JP6346607B2 - Reciprocating seal - Google Patents

Reciprocating seal Download PDF

Info

Publication number
JP6346607B2
JP6346607B2 JP2015517000A JP2015517000A JP6346607B2 JP 6346607 B2 JP6346607 B2 JP 6346607B2 JP 2015517000 A JP2015517000 A JP 2015517000A JP 2015517000 A JP2015517000 A JP 2015517000A JP 6346607 B2 JP6346607 B2 JP 6346607B2
Authority
JP
Japan
Prior art keywords
groove bottom
small
seal
shape
predetermined pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015517000A
Other languages
Japanese (ja)
Other versions
JPWO2014185207A1 (en
Inventor
卯ノ田 和史
和史 卯ノ田
尚彦 本井伝
尚彦 本井伝
敦 細川
敦 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Publication of JPWO2014185207A1 publication Critical patent/JPWO2014185207A1/en
Application granted granted Critical
Publication of JP6346607B2 publication Critical patent/JP6346607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/56Other sealings for reciprocating rods

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Devices (AREA)
  • Rotary Pumps (AREA)
  • Actuator (AREA)

Description

本発明は、往復動用シールに関する。   The present invention relates to a reciprocating seal.

従来、空気圧機器のシリンダ等に於て、相互に軸方向摺動可能な摺動部材のいずれか一方の環状凹溝内に装着される往復動シールとしては、横断面形状が摺動頭部と中央首部と胴部とから成る縦長状ダルマ形であって、摺動頭部の両側面に小突起を周方向所定ピッチで配設したものが公知である(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, in a pneumatic equipment cylinder or the like, a reciprocating seal that is mounted in one of the annular concave grooves of a sliding member that is axially slidable mutually has a cross-sectional shape of a sliding head and A vertically long dharma shape composed of a central neck portion and a trunk portion, in which small protrusions are arranged at both sides of the sliding head at a predetermined pitch in the circumferential direction (for example, see Patent Document 1).

しかし、摺動部(摺動頭部の先端側)が大きなアール状であり、摺動抵抗が大きいという欠点があった。また、小突起の個数が、片側面に4個〜8個と少なく、シールが溝内で蛇行したり偏心し、抵抗が不安定であるという欠点があった。また、円周上局部的に面圧の低い箇所から漏れ(吹き漏れ)が発生するという欠点があった。また、溝側面と固着し、圧力が溝底まで行き亘らず自封性が低下して、シール性が劣るという欠点があった。   However, the sliding part (the tip side of the sliding head) has a large round shape, and there is a drawback that the sliding resistance is large. In addition, the number of small protrusions is as small as 4 to 8 on one side, and there is a disadvantage that the seal meanders or is eccentric in the groove and the resistance is unstable. In addition, there is a drawback that leakage (blowing leakage) occurs from a location where the surface pressure is locally low on the circumference. In addition, there is a drawback in that it adheres to the side surface of the groove, the pressure does not reach the bottom of the groove, the self-sealing property is lowered, and the sealing property is poor.

また、近年、往復動シールには、環境への配慮から低摺動抵抗、応答速度が要求されており、さらに、低価格化により、ウェアリング(偏心低減部材)が装着されない往復動用シールが増加しているが、例えば、ピストンがシリンダチューブ内面に対して偏心しやすいので、ウェアリングが無いことによって、シール性能が低下するという欠点があった。   In recent years, reciprocating seals are required to have low sliding resistance and response speed due to environmental considerations. Furthermore, due to lower prices, reciprocating seals that are not equipped with wear rings (eccentricity reducing members) have increased. However, for example, since the piston is likely to be eccentric with respect to the inner surface of the cylinder tube, there is a disadvantage that the sealing performance is lowered due to the lack of wear ring.

実開平5−79128号公報Japanese Utility Model Publication No. 5-79128

解決しようとする課題は、摺動抵抗・始動抵抗が大きい点である。また、シールが溝内で蛇行したり偏心し、抵抗が不安定な点である。すなわち、円周上局部的に面圧の低い箇所から漏れ(吹き漏れ)が発生する現象が起きる点である。また、溝側面と固着し、圧力が溝底まで行き亘らず自封性が十分得られない点である。また、シール性が劣る点である。   The problem to be solved is a large sliding resistance and starting resistance. Further, the seal meanders or decenters in the groove, and the resistance is unstable. That is, there is a phenomenon in which leakage (blowing leakage) occurs from a location where the surface pressure is locally low on the circumference. Moreover, it adheres to the side surface of the groove, and the pressure does not reach the bottom of the groove, so that the self-sealing property cannot be obtained sufficiently. In addition, the sealing performance is inferior.

そこで、本発明に係る往復動用シールは、相互に軸方向摺動可能な摺動部材のいずれか一方の環状凹溝内に装着される往復動用シールに於て、横断面形状が三角状頂部と、矩形状胴部と、溝底側膨出部を、有し、上記膨出部の溝底側角部が円弧状又はC形面取り状に形成されて、溝底の隅部に隙間を形成するように構成され、上記矩形状胴部の表て面及び裏面に、複数の小突起を周方向に所定ピッチにて突設し、上記小突起の外形の形状における重心点の位置が、全体がラジアル方向に一定幅寸法の円環帯状の上記表て面・裏面の内周端縁よりも外周端縁に接近するように、ラジアル外方に偏在している。 Therefore, the reciprocating seal according to the present invention is a reciprocating seal that is mounted in any one of the annular concave grooves of the sliding members that are axially slidable with respect to each other. A rectangular body portion and a groove bottom side bulge portion, and the groove bottom side corner portion of the bulge portion is formed in an arc shape or a C-shaped chamfered shape to form a gap at the corner of the groove bottom A plurality of small protrusions projecting at a predetermined pitch in the circumferential direction on the front and back surfaces of the rectangular body, and the position of the center of gravity in the outer shape of the small protrusions Are radially outwardly distributed so as to be closer to the outer peripheral edge than to the inner peripheral edge of the above-described front and back surfaces of the ring-shaped belt having a constant width dimension in the radial direction.

