JP2016128737A - Boil-off gas re-liquefaction facility - Google Patents

Boil-off gas re-liquefaction facility Download PDF

Info

Publication number
JP2016128737A
JP2016128737A JP2015003522A JP2015003522A JP2016128737A JP 2016128737 A JP2016128737 A JP 2016128737A JP 2015003522 A JP2015003522 A JP 2015003522A JP 2015003522 A JP2015003522 A JP 2015003522A JP 2016128737 A JP2016128737 A JP 2016128737A
Authority
JP
Japan
Prior art keywords
gas
boil
refrigerant
pressure
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015003522A
Other languages
Japanese (ja)
Other versions
JP6501527B2 (en
Inventor
大樹 伊藤
Daiki Ito
大樹 伊藤
杉山 修
Osamu Sugiyama
杉山  修
一朗 三谷
Ichiro Mitani
一朗 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015003522A priority Critical patent/JP6501527B2/en
Publication of JP2016128737A publication Critical patent/JP2016128737A/en
Application granted granted Critical
Publication of JP6501527B2 publication Critical patent/JP6501527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream

Abstract

PROBLEM TO BE SOLVED: To increase a heat exchange efficiency of a heat exchanger while reducing a flush flow rate to increase an efficiency without complicating a structure.SOLUTION: A boil-off gas re-liquefaction facility includes pressure setting means 60a for setting extraction pressure of a boil-off gas extracted to an extraction flow passage L2 to pressure that is lower than engine supply pressure and equal to or higher than critical pressure of the boil-off gas.SELECTED DRAWING: Figure 1

Description

本発明は、液化天然ガスを貯留する貯留タンクと、当該貯留タンクから排出されるボイルオフガスを圧縮するボイルオフガス圧縮部と、当該ボイルオフガス圧縮部にて圧縮された液化ボイルオフガスの一部を燃料とする高圧噴射型エンジンと、前記ボイルオフガス圧縮機にて圧縮されたボイルオフガスの他部を抽気し再液化して前記貯留タンクへ戻す抽気流路と、前記抽気流路を通流するボイルオフガスと熱交換して当該ボイルオフガスを冷却する冷媒を循環する冷凍サイクル回路とを水上構造物上に備えるボイルオフガスの再液化設備に関する。   The present invention relates to a storage tank that stores liquefied natural gas, a boil-off gas compression unit that compresses boil-off gas discharged from the storage tank, and a part of the liquefied boil-off gas compressed by the boil-off gas compression unit. A high-pressure injection type engine, an extraction passage for extracting and re-liquefying the other part of the boil-off gas compressed by the boil-off gas compressor, and a boil-off gas flowing through the extraction passage The present invention relates to a boil-off gas reliquefaction facility comprising a refrigeration cycle circuit that circulates a refrigerant that heat-exchanges and cools the boil-off gas on a water structure.

LNG(Liquefied Natural Gas)を搬送する場合、当該LNGを貯留する貯留タンクを備えたLNG船舶にて搬送されることがある。貯留タンクは断熱処理がされているものの、外部の熱により貯留するLNGが徐々に気化してボイルオフガス(BOG)が発生する。発生したボイルオフガスは、貯留タンクの内部の圧力を上昇させるため、貯留タンクから取り出され、船舶の推進用主機関としての中速で回転するディーゼルエンジンの燃料として供給される。
近年、当該船舶の推進用主機関として、燃料が比較的高い圧力で供給される高圧噴射型エンジン(船舶用電子制御式ガスインジェクションディーゼルエンジン)が開発されている。当該高圧噴射型エンジンは、燃料を高圧で噴射する高圧噴射型エンジンであるため、当該高圧噴射型エンジンへボイルオフガスを燃料として供給する場合、ボイルオフガスを30MPaG程度まで昇圧した後に供給する必要がある。
When transporting LNG (Liquid Natural Gas), it may be transported by an LNG ship equipped with a storage tank for storing the LNG. Although the storage tank is thermally insulated, LNG stored by external heat is gradually vaporized to generate boil-off gas (BOG). The generated boil-off gas is taken out of the storage tank to increase the pressure inside the storage tank, and supplied as fuel for a diesel engine that rotates at a medium speed as a main engine for propulsion of the ship.
In recent years, high-pressure injection engines (electronically controlled gas injection diesel engines for ships) in which fuel is supplied at a relatively high pressure have been developed as main engines for propulsion of the ships. Since the high-pressure injection engine is a high-pressure injection engine that injects fuel at a high pressure, when supplying boil-off gas as fuel to the high-pressure injection engine, it is necessary to increase the boil-off gas after increasing the pressure to about 30 MPaG. .

上述した高圧噴射型エンジンは高効率であるため、従来型のエンジンと同程度の推進力を発揮する場合、燃料として必要とするボイルオフガスの量が低減し、余剰のボイルオフガスが増加するため、それらを処理する必要がある。ここで、貯留タンクから排出されるボイルオフガスを30MPaG程度の高圧に圧縮して高圧噴射型エンジンへ供給する船舶上のBOG再液化設備としては、LNGを貯留する貯留タンクと、当該貯留タンクから排出されるボイルオフガスを圧縮するボイルオフガス圧縮部と、当該ボイルオフガス圧縮部にて高圧噴射型エンジンへのエンジン供給圧力まで昇圧したボイルオフガスが圧送される高圧噴射型エンジンと、エンジン供給圧力まで昇圧したボイルオフガスの一部を分岐する分岐流路と、当該分岐流路を通流するボイルオフガスと貯留タンクからボイルオフガス圧縮部までを通流するボイルオフガスとを熱交換する熱交換器と、分岐流路で当該熱交換器を通過したあとのボイルオフガスを減圧する減圧弁と、当該減圧弁にて減圧されたボイルオフガスの気液分離を行う気液分離器とを備えたものが知られている(特許文献1を参照)。
当該船舶上のBOG再液化設備では、ボイルオフガス圧縮部にて圧縮されたボイルオフガスが、熱交換器にて貯留タンクから排出された後のボイルオフガスと熱交換する形態で冷却され、減圧された後、気液分離器にて液化され貯留タンクへ戻される。尚、気液分離器では、一部が液化されることなく気体のフラッシュ流として排出され、当該フラッシュ流は、再度、貯留タンクと熱交換器との間を通流するボイルオフガスに混合される。
Since the high-pressure injection engine described above is highly efficient, when the same level of propulsive force as a conventional engine is exhibited, the amount of boil-off gas required as fuel is reduced, and surplus boil-off gas is increased. You need to handle them. Here, as a BOG reliquefaction facility on a ship that compresses the boil-off gas discharged from the storage tank to a high pressure of about 30 MPaG and supplies it to the high-pressure injection engine, the storage tank for storing LNG, and the discharge from the storage tank A boil-off gas compressing section that compresses the boil-off gas, a high-pressure injection engine to which the boil-off gas increased in pressure to the engine supply pressure to the high-pressure injection engine in the boil-off gas compression section, and the pressure increased to the engine supply pressure A branch flow path for branching a part of the boil-off gas, a heat exchanger for exchanging heat between the boil-off gas flowing through the branch flow path and the boil-off gas flowing from the storage tank to the boil-off gas compression unit, and a branch flow A decompression valve for decompressing the boil-off gas after passing through the heat exchanger in the road, and the decompression valve That a gas-liquid separator for gas-liquid separation of Iruofugasu is known (see Patent Document 1).
In the BOG reliquefaction facility on the ship, the boil-off gas compressed by the boil-off gas compression unit is cooled and decompressed in a form of heat exchange with the boil-off gas after being discharged from the storage tank by the heat exchanger. Thereafter, it is liquefied by the gas-liquid separator and returned to the storage tank. In the gas-liquid separator, a part of the gas is discharged as a gas flush without being liquefied, and the flush is mixed again with the boil-off gas flowing between the storage tank and the heat exchanger. .

一方、余剰のボイルオフガスを処理する再液化設備として、現状の従来技術を考える場合、図5に示すような再液化設備が考えられる。当該再液化設備では、窒素等から成る非凝縮性の冷媒N2(例えば、窒素)を循環する冷凍サイクル回路Cが設けられており、当該冷凍サイクル回路Cは、冷媒N2を圧縮する冷媒圧縮コンプレッサCPと、当該冷媒圧縮コンプレッサCPで圧縮され昇温した冷媒N2を冷却するクーラーEXと、当該クーラーEXにて降温した後の冷媒N2を膨張する膨張タービンEPと、膨張タービンEPにて膨張した後の冷媒N2の冷熱を被冷却媒体としてのボイルオフガスへ供給する第1熱交換器EX1とが設けられている。
因みに、図5に示す冷凍サイクル回路Cにあっては、クーラーEXにて降温された後の冷媒N2と、凝縮器としての第1熱交換器EX1を通過した後で冷熱を保有している冷媒N2とを熱交換する第2熱交換器EX2が設けられている。
余剰のボイルオフガスは、冷凍サイクル回路Cの第1熱交換器EX1にて冷媒N2と熱交換する形態で冷却されて液化され、減圧弁Vにて減圧された後、気液分離器30へ導かれることとなる。
On the other hand, as a reliquefaction facility for treating surplus boil-off gas, when considering the current prior art, a reliquefaction facility as shown in FIG. 5 is conceivable. In the reliquefaction facility, a refrigeration cycle circuit C that circulates a non-condensable refrigerant N2 (for example, nitrogen) made of nitrogen or the like is provided, and the refrigeration cycle circuit C compresses the refrigerant N2. And a cooler EX that cools the refrigerant N2 that has been compressed and heated by the refrigerant compressor CP, an expansion turbine EP that expands the refrigerant N2 that has been cooled by the cooler EX, and an expansion turbine EP that has been expanded by the expansion turbine EP. A first heat exchanger EX1 that supplies the cold heat of the refrigerant N2 to the boil-off gas as the medium to be cooled is provided.
Incidentally, in the refrigeration cycle circuit C shown in FIG. 5, the refrigerant N2 after being cooled by the cooler EX and the refrigerant that holds the cold after passing through the first heat exchanger EX1 as a condenser. A second heat exchanger EX2 for exchanging heat with N2 is provided.
Excess boil-off gas is cooled and liquefied in the form of heat exchange with the refrigerant N2 in the first heat exchanger EX1 of the refrigeration cycle circuit C, depressurized by the pressure reducing valve V, and then introduced to the gas-liquid separator 30. Will be.

また、余剰のボイルオフガスを処理する再液化設備の他の例として、特許文献2に記載の如く、LNGを貯留する貯留タンクと、当該貯留タンクからの排出直後のボイルオフガスを被冷却媒体と熱交換する第1熱交換器と、第1熱交換器を通過した後のボイルオフガスを圧縮するボイルオフガス圧縮部(クーラー含む)と、当該ボイルオフガス圧縮部にて圧縮された後のボイルオフガスを冷却媒体と熱交換する形態で冷却して液化する第2熱交換器とを備えたものが知られている。
当該特許文献2に開示の技術にあっては、窒素等からなる非凝縮性の冷媒を循環する冷凍サイクル回路として、冷媒を圧縮する冷媒圧縮コンプレッサと、当該冷媒圧縮コンプレッサで圧縮され昇温した冷媒を冷却するクーラーと、当該クーラーにて冷却された冷媒を被冷却媒体として第1熱交換器へ通流させた後、冷却媒体として第2熱交換器へ通流させる第1冷媒流路と、当該第1冷媒流路を通流した後の冷媒を膨張させ降温させる膨張タービンと、当該膨張タービンにて降温した後の冷媒を冷却媒体として第2熱交換器へ通流させ前記冷媒圧縮コンプレッサへ戻す第2冷媒流路とを備えたものが知られている。
尚、当該冷凍サイクル回路にあっては、第2熱交換器での熱交換効率を向上させる目的で、第1冷媒流路を通流する冷媒のうち一部を第1熱交換器をバイパスさせ第2熱交換器の一部へ通流させた後に、第1冷媒流路で第1熱交換器の下流側で第2熱交換器の上流側を通流する冷媒に合流させるバイパス流路が設けられている。
即ち、当該特許文献2に開示の技術にあっては、特に、第2熱交換器において、ボイルオフガスと第1熱交換器を通過した冷媒と第1熱交換器をバイパスした冷媒の3つの流体が熱交換する構成を採用することにより、冷媒のバイパス量を調整することで交換熱量に対する冷媒の温度変化率を調整し、熱交換効率の向上を図っている。
Further, as another example of the reliquefaction equipment for processing the surplus boil-off gas, as described in Patent Document 2, a storage tank that stores LNG, and boil-off gas that has just been discharged from the storage tank are used as a cooling medium and heat. The first heat exchanger to be exchanged, the boil-off gas compression section (including a cooler) that compresses the boil-off gas after passing through the first heat exchanger, and the boil-off gas that has been compressed by the boil-off gas compression section is cooled. The thing provided with the 2nd heat exchanger cooled and liquefied by the form which heat-exchanges with a medium is known.
In the technology disclosed in Patent Document 2, as a refrigeration cycle circuit that circulates a non-condensable refrigerant composed of nitrogen or the like, a refrigerant compression compressor that compresses the refrigerant, and a refrigerant that has been compressed by the refrigerant compression compressor and that has been heated A cooler that cools the refrigerant, and a first refrigerant flow path that causes the refrigerant cooled by the cooler to flow as a cooling medium to the first heat exchanger and then flows as a cooling medium to the second heat exchanger; An expansion turbine that expands and lowers the temperature of the refrigerant that has flowed through the first refrigerant flow path, and a refrigerant that has been cooled down by the expansion turbine is allowed to flow to the second heat exchanger as a cooling medium to the refrigerant compression compressor. The thing provided with the 2nd refrigerant | coolant flow path to return is known.
In the refrigeration cycle circuit, in order to improve the heat exchange efficiency in the second heat exchanger, a part of the refrigerant flowing through the first refrigerant flow path is bypassed through the first heat exchanger. A bypass flow path for joining the refrigerant flowing through a part of the second heat exchanger to the refrigerant flowing through the upstream side of the second heat exchanger on the downstream side of the first heat exchanger in the first refrigerant flow path; Is provided.
That is, in the technique disclosed in Patent Document 2, in particular, in the second heat exchanger, three fluids of the boil-off gas, the refrigerant that has passed through the first heat exchanger, and the refrigerant that has bypassed the first heat exchanger. By adopting a configuration for exchanging heat, the temperature change rate of the refrigerant with respect to the exchange heat quantity is adjusted by adjusting the bypass quantity of the refrigerant, thereby improving the heat exchange efficiency.

