2つ以上のブロックを組み合わせて使用する必要がある。   The heat exchanger applied to the actual LNG evaporative gas reliquefaction system is PCHE, which is advantageous when the evaporative gas to be reliquefied is high pressure, manufactured by KOBELCO, ALfa Laval, Heatlic, etc. There is a limit in one block due to processing capacity, and it is necessary to use two or more blocks in combination.

2つ以上のブロックを結合して使用する必要のある場合の蒸発ガス処理容量を、「A以上B以下」であるとした場合、Aは1,500kg/h、2,000kg/h、2,500kg/h、3,000kg/h、3,500kg/hのいずれか1つであることもあり、Bは7,000kg/h、6,000kg/h、5,000kg/hのいずれか1つであることもある。一例として、2つ以上のブロックを結合して使用する必要のある場合の蒸発ガス処理容量は2,500kg/h以上5,000kg/h以下であることもある。   When the evaporative gas treatment capacity when two or more blocks need to be used in combination is “A or more and B or less”, A is 1,500 kg / h, 2,000 kg / h, 2, It may be any one of 500 kg / h, 3,000 kg / h, and 3,500 kg / h, and B is any one of 7,000 kg / h, 6,000 kg / h, and 5,000 kg / h. Sometimes it is. As an example, the evaporative gas treatment capacity when two or more blocks need to be used in combination may be 2,500 kg / h or more and 5,000 kg / h or less.

図10は、従来のPCHEの概略図である。   FIG. 10 is a schematic view of a conventional PCHE.

図10を参照すると、従来のPCHEは、高温流体流入パイプ(Hot Gas Inlet Pipe、110)、高温流体流入ヘッド(Hot Gas Inlet Header、120)、コア(Core、190)、高温流体排出ヘッド(Hot Gas Outlet Header、130)、高温流体排出パイプ(Hot Gas Outlet Pipe、140)、低温流体流入パイプ(Cold Gas Inlet Pipe、150)、低温流体流入ヘッド(Cold Gas Inlet Header、160)、低温流体排出ヘッド(Cold Gas Outlet Header、170)、及び低温流体排出パイプ(Cold Gas Outlet Pipe、180)を備える。   Referring to FIG. 10, a conventional PCHE includes a hot fluid inlet pipe (Hot Gas Inlet Pipe, 110), a hot fluid inlet head (Hot Gas Inlet Header, 120), a core (Core, 190), a hot fluid outlet head (Hot). Gas Outlet Header, 130), High Temperature Fluid Discharge Pipe (Hot Gas Outlet Pipe, 140), Low Temperature Fluid Inflow Pipe (Cold Gas Inlet Pipe, 150), Low Temperature Fluid Inflow Head (Cold Gas Inlet Header, 160), Low Temperature Fluid Discharge Head (Cold Gas Outlet Header, 170), and a cold fluid outlet pipe (Cold Gas Outlet Pipe, 180).

熱交換器に供給された高温流体は、高温流体流入パイプ(110)を介して熱交換器の内部に流入した後、高温流体流入ヘッド(120)によって分散され、コア(190)に送られる。コア(190)に送られた高温流体は、コア(190)で低温流体と熱交換して冷却された後、高温流体排出ヘッド(130)に溜まって高温流体排出パイプ(140)を介して熱交換器の外部に排出される。   The hot fluid supplied to the heat exchanger flows into the heat exchanger through the hot fluid inflow pipe (110), and then is dispersed by the hot fluid inflow head (120) and sent to the core (190). The high-temperature fluid sent to the core (190) is cooled by exchanging heat with the low-temperature fluid in the core (190), and then accumulated in the high-temperature fluid discharge head (130) to be heated through the high-temperature fluid discharge pipe (140). It is discharged outside the exchanger.

熱交換器に供給された低温流体は、低温流体流入パイプ(150)を介して熱交換器の内部に流入した後、低温流体流入ヘッド(160)によって分散されてコア(190)に送られる。コア(190)に送られた低温流体は、コア(190)で高温流体を冷却する熱交換の冷媒として使用された後、低温流体排出ヘッド(170)に溜まって低温流体排出パイプ(180)を介して熱交換器の外部に排出される。   The cryogenic fluid supplied to the heat exchanger flows into the heat exchanger through the cryogenic fluid inflow pipe (150), and then is dispersed by the cryogenic fluid inflow head (160) and sent to the core (190). The low-temperature fluid sent to the core (190) is used as a heat exchange refrigerant for cooling the high-temperature fluid in the core (190), and then is accumulated in the low-temperature fluid discharge head (170) to be connected to the low-temperature fluid discharge pipe (180). And discharged to the outside of the heat exchanger.

本発明における熱交換器の冷媒として使用する低温流体は、貯蔵タンクから排出された蒸発ガス(気液分離器で分離した気体成分を含む。)であり、熱交換器で冷却される高温流体は圧縮した再液化対象蒸発ガスである。   The low-temperature fluid used as the refrigerant of the heat exchanger in the present invention is evaporative gas (including gas components separated by the gas-liquid separator) discharged from the storage tank, and the high-temperature fluid cooled by the heat exchanger is Compressed re-liquefied evaporation gas.

一方、コア(190)は複数のブロックを備えることができ(図9は、3つのブロックを備える場合を示す。以下、本明細書において熱交換器のコアが3つのブロックを備える場合を説明するが、これに限定されない。)、熱交換器のコアが2つ以上のブロックを備えると、ブロックの間に空間が存在し、ブロックの間の空間に存在する空気が断熱層の役割をして、ブロック間の熱伝導度が低下することになる。   On the other hand, the core (190) can include a plurality of blocks (FIG. 9 illustrates a case where three blocks are provided. Hereinafter, a case where the core of the heat exchanger includes three blocks will be described in the present specification. However, when the core of the heat exchanger includes two or more blocks, a space exists between the blocks, and the air existing in the space between the blocks serves as a heat insulating layer. The thermal conductivity between the blocks will decrease.

後述する図18(b)グラフを参照すると、ブロック間の断熱層または断熱部(ギャップ(gap)、バリアー空気等)によりブロック間の温度分布が不均一であることが確認できる。   Referring to the graph of FIG. 18B described later, it can be confirmed that the temperature distribution between the blocks is non-uniform due to the heat insulating layer or the heat insulating portion (gap, barrier air, etc.) between the blocks.

また、冷媒として蒸発ガスを使用する場合、特定のブロックに先に冷媒が流入すると、冷媒が先に流入したブロックに、後で供給される冷媒が偏る現象が生じ、先に冷媒が流入されたブロックの温度が他のブロックの温度に比べてより低くなる。   In addition, when evaporating gas is used as a refrigerant, if the refrigerant flows into a specific block first, a phenomenon occurs in which the refrigerant supplied later is biased to the block into which the refrigerant has flowed first, and the refrigerant has flowed first. The temperature of the block is lower than the temperature of the other blocks.

冷媒が先に流入したブロックに冷媒が偏る現象とブロック間の熱伝導度が低下する現象が重なると、ブロック間の温度差が大きくなり、最終的には再液化性能が低下する結果となる。すなわち、特定のブロックに冷媒が偏っても、ブロック間の熱伝導度が高ければブロック間の温度差は大きくならないが、ブロック間の空気が断熱層の役割をすると、ブロック間の温度差は大きくなる。   If the phenomenon in which the refrigerant is biased to the block into which the refrigerant has previously flown overlaps with the phenomenon in which the thermal conductivity between the blocks decreases, the temperature difference between the blocks increases, and eventually the reliquefaction performance decreases. That is, even if the refrigerant is biased to a specific block, if the thermal conductivity between the blocks is high, the temperature difference between the blocks will not increase, but if the air between the blocks acts as a heat insulating layer, the temperature difference between the blocks will be large. Become.

図10は、本発明の第1実施形態に係る熱交換器の概略図である。   FIG. 10 is a schematic view of the heat exchanger according to the first embodiment of the present invention.

図10を参照すると、本実施形態の熱交換器は、図9に図示した従来のPCHEの構成に加えて、高温流体流入ヘッド(120)とコア(190)との間に設置される第1多孔板(210)、高温流体排出ヘッド(130)とコア(190)との間に設置される第2多孔板(220)、低温流体流入ヘッド(160)とコア(190)との間に設置される第3多孔板(230)、と低温流体排出ヘッド(170)とコア(190)との間に設置される第4多孔板(240)のうち少なくとも1つ以上をさらに備える。   Referring to FIG. 10, the heat exchanger of the present embodiment has a first PC installed between the high-temperature fluid inflow head (120) and the core (190) in addition to the configuration of the conventional PCHE illustrated in FIG. 9. Perforated plate (210), second perforated plate (220) installed between high temperature fluid discharge head (130) and core (190), installed between low temperature fluid inflow head (160) and core (190) And at least one of a third perforated plate (230) and a fourth perforated plate (240) installed between the cryogenic fluid discharge head (170) and the core (190).