また、本発明に係る往復動用シールは、相互に軸方向摺動可能な摺動部材のいずれか一方の環状凹溝内に装着される往復動用シールに於て、横断面形状が三角状頂部と、矩形状胴部と、溝底側膨出部を、有し、上記膨出部の溝底側角部が円弧状又はC形面取り状に形成されて、溝底の隅部に隙間を形成するように構成され、上記矩形状胴部の表て面及び裏面に、複数の小突起を周方向に所定ピッチにて突設し、上記小突起が、その基底断面積の85%以上の面積を有する先端平坦面を備えたテーブルマウンテン型であり、上記三角状頂部の頂角θを80°≦θ≦ 120°に設定したものである。
また、本発明に係る往復動用シールは、相互に軸方向摺動可能な摺動部材のいずれか一方の環状凹溝内に装着される往復動用シールに於て、横断面形状が三角状頂部と、矩形状胴部と、溝底側膨出部を、有し、上記膨出部の溝底側角部が円弧状又はC形面取り状に形成されて、溝底の隅部に隙間を形成するように構成され、上記矩形状胴部の表て面及び裏面に、複数の小突起を周方向に所定ピッチにて突設し、上記表て面に上記所定ピッチにて配設された複数の小突起と、上記裏面に同一の上記所定ピッチにて配設された複数の小突起とが、上記所定ピッチの半分だけ、周方向に位置をずらせて、配置し、さらに、下記各寸法に於て、以下の数式が成立する。
(H1 +H2 )≧ 0.6・H0
(H1 +H2 )/3≦B7 ≦2・(H1 +H2 )/3
πD/5N≦C7 ≦πD/ 1.3N
但し、
1 :頂部の高さ寸法
2 :胴部の高さ寸法
0 :シール全体高さ寸法
7 :小突起の基底のラジアル方向寸法
7 :小突起の基底の周方向寸法
D :シールの外径寸法
N :表て面・裏面の各々の小突起の個数
Further, the reciprocating seal according to the present invention is a reciprocating seal mounted in any one of the annular concave grooves of the sliding members that are axially slidable with respect to each other. A rectangular body portion and a groove bottom side bulge portion, and the groove bottom side corner portion of the bulge portion is formed in an arc shape or a C-shaped chamfered shape to form a gap at the corner of the groove bottom A plurality of small protrusions projecting at a predetermined pitch in the circumferential direction on the front and back surfaces of the rectangular body, and the small protrusions have an area of 85% or more of the base cross-sectional area. A table mountain type having a flat front end surface with the apex angle θ of the triangular apex set to 80 ° ≦ θ ≦ 120 °.
Further, the reciprocating seal according to the present invention is a reciprocating seal mounted in any one of the annular concave grooves of the sliding members that are axially slidable with respect to each other. A rectangular body portion and a groove bottom side bulge portion, and the groove bottom side corner portion of the bulge portion is formed in an arc shape or a C-shaped chamfered shape to form a gap at the corner of the groove bottom A plurality of small protrusions protruding at a predetermined pitch in the circumferential direction on the front surface and the back surface of the rectangular body, and a plurality of small protrusions disposed on the front surface at the predetermined pitch. And a plurality of small protrusions arranged at the same predetermined pitch on the back surface are shifted in the circumferential direction by a half of the predetermined pitch , and each dimension is as follows. In this case, the following formula is established.
(H 1 + H 2 ) ≧ 0.6 · H 0
(H 1 + H 2 ) / 3 ≦ B 7 ≦ 2 · (H 1 + H 2 ) / 3
πD / 5N ≦ C 7 ≦ πD / 1.3N
However,
H 1 : Height of the top
H 2 : Body height dimension
H 0 : Overall seal height dimension
B 7 : Radial dimension of the base of the small protrusion
C 7 : Circumferential dimension of the base of the small protrusion
D: outer diameter of the seal
N: Number of small protrusions on the front and back surfaces

本発明によれば、三角状頂部が相手側摺動部材に摺接して優れたシール性(密封性能)を発揮し、かつ、摺動抵抗が安定して、低減し、流体シリンダ等の往復動流体機器の応答性及び省エネに貢献する。さらに、始動抵抗も小さく、かつ、始動抵抗値が安定しており、往復動流体機器の応答性をさらに向上できる。また、エアーシリンダ等の往復動空気機器に於ては、潤滑用グリースの保持も確実となって、摺動抵抗を長期の使用期間にわたって、低く保ち得る(無給油での長期使用が可能)。
さらに、本発明の往復動用シールは、流体圧力の変化時にも、及び、摺動・停止・始動の各往復動速度の変化時にも、環状凹溝内に於て、横断面形状が過大に曲がったり、傾斜状となるような変形を発生せずに安定姿勢を保持し、かつ、(ラジアル外方向から見て)蛇行状に変形せず、シール性(密封性能)が安定して、優れ、耐久性も優れ、かつ、吹き漏れを生じない。
また、小突起が散点状に配設されるので、金型の小突起成型部位の加工が、(ラジアル方向放射状の小突起等に比較して)容易である。
According to the present invention, the triangular top portion is in sliding contact with the mating sliding member and exhibits excellent sealing performance (sealing performance), and the sliding resistance is stabilized and reduced. Contributes to fluid equipment responsiveness and energy saving. Furthermore, since the starting resistance is small and the starting resistance value is stable, the responsiveness of the reciprocating fluid device can be further improved. Also, in reciprocating air devices such as air cylinders, the grease for lubrication can be securely held, and the sliding resistance can be kept low over a long period of use (long-term use without lubrication is possible).
Furthermore, the reciprocating seal of the present invention has an excessively curved cross-sectional shape in the annular groove even when the fluid pressure changes and when the reciprocating speeds of sliding, stopping and starting change. Or maintaining a stable posture without generating deformation that becomes inclined, and does not deform in a meandering shape (as viewed from the radial outer direction), and has a stable sealing performance (sealing performance), excellent It has excellent durability and does not cause leakage.
Further, since the small protrusions are arranged in the form of dots, it is easy to process the small protrusion forming portion of the mold (compared to radial small protrusions in the radial direction).

本発明の第1の実施の形態を示す斜視図である。It is a perspective view which shows the 1st Embodiment of this invention. 要部断面図である。It is principal part sectional drawing. 第2の実施の形態を示す要部断面図である。It is principal part sectional drawing which shows 2nd Embodiment. 第3の実施の形態を示す要部断面図である。It is principal part sectional drawing which shows 3rd Embodiment. 作用を説明するための使用状態説明図である。It is use condition explanatory drawing for demonstrating an effect | action. 使用状態説明図である。FIG. 第4の実施の形態を示すアキシャル方向から見た全体図である。It is the whole view seen from the axial direction which shows 4th Embodiment. 図7の要部拡大図である。It is a principal part enlarged view of FIG. 第5の実施の形態を示すアキシャル方向から見た全体図である。It is the whole view seen from the axial direction which shows 5th Embodiment. 図9の要部拡大図である。It is a principal part enlarged view of FIG. 要部断面図である。It is principal part sectional drawing. 使用状態における圧力分布説明図である。It is pressure distribution explanatory drawing in use condition. 小突起の異なる実施例の斜視図である。It is a perspective view of the Example from which a small protrusion differs.

以下、図示の実施の形態に基づいて本発明について詳説する。
図1・図2は、本発明の第1の実施の形態を示す。本発明の往復動用シールは、往復動流体機器として、例えば、エアーシリンダのピストン、あるいは、ロッドのシールに使用されるものであり、相互に軸方向摺動可能な摺動部材X,Y(図5・図6参照)の環状凹溝G内に装着して使用される。材質は各種のゴム材が適用可能である。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
1 and 2 show a first embodiment of the present invention. The reciprocating seal of the present invention is used as a reciprocating fluid device, for example, as a seal for a piston or rod of an air cylinder, and is a sliding member X, Y (slidable in the axial direction). 5 (see FIG. 6) and used in the annular groove G. Various rubber materials can be applied as the material.