韓国公開特許第10−20130139150(KR,A)Korean Published Patent No. 10-2013139150 (KR, A) 特許第5280351号公報Japanese Patent No. 5280351

しかしながら、上記特許文献1に開示の技術に示される船舶上のBOG再液化設備では、ボイルオフガス圧縮部を出た後のボイルオフガスを冷却する冷熱源が、貯留タンクから排出された直後のボイルオフガスの冷熱(自己冷熱)のみであるので、ボイルオフガス圧縮部を出た後のボイルオフガスの過冷却が不十分となり、減圧弁にて減圧された後に発生するフラッシュ流の流量が多くなる。当該多量のフラッシュ流は、貯留タンクを出た後のボイルオフガスに混合されるため、当該フラッシュ流量が多くなるほど、ボイルオフガス圧縮部のボイルオフガス圧縮コンプレッサの圧縮動力が増加し、効率悪化を招く。
尚、当該フラッシュ流は、貯留タンクを出た後のボイルオフガスに混合せず、外部に排出する構成を採用する場合には、利用価値の高いメタンを多量に捨てることになるので経済性が悪化する。
一方、余剰のボイルオフガスを処理するべく、図5に示すような単純な再液化設備を採用する場合、冷凍サイクル回路Cの第1熱交換器EX1において、授熱側のボイルオフガスと受熱側の冷媒N2とに関する温度と熱交換量との関係を示すTQ線図は、図6に示されるようになる。
ここで、当該図6において、ボイルオフガスはほぼメタン単体から成るガスであることから、授熱側のボイルオフガスのTQ線(図6で太実線)は、温度が下がって凝縮し始める点で温度変化が不連続となる。そして気液混合状態になると等温変化をする。
一方で、受熱側の冷媒として一般的に用いられる非凝縮性の窒素N2を用いる場合、当該冷媒N2が状態変化をしない関係で、そのTQ線(図6で細実線)は、図6に示すように略直線状になる。その結果、ボイルオフガスが凝縮し始める点でボイルオフガスと冷媒N2との温度差が最接近する(この点(図6でP1で示す点)をピンチポイントという)。このピンチポイントのために、冷媒N2の熱交換量に対する温度変化の割合(図6における傾きγ)はボイルオフガスの温度変化に合わせて小さくなる(つまり冷媒N2の流量を増やす必要がある)。そのため、冷凍サイクル回路Cの冷媒圧縮コンプレッサCPの圧縮動力が増加し、効率悪化を招くことになる。
また、授熱側のボイルオフガスの温度と受熱側の冷媒N2の温度との差(図6で、ΔT2やΔT3)が大きくなっており、これは、当該第1熱交換器EX1における熱交換効率が悪いことを示している。
However, in the BOG reliquefaction facility on the ship shown in the technique disclosed in Patent Document 1, the boil-off gas immediately after the cold heat source that cools the boil-off gas after exiting the boil-off gas compression section is discharged from the storage tank is used. Therefore, the supercooling of the boil-off gas after leaving the boil-off gas compression section becomes insufficient, and the flow rate of the flash flow generated after the pressure is reduced by the pressure reducing valve increases. Since the large amount of flush flow is mixed with the boil-off gas after leaving the storage tank, as the flush flow rate increases, the compression power of the boil-off gas compression compressor of the boil-off gas compression unit increases, leading to deterioration in efficiency.
In addition, when adopting a configuration in which the flush flow is not mixed with the boil-off gas after leaving the storage tank and discharged outside, a large amount of methane with high utility value is thrown away, so the economic efficiency deteriorates. To do.
On the other hand, when a simple reliquefaction facility as shown in FIG. 5 is employed to process surplus boil-off gas, in the first heat exchanger EX1 of the refrigeration cycle circuit C, the boil-off gas on the heat transfer side and the heat-reception side boil-off gas A TQ diagram showing a relationship between the temperature and the heat exchange amount with respect to the refrigerant N2 is as shown in FIG.
Here, in FIG. 6, the boil-off gas is a gas substantially composed of methane alone, so the TQ line (bold solid line in FIG. 6) of the boil-off gas on the heat transfer side is the temperature at which the temperature starts to decrease and condense. The change becomes discontinuous. And when it becomes a gas-liquid mixed state, it changes isothermally.
On the other hand, when non-condensable nitrogen N2 that is generally used as a refrigerant on the heat receiving side is used, the TQ line (thin solid line in FIG. 6) is shown in FIG. As shown in FIG. As a result, the temperature difference between the boil-off gas and the refrigerant N2 comes closest when the boil-off gas begins to condense (this point (the point indicated by P1 in FIG. 6) is called a pinch point). Due to this pinch point, the rate of change in temperature with respect to the heat exchange amount of the refrigerant N2 (inclination γ in FIG. 6) decreases according to the temperature change of the boil-off gas (that is, it is necessary to increase the flow rate of the refrigerant N2). For this reason, the compression power of the refrigerant compression compressor CP of the refrigeration cycle circuit C increases, leading to deterioration in efficiency.
Further, the difference between the temperature of the boil-off gas on the heat transfer side and the temperature of the refrigerant N2 on the heat reception side (ΔT2 and ΔT3 in FIG. 6) is large, which is the heat exchange efficiency in the first heat exchanger EX1. Indicates that it is bad.

更に、特許文献2に開示の技術にあっては、第2熱交換器において、ボイルオフガスと、第1熱交換器を通過した冷媒と第1熱交換器をバイパスした冷媒の流体が熱交換する構成を採用しているものの、当該構成にあっては、ボイルオフガスの熱交換量に対する温度変化率に、冷媒の熱交換量に対する温度変化率を十分に追従させることができない虞があった。
更に、冷凍サイクル回路は、第2熱交換器へ温度の異なる3つの流体を導くため、バイパス流路等を設ける複雑な回路構成をしているため、システム全体として構成が複雑となっていた。このような複雑な構成にあっては、第2熱交換器での熱交換効率を向上させるためには、バイパス流量等を適切に制御する必要があり、冷媒の流量制御も複雑になるという問題があった。
Furthermore, in the technique disclosed in Patent Document 2, in the second heat exchanger, the boil-off gas, the refrigerant that has passed through the first heat exchanger, and the refrigerant fluid that bypasses the first heat exchanger exchange heat. Although the configuration is adopted, there is a possibility that the temperature change rate relative to the heat exchange amount of the boil-off gas cannot sufficiently follow the temperature change rate relative to the heat exchange amount of the refrigerant.
Furthermore, since the refrigeration cycle circuit has a complicated circuit configuration in which a bypass flow path and the like are provided in order to introduce three fluids having different temperatures to the second heat exchanger, the configuration of the entire system is complicated. In such a complicated configuration, in order to improve the heat exchange efficiency in the second heat exchanger, it is necessary to appropriately control the bypass flow rate and the like, and the flow rate control of the refrigerant becomes complicated. was there.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、構成の複雑化を避けながらも、フラッシュ流の流量を低減して効率向上を図りつつ、熱交換器での熱交換効率を向上、更には、冷凍サイクル回路の圧縮動力低減による効率向上を実現し得るボイルオフガスの再液化設備を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its object is to reduce the flow rate of the flash flow while improving the efficiency while avoiding the complexity of the configuration, and to perform heat exchange in the heat exchanger. An object of the present invention is to provide a boil-off gas reliquefaction facility capable of improving efficiency and further improving efficiency by reducing the compression power of the refrigeration cycle circuit.

上記目的を達成するための本発明のボイルオフガスの再液化設備は、
液化天然ガスを貯留する貯留タンクと、当該貯留タンクから排出されるボイルオフガスを圧縮するボイルオフガス圧縮部と、当該ボイルオフガス圧縮部にて圧縮された液化ボイルオフガスの一部を燃料とする高圧噴射型エンジンと、前記ボイルオフガス圧縮部にて圧縮されたボイルオフガスの他部を抽気し再液化して前記貯留タンクへ戻す抽気流路と、前記抽気流路を通流するボイルオフガスと熱交換して当該ボイルオフガスを冷却する冷媒を循環する冷凍サイクル回路とを水上構造物上に備えるボイルオフガスの再液化設備であって、その特徴構成は、
前記抽気流路が、前記ボイルオフガス圧縮部にて前記高圧噴射型エンジンのエンジン供給圧力まで昇圧される前のボイルオフガスを抽気するものであり、
前記冷凍サイクル回路が、冷媒を圧縮する冷媒圧縮部と、当該冷媒圧縮部にて圧縮された冷媒を膨張する膨張部と、当該膨張部にて膨張された冷媒と前記抽気流路を通流するボイルオフガスとを熱交換する第1熱交換器とを有し、
前記貯留タンクから前記ボイルオフガス圧縮部までを通流するボイルオフガスと、前記冷凍サイクル回路で前記冷媒圧縮部から前記膨張部までを通流する冷媒とを熱交換する第2熱交換器を備え、
前記抽気流路へ抽気するボイルオフガスの抽気圧力を、前記エンジン供給圧力未満で、且つ前記ボイルオフガスの臨界圧力以上に設定する圧力設定手段を備える点にある。
In order to achieve the above object, the boil-off gas reliquefaction facility of the present invention comprises:
A storage tank that stores liquefied natural gas, a boil-off gas compression unit that compresses boil-off gas discharged from the storage tank, and a high-pressure injection that uses a part of the liquefied boil-off gas compressed by the boil-off gas compression unit as fuel Heat exchange with the mold engine, the extraction passage for extracting and re-liquefying the other portion of the boil-off gas compressed by the boil-off gas compression section, and returning it to the storage tank, and the boil-off gas flowing through the extraction passage And boil-off gas reliquefaction equipment comprising a refrigeration cycle circuit for circulating a refrigerant that cools the boil-off gas on the water structure,
The bleed flow passage bleeds the boil off gas before being boosted up to the engine supply pressure of the high pressure injection engine in the boil off gas compression unit,
The refrigeration cycle circuit flows through the refrigerant compression section that compresses the refrigerant, the expansion section that expands the refrigerant compressed by the refrigerant compression section, the refrigerant expanded by the expansion section, and the extraction channel. A first heat exchanger for exchanging heat with the boil-off gas,
A second heat exchanger that exchanges heat between the boil-off gas flowing from the storage tank to the boil-off gas compression unit and the refrigerant flowing from the refrigerant compression unit to the expansion unit in the refrigeration cycle circuit;
A pressure setting means is provided for setting the extraction pressure of the boil-off gas extracted into the extraction flow path to be lower than the engine supply pressure and higher than the critical pressure of the boil-off gas.