本実施形態の熱交換器は、熱交換器に供給または熱交換器から排出される流体を分散させる手段を備えることを特徴として、流体を分散させるために流体の流れに抵抗を与える手段を使用することができる。本実施形態の多孔板(210、220、230、240)は流体を分散させる手段または流体の流れに抵抗を与える手段の一例であり、本実施形態の熱交換器が多孔板を備えることに限定されない。   The heat exchanger according to this embodiment includes means for dispersing fluid supplied to or discharged from the heat exchanger, and uses means for imparting resistance to the flow of fluid to disperse the fluid. can do. The porous plate (210, 220, 230, 240) of this embodiment is an example of a means for dispersing fluid or a means for imparting resistance to the flow of fluid, and the heat exchanger of this embodiment is limited to including a porous plate. Not.

本実施形態の多孔板(210、220、230、240)は、複数の孔が形成された薄い板部材であり、第1多孔板(210)は高温流体流入ヘッド(120)の断面と同じ大きさと形状を有することが好ましく、第2多孔板(220)は高温流体排出ヘッド(130)の断面と同じ大きさと形状を有することが好ましく、第3多孔板(230)は低温流体流入ヘッド(160)の断面と同じ大きさと形状を有することが好ましく、第4多孔板(240)は低温流体排出ヘッド(170)の断面と同じ大きさと形状を有することが好ましい。   The perforated plates (210, 220, 230, 240) of the present embodiment are thin plate members in which a plurality of holes are formed, and the first perforated plate (210) is the same size as the cross section of the high-temperature fluid inflow head (120). The second perforated plate (220) preferably has the same size and shape as the cross section of the high temperature fluid discharge head (130), and the third perforated plate (230) has a low temperature fluid inflow head (160). ) And the fourth perforated plate (240) preferably has the same size and shape as the cross section of the cryogenic fluid discharge head (170).

本実施形態の多孔板(210、220、230、240)に形成された複数の孔はすべての断面積が同じであることも可能であり、流体が流入または排出されるパイプ(110、140、150、180)付近の断面積は狭く、パイプ(110、140、150、180)から離れるほど断面積が広い孔が形成されることも可能である。   The plurality of holes formed in the perforated plates (210, 220, 230, 240) of the present embodiment may have the same cross-sectional area, and pipes (110, 140, 150, 180) in the vicinity of the cross-sectional area is narrow, and it is possible to form a hole having a wider cross-sectional area as the distance from the pipe (110, 140, 150, 180) increases.

また、本実施形態の多孔板(210、220、230、240)に形成された複数の孔は、形成密度が均一であることも可能であり、流体が流入または排出されるパイプ(110、140、150、180)付近の形成密度は低く、パイプ(110、140、150、180)から離れるほど形成密度が高くなることも可能である。形成密度が低いというのは、同じ面積内により少ない孔が形成されていることを意味し、形成密度が高いというのは、同じ面積により多くの孔が形成されていることを意味する。   The plurality of holes formed in the perforated plates (210, 220, 230, 240) of the present embodiment may have a uniform formation density, and pipes (110, 140) through which fluid flows in or out are provided. , 150, 180), the formation density is low, and the formation density can be increased as the distance from the pipe (110, 140, 150, 180) increases. A low formation density means that fewer holes are formed in the same area, and a high formation density means that more holes are formed in the same area.

また、本実施形態の多孔板(210、220、230、240)は、第1多孔板(210)及び第3多孔板(230)を通過した流体がコア(190)に効果的に分散して流入するように、またはコア(190)から排出された流体が効果的に分散して第2多孔板(220)及び第4多孔板(240)を通過できるように、コア(190)から所定間隔を離して設置されることが好ましい。多孔板(210、220、230、240)とコア(190)との間の距離は、例えば約20〜50mmである。   Further, in the porous plate (210, 220, 230, 240) of the present embodiment, the fluid that has passed through the first porous plate (210) and the third porous plate (230) is effectively dispersed in the core (190). A predetermined distance from the core (190) so that the fluid discharged from the core (190) can be effectively dispersed and pass through the second perforated plate (220) and the fourth perforated plate (240). It is preferable that they are installed apart from each other. The distance between the perforated plates (210, 220, 230, 240) and the core (190) is, for example, about 20 to 50 mm.

本実施形態の熱交換器は、第1〜第4多孔板(210、220、230、240)の少なくとも1つ以上によって流体を分散させるため、特定のブロックに冷媒が偏る現象が緩和される。   In the heat exchanger of the present embodiment, the fluid is dispersed by at least one of the first to fourth perforated plates (210, 220, 230, 240), so that the phenomenon that the refrigerant is biased to a specific block is alleviated.

本発明の第2実施形態に係る熱交換器は、図10に図示した第1実施形態の熱交換器を備える構成に加えて、第1多孔板(210)とコア(190)との間に設置される第1隔壁(310)、コア(190)と第2多孔板(220)との間に設置される第2隔壁(320)、第3多孔板(230)とコア(190)との間に設置される第3隔壁(330)、及びコア(190)と第4多孔板(240)との間に設置される第4隔壁(340)を備える。   The heat exchanger according to the second embodiment of the present invention is provided with the heat exchanger according to the first embodiment illustrated in FIG. 10, and between the first perforated plate (210) and the core (190). The first partition (310) installed, the second partition (320) installed between the core (190) and the second porous plate (220), the third porous plate (230) and the core (190) A third partition wall (330) disposed between the cores (190) and the fourth porous plate (240) is provided.

図11は、本発明の第2実施形態に係る熱交換器が備える第1隔壁または第2隔壁の概略図である。図12は、本発明の第2実施形態に係る熱交換器が備える第1隔壁と第1多孔板の概略図である。図13は、本発明の第2実施形態に係る熱交換器が備える第2隔壁と第2多孔板の概略図である。   FIG. 11 is a schematic view of the first partition or the second partition provided in the heat exchanger according to the second embodiment of the present invention. FIG. 12 is a schematic view of the first partition and the first perforated plate included in the heat exchanger according to the second embodiment of the present invention. FIG. 13 is a schematic view of the second partition and the second perforated plate provided in the heat exchanger according to the second embodiment of the present invention.

本実施形態の第1〜第4隔壁(310、320、330、340)はそれぞれ、第1〜第4多孔板(210、220、230、240)によって分散された流体が再び集まることを防止する。   The first to fourth partition walls (310, 320, 330, 340) of the present embodiment prevent the fluid dispersed by the first to fourth perforated plates (210, 220, 230, 240) from collecting again. .

図11及び図12を参照すると、本実施形態の第1隔壁(310)は、第1多孔板(210)の周縁部を所定の高さで囲み、囲まれた内部空間を複数の領域に分割する形状である。図11(a)及び図12(a)には、第1多孔板(210)の周縁部を所定の高さで囲んだ内部空間を4個に分割した形状が示され、図11(b)及び図12(b)には8個に分割した形状が示されている。   Referring to FIGS. 11 and 12, the first partition (310) of the present embodiment surrounds the peripheral edge of the first perforated plate (210) at a predetermined height, and divides the enclosed internal space into a plurality of regions. Shape. 11 (a) and 12 (a) show a shape in which the internal space surrounding the peripheral portion of the first perforated plate (210) at a predetermined height is divided into four parts, and FIG. 11 (b). FIG. 12B shows a shape divided into eight pieces.

図11(b)及び図12(b)に図示した第1隔壁(310)は、第1多孔板(210)の周縁部を所定の高さで囲んだ内部空間を、図11(a)及び図12(a)に示したように一方向の格子で分割するだけではなく、他方向の格子でも分割する。すなわち、図11(a)及び図12(a)に図示した第1隔壁(310)において、第1多孔板(210)の周縁部を所定の高さで囲んで内部空間を分割する部材を垂直部材(1)であるとすれば、図11(b)及び図12(b)に図示した第1隔壁(310)は、複数の垂直部材(1)だけでなく、各垂直部材(1)との間の空間を分割する複数の水平部材(2)を備え、一方向の格子と他方向の格子が互いに交差して内部空間を分割する。   11 (b) and 12 (b), the first partition wall (310) has an internal space surrounding the periphery of the first perforated plate (210) at a predetermined height, as shown in FIG. 11 (a) and FIG. As shown in FIG. 12 (a), not only the lattice in one direction is divided but also the lattice in the other direction is divided. That is, in the first partition wall (310) shown in FIGS. 11 (a) and 12 (a), the member that divides the inner space by surrounding the periphery of the first perforated plate (210) at a predetermined height is vertical. If it is a member (1), the 1st partition (310) illustrated in FIG.11 (b) and FIG.12 (b) is not only several vertical members (1) but each vertical member (1). The horizontal space (2) which divides | segments the space between is provided, the grating | lattice of one direction and the grating | lattice of another direction cross | intersect mutually, and divide | segment an interior space.