図2に於て、2点鎖線によって区画して示したように、横断面形状が三角状頂部1と、矩形状胴部2と、溝底側膨出部3を、有する。膨出部3の溝底側角部4が円弧状に形成されて、(図5,図6に示すように、)溝底G1 の隅部Cに隙間Sを形成するように構成される。
なお、図2(及び後述の図4)に於ては、膨出部3の溝底対応面14が全体として略同一曲率半径の円弧型の場合を例示し、上記溝底側角部4が、この円弧型によって自ら円弧状に形成されている。なお、これとは異なり、溝底対応面14の中央領域と、上記溝底側角部4,4とを、相違した曲率半径とするも好ましい(図示省略)。
In FIG. 2, the cross-sectional shape has a triangular top portion 1, a rectangular body portion 2, and a groove bottom side bulging portion 3, as shown by being partitioned by a two-dot chain line. The groove bottom side corner 4 of the bulging portion 3 is formed in an arc shape, and is configured to form a gap S at the corner C of the groove bottom G 1 (as shown in FIGS. 5 and 6). .
In FIG. 2 (and FIG. 4 described later), the groove bottom corresponding surface 14 of the bulging portion 3 is exemplified as a circular arc shape having substantially the same radius of curvature as a whole. The arc shape is formed in an arc shape by itself. Unlike this, it is preferable that the central region of the groove bottom corresponding surface 14 and the groove bottom side corners 4 and 4 have different curvature radii (not shown).

胴部2の表て面5及び裏面6に、小山型の複数の小突起7が周方向に所定ピッチP7 にて(散点状に)設けられる。表て面5側の小突起7と、裏面6の小突起7とは、千鳥状に設けられる。言い換えれば、表て面5に所定ピッチP7 にて配設された複数の小突起7と、裏面6に同一の上記所定ピッチP7 にて配設された複数の小突起7とが、所定ピッチの半分(0.5 ・P7 )だけ、周方向に位置をずらせて、配置されている。
そして、小突起7が鏡餅型(椀型)に形成され、頂上平坦面8を有する。
A plurality of small ridge-shaped projections 7 are provided on the front surface 5 and the back surface 6 of the body 2 at a predetermined pitch P 7 (in a dotted pattern) in the circumferential direction. The small protrusions 7 on the surface 5 side and the small protrusions 7 on the back surface 6 are provided in a staggered manner. In other words, a plurality of small protrusions 7 arranged on the surface 5 at a predetermined pitch P 7 and a plurality of small protrusions 7 arranged on the back surface 6 at the same predetermined pitch P 7 are predetermined. Only half the pitch (0.5 · P 7 ) is shifted in the circumferential direction.
Then, the small protrusion 7 is formed in a mirror shape (a bowl shape) and has a top flat surface 8.

三角状頂部1の頂角θを80°≦θ≦ 120°に設定する。頂角θがθ<80°の場合、摩耗しやすくなる。頂角θが、 120°<θの場合、弾発性に劣る。   The apex angle θ of the triangular apex 1 is set to 80 ° ≦ θ ≦ 120 °. When the apex angle θ is θ <80 °, wear tends to occur. When the apex angle θ is 120 ° <θ, the elasticity is poor.

図5,図6に示すように、小突起7と溝底側膨出部3との間に間隙9が形成され、さらに、凹溝Gの溝側面15(又は16)にシールが当接した状態下で、当接側の表て面5又は裏面6と、溝側面15,16との間に間隙9が形成される。この間隙9はグリース溜めであるとともに、間隙9によって、確実に流体(例えばエア)を流入させシールの自封性を確保することができる。   As shown in FIGS. 5 and 6, a gap 9 is formed between the small protrusion 7 and the groove bottom side bulging portion 3, and the seal abuts against the groove side surface 15 (or 16) of the groove G. Under the condition, a gap 9 is formed between the front surface 5 or the rear surface 6 on the contact side and the groove side surfaces 15 and 16. The gap 9 is a grease reservoir, and a fluid (for example, air) can surely flow into the gap 9 to ensure the self-sealing property of the seal.

図3は、第2の実施の形態を示す。膨出部3の溝底側角部4がC形面取り状に形成されて、溝底G1 (図5・図6参照)の隅部Cに隙間Sを形成するように構成される。溝底対応面14は、図3では、中央領域がストレート状として台形状の場合を例示したが、中央領域を円弧状とすることもできる(図示省略)。また、図3では、表て面5の小突起7と、裏面6の小突起7とが、(前述した)千鳥状ではない。つまり、周方向に表裏同一位置に配設している場合を示している。その他の構成は、第1の実施の形態と同様である。 FIG. 3 shows a second embodiment. The groove bottom side corner portion 4 of the bulging portion 3 is formed in a C-shaped chamfered shape so that a gap S is formed at the corner portion C of the groove bottom G 1 (see FIGS. 5 and 6). In FIG. 3, the groove bottom corresponding surface 14 is illustrated as having a trapezoidal shape with the central region being straight, but the central region may be arcuate (not shown). Further, in FIG. 3, the small protrusions 7 on the surface 5 and the small protrusions 7 on the back surface 6 are not in a staggered pattern (described above). That is, the case where it has arrange | positioned in the front and back same position in the circumferential direction is shown. Other configurations are the same as those of the first embodiment.