上記特徴構成によれば、ボイルオフガス圧縮部からボイルオフガスを抽気する抽気流路が、ボイルオフガス圧縮部にて高圧噴射型エンジンのエンジン供給圧力まで昇圧する前のボイルオフガスを抽気するものであるから、抽気圧力をエンジン供給圧力未満の低い圧力とすることができ、例えば、当該ボイルオフガスを液化した後、減圧して気液分離する際に発生するフラッシュ流の流量を、低減できる。
そして、抽気流路を通流するボイルオフガス(以下、昇圧後のボイルオフガスと略称することがある)は、第1熱交換器にて、冷凍サイクル回路で冷媒圧縮部にて圧縮され第2熱交換器で昇圧前のボイルオフガスの冷熱を回収した後に膨張部にて膨張され降温した冷媒と熱交換する形態で、冷却される。
特に、本発明にあっては、圧力設定手段が、抽気圧力を、エンジン供給圧力未満に設定するから、上述した様に、例えば、昇圧後のボイルオフガスを第1熱交換器で冷却した後、減圧して気液分離する際に発生するフラッシュ流の流量を低減できる。
ここで、ボイルオフガスを液化する過程で消費される動力としては、ボイルオフガス圧縮部での圧縮動力(具体的には、ボイルオフガス圧縮部にてボイルオフガスを圧縮するボイルオフガス圧縮コンプレッサの圧縮動力)と、冷凍サイクル回路での圧縮動力(具体的には、冷凍サイクル回路にて冷媒を圧縮する冷媒圧縮コンプレッサの圧縮動力)とがあるが、第1熱交換器での熱交換損失等をも考慮すると、抽気圧力が本発明にて設定される抽気圧力よりも十分に小さい場合には、単位ボイルオフガスあたりにおいて、『冷凍サイクル回路での圧縮動力>ボイルオフガス圧縮部の圧縮動力』の関係が成り立つ。
そして、圧力設定手段が、抽気圧力を設定する際に、抽気圧力の下限圧力をボイルオフガスの臨界圧力以上に設定するから、抽気流路で第1熱交換器を通過するボイルオフガスのTQ線図において、抽気流路で第1熱交換器を通過するボイルオフガスの示すTQ線のうち、液体と気体との気液混合状態である湿り飽和蒸気が示す等温線の幅(図6でAで示す幅)を小さくするように(あるいはなくすように)、抽気圧力を設定できる。
これにより、抽気流路で第1熱交換器を通過するボイルオフガスの示すTQ線は、例えば、図6で太実線で示されるような線図から、図2、3で太実線で示されるような線図となる。結果、冷媒の流量を減らすことができ(TQ線図における冷媒の傾きを大きくでき)、冷媒圧縮コンプレッサの圧縮動力(具体的には、冷凍サイクル回路での冷媒を圧縮する冷媒圧縮コンプレッサの圧縮動力)を小さくすることができ、設備全体としての効率向上を図ることができる。また、熱交換量の全域において、授熱側のTQ線と受熱側のTQ線との温度差を小さくすることができ、熱交換効率を向上できる。
更に、冷凍サイクル回路での圧縮動力を低減することができるから、液化効率を向上できるのみならず、容量の小さい冷媒圧縮コンプレッサを用いることができ、設備全体のコンパクト化を図ることができる。
また、本発明によれば、冷凍サイクル回路において、特許文献2に開示の技術のようにバイパス流路を設けることのないシンプル構成を採用することができ、冷凍サイクル回路を通流する冷媒の流量制御もシンプルな制御にすることができる。
以上より、構成の複雑化を避けながらも、フラッシュ流の流量を低減して効率向上を図りつつ、冷凍サイクル回路の圧縮動力低減による効率向上を実現し得るボイルオフガスの再液化設備を実現できる。
According to the above characteristic configuration, the extraction flow path for extracting the boil-off gas from the boil-off gas compression unit extracts the boil-off gas before being boosted to the engine supply pressure of the high-pressure injection engine at the boil-off gas compression unit. The extraction pressure can be set to a low pressure lower than the engine supply pressure. For example, after the boil-off gas is liquefied, the pressure of the flash flow generated when gas-liquid separation is performed by reducing the pressure can be reduced.
Then, the boil-off gas flowing through the extraction channel (hereinafter sometimes abbreviated as “boil-off gas after pressurization”) is compressed by the refrigerant compression unit in the refrigeration cycle circuit in the first heat exchanger, and the second heat. It cools with the form which heat-exchanges with the refrigerant | coolant expanded by the expansion | swelling part, and having cooled temperature after collect | recovering the cold heat | fever of the boil-off gas before pressurization with an exchanger.
In particular, in the present invention, since the pressure setting means sets the extraction pressure to be lower than the engine supply pressure, as described above, for example, after the boosted boil-off gas is cooled by the first heat exchanger, It is possible to reduce the flow rate of the flash flow generated when gas-liquid separation is performed under reduced pressure.
Here, the power consumed in the process of liquefying the boil-off gas is the compression power in the boil-off gas compression section (specifically, the compression power of the boil-off gas compression compressor that compresses the boil-off gas in the boil-off gas compression section). And the compression power in the refrigeration cycle circuit (specifically, the compression power of the refrigerant compression compressor that compresses the refrigerant in the refrigeration cycle circuit), but also consider the heat exchange loss in the first heat exchanger Then, when the extraction pressure is sufficiently smaller than the extraction pressure set in the present invention, the relationship of “compression power in the refrigeration cycle circuit> compression power of the boil-off gas compression unit” is established per unit boil-off gas. .
Then, when the pressure setting means sets the extraction pressure, the lower limit pressure of the extraction pressure is set to be equal to or higher than the critical pressure of the boil-off gas. Therefore, the TQ diagram of the boil-off gas passing through the first heat exchanger in the extraction flow path. In the TQ line indicated by the boil-off gas passing through the first heat exchanger in the extraction channel, the width of the isotherm indicated by the wet saturated vapor that is a gas-liquid mixed state of the liquid and the gas (shown by A in FIG. 6) The extraction pressure can be set so as to reduce (or eliminate) the (width).
Thereby, the TQ line indicated by the boil-off gas passing through the first heat exchanger in the extraction flow path is, for example, as shown by the thick solid line in FIGS. 2 and 3 from the diagram as shown by the thick solid line in FIG. It becomes a simple diagram. As a result, the flow rate of the refrigerant can be reduced (the inclination of the refrigerant in the TQ diagram can be increased), and the compression power of the refrigerant compression compressor (specifically, the compression power of the refrigerant compression compressor that compresses the refrigerant in the refrigeration cycle circuit) ) Can be reduced, and the efficiency of the entire equipment can be improved. Further, in the entire heat exchange amount, the temperature difference between the heat transfer side TQ line and the heat reception side TQ line can be reduced, and the heat exchange efficiency can be improved.
Further, since the compression power in the refrigeration cycle circuit can be reduced, not only the liquefaction efficiency can be improved, but also a refrigerant compression compressor with a small capacity can be used, and the entire equipment can be made compact.
Further, according to the present invention, in the refrigeration cycle circuit, a simple configuration without providing a bypass flow path as in the technique disclosed in Patent Document 2 can be adopted, and the flow rate of the refrigerant flowing through the refrigeration cycle circuit Control can also be made simple.
As described above, it is possible to realize a boil-off gas reliquefaction facility that can improve the efficiency by reducing the compression power of the refrigeration cycle circuit while reducing the flash flow rate and improving the efficiency while avoiding the complicated configuration.

本発明のボイルオフガスの再液化設備の更なる特徴構成は、
前記抽気流路で前記第1熱交換器を通過したボイルオフガスを減圧する減圧弁と、当該減圧弁にて減圧されたボイルオフガスを気液分離する気液分離器とを備え、
前記圧力設定手段は、前記抽気圧力の上限圧力を、前記気液分離器から気体として排出されるフラッシュ流の流量が抑制されるフラッシュ流抑制圧力未満に設定する点にある。
Further features of the boil-off gas reliquefaction facility of the present invention are:
A decompression valve that decompresses the boil-off gas that has passed through the first heat exchanger in the extraction flow path, and a gas-liquid separator that separates the boil-off gas decompressed by the decompression valve,
The pressure setting means is that the upper limit pressure of the extraction pressure is set to be less than the flash flow suppression pressure at which the flow rate of the flash flow discharged as gas from the gas-liquid separator is suppressed.

上記特徴構成によれば、圧力設定手段は、抽気圧力を、気液分離器から気体として排出されるフラッシュ流の流量を抑制可能なフラッシュ流抑制圧力未満に設定するから、気液分離器から発生するフラッシュ流量を良好に抑制できる。   According to the above characteristic configuration, the pressure setting means generates the extraction pressure from the gas-liquid separator because the extraction pressure is set to be less than the flash flow suppression pressure capable of suppressing the flow rate of the flash flow discharged as gas from the gas-liquid separator. It is possible to satisfactorily control the flush flow.

本発明のボイルオフガスの再液化設備の更なる特徴構成は、
前記ボイルオフガス圧縮部は、ボイルオフガスを圧縮するボイルオフガス圧縮コンプレッサを複数備え、
前記冷媒圧縮部は、冷媒を圧縮する冷媒圧縮コンプレッサを備え、
前記圧力設定手段は、抽気されるボイルオフガスが再液化される過程において、複数の前記ボイルオフガス圧縮コンプレッサの圧縮動力のうち抽気されるボイルオフガスの抽気圧力に関連する圧縮動力と、前記抽気流路で前記第1熱交換器を通過するボイルオフガスを冷却する時の前記冷媒圧縮コンプレッサの圧縮動力との合計動力が小さくなるように、前記抽気圧力を設定する点にある。
Further features of the boil-off gas reliquefaction facility of the present invention are:
The boil-off gas compression unit includes a plurality of boil-off gas compression compressors that compress boil-off gas,
The refrigerant compression unit includes a refrigerant compression compressor that compresses the refrigerant,
The pressure setting means includes a compression power related to the extraction pressure of the boil-off gas extracted from the compression power of the plurality of boil-off gas compression compressors in the process of re-liquefying the extracted boil-off gas, and the extraction flow path. The extraction pressure is set so that the total power with the compression power of the refrigerant compression compressor when cooling the boil-off gas passing through the first heat exchanger becomes small.

抽気されるボイルオフガスが再液化される過程において、ボイルオフガスの抽気圧力を徐々に昇圧させると、図4に示すように、ボイルオフガス圧縮コンプレッサの圧縮動力のうち抽気されるボイルオフガスの抽気圧力に関連する圧縮動力(図4で、▲の凡例で示される動力)は徐々に大きくなる。
これに対し、本発明の構成にあっては、抽気されるボイルオフガスを再液化する場合、抽気圧力が所定の圧力までは、ボイルオフガス圧縮コンプレッサの圧縮動力が大きくなるほど、第1熱交換器でのボイルオフガスのTQ線は、図6の太実線に示すような温度変化が不連続なTQ線から、図2の太実線に示すような温度変化が連続した滑らかなTQ線へと変化する。これにより、第2熱交換器での冷媒のTQ線は、ボイルオフガスのTQ線の温度変化に合わせて、熱交換量に対する温度変化の割合を大きくできる(つまり冷媒の流量を削減できる)ので、冷媒圧縮コンプレッサの圧縮動力(図4で、■の凡例で示される動力)を小さくすることができる。
一方、抽気圧力が所定の圧力を超えて、ボイルオフガス圧縮コンプレッサの圧縮動力を大きくする場合、第1熱交換器を通過した後で減圧弁にて減圧した際に発生するフラッシュ流の流量が多くなるため、当該フラッシュ流の流量を抑制するべく、第1熱交換器でのボイルオフガスの過冷却度を上げる必要が出てくる(図3の例では、ΔT1で示す温度だけ過冷却度を上げる必要が出てくる)ため、冷媒圧縮コンプレッサの圧縮動力は大きくなる。
以上の関係から、ボイルオフガスを再液化する過程において、複数のボイルオフガス圧縮コンプレッサの圧縮動力のうち抽気されるボイルオフガスの抽気圧力に関連する圧縮動力と、冷媒圧縮コンプレッサの圧縮動力との合計動力は、図4に示されるように、所定の抽気圧力幅(図4で、ΔPで示される幅)の間において、最小となる。
上記特徴構成によれば、当該合計動力が小さくなるように、抽気圧力を設定することで、ボイルオフガスの再液化を適切に実行しながらも、フラッシュ流の発生を抑制しつつ、設備全体の効率を向上することができる。
In the process in which the extracted boil-off gas is re-liquefied, if the boil-off gas extraction pressure is gradually increased, as shown in FIG. 4, the extraction power of the boil-off gas extracted from the compression power of the boil-off gas compression compressor is increased. The related compression power (power shown by the legend of ▲ in FIG. 4) gradually increases.
On the other hand, in the configuration of the present invention, when the boil-off gas extracted is re-liquefied, the first heat exchanger increases the compression power of the boil-off gas compression compressor until the extraction pressure reaches a predetermined pressure. The boil-off gas TQ line changes from a TQ line having a discontinuous temperature change as shown by a thick solid line in FIG. 6 to a smooth TQ line having a continuous temperature change as shown by a thick solid line in FIG. Thereby, the TQ line of the refrigerant in the second heat exchanger can increase the ratio of the temperature change with respect to the heat exchange amount in accordance with the temperature change of the TQ line of the boil-off gas (that is, the refrigerant flow rate can be reduced). The compression power of the refrigerant compression compressor (power indicated by the legend of ■ in FIG. 4) can be reduced.
On the other hand, when the extraction pressure exceeds a predetermined pressure and the compression power of the boil-off gas compression compressor is increased, the flow rate of the flash flow generated when the pressure is reduced by the pressure reducing valve after passing through the first heat exchanger is large. Therefore, in order to suppress the flow rate of the flash flow, it is necessary to increase the degree of supercooling of the boil-off gas in the first heat exchanger (in the example of FIG. 3, the degree of supercooling is increased by the temperature indicated by ΔT1. Therefore, the compression power of the refrigerant compression compressor increases.
From the above relationship, in the process of reliquefying the boil-off gas, the total power of the compression power related to the extraction pressure of the boil-off gas extracted from the compression power of the plurality of boil-off gas compression compressors and the compression power of the refrigerant compression compressor As shown in FIG. 4, the minimum is between a predetermined bleed pressure width (width indicated by ΔP in FIG. 4).
According to the above-described characteristic configuration, by setting the extraction pressure so that the total power becomes small, the efficiency of the entire equipment can be improved while appropriately performing the liquefaction of the boil-off gas while suppressing the generation of the flash flow. Can be improved.