図11(b)及び図12(b)に示すように、第1多孔板(210)の内部空間を他方向で更に分割した場合、流体をより分散することができ、特に、複数のブロック間だけでなく、1つのブロック内に冷媒が再び集まることを防止する。   As shown in FIG. 11 (b) and FIG. 12 (b), when the internal space of the first perforated plate (210) is further divided in the other direction, the fluid can be more dispersed, especially between a plurality of blocks. In addition, the refrigerant is prevented from collecting again in one block.

また、第1多孔板(210)の内部空間を他方向で更に分割した場合、第1多孔板(210)とコア(190)との離隔をより安定的に維持できるという長所がある。特に、第1多孔板(210)を通過する流体の圧力によって第1多孔板(210)が屈曲してコア(190)と接触することを防止することができる。第1多孔板(210)とコア(190)が接触すると、接触した部分では流体の正常な供給ができなくなり熱交換効率が低下する虞がある。   Further, when the internal space of the first perforated plate (210) is further divided in the other direction, there is an advantage that the separation between the first perforated plate (210) and the core (190) can be more stably maintained. In particular, it is possible to prevent the first porous plate (210) from being bent and coming into contact with the core (190) by the pressure of the fluid passing through the first porous plate (210). When the first perforated plate (210) and the core (190) are in contact with each other, there is a possibility that the fluid cannot be normally supplied at the contacted portion and the heat exchange efficiency is lowered.

図11及び図12を参照すると、高温流体流入パイプ(110)を介して流入した高温流体は、高温流体流入ヘッド(120)、第1多孔板(210)、及び第1隔壁(310)を順次に通過してコア(190)に流入する。   Referring to FIGS. 11 and 12, the hot fluid flowing in through the hot fluid inlet pipe (110) sequentially passes through the hot fluid inlet head (120), the first perforated plate (210), and the first partition wall (310). And flows into the core (190).

図11及び図13を参照すると、本実施形態の第2隔壁(320)は、第2多孔板(220)の周縁部を所定の高さで囲み、囲まれた内部空間を複数の領域に分割する形状である。図11(a)及び図13(a)には、第2多孔板(220)の周縁部を所定の高さで囲んだ内部空間を4個に分割した形状が示され、図11(b)及び図13(b)には8個に分割した形状が示されている。   Referring to FIGS. 11 and 13, the second partition (320) of the present embodiment surrounds the peripheral portion of the second porous plate (220) at a predetermined height, and divides the enclosed internal space into a plurality of regions. Shape. 11 (a) and 13 (a) show a shape in which the inner space surrounding the peripheral portion of the second porous plate (220) at a predetermined height is divided into four parts, and FIG. 11 (b). FIG. 13B shows a shape divided into eight pieces.

図11(b)及び図13(b)に図示した第2隔壁(320)は、第2多孔板(220)の周縁部を所定の高さで囲んだ内部空間を、図11(a)及び図13(a)に示すように一方向の格子で分割するだけではなく、他方向の格子でも分割する。すなわち、図11(a)及び図13(a)に図示した第2隔壁(320)において、第2多孔板(220)の周縁部を所定の高さで囲んだ内部空間を分割する部材を垂直部材(1)とすれば、図11(b)及び図13(b)に図示された第2隔壁(320)は、複数の垂直部材(1)だけでなく、各垂直部材(1)との間の空間を分割する複数の水平部材(2)を備えて、一方向の格子とは他方向の格子が互いに交差して内部空間を分割する。   The second partition wall (320) shown in FIGS. 11 (b) and 13 (b) has an internal space that surrounds the peripheral edge of the second perforated plate (220) at a predetermined height, as shown in FIGS. As shown in FIG. 13 (a), not only the lattice in one direction is divided but also the lattice in another direction is also divided. That is, in the second partition wall (320) shown in FIGS. 11 (a) and 13 (a), a member that divides the internal space surrounding the peripheral portion of the second perforated plate (220) at a predetermined height is vertically arranged. In the case of the member (1), the second partition wall (320) shown in FIGS. 11 (b) and 13 (b) is not only a plurality of vertical members (1) but also each vertical member (1). A plurality of horizontal members (2) that divide the space between them are provided, and the lattice in one direction and the lattice in the other direction intersect with each other to divide the internal space.

図11(b)及び図13(b)に示すように、第2の多孔板(220)の内部空間を他方向で更に分割した場合、流体をより分散することができ、特に、複数のブロック間だけでなく1つのブロック内に冷媒が再び集まることを防止する。   As shown in FIG. 11 (b) and FIG. 13 (b), when the internal space of the second porous plate (220) is further divided in the other direction, the fluid can be more dispersed, and in particular, a plurality of blocks Refrigerant is prevented from collecting again in one block as well as in between.

また、第2多孔板(220)の内部空間を他方向で更に分割した場合、第2多孔板(220)とコア(190)の離隔をより安定的に維持できるという長所がある。特に、第2多孔板(220)を通過する流体の圧力によって第2多孔板(220)が屈曲してコア(190)と接触することを防止することができる。第2多孔板(220)とコア(190)が接触すると、接触した部分では流体の正常な排出ができなくなり熱交換効率が低下する虞がある。   In addition, when the internal space of the second porous plate (220) is further divided in the other direction, there is an advantage that the separation between the second porous plate (220) and the core (190) can be more stably maintained. In particular, it is possible to prevent the second porous plate (220) from being bent and coming into contact with the core (190) by the pressure of the fluid passing through the second porous plate (220). When the second perforated plate (220) and the core (190) are in contact with each other, the fluid may not be discharged normally at the contacted portion, and the heat exchange efficiency may be reduced.

図10及び図13を参照すると、コア(190)から排出された高温流体は、第2隔壁(320)、第2多孔板(220)、及び高温流体排出ヘッド(130)を順次に通過して高温流体排出パイプ(140)を介して排出される。   Referring to FIGS. 10 and 13, the hot fluid discharged from the core (190) sequentially passes through the second partition (320), the second perforated plate (220), and the hot fluid discharge head (130). It is discharged via a hot fluid discharge pipe (140).

図14は、本発明の第2実施形態に係る熱交換器が備える第3隔壁または第4隔壁の概略図である。図15は、本発明の第2実施形態に係る熱交換器が備える第3隔壁と第3多孔板の概略図である。図16は、本発明の第2実施形態に係る熱交換器が備える第4隔壁と第4多孔板の概略図である。   FIG. 14 is a schematic view of the third partition wall or the fourth partition wall included in the heat exchanger according to the second embodiment of the present invention. FIG. 15 is a schematic view of a third partition and a third perforated plate included in the heat exchanger according to the second embodiment of the present invention. FIG. 16 is a schematic view of the fourth partition and the fourth porous plate provided in the heat exchanger according to the second embodiment of the present invention.

図14及び図15を参照すると、本実施形態の第3隔壁(330)は、第3多孔板(230)の周縁部を所定の高さで囲み、囲まれた内部空間を複数の領域に分割する形状である。図14(a)及び図15(a)には、第3多孔板(230)の周縁部を所定の高さで囲んだ内部空間を4個に分割した形状が示され、図14(b)及び図15(b)には8個に分割した形状が示される。   Referring to FIGS. 14 and 15, the third partition wall (330) of the present embodiment surrounds the peripheral edge of the third perforated plate (230) at a predetermined height, and divides the enclosed internal space into a plurality of regions. Shape. 14 (a) and 15 (a) show a shape in which the internal space surrounding the peripheral portion of the third porous plate (230) at a predetermined height is divided into four parts, and FIG. 14 (b). FIG. 15B shows a shape divided into eight pieces.

図14(b)及び図15(b)に図示された第3隔壁(330)は、第3多孔板(230)の周縁部を所定の高さで囲んだ内部空間を、図14(a)及び図15(a)に示すように一方向の格子で分割するだけではなく、他方向の格子でも分割する。すなわち、図14(a)及び図15(a)に図示された第3隔壁(330)において、第3多孔板(230)の周縁部を所定の高さで囲んだ内部空間を分割する部材を垂直部材(1)とすれば、図14(b)及び図15(b)に図示された第3隔壁(330)は、複数の垂直部材(1)だけでなく、各垂直部材(1)との間の空間を分割する複数の水平部材(2)を備えて、一方向の格子とは他方向の格子が互いに交差して内部空間を分割する。   The third partition wall (330) shown in FIGS. 14 (b) and 15 (b) has an internal space surrounding the peripheral portion of the third porous plate (230) at a predetermined height as shown in FIG. 14 (a). Further, as shown in FIG. 15A, not only the lattice in one direction is divided but also the lattice in another direction is also divided. That is, in the third partition wall (330) shown in FIGS. 14 (a) and 15 (a), a member that divides the internal space surrounding the peripheral portion of the third porous plate (230) with a predetermined height is provided. In the case of the vertical member (1), the third partition wall (330) shown in FIGS. 14 (b) and 15 (b) includes not only the plurality of vertical members (1) but also each vertical member (1). A plurality of horizontal members (2) that divide the space between them are provided, and the lattice in one direction and the lattice in the other direction intersect with each other to divide the internal space.