図4は、第3の実施の形態を示す。小突起7がふじつぼ型(すり鉢型)に形成される。その他の構成は、第1の実施の形態と同様である。
図1〜図4の各々の実施形態に於て共通する、さらなる特徴点に関して、追加説明する。
(i) 表て面5,裏面6は相互に平行な平坦面状であり、前述の従来シール(特許文献1
参照)の如く凹部を有さず、胴部2の剛性がアップしており、凹溝G内にて(ラジアル外方向から見て)蛇行しにくい。
(ii) 胴部2の厚さ寸法をW2 、膨出部3の厚さ寸法をW3 、頂上平坦面8,8の間隔寸
法をW8 とすると、次式が成立する。
0.6 ・W3 ≦W2 ≦0.8 ・W3 (数式1)
0.95・W3 ≦W8 ≦1.0 ・W3 (数式2)
即ち、数式1のように、胴部2の厚さ寸法W2 が十分に大きいため、さらに、数式2によって、頂上平坦面8が膨出部3と同時に溝側面16,15に圧接するため、胴部2は、図5と図6に示すようにほとんど弯曲変形せずに安定姿勢を常時保ち、凹溝G内にて蛇行せず、三角状頂部1が相手摺動面に対して安定して弾発的に圧接し、優れたシール性(密封性能)を発揮できる。
(iii) 膨出部3の上下の端面17,18が平坦面に形成され、膨出部の高さ寸法H3 の40%〜60%に設定され、図5,図6に示すように溝側面15,16に対して適当な面圧力をもって接触する。
(iv) シール全体高さ寸法をH0 、胴部2の高さ寸法をH2 、膨出部3の高さ寸法をH3
とすると、次の数式が成立する。
0.4 ・H0 ≦H2 ≦0.6 ・H0 (数式3)
0.2 ・H0 ≦H3 ≦0.4 ・H0 (数式4)
即ち、数式3から判るように、矩形状横断面の胴部2が大きな高さ寸法(ラジアル方向の幅寸法)を占めており、安定姿勢を凹溝G内にて保持するために貢献しており、かつ、ラジアル方向の弾発付勢力が一定に保つ機能を発揮して、頂部1が図6に示す如く相手摺動面に対して弾発的に適切な面圧をもって圧接する。これによって、シール性が安定して優れる。
(v) 溝底対応面14から小突起7の中心軸心までの高さ寸法をH7 とすると、次の数式が
成立する。
0.45・H0 ≦H7 ≦0.75・H0 (数式5)
即ち、小突起7の配設位置が、シール全体高さ寸法H0 の中央領域に存在しており、従来のシール(先行技術文献1)に比較しても、先端から中央領域に移動して配設されている。上述したように、胴部2の剛性が従来例よりも高い点と合わせシール全体の弯曲(弾性)変形が小さく、シール横断面形状が一層安定し、かつ、三角状頂部1は、柔軟に弾性変形しつつ優れた密封性能を発揮できる結果となる。
(vi) 小突起7の基底の外径寸法をB7 とし、小突起7の配設ピッチをP7 (図1参照)
とすると、次式が成立する。
1.3 ・B7 ≦P7 ≦3.0 ・B7 (数式6)
さらに望ましくは、
1.5 ・B7 ≦P7 ≦2.5 ・B7 (数式7)
とする。
即ち、この数式6(又は数式7)のように、比較的小さいピッチP7 をもって小突起7を配設することで、胴部2の剛性の高さと共に、(ラジアル外方向から見た)シールの蛇行を確実に防止できる。P7 <1.3 ・D7 の場合、不必要に小突起7が多く、金型の製作コストが高くなる。また、流体が閉じこめられて正常な弾性変形が困難となる虞がある。3.0 ・D7 <P7 の場合、シールが周方向で蛇行する虞がある。
(vii) 図2に示すように、直線L0 に関して、(小突起7を除いて)上下対称形に横断面形状が設定されている。なお、上面と下面の小突起7を千鳥状配設とせずに、同一周方向位置に配設するとすれば、小突起7を含んで、上下対称形である(図3参照)。
FIG. 4 shows a third embodiment. The small protrusions 7 are formed in a wisteria type (mortar type). Other configurations are the same as those of the first embodiment.
Additional features that are common to each of the embodiments of FIGS.
(i) The front surface 5 and the rear surface 6 are flat surfaces parallel to each other, and the conventional seal described above (Patent Document 1).
(Refer to the above), the body portion 2 does not have a concave portion, and the rigidity of the body portion 2 is increased.
(ii) When the thickness dimension of the body part 2 is W 2 , the thickness dimension of the bulging part 3 is W 3 , and the distance dimension between the top flat surfaces 8 and 8 is W 8 , the following equation is established.
0.6 · W 3 ≤W 2 ≤0.8 · W 3 (Formula 1)
0.95 ・ W 3 ≦ W 8 ≦ 1.0 ・ W 3 (Formula 2)
That is, since the thickness dimension W 2 of the trunk portion 2 is sufficiently large as in Equation 1, the top flat surface 8 is pressed against the groove side surfaces 16 and 15 simultaneously with the bulging portion 3 according to Equation 2, As shown in FIGS. 5 and 6, the body portion 2 is kept in a stable posture at all times with almost no bending deformation, does not meander in the concave groove G, and the triangular top portion 1 is stable against the mating sliding surface. It can be elastically pressed to exhibit excellent sealing performance (sealing performance).
(iii) The upper and lower end surfaces 17 and 18 of the bulging portion 3 are formed as flat surfaces, and are set to 40% to 60% of the height dimension H 3 of the bulging portion, as shown in FIGS. Contact the side surfaces 15 and 16 with appropriate surface pressure.
(iv) The overall height of the seal is H 0 , the height of the body 2 is H 2 , and the height of the bulge 3 is H 3.
Then, the following formula is established.
0.4 · H 0 ≤ H 2 ≤ 0.6 · H 0 (Formula 3)
0.2 · H 0 ≤ H 3 ≤ 0.4 · H 0 (Formula 4)
That is, as can be seen from Equation 3, the body 2 having a rectangular cross section occupies a large height dimension (the width dimension in the radial direction), and contributes to maintaining a stable posture in the groove G. In addition, the function of maintaining a constant radial urging force in the radial direction is exhibited, and the top portion 1 is elastically pressed against the mating sliding surface with an appropriate surface pressure as shown in FIG. As a result, the sealing performance is stable and excellent.
(v) When the height dimension from the groove bottom corresponding surface 14 to the center axis of the small protrusion 7 is H 7 , the following equation is established.
0.45 ・ H 0 ≦ H 7 ≦ 0.75 ・ H 0 (Formula 5)
That is, the position where the small protrusion 7 is disposed is in the central region of the overall seal height dimension H 0 , and moves from the tip to the central region as compared with the conventional seal (prior art document 1). It is arranged. As described above, the bending (elastic) deformation of the entire seal is small in combination with the point that the rigidity of the body portion 2 is higher than that of the conventional example, the cross-sectional shape of the seal is more stable, and the triangular top portion 1 is flexibly elastic. As a result, excellent sealing performance can be exhibited while being deformed.
(vi) The outer diameter dimension of the base of the small protrusion 7 is B 7 and the pitch of the small protrusions 7 is P 7 (see FIG. 1).
Then, the following equation is established.
1.3 ・ B 7 ≦ P 7 ≦ 3.0 ・ B 7 (Formula 6)
More preferably,
1.5 · B 7 ≤ P 7 ≤ 2.5 · B 7 (Formula 7)
And
That is, as shown in Equation 6 (or Equation 7), by arranging the small protrusions 7 with a relatively small pitch P 7 , the seal (as viewed from the radial outside direction) is provided together with the rigidity of the body portion 2. Can be reliably prevented. In the case of P 7 <1.3 · D 7, the number of small protrusions 7 is unnecessarily large, and the manufacturing cost of the mold increases. Moreover, there is a possibility that normal elastic deformation becomes difficult due to the confinement of the fluid. 3.0 When D 7 <P 7 , the seal may meander in the circumferential direction.
(vii) As shown in FIG. 2, with respect to the straight line L 0 , the cross-sectional shape is set to be vertically symmetrical (excluding the small protrusion 7). In addition, if the small protrusions 7 on the upper surface and the lower surface are not disposed in a staggered manner but are disposed at the same circumferential position, the small protrusions 7 are vertically symmetrical including the small protrusions 7 (see FIG. 3).