本発明のボイルオフガスの再液化設備にあっては、
前記圧力設定手段は、前記抽気圧力を、10MPaG以上13MPaG以下に設定することが好ましい。
In the boil-off gas reliquefaction facility of the present invention,
The pressure setting means preferably sets the extraction pressure to 10 MPaG or more and 13 MPaG or less.

ボイルオフガスの再液化設備の概略構成を示す図The figure which shows schematic structure of the reliquefaction equipment of boil-off gas 抽気圧力を7MPaGと10MPaGとに設定した場合の第1熱交換器での授熱側のボイルオフガスと受熱側の冷媒とのTQ線図TQ diagram of boil-off gas on the heat transfer side and refrigerant on the heat reception side in the first heat exchanger when the extraction pressure is set to 7 MPaG and 10 MPaG 抽気圧力を13、30MPaGに設定した場合の第1熱交換器での授熱側のボイルオフガスと受熱側の冷媒とのTQ線図TQ diagram of heat transfer side boil-off gas and heat reception side refrigerant in the first heat exchanger when the extraction pressure is set to 13, 30 MPaG 抽気圧力を変化させた場合のボイルオフガス圧縮コンプレッサの圧縮動力と冷媒圧縮コンプレッサの圧縮動力とそれらの合計とを示すグラフ図The graph which shows the compression power of the boil-off gas compression compressor at the time of changing extraction air pressure, the compression power of a refrigerant compression compressor, and those total 従来技術におけるボイルオフガスの再液化設備の概略構成を示す図The figure which shows schematic structure of the reliquefaction equipment of the boil-off gas in a prior art 図5に示す構成における第1熱交換器での授熱側のボイルオフガスと受熱側の冷媒とのTQ線図FIG. 5 is a TQ diagram of the heat transfer side boil-off gas and the heat reception side refrigerant in the first heat exchanger in the configuration shown in FIG.

本発明の実施形態に係るボイルオフガスの再液化設備は、構造の複雑化を避けながらも、フラッシュ流の流量を低減して効率向上を図りつつ、熱交換器での熱交換効率を向上し、更には、冷凍サイクル回路の圧縮動力低減による効率向上を実現し得るものである。
以下、本発明の実施形態に係るボイルオフガスの再液化設備100を、図面に基づいて説明する。
The boil-off gas reliquefaction facility according to the embodiment of the present invention improves the heat exchange efficiency in the heat exchanger while reducing the flow rate of the flash flow while improving the efficiency while avoiding the complexity of the structure, Furthermore, the efficiency can be improved by reducing the compression power of the refrigeration cycle circuit.
Hereinafter, a boil-off gas reliquefaction facility 100 according to an embodiment of the present invention will be described with reference to the drawings.

本発明の実施形態に係るボイルオフガスの再液化設備100は、図1に示すように、LNG運搬船50(水上構造物の一例)上に備えられるものであり、液化天然ガスLNGを貯留する貯留タンク10と、当該貯留タンク10から排出されるボイルオフガスを圧縮するボイルオフガス圧縮部20と、当該ボイルオフガス圧縮部20にて圧縮され液化された液化ボイルオフガスの一部を燃料とする高圧噴射型エンジン40と、ボイルオフガス圧縮部20にて圧縮されたボイルオフガスの他部を抽気し再液化して貯留タンク10へ戻す抽気流路L2と、抽気流路L2を通流するボイルオフガスと熱交換してボイルオフガスを冷却する冷媒N2を循環する冷凍サイクル回路Cとを備えている。   As shown in FIG. 1, the boil-off gas reliquefaction facility 100 according to the embodiment of the present invention is provided on an LNG carrier 50 (an example of a floating structure) and stores a liquefied natural gas LNG. 10, a boil-off gas compression unit 20 that compresses the boil-off gas discharged from the storage tank 10, and a high-pressure injection engine that uses a part of the liquefied boil-off gas compressed and liquefied by the boil-off gas compression unit 20 as fuel 40, and the other part of the boil-off gas compressed by the boil-off gas compression unit 20 is extracted and re-liquefied to return to the storage tank 10, and heat exchange is performed with the boil-off gas flowing through the extraction flow path L2. And a refrigeration cycle circuit C for circulating a refrigerant N2 for cooling the boil-off gas.

貯留タンク10は、外部空間と断熱する断熱構造が採用されており、内部に比較的低温(例えば,−163℃)のLNGを貯留可能に構成されている。当該貯留タンク10では、外部と断熱されているものの、外部から温熱が伝導される形態でLNGが気化され、メタンを主成分とするボイルオフガスが発生する。
貯留タンク10とボイルオフガス圧縮部20とは、ボイルオフガス排出路L1にて接続されており、貯留タンク10にて発生したボイルオフガスは、ボイルオフガス排出路L1を介して、ボイルオフガス圧縮部20へ導かれる。
The storage tank 10 employs a heat insulating structure that insulates from the external space, and is configured to store LNG at a relatively low temperature (for example, −163 ° C.) inside. Although the storage tank 10 is insulated from the outside, LNG is vaporized in a form in which warm heat is conducted from the outside, and boil-off gas containing methane as a main component is generated.
The storage tank 10 and the boil-off gas compression unit 20 are connected by a boil-off gas discharge path L1, and the boil-off gas generated in the storage tank 10 is sent to the boil-off gas compression unit 20 via the boil-off gas discharge path L1. Led.

ボイルオフガス圧縮部20は、ボイルオフガスを圧縮するボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4、CP5の複数(当該実施形態では、5つ)を、ボイルオフガスの流れ方向で記載の順に備えると共に、ボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4、CP5にて圧縮され昇温した後のボイルオフガスを他の冷媒と熱交換する形態で冷却するクーラーEX1、EX2、EX3、EX4、EX5が、ボイルオフガスの流れ方向で各ボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4、CP5の下流側出口に、ボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4、CP5の夫々に1つずつ対応する状態で、ボイルオフガスの流れ方向で記載の順に配設されている。
即ち、ボイルオフガス排出路L1からボイルオフガス圧縮部20に導かれるボイルオフガスは、第1ボイルオフガス圧縮コンプレッサCP1にて圧縮された後、第1クーラーEX1にて冷却され、当該第1クーラーEX1にて冷却されたボイルオフガスは、第2ボイルオフガス圧縮コンプレッサCP2にて圧縮された後、第2クーラーEX2にて冷却され、当該第2クーラーEX2にて冷却されたボイルオフガスは、第3ボイルオフガス圧縮コンプレッサCP3にて圧縮された後、第3クーラーEX3にて冷却され、当該第3クーラーEX3にて冷却されたボイルオフガスは、第4ボイルオフガス圧縮コンプレッサCP4にて圧縮された後、第4クーラーEX4にて冷却され、当該第4クーラーEX4にて冷却されたボイルオフガスは、第5ボイルオフガス圧縮コンプレッサCP5にて圧縮された後、第5クーラーEX5にて冷却され、例えば、30MPaG以上のエンジン供給圧力まで昇圧された後、高圧噴射型エンジン40に供給される。当該高圧噴射型エンジン40は、船舶用電子制御式ガスインジェクションディーゼルエンジンを採用しており、LNG運搬船50の推進用のプロペラに直結され、且つ低速で回転する2サイクルエンジンである。
尚、高圧噴射型エンジン40は、比較的高圧の燃料を噴射するエンジンであればよく、2サイクルエンジンに限定されるものではない。
The boil-off gas compression unit 20 includes a plurality of boil-off gas compression compressors CP1, CP2, CP3, CP4, and CP5 (five in the present embodiment) that compress the boil-off gas in the order described in the flow direction of the boil-off gas, Boil-off gas compression compressors CP1, CP2, CP3, CP4, and CP5 are cooled by a cooler EX1, EX2, EX3, EX4, and EX5 that cools the boil-off gas that has been heated and heated with another refrigerant. The boil-off gas in a state corresponding to each of the boil-off gas compression compressors CP1, CP2, CP3, CP4 and CP5 at the downstream outlet of each of the boil-off gas compression compressors CP1, CP2, CP3, CP4 and CP5 in the flow direction of Are arranged in the order of description in the flow direction.
In other words, the boil-off gas guided from the boil-off gas discharge path L1 to the boil-off gas compression unit 20 is compressed by the first boil-off gas compression compressor CP1, then cooled by the first cooler EX1, and then by the first cooler EX1. The cooled boil-off gas is compressed by the second boil-off gas compression compressor CP2, and then cooled by the second cooler EX2. The boil-off gas cooled by the second cooler EX2 is the third boil-off gas compression compressor. After being compressed by CP3, cooled by the third cooler EX3, the boil-off gas cooled by the third cooler EX3 is compressed by the fourth boil-off gas compression compressor CP4, and then is supplied to the fourth cooler EX4. The boil-off gas cooled by the fourth cooler EX4 is After compressed in Iruofugasu compression compressor CP5, is cooled by a fifth cooler EX5, for example, after being raised to more engine supply pressure 30MPaG, supplied to the high-pressure injection type engine 40. The high-pressure injection engine 40 employs an electronically controlled gas injection diesel engine for ships, and is a two-cycle engine that is directly connected to a propeller for propulsion of the LNG carrier 50 and rotates at a low speed.
The high-pressure injection engine 40 may be any engine that injects relatively high-pressure fuel, and is not limited to a two-cycle engine.

当該実施形態にあっては、ボイルオフガス圧縮部20の圧縮過程において、エンジン供給圧力まで昇圧される前の比較的低圧のボイルオフガスが抽気可能に構成されている。
説明を追加すると、ボイルオフガス圧縮部20には、第2ボイルオフガス圧縮コンプレッサCP2で圧縮された後で、第2クーラーEX2にて冷却されたボイルオフガスの一部を分離して抽気する第1分岐機構D1が設けられており、当該第1分岐機構D1で分岐されたボイルオフガスは、各種のガス燃焼器で燃焼される。
In the embodiment, in the compression process of the boil-off gas compression unit 20, a relatively low-pressure boil-off gas before being increased to the engine supply pressure is configured to be extracted.
To add a description, the boil-off gas compression unit 20 includes a first branch that separates and bleeds a part of the boil-off gas that has been compressed by the second boil-off gas compression compressor CP2 and then cooled by the second cooler EX2. A mechanism D1 is provided, and the boil-off gas branched by the first branch mechanism D1 is burned by various gas combustors.

更に、ボイルオフガス圧縮部20には、第4ボイルオフガス圧縮コンプレッサCP4にて圧縮された後で、第4クーラーEX4にて冷却されたボイルオフガスの一部を分岐して抽気する第2分岐機構D2が設けられており、当該第2分岐機構D2にて抽気されたボイルオフガスは、第2分岐機構D2に接続される抽気流路L2を通流する。
尚、当該抽気流路L2へは、貯留タンク10から排出されるボイルオフガスの量が、高圧噴射型エンジン40にて燃料として必要とされるボイルオフガスの量を超える場合に、その超過分のボイルオフガスが導かれることとなる。
Further, the boil-off gas compression unit 20 has a second branch mechanism D2 for branching and extracting a part of the boil-off gas that has been compressed by the fourth boil-off gas compression compressor CP4 and then cooled by the fourth cooler EX4. The boil-off gas extracted by the second branch mechanism D2 flows through the extraction flow path L2 connected to the second branch mechanism D2.
When the amount of boil-off gas discharged from the storage tank 10 exceeds the amount of boil-off gas required as fuel in the high-pressure injection engine 40, the excess boil-off is supplied to the extraction flow path L2. Gas will be led.