図14(b)及び図15(b)に示したように、第3多孔板(230)の内部空間を他方向で更に分割した場合、流体をより分散することができ、特に複数のブロックとの間だけでなく、1つのブロック内でも冷媒が再び集まることを防止する。   As shown in FIGS. 14 (b) and 15 (b), when the internal space of the third porous plate (230) is further divided in the other direction, the fluid can be more dispersed, especially with a plurality of blocks. The refrigerant is prevented from collecting again not only during the period but also within one block.

また、第3多孔板(230)の内部空間を他方向で更に分割した場合、第3多孔板(230)とコア(190)の離隔をより安定的に維持できるという長所がある。特に、第3多孔板(230)を通過する流体の圧力によって第3多孔板(230)が屈曲してコア(190)と接触することを防止することができる。第3多孔板(230)とコア(190)が接触すると、接触した部分では流体の正常な供給ができなくなり熱交換効率が低下する虞がある。   Further, when the internal space of the third porous plate (230) is further divided in the other direction, there is an advantage that the separation between the third porous plate (230) and the core (190) can be more stably maintained. In particular, it is possible to prevent the third porous plate (230) from being bent and coming into contact with the core (190) by the pressure of the fluid passing through the third porous plate (230). When the third perforated plate (230) and the core (190) are in contact with each other, the fluid cannot be normally supplied at the contacted portion, and the heat exchange efficiency may be reduced.

図10及び図15を参照すると、低温流体流入パイプ(150)に沿って流入した低温流体は、低温流体流入ヘッド(160)、第3多孔板(230)、及び第3の隔壁(330)を順次に通ってコア(190)に流入する。   Referring to FIGS. 10 and 15, the cryogenic fluid flowing along the cryogenic fluid inflow pipe (150) passes through the cryogenic fluid inflow head (160), the third perforated plate (230), and the third partition wall (330). It flows through the core (190) sequentially.

図14及び図16を参照すると、本実施形態の第4隔壁(340)は、第4多孔板(240)の周縁部を所定の高さで囲み、囲まれた内部空間を複数の領域で分割する形状である。図14(a)及び図16(a)には、第4多孔板(240)の周縁部を所定の高さで囲んだ内部空間を4個に分けた形状が示され、図14(b)及び図16(b)には8個に分割した形状が示される。   Referring to FIGS. 14 and 16, the fourth partition wall (340) of the present embodiment surrounds the periphery of the fourth porous plate (240) at a predetermined height, and divides the enclosed internal space into a plurality of regions. Shape. 14 (a) and 16 (a) show a shape in which the inner space surrounding the peripheral portion of the fourth porous plate (240) at a predetermined height is divided into four parts, and FIG. 14 (b). FIG. 16B shows a shape divided into eight parts.

図14(b)及び図16(b)に図示された第4隔壁(340)は、第4多孔板(240)の周縁部を所定の高さで囲んだ内部空間を、図14(a)及び図16(a)に示すように一方向の格子で分割するだけではなく、他方向の格子でも分割する。すなわち、図14(a)及び図16(a)に図示された第4隔壁(340)において、第4多孔板(240)の周縁部を所定の高さで囲んだ内部空間を分割する部材を垂直部材(1)とすれば、図14(b)及び図14(b)に図示された第4隔壁(340)は、複数の垂直部材(1)だけでなく各垂直部材(1)との間の空間を分割する複数の水平部材(2)を備えて、一方向の格子と他方向格子が互いに交差して内部空間を分割する。   The fourth partition wall (340) shown in FIGS. 14 (b) and 16 (b) has an internal space that surrounds the peripheral edge of the fourth porous plate (240) at a predetermined height as shown in FIG. 14 (a). In addition, as shown in FIG. 16A, not only the lattice in one direction is divided but also the lattice in another direction is also divided. That is, in the fourth partition wall (340) shown in FIGS. 14 (a) and 16 (a), a member that divides the internal space surrounding the peripheral portion of the fourth perforated plate (240) with a predetermined height is provided. In the case of the vertical member (1), the fourth partition wall (340) illustrated in FIGS. 14 (b) and 14 (b) is connected not only to the plurality of vertical members (1) but also to each vertical member (1). A plurality of horizontal members (2) that divide the space between them are provided, and the lattice in one direction and the lattice in the other direction intersect with each other to divide the internal space.

図14(b)及び図16(b)に示すように、第4多孔板(240)の内部空間を他方向で更に分割した場合、流体をより分散することができ、特に、複数のブロック間だけでなく、1つのブロック内でも、冷媒が再び集まることを防止する。   As shown in FIG. 14 (b) and FIG. 16 (b), when the internal space of the fourth porous plate (240) is further divided in the other direction, the fluid can be more dispersed, especially between a plurality of blocks. In addition, the refrigerant is prevented from collecting again in one block.

また、第4多孔板(240)の内部空間を他方向にもう一度分ける場合には、第4多孔板(240)とコア(190)の離隔をより安定的に維持できるという長所がある。特に、第4多孔板(240)を通過する流体の圧力により第4多孔板(240)が屈曲してコア(190)と接触することを防止することができる。第4多孔板(240)とコア(190)が接触すると、接触した部分では流体の正常な排出ができなくなり熱交換効率が低下する虞がある。   In addition, when the internal space of the fourth porous plate (240) is divided again in the other direction, there is an advantage that the separation between the fourth porous plate (240) and the core (190) can be more stably maintained. In particular, it is possible to prevent the fourth porous plate (240) from being bent and coming into contact with the core (190) by the pressure of the fluid passing through the fourth porous plate (240). When the fourth perforated plate (240) and the core (190) are in contact with each other, the fluid may not be discharged normally at the contacted portion, and the heat exchange efficiency may be reduced.

図10及び図16を参照すると、コア(190)から排出された低温流体は、第4隔壁(340)、第4多孔板(240)、及び低温流体排出ヘッド(170)を順次に通って低温流体排出パイプ(180)を介して排出される。   Referring to FIGS. 10 and 16, the cryogenic fluid discharged from the core (190) passes through the fourth partition wall (340), the fourth perforated plate (240), and the cryogenic fluid discharge head (170) in this order. It is discharged through a fluid discharge pipe (180).

図17(a)は、従来の熱交換器の冷媒の流れを示した概略図である。図17(b)は本発明の第1実施形態に係る熱交換器の冷媒の流れを示した概略図である。図17(c)は本発明の第2実施形態に係る熱交換器の冷媒の流れを示した概略図である。   FIG. 17A is a schematic diagram showing the flow of refrigerant in a conventional heat exchanger. FIG. 17B is a schematic diagram showing the flow of refrigerant in the heat exchanger according to the first embodiment of the present invention. FIG. 17C is a schematic diagram showing the flow of the refrigerant in the heat exchanger according to the second embodiment of the present invention.

図17(a)を参照すると、従来の熱交換器の場合、低温流体流入パイプ(150)に流入した低温流体が、低温流体流入パイプ(150)の近くに位置した中心部のブロックに集中して供給されることがわかる。3つのブロックを備えた従来の熱交換器の場合には、低温流体流入パイプ(150)の近くに位置したブロックで約70%の冷媒が供給され、他のブロックにはそれぞれ約15%の冷媒が供給されて、ブロックとの間で冷媒流量の差が4倍以上に達することを確認した。   Referring to FIG. 17 (a), in the case of the conventional heat exchanger, the low temperature fluid flowing into the low temperature fluid inflow pipe (150) is concentrated on the central block located near the low temperature fluid inflow pipe (150). It can be seen that it is supplied. In the case of a conventional heat exchanger with three blocks, about 70% of refrigerant is supplied in the block located near the cryogenic fluid inflow pipe (150), and about 15% of refrigerant is supplied to the other blocks. It was confirmed that the difference in refrigerant flow rate between the block and the block reached 4 times or more.

図17(b)を参照すると、本発明の第1実施形態の熱交換器の場合、低温流体流入パイプ(150)に流入した低温流体が第3多孔板(230)によって分散されて、従来の熱交換器に比べて、比較的複数のブロックにそれぞれ均等に流入することが分かる。しかし、依然としてある程度は低温流体流入パイプ(150)の近く位置した中心部のブロックで低温流体が集中する現象が残っていることを確認できる。   Referring to FIG. 17B, in the heat exchanger according to the first embodiment of the present invention, the low temperature fluid flowing into the low temperature fluid inflow pipe (150) is dispersed by the third perforated plate (230). It turns out that it flows equally into a some block relatively compared with a heat exchanger. However, it can be confirmed that the phenomenon that the cryogenic fluid is concentrated remains in the central block located near the cryogenic fluid inflow pipe (150) to some extent.