次に、図5及び図6に於て、本発明に係る往復動用シールの使用状態に於ける作用について説明する。
図5に示すように、往復動用シールが環状凹溝Gの上側(一側面側)に配設されている状態で、矢印pに示すように上方から下方へ向けて圧力が加わった場合について考察すると、前記 (i) 〜(vii) 項で述べた構成上の特徴によって、従来例(先行技術文献1参照)のシールで発生していた溝側面15へのシールの固着を、防止でき、これに伴って従来の吹き漏れを防止できる。
具体的には、従来例に於て、小突起の形状が頂部丸型の丸山型であったために、過大な圧縮力が作用した際に、潰れてしまって、シール本体が溝側面15に固着してしまうことが起こり、特に、その小突起のピッチが大きかったために、一層、そのような固着が起こって、圧力Pが溝側面15とシールとの間に浸入できずに、頂部を通過する、いわゆる吹き漏れを、発生していたが、本発明では、小突起7の形状が頂上平坦面8を有し、圧縮内部応力が低減され、しかも、その配置ピッチP7 が十分に小さく、多数の小突起7が突設されることで、小突起7の上記圧縮内部応力がさらに低減できて、間隙9が常に形成保持され圧力Pの導入と共に、図5の矢印A方向へシールが移動して、直ちに、図6のような密封状態に切換わり得る。つまり、図6に於ける下方の溝側面16に圧接(密接)状態となる。
Next, referring to FIGS. 5 and 6, the operation of the reciprocating seal according to the present invention in use will be described.
As shown in FIG. 5, a case where pressure is applied from the upper side to the lower side as indicated by an arrow p in a state where the reciprocating seal is disposed on the upper side (one side surface) of the annular groove G is considered. Then, due to the structural features described in the above items (i) to (vii), it is possible to prevent the sticking of the seal to the groove side surface 15 which has occurred in the seal of the conventional example (see Prior Art Document 1). As a result, conventional blow-off can be prevented.
Specifically, in the conventional example, since the shape of the small protrusion was a round shape of the top portion, it was crushed when an excessive compressive force was applied, and the seal body was fixed to the groove side surface 15. In particular, because of the large pitch of the small protrusions, such sticking occurs further, and the pressure P cannot penetrate between the groove side surface 15 and the seal and passes through the top. However, in the present invention, the shape of the small protrusion 7 has the top flat surface 8, the compression internal stress is reduced, and the arrangement pitch P 7 is sufficiently small. 5 can further reduce the compressive internal stress of the small protrusion 7 so that the gap 9 is always formed and held, and with the introduction of the pressure P, the seal moves in the direction of arrow A in FIG. Then, it can be switched immediately to the sealed state as shown in FIG. That is, it is in a pressure contact (close contact) state with the lower groove side surface 16 in FIG.

図6に、摺動部材X,Yと往復動用シールとの接触面圧分布を示した。摺動面Wに於ける接触面圧の総和(範囲Q内の面積)が小さいほど摺動抵抗が小さい。また、反力のピーク値(最大値)Lが大きいほどシール性が良い。本発明では、頂部1が三角状なので、上記反力の総和が小さく(幅が小さく)、ピーク値が大きくなり、摺動抵抗が小さく、かつ、優れたシール性(密封性能)が発揮される。   FIG. 6 shows the contact surface pressure distribution between the sliding members X and Y and the reciprocating seal. The smaller the total contact surface pressure (area in the range Q) on the sliding surface W, the smaller the sliding resistance. Further, the larger the peak value (maximum value) L of reaction force, the better the sealing performance. In the present invention, since the top portion 1 is triangular, the total reaction force is small (width is small), the peak value is large, sliding resistance is small, and excellent sealing performance (sealing performance) is exhibited. .

なお、小突起7の形状は、ふじつぼ型(図4)より鏡餅型(図2,図3)のほうが、ゴム量が多く、圧縮変形時に受ける内部応力を低減できるので好ましい。また、本発明の往復動用シールは、低圧用であれば、空気圧機器に限らず油圧等の流体用に用いることができる。   In addition, the shape of the small protrusion 7 is more preferable in the mirror type (FIGS. 2 and 3) than in the Fujitsubo type (FIG. 4) because the amount of rubber is large and the internal stress received during compression deformation can be reduced. Further, the reciprocating seal of the present invention can be used not only for pneumatic equipment but also for fluid such as hydraulic pressure as long as it is for low pressure.

次に、図7,図8,図11に示す本発明の第4の実施の形態を説明する。小突起7の形状及び配置以外の部分(膨出部3,胴部2,頂部1等)の形状や寸法等は、既述した第1〜第3の実施の形態(図1〜図6)と同様であるので、重複した説明を省略する。
以下、第1〜第3の実施の形態と相違する特徴に関して、主として説明する。
Next, a fourth embodiment of the present invention shown in FIGS. 7, 8, and 11 will be described. Other than the shape and arrangement of the small protrusions 7, the shape, dimensions, etc. of the portions (bulging portion 3, body portion 2, top portion 1, etc.) are the first to third embodiments described above (FIGS. 1 to 6). Since this is the same as above, a duplicate description is omitted.
Hereinafter, features different from those of the first to third embodiments will be mainly described.

図7,図8,図11に於て、シールのアキシャル方向から見て各小突起7の形状が(角部を小アールとした)略台形状である。しかも、小突起7は、その周囲壁面10が表て面5・裏面6から、85°乃至90°の急傾斜角度βをもって、立ち上っている。そして、先端平坦面8の面積をS8 とし、小突起基底断面積をS7 とすると、0.85≦S8 /S7 ≦0.10として、テーブルマウンテン型とする。このように、各小突起7が、その基底断面積S7 の85%以上の面積S8 を有する先端平坦面8を備えたテーブルマウンテン型(台形山型)とする(図11参照)。なお、図7と図8では、各小突起7を1本線をもって示し、β=90°、かつ、S8 /S7 が 100%の場合を図示している。 7, 8, and 11, the shape of each small protrusion 7 is a substantially trapezoidal shape (the corner is a small radius) when viewed from the axial direction of the seal. In addition, the small protrusion 7 rises with a steep inclination angle β of 85 ° to 90 ° from the surface 5 and the back surface 6 when the peripheral wall surface 10 appears. Then, assuming that the area of the tip flat surface 8 is S 8 and the small protrusion base cross-sectional area is S 7 , 0.85 ≦ S 8 / S 7 ≦ 0.10 and the table mountain type is obtained. In this way, each small protrusion 7 is a table mountain type (trapezoidal mountain type) provided with the tip flat surface 8 having an area S 8 that is 85% or more of the base cross-sectional area S 7 (see FIG. 11). 7 and 8, each small protrusion 7 is shown by a single line, β = 90 °, and S 8 / S 7 is 100%.