貯留タンク10からボイルオフガス排出路L1へ排出された昇圧前のボイルオフガスは、冷凍サイクル回路Cを循環する冷媒N2との熱交換により冷媒N2へ冷熱を与えると共に、ボイルオフガス圧縮部20にて抽気圧力まで圧縮された後に抽気流路L2を通流する過程において、冷凍サイクル回路Cを循環する冷媒N2との熱交換により冷却されて再液化される。
ここで、まず、冷凍サイクル回路Cについて説明を加えると、冷凍サイクル回路Cは、非凝縮性の冷媒N2として窒素を循環させ、第1熱交換器EX10でボイルオフガスを冷却して再液化するために設けられている回路である。
当該冷凍サイクル回路Cは、冷媒圧縮部70として、冷媒N2を圧縮する冷媒圧縮コンプレッサCP6、CP7、CP8の複数(当該実施形態では、3つ)を、冷媒N2の流れ方向で記載の順に備えると共に、当該冷媒圧縮コンプレッサCP6、CP7、CP8にて圧縮され昇温した後のボイルオフガスを他の冷媒と熱交換する形態で冷却するクーラーEX6、EX7、EX8を、冷媒N2の流れ方向で各冷媒圧縮コンプレッサCP6、CP7、CP8の下流側出口に、冷媒圧縮コンプレッサCP6、CP7、CP8の夫々に1つずつ対応する状態で、ボイルオフガスの流れ方向で記載の順に配設している。
説明を追加すると、冷媒N2は、第6冷媒圧縮コンプレッサCP6にて圧縮された後、第6クーラーEX6にて冷却され、当該第6クーラーEX6にて冷却された冷媒N2は、第7冷媒圧縮コンプレッサCP7にて圧縮された後、第7クーラーEX7にて冷却され、当該第7クーラーEX7にて冷却された冷媒N2は、第8冷媒圧縮コンプレッサCP8にて圧縮された後、第8クーラーEX8にて冷却される。
更に、冷凍サイクル回路Cは、第8クーラーEX8にて冷却された冷媒N2を、ボイルオフガス排出路L1を通流するボイルオフガスと熱交換する形態で冷却する第2熱交換器EX9と、当該第2熱交換器EX9を通過した後の冷媒N2を膨張させるエキスパンダEP1(膨張部の一例)とを備えている。
これにより、冷凍サイクル回路Cを循環する冷媒N2は、複数の冷媒圧縮コンプレッサCP6、CP7、CP8にて記載の順に圧縮されながら複数のクーラーEX6、EX7、EX8にて記載の順に冷却され、第2熱交換器EX9にて更に冷却された後、エキスパンダEP1にて膨張し、ボイルオフガスを過冷却可能な温度(例えば、−170℃以下の温度)まで降温した後、第1熱交換器EX10を通過して抽気流路L2を通流するボイルオフガスを冷却して再液化させる形態で、冷凍サイクル回路Cを循環する。
The pre-pressurized boil-off gas discharged from the storage tank 10 to the boil-off gas discharge path L1 gives cold heat to the refrigerant N2 by heat exchange with the refrigerant N2 circulating in the refrigeration cycle circuit C, and is extracted at the boil-off gas compression unit 20. In the process of flowing through the extraction flow path L2 after being compressed to the pressure, it is cooled and reliquefied by heat exchange with the refrigerant N2 circulating in the refrigeration cycle circuit C.
Here, first, the refrigeration cycle circuit C will be described. The refrigeration cycle circuit C circulates nitrogen as the non-condensable refrigerant N2, and cools and reliquefies the boil-off gas in the first heat exchanger EX10. It is the circuit provided in.
The refrigeration cycle circuit C includes a plurality of refrigerant compression compressors CP6, CP7, and CP8 (three in the present embodiment) that compress the refrigerant N2 in the order described in the flow direction of the refrigerant N2, as the refrigerant compression unit 70. Each of the refrigerant compressors EX6, EX7, EX8 that cools the boil-off gas after being compressed and heated by the refrigerant compressors CP6, CP7, CP8 in the form of heat exchange with other refrigerants is compressed in the flow direction of the refrigerant N2. At the downstream outlets of the compressors CP6, CP7, CP8, the refrigerant compression compressors CP6, CP7, CP8 are arranged one by one in the order described in the flow direction of the boil-off gas.
When the explanation is added, the refrigerant N2 is compressed by the sixth refrigerant compression compressor CP6 and then cooled by the sixth cooler EX6. The refrigerant N2 cooled by the sixth cooler EX6 is converted into the seventh refrigerant compression compressor. After being compressed by CP7, cooled by the seventh cooler EX7, the refrigerant N2 cooled by the seventh cooler EX7 is compressed by the eighth refrigerant compression compressor CP8, and then by the eighth cooler EX8. To be cooled.
Further, the refrigeration cycle circuit C includes a second heat exchanger EX9 that cools the refrigerant N2 cooled by the eighth cooler EX8 in a form of heat exchange with the boil-off gas flowing through the boil-off gas discharge path L1, and the second heat exchanger EX9. And an expander EP1 (an example of an expansion unit) that expands the refrigerant N2 after passing through the two heat exchangers EX9.
As a result, the refrigerant N2 circulating in the refrigeration cycle circuit C is cooled in the order described in the plurality of coolers EX6, EX7, EX8 while being compressed in the order described in the plurality of refrigerant compression compressors CP6, CP7, CP8. After further cooling in the heat exchanger EX9, the expander EP1 expands, and the boil-off gas is cooled to a temperature at which the boil-off gas can be supercooled (for example, a temperature of −170 ° C. or lower), and then the first heat exchanger EX10 is The refrigeration cycle circuit C is circulated in such a form that the boil-off gas passing through and passing through the extraction flow path L2 is cooled and reliquefied.

抽気流路L2には、当該抽気流路L2を通流するボイルオフガスを、冷凍サイクル回路Cを循環する冷媒N2との熱交換により冷却して再液化する第1熱交換器EX10と、当該第1熱交換器EX10を通過した後のボイルオフガスを減圧する減圧弁V1と、当該減圧弁V1にて減圧した後のボイルオフガスを気液分離する気液分離器30とが設けられる。
抽気流路L2は、気液分離器30の下方側部位と貯留タンク10とを接続しており、気液分離器30にて気液分離された液化ボイルオフガス(L)が、当該抽気流路L2を介して貯留タンク10へ戻される。一方、気液分離器30にて気液分離された気体のボイルオフガス(G)は、フラッシュ流として気液分離器30から排出される。
In the extraction flow path L2, the first heat exchanger EX10 that cools and reliquefies the boil-off gas flowing through the extraction flow path L2 by heat exchange with the refrigerant N2 circulating in the refrigeration cycle circuit C, and the first A pressure reducing valve V1 for reducing the pressure of the boil-off gas after passing through the heat exchanger EX10 and a gas-liquid separator 30 for separating the boil-off gas after being reduced by the pressure reducing valve V1 are provided.
The extraction flow path L2 connects the lower part of the gas-liquid separator 30 and the storage tank 10, and the liquefied boil-off gas (L) separated by the gas-liquid separator 30 is the extraction flow path. It is returned to the storage tank 10 via L2. On the other hand, the gas boil-off gas (G) that has been gas-liquid separated by the gas-liquid separator 30 is discharged from the gas-liquid separator 30 as a flush flow.

当該実施形態のボイルオフガスの再液化設備100にあっては、ボイルオフガスのボイルオフガス圧縮部20からの抽気圧力を設定自在な圧力設定部60a(圧力設定手段の一例)として機能する制御装置60を備えており、当該制御装置60は、LSI等の集積装置からなるハードウェアと複数のプログラム群からなるソフトウエアとを協働可能に構成されている。   In the boil-off gas reliquefaction facility 100 of the present embodiment, the control device 60 that functions as a pressure setting unit 60a (an example of a pressure setting unit) that can set the extraction pressure of the boil-off gas from the boil-off gas compression unit 20 is provided. The control device 60 is configured to be able to cooperate hardware composed of an integrated device such as an LSI and software composed of a plurality of programs.

ここで、ボイルオフガスの抽気圧力が、従来の窒素冷媒サイクルを備えた船上ボイルオフガス再液化システムにおける一般的な抽気圧力(例えば、0.3MPaG以上2.0MPaG以下程度の圧力)の場合、第1熱交換器EX10にて熱交換するボイルオフガスの熱交換量と温度との関係を示すTQ線図は、概略図6の太実線に示すような状態となる。即ち、ボイルオフガスの抽気圧力が低い場合、ボイルオフガスは温度が下がって凝縮し始める点で温度変化が不連続となる。そして気液混合状態になると等温変化をする。
このため、ボイルオフガスが凝縮し始める点でボイルオフガスと冷媒N2との温度差が最接近する(この点(図6でP1で示す点)をピンチポイントという)。このピンチポイントのために、冷媒N2の熱交換量に対する温度変化の割合(図6における傾きγ)はボイルオフガスの温度変化に合わせて小さくなる。(つまり冷媒N2の流量を増やす必要がある)。そのため、冷凍サイクル回路Cの冷媒圧縮コンプレッサCP6、CP7、CP8の圧縮動力が増加し、効率悪化を招くことになる。
また、授熱側のボイルオフガスの温度と受熱側の冷媒N2の温度との差(図6で、ΔT2やΔT3)が大きくなっており、これは、当該第1熱交換器EX10における熱交換効率が悪いことを示している。
Here, when the extraction pressure of the boil-off gas is a general extraction pressure (for example, a pressure of about 0.3 MPaG to 2.0 MPaG) in a shipboard boil-off gas reliquefaction system equipped with a conventional nitrogen refrigerant cycle, the first The TQ diagram showing the relationship between the heat exchange amount and the temperature of the boil-off gas to be heat exchanged in the heat exchanger EX10 is in a state as indicated by a thick solid line in FIG. That is, when the extraction pressure of the boil-off gas is low, the temperature change becomes discontinuous at the point where the boil-off gas starts to cool and condense. And when it becomes a gas-liquid mixed state, it changes isothermally.
Therefore, the temperature difference between the boil-off gas and the refrigerant N2 comes closest to the point where the boil-off gas begins to condense (this point (the point indicated by P1 in FIG. 6) is called a pinch point). Due to this pinch point, the rate of temperature change with respect to the heat exchange amount of the refrigerant N2 (inclination γ in FIG. 6) decreases with the temperature change of the boil-off gas. (In other words, it is necessary to increase the flow rate of the refrigerant N2.) For this reason, the compression power of the refrigerant compression compressors CP6, CP7, CP8 of the refrigeration cycle circuit C increases, leading to deterioration in efficiency.
In addition, the difference between the temperature of the boil-off gas on the heat transfer side and the temperature of the refrigerant N2 on the heat reception side (ΔT2 and ΔT3 in FIG. 6) is large, which is the heat exchange efficiency in the first heat exchanger EX10. Indicates that it is bad.