図17(c)を参照すると、本発明の第2実施形態の熱交換器の場合、低温流体流入パイプ(150)に流入した低温流体が第3多孔板(230)によって分散された後に第3隔壁(330)を通過して、従来の熱交換器に比べて、比較的複数のブロックにそれぞれ均等に流入することと、第1実施形態の熱交換器より均等に流入することが分かる。   Referring to FIG. 17 (c), in the heat exchanger according to the second embodiment of the present invention, after the low temperature fluid flowing into the low temperature fluid inflow pipe (150) is dispersed by the third perforated plate (230), the third temperature is changed. It can be seen that it passes through the partition wall (330) and flows relatively evenly into the plurality of blocks as compared with the conventional heat exchanger, and evenly flows from the heat exchanger of the first embodiment.

本実施形態の熱交換器は、複数のブロックに各々供給される流体または複数のブロックから各々排出される流体の流量の差が4倍未満であることを特徴とする。   The heat exchanger of the present embodiment is characterized in that the difference in the flow rate of the fluid supplied to each of the plurality of blocks or the fluid discharged from each of the plurality of blocks is less than four times.

図18(a)は、熱交換器の内部温度を測定するために設置した温度センサの位置を示した概略図である。図18(b)は図18(a)に図示した位置で各々の温度センサが測定した熱交換器の内部の温度分布を示したグラフである。また、図18(b)に図示した破線(1)は、従来の熱交換器内部の温度分布を示し、実線(2)は本発明の第2実施形態に係る熱交換器の内部の温度分布を示す。   FIG. 18A is a schematic view showing the position of a temperature sensor installed to measure the internal temperature of the heat exchanger. FIG. 18B is a graph showing the temperature distribution inside the heat exchanger measured by each temperature sensor at the position shown in FIG. Moreover, the broken line (1) illustrated in FIG. 18B shows the temperature distribution inside the conventional heat exchanger, and the solid line (2) shows the temperature distribution inside the heat exchanger according to the second embodiment of the present invention. Indicates.

図18(b)を参照すると、従来の熱交換器の場合には、中心部のブロックの温度が他のブロックの温度に比べて非常に低く、複数のブロック間の温度差が大きいことが確認できる。従来の熱交換器の場合には、最低温度部分と最高温度部分との温度差が約130〜140℃であることが確認された。   Referring to FIG. 18B, in the case of the conventional heat exchanger, it is confirmed that the temperature of the central block is very low compared to the temperature of the other blocks, and the temperature difference between the plurality of blocks is large. it can. In the case of the conventional heat exchanger, it was confirmed that the temperature difference between the lowest temperature portion and the highest temperature portion is about 130 to 140 ° C.

一方、第2実施形態の熱交換器の場合、複数のブロック間の温度差が比較的小さいことが確認できる。本実施形態の熱交換器の場合、最低温度部分と最高温度部分との温度差が約40〜50℃であり、従来の熱交換器に比べてブロック間の温度差が減少することを確認した。   On the other hand, in the case of the heat exchanger of the second embodiment, it can be confirmed that the temperature difference between the plurality of blocks is relatively small. In the case of the heat exchanger of this embodiment, the temperature difference between the lowest temperature portion and the highest temperature portion is about 40 to 50 ° C., and it was confirmed that the temperature difference between the blocks was reduced as compared with the conventional heat exchanger. .

本発明は、熱交換器の冷媒として蒸発ガスを使用し、熱交換器が複数のブロックを備えても、各ブロックに供給される冷媒の流量を比較的均等に維持することができ、各ブロック間の温度差を減らして熱交換効率を高めることができ、再液化対象蒸発ガスの流量が変化しても安定した再液化性能を確保することができる。   The present invention uses evaporative gas as the refrigerant of the heat exchanger, and even if the heat exchanger includes a plurality of blocks, the flow rate of the refrigerant supplied to each block can be maintained relatively evenly. The heat exchange efficiency can be increased by reducing the temperature difference between them, and stable reliquefaction performance can be ensured even if the flow rate of the reliquefied target evaporative gas changes.

また、多孔板はSUS材質で成形し、極低温の蒸発ガスとの接触で収縮されて冷媒が通過した後に再び元の状態に戻ることができる。薄い厚さの多孔板の熱交換器よりも熱容量が非常に少なく、多孔板と熱交換器を溶接する場合、熱容量の大きい熱交換器は蒸発ガスに接触しても収縮率が少なく、熱容量が小さい多孔板は蒸発ガスに接触すると収縮率が大きいため、多孔板が割れる虞がある。   In addition, the perforated plate can be formed of a SUS material and contracted by contact with a cryogenic evaporating gas so that it can return to its original state after the refrigerant has passed. The heat capacity is much less than the heat exchanger with a thin porous plate. Since a small perforated plate has a large shrinkage rate when it comes into contact with evaporating gas, the perforated plate may break.

したがって、多孔板を熱伸縮の解消ができるように熱交換器と結合させる必要があり、本発明の第4実施形態及び第5実施形態では熱伸縮解消ができるように結合させた多孔板の一例を説明する。   Therefore, it is necessary to couple the perforated plate with a heat exchanger so that the thermal expansion and contraction can be eliminated. In the fourth and fifth embodiments of the present invention, an example of the perforated plate joined so that the thermal expansion and contraction can be eliminated. Will be explained.

図19は本発明の第3実施形態に係る熱交換器の一部を示す概略図であり、図20は図19のA部分を拡大した概略図である。   FIG. 19 is a schematic view showing a part of a heat exchanger according to the third embodiment of the present invention, and FIG. 20 is an enlarged schematic view of portion A of FIG.

本実施形態の熱交換器も、第1実施形態と同様に、図9に図示された従来のPCHEが備える構成に加えて、高温流体流入ヘッド(120)とコア(190)との間に設置される第1多孔板(210)、高温流体排出ヘッド(130)とコア(190)との間に設置される第2多孔板(220)、低温流体流入ヘッド(160)とコア(190)との間に設置される第3多孔板(230)、及び低温流体排出ヘッド(170)とコア(190)との間に設置される第4多孔板(240)のうち少なくとも1つ以上をさらに備える。   Similarly to the first embodiment, the heat exchanger of this embodiment is installed between the high-temperature fluid inflow head (120) and the core (190) in addition to the configuration of the conventional PCHE illustrated in FIG. The first perforated plate (210), the second perforated plate (220) installed between the high temperature fluid discharge head (130) and the core (190), the low temperature fluid inflow head (160) and the core (190) And at least one of a third perforated plate (230) disposed between the second perforated plate (230) and a fourth perforated plate (240) disposed between the cryogenic fluid discharge head (170) and the core (190). .

図19及び図20を参照すると、本実施形態の第4多孔板(240)は低温流体排出ヘッド(170)に設置され、第4多孔板(240)が低温流体排出ヘッド(170)に直接溶接されるのではなく、2つの支持部材(420)が所定間隔で離隔して低温流体排出ヘッド(170)に溶接(410)され、第4多孔板(240)は2つの支持部材(420)の間に挟まれる。   Referring to FIGS. 19 and 20, the fourth porous plate (240) of the present embodiment is installed in the cryogenic fluid discharge head (170), and the fourth porous plate (240) is directly welded to the cryogenic fluid discharge head (170). Instead, the two support members (420) are welded (410) to the cryogenic fluid discharge head (170) at a predetermined interval, and the fourth perforated plate (240) is attached to the two support members (420). Sandwiched between them.

第4多孔板(240)は、2つの支持部材(420)との間に挟まれた状態であり、完全に固定された状態ではないため、極低温の蒸発ガスとの接触により収縮しても屈曲または破損せず、連結部分が破損されない。   The fourth perforated plate (240) is sandwiched between the two support members (420), and is not completely fixed. Therefore, even if the fourth perforated plate (240) contracts due to contact with the cryogenic evaporating gas. It does not bend or break, and the connecting part is not damaged.

支持部材(420)は第4多孔板(240)の収縮に対応できる最小限の大きさであることが好ましく、支持部材(420)間の間隔も第4多孔板(240)の収縮で多少の遊動が可能な最小距離であることが好ましい。   The support member (420) is preferably of a minimum size that can accommodate the shrinkage of the fourth porous plate (240), and the spacing between the support members (420) is somewhat due to the shrinkage of the fourth porous plate (240). It is preferable that the distance is the smallest possible distance.

本実施形態の第1〜第3多孔板(210、220、230)も第4多孔板(240)と同様に、第1多孔板(210)は高温流体流入ヘッド(120)に所定間隔で離隔して溶接された2つの支持部材の間に挟まれ、第2多孔板(220)は高温流体排出ヘッド(130)に所定間隔で離隔して溶接された2つの支持部材の間に挟まれ、第3多孔板(230)は低温流体流入ヘッド(160)に所定間隔で離隔して溶接された2つの支持部材の間に挟まれる。   Similarly to the fourth porous plate (240), the first to third porous plates (210, 220, 230) of the present embodiment are separated from the high-temperature fluid inflow head (120) at a predetermined interval. The second perforated plate (220) is sandwiched between the two support members welded at a predetermined interval to the high temperature fluid discharge head (130). The third perforated plate (230) is sandwiched between two support members welded to the cryogenic fluid inflow head (160) at a predetermined interval.