次に、図7,図8,図11からも明らかなように、小突起7の外形の形状における重心点G0 の位置が、全体がラジアル方向に一定幅寸法H2 の円環帯状の表て面5・裏面6の内周端縁21よりも外周端縁22に接近するように、ラジアル外方Rに偏在している。ここで、円環帯状の表て面5・裏面6の内周端縁21と外周端縁22の一定幅寸法H2 は、前述の胴部2の高さ寸法である。そして、図11の断面図に於て、内周端縁21・外周端縁22を、黒丸にて示した。要するに、小突起7の幾何学的形状の重心点G0 は、一定幅寸法H2 の表て面5・裏面6に於て、三角状頂部1に接近するように偏在させている。言い換えれば、次の数式が成立する。
7 >H3 +1/2・H2 (数式8)
また、図7,図8,図11に示したように、表て面5に所定ピッチP7 にて配設された複数の小突起7と、裏面6に同一の所定ピッチP7 にて配設された複数の小突起7とが、所定ピッチの半分 0.5・P7 だけ、周方向に位置をずらせて、配置しており、(既述の)千鳥状に設けられている。
Next, as is apparent from FIGS. 7, 8, and 11, the position of the center of gravity G 0 in the outer shape of the small protrusion 7 is an annular band-shaped table having a constant width dimension H 2 as a whole in the radial direction. Therefore, the outer circumferential edge 22 is unevenly distributed in the radial outer direction R so as to be closer to the outer circumferential edge 22 than to the inner circumferential edge 21 of the surfaces 5 and 6. Here, the constant width dimension H 2 of the inner peripheral edge 21 and the outer peripheral edge 22 of the annular surface 5 and the rear surface 6 is the height dimension of the body portion 2 described above. In the cross-sectional view of FIG. 11, the inner peripheral edge 21 and the outer peripheral edge 22 are indicated by black circles. In short, the center of gravity G 0 of the geometrical shape of the small protrusion 7 is unevenly distributed so as to approach the triangular apex 1 on the surface 5 and the back surface 6 of the constant width dimension H 2 . In other words, the following formula is established.
H 7 > H 3 + 1/2 · H 2 (Formula 8)
Further, as shown in FIGS. 7, 8, and 11, a plurality of small protrusions 7 arranged on the front surface 5 at a predetermined pitch P 7 and arranged on the back surface 6 at the same predetermined pitch P 7 . The plurality of provided small protrusions 7 are arranged so as to be shifted in the circumferential direction by a half of the predetermined pitch 0.5 · P 7 , and are provided in a staggered manner (as described above).

次に、図9,図10、及び、(前述の第4の実施の形態と共通する)図11に示す第5の実施の形態について説明する。小突起7の形状は、周方向に細長状の長円形部11と、その長円形部11の周方向中央からラジアル内方向に突出した丸味のある短脚部12とから成る。それ以外の構成は、第4の実施の形態と同様であるので、重複説明を省略する。
図13に於て、同図(B)は図7,図8の小突起7を斜視図にて示し、同図(C)は図9,図10の小突起7を斜視図にて示す。
そして、図13(A)は、円形のテーブルマウンテン型を示し、図1,図2、あるいは図4に示した小さ目の先端(頂上)平坦面8を、基底平坦面の面積の85%以上とすることも好ましいことを示す。また、図13(D)は、角部が小アール状とした略三角形状のテーブルマウンテン型を示す。
ところで、図13(B)(C)(D)の形状では、その重心G0 を外周端縁22(図7,図9参照)へ一層接近させることが可能である。
Next, a fifth embodiment shown in FIG. 9, FIG. 10, and FIG. 11 (common to the above-described fourth embodiment) will be described. The shape of the small protrusion 7 includes an oblong portion 11 that is elongated in the circumferential direction and a rounded short leg portion 12 that protrudes radially inward from the circumferential center of the oval portion 11. Since the other configuration is the same as that of the fourth embodiment, the redundant description is omitted.
13 (B) is a perspective view of the small protrusion 7 of FIGS. 7 and 8, and FIG. 13 (C) is a perspective view of the small protrusion 7 of FIGS.
FIG. 13A shows a circular table mountain type, and the small tip (top) flat surface 8 shown in FIG. 1, FIG. 2, or FIG. 4 is set to 85% or more of the area of the base flat surface. It is also preferable to do this. FIG. 13D shows a table mountain type having a substantially triangular shape with corners having a small round shape.
Incidentally, in the configuration of FIG. 13 (B) (C) (D), the center of gravity G 0 peripheral edge 22 (see FIGS. 7 and 9) it is possible to further approach the.

次に、図7,図8、又は、図9,図10、及び図11に於て、
1 :頂部1の高さ寸法
2 :胴部2の高さ寸法
0 :シール全体高さ寸法
7 :小突起7の基底のラジアル方向寸法
7 :小突起7の基底の周方向寸法
D :シールの外径寸法
N :表て面・裏面の各々の小突起7の個数
とすれば、以下の数式が成立するように、各部の寸法を設定するのが望ましい。
(H1 +H2 )≧ 0.6・H0 (数式9)
(H1 +H2 )/3≦B7 ≦2・(H1 +H2 )/3 (数式10)
πD/5N≦C7 ≦πD/ 1.3N (数式11)
上記数式11に於て、 7 の値が上限値に近づけば、表て面5と裏面6に千鳥状に配設された小突起7,7が、部分的に表裏で重なり合う。逆に、 7 の値が下限値に近づくと、部分的に表裏で重なり合わない配置となる。受圧状態で、アキシャル内方向に見た場合、前者の方が蛇行状に変形することが少なく、密封性能に優れ、シールとして耐久性にも優れる。
Next, in FIG. 7, FIG. 8, or FIG. 9, FIG. 10, and FIG.
H 1 : Height of top 1
H 2 : Body 2 height dimension
H 0 : Overall seal height dimension
B 7 : Radial dimension of the base of the small protrusion 7
C 7 : Circumferential dimension of the base of the small protrusion 7
D: outer diameter of the seal
N: If the number of small protrusions 7 on each of the front and rear surfaces is expressed, it is desirable to set the dimensions of each part so that the following mathematical formula is established.
(H 1 + H 2 ) ≧ 0.6 · H 0 (Equation 9)
(H 1 + H 2 ) / 3 ≦ B 7 ≦ 2 · (H 1 + H 2 ) / 3 (Formula 10)
πD / 5N ≦ C 7 ≦ πD / 1.3N (Formula 11)
In Equation 11 above, C 7 When the value of is close to the upper limit value, the small protrusions 7 and 7 arranged in a staggered manner on the front surface 5 and the back surface 6 partially overlap each other. Conversely, C 7 When the value of approaches the lower limit value, the arrangement is such that the front and back do not partially overlap. When viewed in the axial direction in the pressure-receiving state, the former is less likely to be deformed in a meandering manner, has excellent sealing performance, and is excellent in durability as a seal.