そこで、圧力設定部60aは、抽気圧力の下限圧力を設定する際に、抽気圧力の下限圧力をボイルオフガスの臨界圧力(ボイルオフガスがメタンを主成分とするガスの場合、4.8MPaGを超える圧力、ボイルオフガスが純メタンの場合、4.5MPaGを超える圧力)以上に設定する。
より具体的には、圧力設定部60aは、ボイルオフガスの抽気圧力を、従来の窒素冷媒サイクルを備えた船上ボイルオフガス再液化システムにおける一般的な抽気圧力よりも高めることで、図6の太実線のボイルオフガスのTQ線において、気液混合状態で等温変化を示す幅Aを小さくすることができる。つまり、図6の太実線で示すTQ線から、図2で太破線で示すTQ線(抽気圧力7MPaG)、更には、図2で太実線で示すTQ線(抽気圧力10MPaG)へと変化させる。これにより、冷媒N2の流量を減らすことができ(TQ線図における冷媒N2の傾きを大きくでき)、冷媒圧縮コンプレッサCP6、CP7、CP8の圧縮動力を小さくすることができる。
図2に示すTQ線図は、ボイルオフガスの抽気圧力を7MPaGと抽気圧力10MPaGとした場合の第1熱交換器EX10におけるTQ線図であるが、ボイルオフガスの抽気圧力が7MPaGの場合、飽和蒸気線(図2でグラフ中央付近の太破線)と過熱蒸気線(図2でグラフ右側付近の細破線)との傾きの差が、10MPaGに比較して大きくなる(グラフのうねりが大きくなる)。これは、抽気圧力を10MPaGに設定する場合よりも、抽気圧力を7MPaGに設定する場合のほうが、冷媒N2の熱交換量に対する温度変化の割合が小さくなり(つまりN2流量が大きくなり)、冷凍サイクル回路Cの冷媒圧縮コンプレッサCPの圧縮動力が増加し、効率が悪化していることを示す。また、授熱側であるボイルオフガスが示すTQ線と受熱側の冷媒N2が示すTQ線との温度差が大きくなり、熱交換効率が悪いことを示している。
逆に言うと、抽気圧力を10MPaGに設定する方が、抽気圧力を7MPaGに設定するよりも、第1熱交換器EX10での熱交換効率を向上でき、第1熱交換器EX10にて冷媒N2から与える冷熱量の損失を低減できるから、冷媒圧縮部70の圧縮動力(冷媒圧縮コンプレッサの圧縮動力)を低減できる。
ここで、ボイルオフガスを液化する過程で消費される動力としては、ボイルオフガス圧縮部20での圧縮動力(具体的には、ボイルオフガス圧縮部20にてボイルオフガスを圧縮するボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4の圧縮動力)と、冷凍サイクル回路Cでの圧縮動力(具体的には、冷凍サイクル回路Cにて冷媒N2を圧縮する冷媒圧縮コンプレッサCP6、CP7、CP8の圧縮動力)とがあるが、第1熱交換器EX10での熱交換損失等をも考慮すると、抽気圧力が本発明にて設定される抽気圧力よりも十分に小さい場合には、単位ボイルオフガスあたりにおいて、『冷凍サイクル回路Cでの圧縮動力>ボイルオフガス圧縮部20の圧縮動力』の関係が成り立つ。
ここで、圧力設定部60aが、抽気圧力を、10MPaG以上に設定することで、第1熱交換器EX10を通過する昇圧後のボイルオフガスと冷媒N2との温度差を、第1熱交換器EX10での交換熱量全域に亘って低減でき、冷凍サイクル回路Cでの圧縮動力(具体的には、冷凍サイクル回路Cでの冷媒N2を圧縮する冷媒圧縮コンプレッサCP6、CP7、CP8の圧縮動力)を低減することができ、設備全体としての効率向上を図ることができる。
以上のことから、当該実施形態にあっては、圧力設定部60aは、ボイルオフガスの抽気圧力の10MPaG以上に設定する。
因みに、ボイルオフガスの抽気圧力を10MPaGとした場合のTQ線図の計算条件は、図1の概略構成図のボイルオフガス排出路L1及び抽気流路L2に示すP1〜P6において、以下の〔表1〕に示す流量、温度、圧力を示すものとする。尚、下線を付した値は、抽気圧力によらず、ほぼ一定の値である。また、タンク圧は、0MPaG以上0.035MPaG以下程度の圧力とする。
Therefore, when the lower limit pressure of the extraction pressure is set, the pressure setting unit 60a sets the lower limit pressure of the extraction pressure to the critical pressure of the boil-off gas (when the boil-off gas is a gas containing methane as a main component, the pressure exceeding 4.8 MPaG). When the boil-off gas is pure methane, the pressure exceeds 4.5 MPaG).
More specifically, the pressure setting unit 60a increases the extraction pressure of the boil-off gas higher than the general extraction pressure in the onboard boil-off gas reliquefaction system equipped with the conventional nitrogen refrigerant cycle, so that the thick solid line in FIG. In the TQ line of the boil-off gas, the width A indicating the isothermal change in the gas-liquid mixed state can be reduced. That is, the TQ line indicated by the thick solid line in FIG. 6 is changed to the TQ line indicated by the thick broken line in FIG. 2 (bleeding pressure 7 MPaG), and further the TQ line indicated by the thick solid line in FIG. As a result, the flow rate of the refrigerant N2 can be reduced (the inclination of the refrigerant N2 in the TQ diagram can be increased), and the compression power of the refrigerant compression compressors CP6, CP7, CP8 can be reduced.
The TQ diagram shown in FIG. 2 is a TQ diagram in the first heat exchanger EX10 when the extraction pressure of the boil-off gas is 7 MPaG and the extraction pressure of 10 MPaG. When the extraction pressure of the boil-off gas is 7 MPaG, saturated steam The difference in slope between the line (thick broken line near the center of the graph in FIG. 2) and the superheated steam line (thin broken line near the right side of the graph in FIG. 2) becomes larger compared to 10 MPaG (the swell of the graph increases). This is because when the extraction pressure is set to 7 MPaG, the rate of temperature change with respect to the heat exchange amount of the refrigerant N2 becomes smaller (that is, the N2 flow rate becomes larger) than when the extraction pressure is set to 10 MPaG. It shows that the compression power of the refrigerant compression compressor CP of the circuit C is increased and the efficiency is deteriorated. Further, the temperature difference between the TQ line indicated by the boil-off gas on the heat transfer side and the TQ line indicated by the refrigerant N2 on the heat receiving side is increased, indicating that the heat exchange efficiency is poor.
In other words, setting the extraction pressure to 10 MPaG can improve the heat exchange efficiency in the first heat exchanger EX10 than setting the extraction pressure to 7 MPaG, and the refrigerant N2 in the first heat exchanger EX10 can be improved. Since the loss of the amount of cold heat given from the refrigerant can be reduced, the compression power of the refrigerant compressor 70 (compression power of the refrigerant compression compressor) can be reduced.
Here, as the power consumed in the process of liquefying the boil-off gas, the compression power in the boil-off gas compression unit 20 (specifically, the boil-off gas compression compressor CP1 that compresses the boil-off gas in the boil-off gas compression unit 20, CP2, CP3, CP4) and the compression power in the refrigeration cycle circuit C (specifically, the compression power of refrigerant compression compressors CP6, CP7, CP8 that compresses the refrigerant N2 in the refrigeration cycle circuit C). However, considering the heat exchange loss in the first heat exchanger EX10 and the like, when the extraction pressure is sufficiently smaller than the extraction pressure set in the present invention, the unit is referred to as “refrigeration cycle” per unit boil-off gas. The relationship of “compression power in circuit C> compression power of boil-off gas compression unit 20” is established.
Here, the pressure setting unit 60a sets the extraction pressure to 10 MPaG or more, so that the temperature difference between the boosted boil-off gas passing through the first heat exchanger EX10 and the refrigerant N2 is changed to the first heat exchanger EX10. In the refrigeration cycle circuit C (specifically, the compression power of the refrigerant compression compressors CP6, CP7, CP8 for compressing the refrigerant N2 in the refrigeration cycle circuit C). It is possible to improve the efficiency of the entire equipment.
From the above, in the present embodiment, the pressure setting unit 60a sets the extraction pressure of the boil-off gas to 10 MPaG or more.
Incidentally, the calculation conditions of the TQ diagram when the extraction pressure of the boil-off gas is 10 MPaG are as follows [Table 1] in P1 to P6 shown in the boil-off gas discharge passage L1 and the extraction passage L2 in the schematic configuration diagram of FIG. The flow rate, temperature, and pressure shown in FIG. The underlined value is a substantially constant value regardless of the extraction pressure. The tank pressure is set to a pressure of about 0 MPaG to 0.035 MPaG.

Figure 2016128737
Figure 2016128737

一方で、ボイルオフガスの抽気圧力を高くし過ぎると、ボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4の圧縮動力が大きくなり効率低下を招くと共に、減圧弁V1にて減圧した際に発生するフラッシュ流量が増加し、気液分離器30から捨てられる気体のボイルオフガス(G)が増加するため、好ましくない。   On the other hand, if the bleed pressure of the boil-off gas is excessively increased, the compression power of the boil-off gas compression compressors CP1, CP2, CP3, CP4 increases, resulting in a decrease in efficiency and the flash flow rate generated when the pressure is reduced by the pressure reducing valve V1. Increases, and the boil-off gas (G) that is discarded from the gas-liquid separator 30 increases.

図3に、圧力設定部60aにて、ボイルオフガスの抽気圧力を、13、30MPaGの夫々に設定した場合のTQ線図を示している。
当該図3に示すTQ線図から、抽気圧力を13MpaGから30MPaGへ昇圧する場合、ボイルオフガス圧縮部20の圧縮動力が大幅に増加するが、第1熱交換器EX10での熱交換効率は更に向上する。ただし、抽気圧力の増加に伴うフラッシュ流の流量の増加を抑制する必要があるから、ボイルオフガスの過冷却量を大きくする必要があるため、図3に示すように、抽気圧力を13MPaGに設定する場合に比べ、冷凍サイクル回路Cで第1熱交換器EX10への冷媒N2の入温度を、図3でΔT1にて示す温度だけ低温にする必要がある。これは、冷凍サイクル回路Cでの圧縮動力の増大を意味するから、再液化プロセスにおける効率の悪化を意味する。
一方で、抽気圧力を13MPaGに設定する場合、冷凍サイクル回路Cで第1熱交換器EX10への冷媒N2の入温度を、抽気圧力を10MPaGに設定する場合と略同温度に設定できている。これは、抽気圧力を13MPaGに設定する場合、冷凍サイクル回路Cで第1熱交換器EX10への冷媒N2の入温度を、抽気圧力を10MPaGに設定する場合と略同温度に設定したときでも、フラッシュ流の流量を十分に抑制できることを示している。更に、抽気圧力を13MPaGに設定する場合には、冷凍サイクル回路Cでの圧縮動力を一定に維持しながらも、授熱側である昇圧後のボイルオフガスが示すTQ線を、直線状に近い状態へと変化させることができている。
そこで、当該実施形態にあっては、圧力設定部60aは、ボイルオフガスの抽気圧力を、13MPaG以下に設定している。
FIG. 3 shows a TQ diagram when the extraction pressure of the boil-off gas is set to 13, 30 MPaG in the pressure setting unit 60a.
From the TQ diagram shown in FIG. 3, when the extraction pressure is increased from 13 MpaG to 30 MPaG, the compression power of the boil-off gas compression unit 20 is significantly increased, but the heat exchange efficiency in the first heat exchanger EX10 is further improved. To do. However, since it is necessary to suppress the increase in the flow rate of the flash flow accompanying the increase in the extraction pressure, it is necessary to increase the supercooling amount of the boil-off gas, so the extraction pressure is set to 13 MPaG as shown in FIG. Compared to the case, the refrigeration cycle circuit C needs to lower the temperature of the refrigerant N2 entering the first heat exchanger EX10 by a temperature indicated by ΔT1 in FIG. This means an increase in compression power in the refrigeration cycle circuit C, and therefore a deterioration in efficiency in the reliquefaction process.
On the other hand, when the extraction pressure is set to 13 MPaG, the temperature at which the refrigerant N2 enters the first heat exchanger EX10 in the refrigeration cycle circuit C can be set to substantially the same temperature as when the extraction pressure is set to 10 MPaG. This is because, when the extraction pressure is set to 13 MPaG, even when the temperature of the refrigerant N2 to the first heat exchanger EX10 is set to approximately the same temperature as when the extraction pressure is set to 10 MPaG in the refrigeration cycle circuit C, It shows that the flow rate of the flash flow can be sufficiently suppressed. Furthermore, when the extraction pressure is set to 13 MPaG, the TQ line indicated by the boosted boil-off gas on the heat transfer side is almost linear while maintaining the compression power in the refrigeration cycle circuit C constant. It can be changed to.
Therefore, in the present embodiment, the pressure setting unit 60a sets the extraction pressure of the boil-off gas to 13 MPaG or less.

更に、当該実施形態に係る圧力設定部60aは、抽気されるボイルオフガスの再液化の過程において、ボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4の抽気に係る圧縮動力と、冷媒圧縮コンプレッサCP6、CP7、CP8の圧縮動力との合計動力が、小さくなるように、抽気圧力を設定している。
図4に基づいて説明を追加すると、抽気されるボイルオフガスが再液化される過程において、ボイルオフガスの抽気圧力を0MPaGから徐々に昇圧させると、図4に示すように、ボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4の圧縮動力のうち抽気されるボイルオフガスの抽気圧力に関連する圧縮動力(図4で、▲の凡例で示される動力)は徐々に大きくなる。
これに対し、当該実施形態に係る構成にあっては、抽気されるボイルオフガスを再液化する場合、抽気圧力が所定の圧力までは、ボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4の圧縮動力が大きくなるほど(抽気圧力が高くなるほど)、第1熱交換器EX10でのボイルオフガスのTQ線は、図6の太実線に示すような温度変化が不連続なTQ線から、図2の太実線に示すような温度変化が連続した滑らかなTQ線へと変化する。これにより、第1熱交換器EX10での冷媒N2のTQ線は、ボイルオフガスのTQ線の温度変化に合わせて、熱交換量に対する温度変化の割合を大きくできる(つまり冷媒N2の流量を削減できる)ので、冷媒圧縮コンプレッサCP6、CP7、CP8の圧縮動力(図4で、■の凡例で示される動力)を小さくすることができる。
一方、抽気圧力が所定の圧力を超えて、ボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4の圧縮動力を大きくする場合、第1熱交換器EX10を通過した後で減圧弁V1にて減圧した際に発生するフラッシュ流の流量が多くなるため、当該フラッシュ流の流量を抑制するべく、第1熱交換器EX10でのボイルオフガスの過冷却度を上げる必要が出てくる(図3の例では、ΔT1で示す温度だけ過冷却度を上げる必要が出てくる)ため、冷媒圧縮コンプレッサCP6、CP7、CP8の圧縮動力は大きくなる。
これらの関係から、ボイルオフガスを再液化する過程において、複数のボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4の圧縮動力のうち抽気されるボイルオフガスの抽気圧力に関連する圧縮動力と、冷媒圧縮コンプレッサCP6、CP7、CP8の圧縮動力との合計動力は、図4に示されるように、抽気圧力が10MPaG以上13MPaG以下の範囲(図4で、ΔPで示される幅)の間において、最小となる。
従って、当該実施形態に係る圧力設定部60aは、当該合計動力を小さくして、再液化の過程における効率向上を図るべく、抽気圧力を10MPaG以上13MPaG以下に設定するのである。
Further, the pressure setting unit 60a according to the embodiment includes the compression power related to the extraction of the boil-off gas compression compressors CP1, CP2, CP3, and CP4 and the refrigerant compression compressors CP6 and CP7 in the process of reliquefaction of the extracted boil-off gas. The extraction pressure is set so that the total power with the compression power of CP8 becomes small.
When the explanation is added based on FIG. 4, when the extraction pressure of the boil-off gas is gradually increased from 0 MPaG in the process of re-liquefying the extracted boil-off gas, the boil-off gas compression compressor CP1, as shown in FIG. Among the compression powers of CP2, CP3, and CP4, the compression power related to the extraction pressure of the boil-off gas extracted (power indicated by the legend in FIG. 4) gradually increases.
On the other hand, in the configuration according to this embodiment, when the boil-off gas extracted is reliquefied, the compression power of the boil-off gas compression compressors CP1, CP2, CP3, CP4 is reduced until the extraction pressure reaches a predetermined pressure. The larger the bleed pressure (the higher the bleed pressure), the boil-off gas TQ line in the first heat exchanger EX10 changes from a TQ line having a discontinuous temperature change as shown by a thick solid line in FIG. 6 to a thick solid line in FIG. The temperature change as shown changes to a continuous smooth TQ line. Thereby, the TQ line of the refrigerant N2 in the first heat exchanger EX10 can increase the ratio of the temperature change with respect to the heat exchange amount in accordance with the temperature change of the TQ line of the boil-off gas (that is, the flow rate of the refrigerant N2 can be reduced). Therefore, the compression power of the refrigerant compression compressors CP6, CP7, CP8 (power indicated by the legend of ■ in FIG. 4) can be reduced.
On the other hand, when the extraction pressure exceeds a predetermined pressure and the compression power of the boil-off gas compression compressors CP1, CP2, CP3, CP4 is increased, when the pressure is reduced by the pressure reducing valve V1 after passing through the first heat exchanger EX10. Therefore, it is necessary to increase the degree of supercooling of the boil-off gas in the first heat exchanger EX10 in order to suppress the flow rate of the flash flow (in the example of FIG. 3, Since it is necessary to increase the degree of supercooling by the temperature indicated by ΔT1, the compression power of the refrigerant compression compressors CP6, CP7, CP8 increases.
From these relationships, in the process of reliquefying the boil-off gas, the compression power related to the extraction pressure of the boil-off gas extracted from the compression power of the plurality of boil-off gas compression compressors CP1, CP2, CP3, CP4, and the refrigerant compression compressor As shown in FIG. 4, the total power including the compression power of CP6, CP7, and CP8 is the minimum when the extraction pressure is in the range of 10 MPaG to 13 MPaG (the width indicated by ΔP in FIG. 4).
Therefore, the pressure setting unit 60a according to the embodiment sets the extraction pressure to 10 MPaG or more and 13 MPaG or less in order to reduce the total power and improve the efficiency in the reliquefaction process.