図21は、本発明の第4実施形態に係る熱交換器の一部を示す概略図であり、図22は、図21のB部分を拡大した概略図である。   FIG. 21 is a schematic view showing a part of a heat exchanger according to the fourth embodiment of the present invention, and FIG. 22 is an enlarged schematic view of a portion B in FIG.

本実施形態の熱交換器も、第1実施形態と同様に、図9に図示された従来のPCHEが備える構成に加えて、高温流体流入ヘッド(120)とコア(190)との間に設置される第1多孔板(210)、高温流体排出ヘッド(130)とコア(190)との間に設置される第2多孔板(220)、低温流体流入ヘッド(160)とコア(190)との間に設置される第3多孔板(230)、及び低温流体排出ヘッド(170)とコア(190)との間に設置される第4多孔板(240)のうち1つ以上をさらに備える。   Similarly to the first embodiment, the heat exchanger of this embodiment is installed between the high-temperature fluid inflow head (120) and the core (190) in addition to the configuration of the conventional PCHE illustrated in FIG. The first perforated plate (210), the second perforated plate (220) installed between the high temperature fluid discharge head (130) and the core (190), the low temperature fluid inflow head (160) and the core (190) And at least one of a third perforated plate (230) disposed between the second perforated plate (230) and a fourth perforated plate (240) disposed between the cryogenic fluid discharge head (170) and the core (190).

図21及び図22を参照すると、本実施形態の第4多孔板(240)は、第3実施形態と同様に、低温流体排出ヘッド(170)に設置されるが、低温流体排出ヘッド(170)に直接溶接されない。   Referring to FIGS. 21 and 22, the fourth porous plate (240) of the present embodiment is installed in the low temperature fluid discharge head (170) as in the third embodiment, but the low temperature fluid discharge head (170). Not welded directly.

ただし、本実施形態の第4多孔板(240)は、第3実施形態とは異なり、両端部がコア(190)と平行に延長して、コア(190)から離れる方向に段差がある形状であり、2つの支持部材(420)との間に挟まれるのではなく、1つの支持部材(420)とコア(190)との間に挟まれる。   However, unlike the third embodiment, the fourth porous plate (240) of the present embodiment has a shape in which both end portions extend in parallel with the core (190) and have a step in a direction away from the core (190). Yes, not between two support members (420), but between one support member (420) and the core (190).

すなわち、1つの支持部材(420)がコア(190)と所定間隔に離隔して低温流体排出ヘッド(170)と溶接(410)され、コア(190)と平行に延長する第4多孔板(240)の両端部が支持部材(420)とコア(190)との間に挟まれ、第4多孔板(240)は支持部材(420)とコア(190)との間に位置した両端部からコア(190)と離れる方向に段差がある形状である。   That is, one support member (420) is welded (410) to the cryogenic fluid discharge head (170) at a predetermined interval from the core (190), and the fourth porous plate (240) extending in parallel with the core (190). ) Are sandwiched between the support member (420) and the core (190), and the fourth porous plate (240) is formed from the both ends located between the support member (420) and the core (190). It is a shape which has a level | step difference in the direction away from (190).

本実施形態の第4多孔板(240)は、支持部材(420)とコア(190)との間に挟まれて完全に固定した状態ではないため、極低温の蒸発ガスとの接触により収縮しても屈曲または破損せず、接続部が破損されない。   Since the fourth porous plate (240) of the present embodiment is not in a state of being completely fixed by being sandwiched between the support member (420) and the core (190), it contracts due to contact with the cryogenic evaporating gas. Even if it is not bent or damaged, the connection part is not damaged.

本実施形態の支持部材(420)は、第4多孔板(240)の収縮に対応できる最小限の大きさであることが好ましく、支持部材(420)とコア(190)との間隔も第4多孔板(240)が収縮により多少の遊動が可能な最小距離であることが好ましい。また、コア(190)と平行に延長する第4多孔板(240)の両端部は、支持部材(420)とコア(190)との間に挟まれ、収縮による変形や遊動を許容できる最小の長さであることが好ましい。   The support member (420) of the present embodiment preferably has a minimum size that can accommodate the shrinkage of the fourth porous plate (240), and the distance between the support member (420) and the core (190) is also the fourth. It is preferable that the perforated plate (240) has a minimum distance that allows some movement by contraction. In addition, both end portions of the fourth porous plate (240) extending in parallel with the core (190) are sandwiched between the support member (420) and the core (190), and are the smallest that can allow deformation and free movement due to contraction. The length is preferred.

本実施形態の第1〜第3多孔板(210、220、230)も第4多孔板(240)と同様に、両端部がコア(190)と平行に延長した後、コア(190)から離れる方向に段差がある形状であり、第1多孔板(210)は高温流体流入ヘッド(120)に溶接された支持部材とコア(190)との間に両端部が挟まれて、第2多孔板(220)は高温流体排出ヘッド(130)に溶接された支持部材とコア(190)との間に両端部が挟まれ、第3多孔板(230)は低温流体流入ヘッド(160)に溶接された支持部材とコア(190)との間に両端が挟まれる。   Similarly to the fourth perforated plate (240), the first to third perforated plates (210, 220, 230) of the present embodiment are separated from the core (190) after both end portions extend in parallel with the core (190). The first perforated plate (210) has a shape with a step in the direction, and the first perforated plate (210) is sandwiched between the support member welded to the high-temperature fluid inflow head (120) and the core (190), and the second perforated plate (220) is sandwiched between the support member welded to the high temperature fluid discharge head (130) and the core (190), and the third perforated plate (230) is welded to the low temperature fluid inflow head (160). Both ends are sandwiched between the support member and the core (190).

図23(a)は、熱交換器の全体形状の概略図であり、図23(b)はブロックの概略図であり、図23(c)はチャネルプレートの概略図である。 図23(b)に図示されたブロックは拡散ブロック(diffusion block)であり得る。   FIG. 23 (a) is a schematic diagram of the overall shape of the heat exchanger, FIG. 23 (b) is a schematic diagram of a block, and FIG. 23 (c) is a schematic diagram of a channel plate. The block illustrated in FIG. 23B may be a diffusion block.

図23を参照すると、低温流体と高温流体の熱交換が行われるコア(190)は複数のブロック(192)で構成され、ブロック(192)は複数の低温流体用のチャネルプレート(194)と、複数の高温流体用チャネルプレート(196)が交互に積層された構成である。各チャネルプレート(194、196)には、流体が流れるチャネルが複数形成される。   Referring to FIG. 23, the core (190) in which heat exchange between the cryogenic fluid and the hot fluid is performed includes a plurality of blocks (192), and the block (192) includes a plurality of channel plates (194) for the cryogenic fluid; A plurality of high-temperature fluid channel plates (196) are alternately stacked. Each channel plate (194, 196) has a plurality of channels through which fluid flows.

図24(a)は図23(c)に図示された低温流体用のチャネルプレートをC方向から見た概略図であり、図24(b)は従来の熱交換器の低温流体用のチャネルプレートのチャネルの概略図であり、図24(c)は本発明の第5実施形態に係る熱交換器の低温流体用のチャネルプレートのチャネルの概略図であり、図24(d)は本発明の第6実施形態に係る熱交換器の低温流体用のチャネルプレートのチャネルの概略図である。   24A is a schematic view of the channel plate for cryogenic fluid shown in FIG. 23C as viewed from the C direction, and FIG. 24B is a channel plate for cryogenic fluid of a conventional heat exchanger. 24 (c) is a schematic view of the channel plate of the channel plate for the cryogenic fluid of the heat exchanger according to the fifth embodiment of the present invention, and FIG. 24 (d) is a schematic view of the channel of the present invention. It is the schematic of the channel of the channel plate for the cryogenic fluid of the heat exchanger which concerns on 6th Embodiment.

図24を参照すると、チャネルプレートに形成されたチャネル(198)は、図24(b)に示すように幅が一定で一直線であることが一般的であるが、本発明の第5実施形態及び第6実施形態に係る熱交換器、流体に抵抗を与える形状のチャネルを備える。   Referring to FIG. 24, the channel (198) formed in the channel plate is generally constant in width and straight as shown in FIG. 24 (b). The heat exchanger which concerns on 6th Embodiment is provided with the channel of the shape which gives resistance to a fluid.

図24(c)を参照すると、第5実施形態の熱交換器は、流入部の幅が他の部分の幅に比べて狭い複数のチャネル(198)を備える。すなわち、本実施形態のチャネル(198)は、図23(c)のC方向からチャネルプレートを見た場合、流入部の断面積が他の部分に比べて狭く形成される。   Referring to FIG. 24 (c), the heat exchanger of the fifth embodiment includes a plurality of channels (198) in which the width of the inflow portion is narrower than the width of other portions. That is, the channel (198) of the present embodiment is formed so that the cross-sectional area of the inflow portion is narrower than other portions when the channel plate is viewed from the direction C in FIG.