ところで、第1〜第3の実施の形態(図1〜図6)のシールは、比較的低圧での使用に適しており、図5と図6の間を、交互に作動する速度と使用頻度も小さい場合に、好適である。図12(A)は、第1〜第3の実施の形態の接触面圧分布を示し、図12(B)は、第4〜第5の実施の形態(図7〜図11)の接触面圧分布を示し、同一の流体圧力を受けた際の接触面圧のピーク値(Pmax )は、図12(B)では著しく低減できることを示している。
従って、第4〜第5の実施の形態(図7〜図11)のシールは、一層高い流体圧力に対応できることを示す。特に、図12(A)に於て、2点鎖線Zで示すような横断面形状にまで、高い流体圧力で繰返し使用すると、摩耗してしまうので、高圧力・高繰返しの使用に耐えられない場合があるが、図12(B)では、高い流体圧力での高繰返し使用にも耐え、早期摩耗を防止できる。
図6に示したように、矢印pの流体圧力作用すると、低い圧力では好ましいシール性能と耐久性を示す。しかしながら、繰返し作用する流体圧力pが著しく高い場合には、図12(A)に示すように、矢印M1 方向に頂部1が揺動を繰返し、頂部1が2点鎖線Zのように摩耗すると共に、小突起7も高い面圧Pmax に耐えられずに、早期摩耗を生じて2点鎖線Zの位置まで摩滅する。従って、矢印M1 方向へのシール頂部1の早期摩耗を促進する、悪い結果となる。
By the way, the seals of the first to third embodiments (FIGS. 1 to 6) are suitable for use at a relatively low pressure, and the speed and frequency of use alternately between FIG. 5 and FIG. Is also preferable. FIG. 12A shows the contact surface pressure distribution of the first to third embodiments, and FIG. 12B shows the contact surface of the fourth to fifth embodiments (FIGS. 7 to 11). FIG. 12B shows the pressure distribution and shows that the peak value (Pmax) of the contact surface pressure when subjected to the same fluid pressure can be significantly reduced in FIG.
Therefore, it is shown that the seals of the fourth to fifth embodiments (FIGS. 7 to 11) can cope with higher fluid pressure. In particular, in FIG. 12 (A), even when it is repeatedly used at a high fluid pressure up to a cross-sectional shape as indicated by a two-dot chain line Z, it will be worn out and cannot withstand the use of high pressure and high repetition. In some cases, however, in FIG. 12B, it can withstand repeated use at a high fluid pressure, and early wear can be prevented.
As shown in FIG. 6, when the fluid pressure acts by the arrow p, a favorable sealing performance and durability are exhibited at a low pressure. However, when the fluid pressure p that repeatedly acts is extremely high, as shown in FIG. 12A, the top portion 1 repeats rocking in the direction of the arrow M 1, and the top portion 1 is worn like a two-dot chain line Z. At the same time, the small protrusions 7 are not able to withstand the high surface pressure Pmax, and wear early and wear down to the position of the two-dot chain line Z. Therefore, it results in a bad result that promotes early wear of the seal top 1 in the direction of the arrow M 1 .

図12(B)(図7〜図10,図13)では、このような問題点を解決して、高い流体圧力、頻度の高い往復作動の繰返しに対応し、シール頂部1が矢印M1 方向へは僅かの弾性変形を生ずるのみであって、シール頂部1の摩耗が防止でき、かつ、小突起7自身の摩耗をも防止できる。
さらに、図13(B)〜(D)に示した形状の小突起7によれば、図12(B)の胴部2の外周端縁22にまで、受圧部位(先端平坦部8)が近接して配置され、矢印M1 方向への頂部1の揺動に対する反力を、この外周端縁22近傍で発生して、矢印M1 方向への頂部1の揺動(倒れ)を確実に阻止する。
In FIG. 12 (B) (FIGS. 7 to 10, FIG. 13), such problems are solved, high fluid pressure, corresponding to the repetition of frequent reciprocating seal top 1 the arrow M 1 direction Only a slight elastic deformation occurs at the top, so that wear of the seal top 1 can be prevented and wear of the small protrusions 7 themselves can also be prevented.
Further, according to the small protrusion 7 having the shape shown in FIGS. 13B to 13D, the pressure receiving portion (tip flat portion 8) is close to the outer peripheral edge 22 of the body portion 2 in FIG. The reaction force against the rocking of the top 1 in the direction of the arrow M 1 is generated in the vicinity of the outer peripheral edge 22 to reliably prevent the rocking (falling) of the top 1 in the direction of the arrow M 1. To do.

以上のように、本発明は、相互に軸方向摺動可能な摺動部材X,Yのいずれか一方の環状凹溝G内に装着される往復動用シールに於て、横断面形状が三角状頂部1と、矩形状胴部2と、溝底側膨出部3を、有し、膨出部3の溝底側角部4が円弧状又はC形面取り状に形成されて、溝底G1 の隅部Cに隙間Sを形成するように構成され、胴部2の表て面5及び裏面6に、小山型の複数の小突起7を周方向に所定ピッチP7 にて突設したので、往復動用シールに必要な種々の性能が優れる。即ち、摺動抵抗を低減でき、かつ、シール性(密封性能)が良い。また、自封性が良く、偏心追随性にも優れている。 As described above, according to the present invention, the cross-sectional shape of the reciprocating seal mounted in either one of the annular grooves G of the sliding members X and Y that are slidable in the axial direction is triangular. It has a top portion 1, a rectangular body portion 2, and a groove bottom side bulge portion 3, and a groove bottom side corner portion 4 of the bulge portion 3 is formed in an arc shape or a C-shaped chamfered shape. A gap S is formed at one corner C, and a plurality of small ridges 7 are protruded from the front surface 5 and the rear surface 6 of the body 2 at a predetermined pitch P 7 in the circumferential direction. Therefore, various performances required for the reciprocating seal are excellent. That is, sliding resistance can be reduced and sealing performance (sealing performance) is good. Moreover, the self-sealing property is good and the eccentric followability is also excellent.

また、始動抵抗が低減され、応答性が良い。さらに、吹き漏れを防止することができる。また、グリース保持性が良く無給油で使用することができる。また、膨出部3の溝底側角部4が円弧状又はC形面取り状に形成されて、溝底G1 の隅部Cに隙間Sを形成するように構成されるので、圧縮弾性変形がスムースかつ安定して、行われて、反力を低減させることができる。 Further, the starting resistance is reduced and the responsiveness is good. Furthermore, it is possible to prevent blow-out. Also, it has good grease retention and can be used without lubrication. Further, the groove bottom side corner 4 of the bulging portion 3 is formed in an arc shape or a C-shaped chamfered shape so as to form a gap S in the corner C of the groove bottom G 1. Is performed smoothly and stably, and the reaction force can be reduced.