尚、図4に示したグラフ図の具体的な数値を、以下の〔表2〕に示す。ちなみに、〔表2〕に示すボイルオフガス圧縮コンプレッサの圧縮動力は、複数のボイルオフガス圧縮コンプレッサCP1、CP2、CP3、CP4の圧縮動力のうち抽気されるボイルオフガスの抽気圧力に関連する圧縮動力であるが、高圧噴射型エンジン40へ導かれるボイルオフガスを圧縮する圧縮動力も含むものである。また、図4および〔表2〕の計算条件は表1を参照されたい。   In addition, the concrete numerical value of the graph shown in FIG. 4 is shown in the following [Table 2]. Incidentally, the compression power of the boil-off gas compression compressor shown in [Table 2] is the compression power related to the extraction pressure of the boil-off gas extracted from the compression power of the plurality of boil-off gas compression compressors CP1, CP2, CP3, and CP4. However, it also includes compression power for compressing the boil-off gas introduced to the high-pressure injection engine 40. Refer to Table 1 for the calculation conditions of FIG. 4 and [Table 2].

Figure 2016128737
Figure 2016128737

尚、本実施形態に係るボイルオフガスの再液化設備100と、特許文献1に開示の技術と、特許文献2に開示の技術とにおいて、ボイルオフガス1tonあたりの液化に要する消費電力をシミュレーションした結果を、以下の〔表3〕に示す。因みに、〔表3〕では、主機関負荷が0%の場合の消費電力を示しており、主機関負荷とは、高圧噴射型エンジンの負荷を示す。ここで、特許文献2に開示の技術は、主機関(高圧噴射型エンジン)を備えるものではないが、以下のシミュレーションにあっては、特許文献2に開示の技術のボイルオフガス圧縮部(クーラー含む)の下流側で第2熱交換器の上流側に、ボイルオフガスの一部を分岐する流路が接続され、当該流路によりボイルオフガスが主機関(高圧噴射型エンジン)へ供給される構成を採用しているものとした。
尚、シミュレーションの条件としては、本実施形態と、特許文献1に開示の技術と、特許文献2に開示の技術との夫々の液化装置への到着時温度(例えば、−120℃)において、ボイルオフガスが2883kg/hが発生したものとし、主機関負荷が30%の場合では、発生したボイルオフガスのうち、約1400kg/hを主機関へ送り、残りの一部を発電機へ送り、その残りを液化するという条件とした。
尚、発電機にて発電された電力は、船内電力と主機関等への燃料供給や冷媒サイクル駆動のためのコンプレッサ動力として用いられるものとした。また、液化動力が、本実施形態と、特許文献1に開示の技術と、特許文献2に開示の技術とで異なるので、発電機へ送るボイルオフガスの量は、夫々で異なっている。
In addition, in the boil-off gas reliquefaction equipment 100 according to the present embodiment, the technique disclosed in Patent Document 1, and the technique disclosed in Patent Document 2, the result of simulating the power consumption required for liquefaction per ton of boil-off gas is shown. It is shown in the following [Table 3]. Incidentally, [Table 3] shows the power consumption when the main engine load is 0%, and the main engine load indicates the load of the high-pressure injection engine. Here, although the technique disclosed in Patent Document 2 does not include a main engine (high-pressure injection engine), in the following simulation, a boil-off gas compression unit (including a cooler) disclosed in Patent Document 2 is used. ) On the downstream side of the second heat exchanger is connected to a flow path that branches a part of the boil-off gas, and the boil-off gas is supplied to the main engine (high pressure injection engine) through the flow path. It has been adopted.
In addition, as a simulation condition, boil-off is performed at the arrival temperature (for example, −120 ° C.) of each of the present embodiment, the technique disclosed in Patent Document 1, and the technique disclosed in Patent Document 2 at the respective liquefaction apparatuses. Assuming that 2883 kg / h of gas is generated and the main engine load is 30%, about 1400 kg / h of the generated boil-off gas is sent to the main engine, and the remaining part is sent to the generator. Was liquefied.
The electric power generated by the generator is used as power for the compressor for supplying power to the inboard power and the main engine and driving the refrigerant cycle. Further, since the liquefaction power is different between the present embodiment, the technique disclosed in Patent Document 1, and the technique disclosed in Patent Document 2, the amount of boil-off gas sent to the generator is different.

Figure 2016128737
Figure 2016128737

〔別実施形態〕
(1)上記実施形態では、ボイルオフガスの再液化設備100は、LNGを運搬するLNG運搬船50に設けられる例を示したが、別に、当該構成に限定されるものではない。
他の例としては、採掘されたLNGを海上で精製した後、直接液化させて貯留タンク10内に貯蔵し、必要に応じて、当該貯留タンク10内に保存されたLNGをLNG運搬船へ移載するために使用される設備であるLNG FPSO(Florting Production Strage and Off−loading)等の洋上プラントに設けられても良い。
[Another embodiment]
(1) In the above embodiment, the boil-off gas reliquefaction facility 100 is provided in the LNG carrier 50 that transports LNG, but is not limited to this configuration.
As another example, after the mined LNG is refined at sea, it is directly liquefied and stored in the storage tank 10, and if necessary, the LNG stored in the storage tank 10 is transferred to the LNG carrier. It may be provided in an offshore plant such as LNG FPSO (Flowing Production Stage and Off-loading), which is a facility used to do this.

(2)上記実施形態にあっては、冷凍サイクル回路Cを循環する冷媒N2としては、非凝縮性の冷媒である窒素を例として説明したが、当該冷媒は窒素に限定されるものではない。他の冷媒の例としては、ヘリウムや水素等の他、混合冷媒を用いても構わない。 (2) In the above embodiment, the refrigerant N2 circulating in the refrigeration cycle circuit C has been described by taking nitrogen as a non-condensable refrigerant as an example, but the refrigerant is not limited to nitrogen. As an example of other refrigerants, a mixed refrigerant other than helium and hydrogen may be used.

(3)上記実施形態において、抽気流路L2は、気液分離器30と貯留タンク10とを接続し、気液分離器30にて気液分離された後の液化ボイルオフガス(L)を貯留タンク10へ導く構成例を示した。
しかしながら、抽気流路L2を通流するボイルオフガスで、再液化されたボイルオフガスは、必ずしも貯留タンク10へ戻す必要はなく、場合によっては、ボイルオフガスの冷熱を空調や冷熱発電に利用するような構成を採用しても構わない。
(3) In the above embodiment, the extraction flow path L2 connects the gas-liquid separator 30 and the storage tank 10 and stores the liquefied boil-off gas (L) after the gas-liquid separator 30 separates the gas and liquid. A configuration example leading to the tank 10 is shown.
However, the boil-off gas recirculated with the boil-off gas flowing through the extraction flow path L2 does not necessarily need to be returned to the storage tank 10, and in some cases, the cold heat of the boil-off gas is used for air conditioning or cold power generation. A configuration may be adopted.

(4)上記実施形態において、ボイルオフガス圧縮コンプレッサの数は、特に、上記実施形態に示したものに限定されるものではなく、ボイルオフガスの量(又は、貯留タンク10の容量)や、エンジン供給圧力によって、適宜変更可能である。更に、昇圧前のボイルオフガスの流れ方向において、抽気流路L2の上流側に設けられるボイルオフガス圧縮コンプレッサの数も、4つに限定されるものではなく、適宜変更可能である。
また、冷媒圧縮コンプレッサの数についても、特に、限定されるものではなく、第1熱交換器EX10にて要求される温度及び冷熱量に応じて、適宜変更可能である。
そして、ボイルオフガス圧縮コンプレッサ及び冷媒圧縮コンプレッサの数に対応する状態で、クーラーの数も適宜変更可能である。
(4) In the above embodiment, the number of boil-off gas compression compressors is not particularly limited to the one shown in the above-described embodiment, but the amount of boil-off gas (or the capacity of the storage tank 10), the engine supply It can be appropriately changed depending on the pressure. Furthermore, the number of boil-off gas compression compressors provided on the upstream side of the extraction flow path L2 in the flow direction of the boil-off gas before pressurization is not limited to four, and can be changed as appropriate.
Further, the number of refrigerant compression compressors is not particularly limited, and can be appropriately changed according to the temperature and the amount of cold heat required in the first heat exchanger EX10.
And the number of coolers can also be changed suitably in the state corresponding to the number of boil-off gas compression compressors and refrigerant compression compressors.

(5)上記実施形態において、ボイルオフガス圧縮部20及び冷凍サイクル回路Cにおけるクーラーへ冷熱を供給する構成としては様々な構成が考えられるが、例えば、以下のような構成を採用しても構わない。
即ち、主機関としての高圧噴射型エンジン40の排熱を熱源とする吸収式冷凍機(図示せず)と、当該吸収式冷凍機にて発生する冷熱を回収すると共に回収した冷熱をボイルオフガス圧縮部20及び冷凍サイクル回路Cにおけるクーラーにて供給する熱媒体を循環可能な熱媒体循環回路(図示せず)を備える構成を採用しても構わない。
尚、熱媒体循環回路は、ボイルオフガス圧縮部20及び冷凍サイクル回路Cにおけるクーラーのすべてに冷熱を供給するように配設しても構わないし、その一部に冷熱を供給するように配設しても構わない。
(5) In the above-described embodiment, various configurations are conceivable as a configuration for supplying cold heat to the coolers in the boil-off gas compression unit 20 and the refrigeration cycle circuit C. For example, the following configurations may be adopted. .
That is, an absorption refrigeration machine (not shown) that uses the exhaust heat of the high-pressure injection engine 40 as the main engine as a heat source, and recovers cold heat generated in the absorption refrigeration machine and boil-off gas compresses the recovered cold heat You may employ | adopt the structure provided with the heat medium circulation circuit (not shown) which can circulate the heat medium supplied with the cooler in the part 20 and the refrigerating cycle circuit C. FIG.
The heat medium circulation circuit may be arranged to supply cold heat to all of the coolers in the boil-off gas compression unit 20 and the refrigeration cycle circuit C, or may be arranged to supply cold heat to a part thereof. It doesn't matter.

主機関が高負荷で運転されているときで、ボイルオフガス量が主機関の要求する燃料量より少ない場合、タンクに貯蔵されているLNGをポンプで吐出し、強制的に気化させて主機関に供給する場合が考えられるが、この時の気化熱源として、ボイルオフガス圧縮部20のクーラーEX1〜EX5を使用するような構成を採用しても構わない。   When the main engine is operating at a high load and the boil-off gas amount is less than the fuel amount required by the main engine, the LNG stored in the tank is discharged by a pump and forced to vaporize into the main engine. Although the case where it supplies may be considered, you may employ | adopt the structure which uses the coolers EX1-EX5 of the boil-off gas compression part 20 as a vaporization heat source at this time.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

本発明のボイルオフガスの再液化設備は、構成の複雑化を避けながらも、フラッシュ流の流量を低減して効率向上を図りつつ、熱交換器での熱交換効率を向上、更には、冷凍サイクル回路の圧縮動力低減による効率向上を実現し得るボイルオフガスの再液化設備として、有効に利用可能である。   The boil-off gas reliquefaction facility according to the present invention improves the heat exchange efficiency in the heat exchanger while reducing the flow rate of the flash flow while improving the efficiency while avoiding the complexity of the configuration. It can be effectively used as a boil-off gas reliquefaction facility that can improve efficiency by reducing the compression power of the circuit.