チャネル(198)の流入部の断面積が小さくなると、流入する流体が抵抗を受けて流動が分散し、複数個のうち特定のブロックに流体が集中する現象を緩和または防止する。   When the cross-sectional area of the inflow portion of the channel (198) is reduced, the inflowing fluid receives resistance and the flow is dispersed, thereby mitigating or preventing the phenomenon of fluid concentration in a specific block among the plurality.

図24(d)を参照すると、第6実施形態の熱交換器は、ジグザグ形状のチャネル(198)を複数備える。チャネル(198)をジグザグ状に形成すると、流体が抵抗を受けて流動が分散し、複数個のうち特定のブロックに流体が集中する現象を緩和または防止できる。   Referring to FIG. 24 (d), the heat exchanger of the sixth embodiment includes a plurality of zigzag shaped channels (198). When the channel (198) is formed in a zigzag shape, the fluid is subjected to resistance and the flow is dispersed, and the phenomenon of the fluid concentrating on a specific block among the plurality can be reduced or prevented.

本発明の第5実施形態及び第6実施形態の熱交換器は、流体の抵抗を与える形状のチャネルを備えるため、流体を分散させる別の部材を追加しなくても、複数個のうち特定のブロックに冷媒が集中する現象を緩和または防止できるという長所がある。   Since the heat exchangers of the fifth embodiment and the sixth embodiment of the present invention include a channel having a shape that provides fluid resistance, a specific one of the plurality of the heat exchangers can be used without adding another member that disperses the fluid. There is an advantage that the phenomenon of refrigerant concentration on the block can be reduced or prevented.

本発明は、前記実施形態に限定されず、本発明の技術的要旨を逸脱しない範囲内で様々な修正または変形が可能であることは、本発明の属する技術分野における通常の知識を有する者において自明である。   The present invention is not limited to the above-described embodiment, and various modifications or variations can be made without departing from the technical scope of the present invention. Those skilled in the art to which the present invention belongs have ordinary knowledge. It is self-explanatory.

10…圧縮機、20…熱交換器、30…減圧装置、40…気液分離器、110…高温流体流入パイプ、120…高温流体流入ヘッド、130…高温流体排出ヘッド、140…高温流体排出パイプ、150…低温流体流入パイプ、160…低温流体流入ヘッド、170…低温流体排出ヘッド、180…低温流体排出パイプ、190…コア、192…ブロック、194…低温流体用のチャネルプレート、196…高温流体用のチャネルプレート、198…チャネル、210、220、230、240…多孔板、310、320、330、340…隔壁、420…支持部材。
DESCRIPTION OF SYMBOLS 10 ... Compressor, 20 ... Heat exchanger, 30 ... Depressurization device, 40 ... Gas-liquid separator, 110 ... High temperature fluid inflow pipe, 120 ... High temperature fluid inflow head, 130 ... High temperature fluid discharge head, 140 ... High temperature fluid discharge pipe 150 ... Cryogenic fluid inlet pipe, 160 ... Cryogenic fluid inlet head, 170 ... Cryogenic fluid outlet head, 180 ... Cryogenic fluid outlet pipe, 190 ... Core, 192 ... Block, 194 ... Channel plate for cryogenic fluid, 196 ... Hot fluid 198 ... channel, 210, 220, 230, 240 ... perforated plate, 310, 320, 330, 340 ... partition wall, 420 ... support member.

Claims (18)

1)LNG貯蔵タンクから排出される蒸発ガスを圧縮するステップ;
2)蒸発ガスを冷媒として、前記1)ステップで圧縮した蒸発ガスを熱交換器で熱交換して冷却するステップ;
3)前記2)ステップで冷却された流体を膨張させるステップ;及び
4)LNG船の運航条件が変わって、前記1)ステップで圧縮した後で前記熱交換器に供給される再液化対象蒸発ガスの流量が変動しても、再液化性能を安定的に維持するステップ;を含み、
前記1)ステップ〜3)ステップを経て再液化された蒸発ガスの量がHYSYSによる計算値の50%以上で維持されるLNG船の蒸発ガス再液化方法。
1) compressing the evaporative gas discharged from the LNG storage tank ;
2) A step of cooling the evaporative gas compressed in the step 1) with a heat exchanger using the evaporative gas as a refrigerant;
3) The step of expanding the fluid cooled in the step 2); and 4) The operating condition of the LNG ship is changed, and after the compression in the step 1), the reliquefied evaporation gas supplied to the heat exchanger Maintaining the reliquefaction performance stably even if the flow rate of the liquid fluctuates;
An evaporative gas reliquefaction method for an LNG ship in which the amount of evaporative gas reliquefied through the steps 1) to 3) is maintained at 50% or more of the value calculated by HYSYS.
5)前記3)ステップで膨張された流体を気液分離するステップをさらに含むことを特徴とする請求項1に記載のLNG船の蒸発ガス再液化方法。   5) The method for re-liquefying an evaporative gas of an LNG ship according to claim 1, further comprising the step of gas-liquid separating the fluid expanded in step 3). 前記5)ステップで気液分離された気体成分は、蒸発ガスと合流して前記2)ステップで熱交換の冷媒として使用されることを特徴とする請求項2に記載のLNG船の蒸発ガス再液化方法。   The vapor component of the LNG carrier according to claim 2, wherein the gas component separated in the gas-liquid separation in the step 5) is combined with the evaporation gas and used as a heat exchange refrigerant in the step 2). Liquefaction method. 前記LNG船の運航速度は10〜17knotであることを特徴とする請求項1〜3のいずれか1項に記載のLNG船の蒸発ガス再液化方法。   The evaporative gas reliquefaction method for an LNG ship according to any one of claims 1 to 3, wherein an operating speed of the LNG ship is 10 to 17 knots. 前記1)ステップで圧縮した蒸発ガスの一部はエンジンの燃料として使用され、
前記エンジンの燃料として使用される蒸発ガスの流量が1,100〜2,660kg/hであることを特徴とする請求項1〜3のいずれか1項に記載のLNG船の蒸発ガス再液化方法。
Part of the evaporated gas compressed in step 1) is used as engine fuel,
The evaporative gas reliquefaction method for an LNG ship according to any one of claims 1 to 3, wherein the flow rate of the evaporative gas used as fuel for the engine is 1,100 to 2,660 kg / h. .
前記エンジンは、推進用エンジン及び発電用のエンジンを備えることを特徴とする請求項5に記載のLNG船の蒸発ガス再液化方法。   6. The evaporative gas reliquefaction method for an LNG ship according to claim 5, wherein the engine includes a propulsion engine and a power generation engine. 前記再液化対象蒸発ガスの流量が1,900〜3,300kg/hであることを特徴とする請求項1〜3のいずれか1項に記載のLNG船の蒸発ガス再液化方法。   The evaporative gas reliquefaction method for an LNG ship according to any one of claims 1 to 3, wherein a flow rate of the reliquefied target evaporative gas is 1,900 to 3,300 kg / h. 前記2)ステップで熱交換の冷媒として使用される蒸発ガスの流量を基準に、前記再液化対象蒸発ガスの流量の比が0.42〜0.72の範囲であることを特徴とする請求項1〜3のいずれか1項に記載のLNG船の蒸発ガス再液化方法。   The ratio of the flow rate of the evaporating gas to be reliquefied is in the range of 0.42 to 0.72 based on the flow rate of the evaporating gas used as the heat exchange refrigerant in the step 2). The evaporative gas reliquefaction method of the LNG ship of any one of 1-3. 前記1)ステップで圧縮した蒸発ガスのうち、前記エンジンに送らない蒸発ガスを更に圧縮した後で前記熱交換器に送ることを特徴とする請求項5に記載のLNG船の蒸発ガス再液化方法。   The evaporative gas reliquefaction method for an LNG ship according to claim 5, wherein the evaporative gas not sent to the engine among the evaporative gas compressed in step 1) is further compressed and then sent to the heat exchanger. . 1)LNG貯蔵タンクから排出される蒸発ガスを圧縮するステップ;
2)蒸発ガスを冷媒として、前記1)ステップで圧縮した蒸発ガスを熱交換して冷却するステップ;
3)前記2)ステップで冷却された流体を膨張させるステップ;及び
4)LNG船の運航条件が変わって、前記2)ステップで熱交換の冷媒として使用される蒸発ガスの流量が変動しても、再液化性能を安定的に維持するステップ;を含み、
前記1)ステップ〜3)のステップを経て再液化された蒸発ガスの量がHYSYSによる計算値の50%以上で維持されるLNG船の蒸発ガス再液化方法。
1) compressing the evaporative gas discharged from the LNG storage tank ;
2) Using the evaporating gas as a refrigerant, the step of cooling the evaporating gas compressed in the step 1) by exchanging heat;
3) The step of expanding the fluid cooled in the step 2); and 4) Even if the operating condition of the LNG ship changes and the flow rate of the evaporative gas used as the heat exchange refrigerant in the step 2) fluctuates. Stably maintaining reliquefaction performance;
An evaporative gas reliquefaction method for an LNG ship in which the amount of evaporative gas reliquefied through steps 1) to 3) is maintained at 50% or more of the value calculated by HYSYS.
5)前記3)ステップで膨張された流体を気液分離するステップをさらに含み、
前記5)ステップで気液分離された気体成分は蒸発ガスと合流して、前記2)ステップで熱交換の冷媒として使用されることを特徴とする請求項10に記載のLNG船の蒸発ガス再液化方法。
5) further comprising gas-liquid separation of the fluid expanded in step 3),
11. The LNG ship evaporative gas re-use according to claim 10, wherein the gas component separated in the gas-liquid separation in step 5) joins the evaporative gas and is used as a heat exchange refrigerant in step 2). Liquefaction method.
LNG貯蔵タンクから排出される蒸発ガスを高圧で圧縮し、高圧圧縮蒸発ガスの全部または一部を前記LNG貯蔵タンクから排出される蒸発ガスと熱交換器で熱交換するステップ;及び熱交換した高圧圧縮蒸発ガスを減圧するステップ;を含む、高圧ガス噴射エンジンを備えるLNG船の蒸発ガス再液化方法において、
LNG船の運航条件の変更、再液化対象蒸発ガスの流量が変動しても、再液化性能を安定的に維持するステップ;を含み、
再液化した蒸発ガスの量がHYSYSによる計算値の50%以上で維持される高圧ガス噴射エンジンを備えるLNG船の蒸発ガス再液化方法。
A step of compressing evaporative gas discharged from the LNG storage tank at high pressure, and exchanging all or a part of the high-pressure compressed evaporative gas with evaporative gas discharged from the LNG storage tank by a heat exchanger; A method for reliquefying an evaporative gas of an LNG ship equipped with a high-pressure gas injection engine, comprising: depressurizing compressed evaporative gas;
Changing the operating conditions of the LNG ship, maintaining the reliquefaction performance stably even if the flow rate of the reliquefied evaporation gas fluctuates;
An evaporative gas reliquefaction method for an LNG ship equipped with a high pressure gas injection engine in which the amount of reliquefied evaporative gas is maintained at 50% or more of the value calculated by HYSYS.
前記高圧圧縮蒸発ガスは超臨界状態であることを特徴とする請求項12に記載の高圧ガス噴射エンジンを備えるLNG船の蒸発ガス再液化方法。   The method of claim 12, wherein the high pressure compressed evaporative gas is in a supercritical state. 前記高圧圧縮蒸発ガスの圧力は100〜400baraであることを特徴とする請求項12に記載の高圧ガス噴射エンジンを備えるLNG船の蒸発ガス再液化方法。   The method of claim 12, wherein the pressure of the high-pressure compressed evaporative gas is 100 to 400 bara. 前記高圧圧縮蒸発ガスの圧力は150〜400baraであることを特徴とする請求項14に記載の高圧ガス噴射エンジンを備えるLNG船の蒸発ガス再液化方法。   The method of claim 14, wherein the pressure of the high-pressure compressed evaporative gas is 150 to 400 bara. 前記高圧圧縮蒸発ガスの圧力は150〜300baraであることを特徴とする請求項15に記載の高圧ガス噴射エンジンを備えるLNG船の蒸発ガス再液化方法。   The method of claim 15, wherein the pressure of the high-pressure compressed evaporative gas is 150 to 300 bara. 前記熱交換器は高温流体と低温流体との熱交換が行われるコアを備え、The heat exchanger includes a core for heat exchange between a high temperature fluid and a low temperature fluid,
前記コアは複数のブロックを備えることを特徴とする請求項1に記載のLNG船の蒸発ガス再液化方法。The method of claim 1, wherein the core includes a plurality of blocks.
前記コアの前記複数のブロック間に断熱層又は断熱部が存在することを特徴とする請求項17に記載のLNG船の蒸発ガス再液化方法。The evaporative gas reliquefaction method for an LNG ship according to claim 17, wherein a heat insulating layer or a heat insulating portion exists between the plurality of blocks of the core.
JP2018009162A 2017-01-25 2018-01-23 LNG ship evaporative gas reliquefaction method and system Active JP6347004B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020170012151A KR101858514B1 (en) 2017-01-25 2017-01-25 Boil-Off Gas Reliquefaction Method and System for LNG Vessel
KR10-2017-0012151 2017-01-25
KR1020170012754A KR101867037B1 (en) 2017-01-26 2017-01-26 Boil-Off Gas Reliquefaction Method and System for LNG Vessel
KR10-2017-0012754 2017-01-26

Publications (2)

Publication Number Publication Date
JP6347004B1 true JP6347004B1 (en) 2018-06-20
JP2018119684A JP2018119684A (en) 2018-08-02

Family

ID=62635832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009162A Active JP6347004B1 (en) 2017-01-25 2018-01-23 LNG ship evaporative gas reliquefaction method and system

Country Status (1)

Country Link
JP (1) JP6347004B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042824A (en) * 2009-08-20 2011-03-03 Jfe Steel Corp Method and equipment for reforming exhaust gas containing carbon dioxide
JP2011157979A (en) * 2010-01-29 2011-08-18 Air Water Inc Apparatus and method for re-liquefying boil-off gas
JP2016080279A (en) * 2014-10-17 2016-05-16 三井造船株式会社 Boil-off gas recovery system
JP2016105022A (en) * 2016-03-01 2016-06-09 日揮株式会社 Liquefied natural gas receiving facility
JP2016124385A (en) * 2014-12-26 2016-07-11 川崎重工業株式会社 Liquefied gas carrying vessel
JP2016128737A (en) * 2015-01-09 2016-07-14 大阪瓦斯株式会社 Boil-off gas re-liquefaction facility
JP2016173184A (en) * 2012-10-24 2016-09-29 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド Liquefied gas treatment system for vessel
JP2016176534A (en) * 2015-03-20 2016-10-06 千代田化工建設株式会社 Bog processing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042824A (en) * 2009-08-20 2011-03-03 Jfe Steel Corp Method and equipment for reforming exhaust gas containing carbon dioxide
JP2011157979A (en) * 2010-01-29 2011-08-18 Air Water Inc Apparatus and method for re-liquefying boil-off gas
JP2016173184A (en) * 2012-10-24 2016-09-29 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド Liquefied gas treatment system for vessel
JP2016080279A (en) * 2014-10-17 2016-05-16 三井造船株式会社 Boil-off gas recovery system
JP2016124385A (en) * 2014-12-26 2016-07-11 川崎重工業株式会社 Liquefied gas carrying vessel
JP2016128737A (en) * 2015-01-09 2016-07-14 大阪瓦斯株式会社 Boil-off gas re-liquefaction facility
JP2016176534A (en) * 2015-03-20 2016-10-06 千代田化工建設株式会社 Bog processing device
JP2016105022A (en) * 2016-03-01 2016-06-09 日揮株式会社 Liquefied natural gas receiving facility

Also Published As

Publication number Publication date
JP2018119684A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
KR101623173B1 (en) Vessel
JP6347003B1 (en) LNG ship evaporative gas reliquefaction method and system
JP6352566B1 (en) LNG ship evaporative gas reliquefaction method and system
CN108027104A (en) Ship including engine
KR20170029450A (en) Heat Exchanger
JP2020507504A5 (en)
JP6347004B1 (en) LNG ship evaporative gas reliquefaction method and system
KR101908565B1 (en) Boil-Off Gas Reliquefaction Method and System for LNG Vessel
KR101908567B1 (en) Boil-Off Gas Reliquefaction Method and System for LNG Vessel
KR102016379B1 (en) Boil-Off Gas Reliquefaction Method and System for LNG Vessel
KR101858515B1 (en) Boil-Off Gas Reliquefaction Method and System for LNG Vessel
KR101867036B1 (en) Boil-Off Gas Reliquefaction Method and System for LNG Vessel
KR101876978B1 (en) Boil-Off Gas Reliquefaction Method and System for LNG Vessel
KR101908566B1 (en) Boil-Off Gas Reliquefaction Method and System for LNG Vessel
KR101867037B1 (en) Boil-Off Gas Reliquefaction Method and System for LNG Vessel
KR20170120302A (en) Heat Exchanger
KR102066634B1 (en) Boil-Off Gas Reliquefaction System and Method for Vessel
KR102624229B1 (en) Heat Exchanger Applied System for Re-liquefying Boil-Off Gas
KR102011864B1 (en) Boil-Off Gas Reliquefaction System and Method for Vessel
KR20190076269A (en) Boil-Off Gas Reliquefaction System and Method for Vessel
KR20180135198A (en) BOG Reliquefaction System and Method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6347004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350