10 :貯留タンク
20 :ボイルオフガス圧縮部
30 :気液分離器
40 :高圧噴射型エンジン
60a :圧力設定部
70 :冷媒圧縮部
100 :再液化設備
BOG :ボイルオフガス
C :冷凍サイクル回路
CP1 :第1ボイルオフガス圧縮コンプレッサ
CP2 :第2ボイルオフガス圧縮コンプレッサ
CP3 :第3ボイルオフガス圧縮コンプレッサ
CP4 :第4ボイルオフガス圧縮コンプレッサ
CP5 :第5ボイルオフガス圧縮コンプレッサ
CP6 :第6冷媒圧縮コンプレッサ
CP7 :第7冷媒圧縮コンプレッサ
CP8 :第8冷媒圧縮コンプレッサ
EP1 :エキスパンダ
EX10 :第1熱交換器
EX9 :第2熱交換器
L2 :抽気流路
LNG :液化天然ガス
N2 :冷媒
V1 :減圧弁
DESCRIPTION OF SYMBOLS 10: Storage tank 20: Boil-off gas compression part 30: Gas-liquid separator 40: High pressure injection type engine 60a: Pressure setting part 70: Refrigerant compression part 100: Reliquefaction equipment BOG: Boil-off gas C: Refrigeration cycle circuit CP1: First Boil-off gas compression compressor CP2: Second boil-off gas compression compressor CP3: Third boil-off gas compression compressor CP4: Fourth boil-off gas compression compressor CP5: Fifth boil-off gas compression compressor CP6: Sixth refrigerant compression compressor CP7: Seventh refrigerant compression compressor CP8: 8th refrigerant compression compressor EP1: Expander EX10: 1st heat exchanger EX9: 2nd heat exchanger L2: Extraction flow path LNG: Liquefied natural gas N2: Refrigerant V1: Pressure reducing valve

Claims (4)

液化天然ガスを貯留する貯留タンクと、当該貯留タンクから排出されるボイルオフガスを圧縮するボイルオフガス圧縮部と、当該ボイルオフガス圧縮部にて圧縮された液化ボイルオフガスの一部を燃料とする高圧噴射型エンジンと、前記ボイルオフガス圧縮部にて圧縮されたボイルオフガスの他部を抽気し再液化して前記貯留タンクへ戻す抽気流路と、前記抽気流路を通流するボイルオフガスと熱交換して当該ボイルオフガスを冷却する冷媒を循環する冷凍サイクル回路とを水上構造物上に備えるボイルオフガスの再液化設備であって、
前記抽気流路が、前記ボイルオフガス圧縮部にて前記高圧噴射型エンジンのエンジン供給圧力まで昇圧される前のボイルオフガスを抽気するものであり、
前記冷凍サイクル回路が、冷媒を圧縮する冷媒圧縮部と、当該冷媒圧縮部にて圧縮された冷媒を膨張する膨張部と、当該膨張部にて膨張された冷媒と前記抽気流路を通流するボイルオフガスとを熱交換する第1熱交換器とを有し、
前記貯留タンクから前記ボイルオフガス圧縮部までを通流するボイルオフガスと、前記冷凍サイクル回路で前記冷媒圧縮部から前記膨張部までを通流する冷媒とを熱交換する第2熱交換器を備え、
前記抽気流路へ抽気するボイルオフガスの抽気圧力を、前記エンジン供給圧力未満で、且つ前記ボイルオフガスの臨界圧力以上に設定する圧力設定手段を備えるボイルオフガスの再液化設備。
A storage tank that stores liquefied natural gas, a boil-off gas compression unit that compresses boil-off gas discharged from the storage tank, and a high-pressure injection that uses a part of the liquefied boil-off gas compressed by the boil-off gas compression unit as fuel Heat exchange with the mold engine, the extraction passage for extracting and re-liquefying the other portion of the boil-off gas compressed by the boil-off gas compression section, and returning it to the storage tank, and the boil-off gas flowing through the extraction passage A boil-off gas reliquefaction facility comprising a refrigeration cycle circuit for circulating a refrigerant for cooling the boil-off gas on the water structure,
The bleed flow passage bleeds the boil off gas before being boosted up to the engine supply pressure of the high pressure injection engine in the boil off gas compression unit,
The refrigeration cycle circuit flows through the refrigerant compression section that compresses the refrigerant, the expansion section that expands the refrigerant compressed by the refrigerant compression section, the refrigerant expanded by the expansion section, and the extraction channel. A first heat exchanger for exchanging heat with the boil-off gas,
A second heat exchanger that exchanges heat between the boil-off gas flowing from the storage tank to the boil-off gas compression unit and the refrigerant flowing from the refrigerant compression unit to the expansion unit in the refrigeration cycle circuit;
A boil-off gas reliquefaction facility comprising pressure setting means for setting a bleed pressure of boil-off gas to be bleed into the bleed flow path to be lower than the engine supply pressure and higher than a critical pressure of the boil-off gas.
前記抽気流路で前記第1熱交換器を通過したボイルオフガスを減圧する減圧弁と、当該減圧弁にて減圧されたボイルオフガスを気液分離する気液分離器とを備え、
前記圧力設定手段は、前記抽気圧力の上限圧力を、前記気液分離器から気体として排出されるフラッシュ流の流量が抑制されるフラッシュ流抑制圧力未満に設定する請求項1に記載のボイルオフガスの再液化設備。
A decompression valve that decompresses the boil-off gas that has passed through the first heat exchanger in the extraction flow path, and a gas-liquid separator that separates the boil-off gas decompressed by the decompression valve,
2. The boil-off gas according to claim 1, wherein the pressure setting means sets the upper limit pressure of the extraction pressure to be less than a flash flow suppression pressure at which a flow rate of a flash flow discharged as a gas from the gas-liquid separator is suppressed. Reliquefaction equipment.
前記ボイルオフガス圧縮部は、ボイルオフガスを圧縮するボイルオフガス圧縮コンプレッサを複数備え、
前記冷媒圧縮部は、冷媒を圧縮する冷媒圧縮コンプレッサを備え、
前記圧力設定手段は、抽気されるボイルオフガスが再液化される過程において、複数の前記ボイルオフガス圧縮コンプレッサの圧縮動力のうち抽気されるボイルオフガスの抽気圧力に関連する圧縮動力と、前記抽気流路で前記第1熱交換器を通過するボイルオフガスを冷却する時の前記冷媒圧縮コンプレッサの圧縮動力との合計動力が小さくなるように、前記抽気圧力を設定する請求項1又は2に記載のボイルオフガスの再液化設備。
The boil-off gas compression unit includes a plurality of boil-off gas compression compressors that compress boil-off gas,
The refrigerant compression unit includes a refrigerant compression compressor that compresses the refrigerant,
The pressure setting means includes a compression power related to the extraction pressure of the boil-off gas extracted from the compression power of the plurality of boil-off gas compression compressors in the process of re-liquefying the extracted boil-off gas, and the extraction flow path. 3. The boil-off gas according to claim 1, wherein the extraction pressure is set so that a total power with a compression power of the refrigerant compression compressor when cooling the boil-off gas passing through the first heat exchanger is reduced. Reliquefaction equipment.
前記圧力設定手段は、前記抽気圧力を、10MPaG以上13MPaG以下に設定する請求項1〜3の何れか一項に記載のボイルオフガスの再液化設備。   The boil-off gas reliquefaction facility according to any one of claims 1 to 3, wherein the pressure setting means sets the extraction pressure to 10 MPaG or more and 13 MPaG or less.
JP2015003522A 2015-01-09 2015-01-09 Boil-off gas reliquefaction plant Active JP6501527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003522A JP6501527B2 (en) 2015-01-09 2015-01-09 Boil-off gas reliquefaction plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003522A JP6501527B2 (en) 2015-01-09 2015-01-09 Boil-off gas reliquefaction plant

Publications (2)

Publication Number Publication Date
JP2016128737A true JP2016128737A (en) 2016-07-14
JP6501527B2 JP6501527B2 (en) 2019-04-17

Family

ID=56384164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003522A Active JP6501527B2 (en) 2015-01-09 2015-01-09 Boil-off gas reliquefaction plant

Country Status (1)

Country Link
JP (1) JP6501527B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347004B1 (en) * 2017-01-25 2018-06-20 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド LNG ship evaporative gas reliquefaction method and system
JP6347003B1 (en) * 2017-01-25 2018-06-20 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド LNG ship evaporative gas reliquefaction method and system
JP2018119685A (en) * 2017-01-25 2018-08-02 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Method and system for re-liquefying evaporating gas of lng vessel
FR3130358A1 (en) * 2021-12-14 2023-06-16 Gaztransport Et Technigaz Cooling circuit for a gas supply and cooling system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217355A (en) * 1985-07-15 1987-01-26 Mitsui Eng & Shipbuild Co Ltd Boil-off gas treating system for lng tanker
JPH09317997A (en) * 1996-05-29 1997-12-12 Chiyoda Corp Low temperature liquefied gas storage equipment and treatment of bog
JP2001132896A (en) * 1999-11-08 2001-05-18 Osaka Gas Co Ltd Boil-off gas reliquefying method
JP2002338977A (en) * 2001-05-16 2002-11-27 Kobe Steel Ltd Process and apparatus for reliquefying boil-off gas from liquefied natural gas
JP2009533642A (en) * 2006-04-07 2009-09-17 ハムワージー・ガス・システムズ・エイ・エス Method and apparatus for preheating boil-off gas to ambient temperature prior to compression in a reliquefaction system
JP2011520081A (en) * 2008-05-08 2011-07-14 ハムワージー・ガス・システムズ・エイ・エス Gas supply system for gas engine
JP2012083051A (en) * 2010-10-13 2012-04-26 Mitsubishi Heavy Ind Ltd Liquefaction method, liquefaction apparatus and floating liquefied gas production equipment including the same
JP2013087911A (en) * 2011-10-20 2013-05-13 Mitsubishi Heavy Ind Ltd Pressure rise suppression device for storage tank, pressure rise suppression system provided therewith, suppression method therefor, liquefied gas carrying vessel provided therewith, and liquefied gas storage facility provided therewith
JP2014508889A (en) * 2011-03-11 2014-04-10 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド Offshore structure fuel supply system with reliquefaction device and high pressure natural gas injection engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217355A (en) * 1985-07-15 1987-01-26 Mitsui Eng & Shipbuild Co Ltd Boil-off gas treating system for lng tanker
JPH09317997A (en) * 1996-05-29 1997-12-12 Chiyoda Corp Low temperature liquefied gas storage equipment and treatment of bog
JP2001132896A (en) * 1999-11-08 2001-05-18 Osaka Gas Co Ltd Boil-off gas reliquefying method
JP2002338977A (en) * 2001-05-16 2002-11-27 Kobe Steel Ltd Process and apparatus for reliquefying boil-off gas from liquefied natural gas
JP2009533642A (en) * 2006-04-07 2009-09-17 ハムワージー・ガス・システムズ・エイ・エス Method and apparatus for preheating boil-off gas to ambient temperature prior to compression in a reliquefaction system
JP2011520081A (en) * 2008-05-08 2011-07-14 ハムワージー・ガス・システムズ・エイ・エス Gas supply system for gas engine
JP2012083051A (en) * 2010-10-13 2012-04-26 Mitsubishi Heavy Ind Ltd Liquefaction method, liquefaction apparatus and floating liquefied gas production equipment including the same
JP2014508889A (en) * 2011-03-11 2014-04-10 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド Offshore structure fuel supply system with reliquefaction device and high pressure natural gas injection engine
JP2013087911A (en) * 2011-10-20 2013-05-13 Mitsubishi Heavy Ind Ltd Pressure rise suppression device for storage tank, pressure rise suppression system provided therewith, suppression method therefor, liquefied gas carrying vessel provided therewith, and liquefied gas storage facility provided therewith

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347004B1 (en) * 2017-01-25 2018-06-20 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド LNG ship evaporative gas reliquefaction method and system
JP6347003B1 (en) * 2017-01-25 2018-06-20 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド LNG ship evaporative gas reliquefaction method and system
JP2018119683A (en) * 2017-01-25 2018-08-02 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Evaporative gas reliquefying method and system for lng carrier
JP2018119684A (en) * 2017-01-25 2018-08-02 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Evaporative gas reliquefying method and system for lng carrier
JP2018119685A (en) * 2017-01-25 2018-08-02 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Method and system for re-liquefying evaporating gas of lng vessel
JP2018118721A (en) * 2017-01-25 2018-08-02 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Method and system for re-liquefying evaporating gas of lng vessel
FR3130358A1 (en) * 2021-12-14 2023-06-16 Gaztransport Et Technigaz Cooling circuit for a gas supply and cooling system
WO2023111414A1 (en) * 2021-12-14 2023-06-22 Gaztransport Et Technigaz Cooling circuit for a system for supplying and cooling a gas

Also Published As

Publication number Publication date
JP6501527B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
US11242123B2 (en) Boil-off gas re-liquefying system
WO2016043184A1 (en) Boil-off gas reliquefaction device
CN103097237B (en) Boil-off gas reliquefaction installation
US11136104B2 (en) Ship
CN104520660A (en) System and method for natural gas liquefaction
US10364013B2 (en) Ship
KR101966980B1 (en) Refrigerant recursion line and liquefaction system comprising the same
JP6204609B2 (en) Ship
KR20090025514A (en) A bog re-liquefaction system for lng carrier
JP6501527B2 (en) Boil-off gas reliquefaction plant
KR20080081436A (en) Lng bog reliquefaction apparatus and method
US20190112009A1 (en) Ship
KR101438323B1 (en) A treatment System of Liquefied Gas and A Method for the same
KR102460410B1 (en) Vessel
CN114746709A (en) Refrigerant fluid for a refrigerant fluid circuit of a natural gas processing system
KR101831178B1 (en) Vessel Operating System and Method
KR20170068189A (en) Vessel Including Engines
KR20230023114A (en) Boil-Off Gas Reliquefaction System and Method for Ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6501527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150