また、三角状頂部1の頂角θを80°≦θ≦ 120°に設定したので、シール性が良く、かつ、耐久性にも優れる。
また、小山型の小突起7は、頂上平坦面8を有するので、溝側面16に押し付けられた際、小突起7の内部応力を小さくすることができ、図5に示した間隙9を常に形成保持して、圧力Pが導入されるや直ちに矢印A方向に移動して、図6に示した密封状態に切換わる(吹き漏れが防止できる)。
Moreover, since the apex angle θ of the triangular apex 1 is set to 80 ° ≦ θ ≦ 120 °, the sealing property is good and the durability is excellent.
Further, since the small ridge-shaped small protrusion 7 has the top flat surface 8, when pressed against the groove side surface 16, the internal stress of the small protrusion 7 can be reduced, and the gap 9 shown in FIG. 5 is always formed. As soon as the pressure P is introduced, it moves in the direction of arrow A and switches to the sealed state shown in FIG. 6 (blow-off can be prevented).

また、上記小突起7が、その基底断面積S7 の85%以上の面積S8 を有する先端平坦面8を備えたテーブルマウンテン型であるので、受圧時の小突起7の受圧面圧Pの曲線が低くなだらかとなり(図12(B)参照)、小突起7自身の耐摩耗性が向上して、シールとしての寿命が延び、特に、高圧流体で頻繁な繰返し作動にも、耐えることができる。
また、上記小突起7の周囲壁面10が、上記胴部2の表て面5・裏面6から、85°乃至90°の急傾斜角度βをもって、立ち上っている構成であるので、胴部2の表て面5・裏面6が狭小幅寸法H2 の円環帯状に対して、小突起7を配設して、その小突起7の先端平坦面8の接触面積を十分に大きくできて、受圧状態下での受圧面圧Pを低減でき、小突起7の早期摩耗を防止できる。
In addition, since the small protrusion 7 is a table mountain type having a flat front end surface 8 having an area S 8 that is 85% or more of the base cross-sectional area S 7 , the pressure receiving surface pressure P of the small protrusion 7 at the time of pressure receiving is small. The curve becomes gentle (see FIG. 12 (B)), the wear resistance of the small protrusion 7 itself is improved, the life as a seal is extended, and in particular, it can withstand frequent repeated operations with high-pressure fluid. .
In addition, since the peripheral wall surface 10 of the small protrusion 7 rises from the front surface 5 and the back surface 6 of the body portion 2 with a steep inclination angle β of 85 ° to 90 °, A small protrusion 7 is provided on the surface 5 and the rear surface 6 of an annular belt having a narrow width dimension H 2 , and the contact area of the tip flat surface 8 of the small protrusion 7 can be sufficiently increased. The pressure-receiving surface pressure P under the state can be reduced, and early wear of the small protrusions 7 can be prevented.

また、上記小突起7の外形の形状における重心点G0 の位置が、全体がラジアル方向に一定幅寸法H2 の円環帯状の上記表て面5・裏面6の内周端縁21よりも外周端縁22に接近するように、ラジアル外方Rに偏在している構成であるので、受圧状態で、(胴部2と)頂部1が、図12(B)の矢印M1 方向に倒れようと(揺動しようと)した際に、有効なサポート用反力を、小突起7によって生じ得る。
また、上記表て面5に上記所定ピッチP7 にて配設された複数の小突起7と、上記裏面6に同一の上記所定ピッチP7 にて配設された複数の小突起7とが、上記所定ピッチの半分( 0.5・P7 )だけ、周方向に位置をずらせて、配置したので、ラジアル内方向から見てシールが周方向に蛇行状に弾性変形することを防止でき、シール性能を十分発揮する。
Further, the position of the center of gravity G 0 in the outer shape of the small projection 7 is larger than the inner peripheral edge 21 of the surface 5 and the rear surface 6 of the annular surface having a constant width H 2 in the radial direction. Since the configuration is unevenly distributed radially outward R so as to approach the outer peripheral edge 22, the top portion 1 (with the trunk portion 2) falls in the direction of the arrow M 1 in FIG. When trying (swinging), an effective support reaction force can be generated by the small protrusion 7.
In addition, a plurality of small protrusions 7 disposed on the surface 5 with the predetermined pitch P 7 and a plurality of small protrusions 7 disposed on the back surface 6 with the same predetermined pitch P 7 . Since the position is shifted in the circumferential direction by half of the predetermined pitch (0.5 · P 7 ), the seal can be prevented from elastically deforming in a meandering manner in the circumferential direction when viewed from the radial inner direction, and sealing performance To fully demonstrate.

また、下記各寸法に於て、以下の数式が成立するように設定した。
(H1 +H2 )≧ 0.6・H0
(H1 +H2 )/3≦B7 ≦2・(H1 +H2 )/3
πD/5N ≦C7 ≦πD/ 1.3N
1 :頂部1の高さ寸法
2 :胴部2の高さ寸法
0 :シール全体高さ寸法
7 :小突起7の基底のラジアル方向寸法
7 :小突起7の基底の周方向寸法
D :シールの外径寸法
N :表て面・裏面の各々の小突起7の個数
これによって、胴部2と頂部1は柔軟に弾性変形可能であり、かつ、小突起7は溝側面16に対して低面圧にて接触して、胴部2と頂部1の過大な弾性変形を、長期間にわたって、防止する。さらに、表て面5と裏面6に小突起7を千鳥状に配置する場合に、シール使用条件(流体圧力や往復動速度・必要摺動距離・往復作動頻度等)に対応して、一部重なり合わせたり、逆に、重なり合わないように配置が可能となる。
In addition, the following mathematical formulas were established for the following dimensions.
(H 1 + H 2 ) ≧ 0.6 · H 0
(H 1 + H 2 ) / 3 ≦ B 7 ≦ 2 · (H 1 + H 2 ) / 3
πD / 5N ≦ C 7 ≦ πD / 1.3N
H 1 : Height of top 1
H 2 : Body 2 height dimension
H 0 : Overall seal height dimension
B 7 : Radial dimension of the base of the small protrusion 7
C 7 : Circumferential dimension of the base of the small protrusion 7
D: outer diameter of the seal
N: Number of small projections 7 on each of the front and back surfaces. Accordingly, the body 2 and the top 1 can be elastically deformed flexibly, and the small projection 7 can be applied to the groove side surface 16 at a low surface pressure. In contact, excessive elastic deformation of the body 2 and the top 1 is prevented over a long period of time. Furthermore, when the small protrusions 7 are arranged in a staggered manner on the front surface 5 and the rear surface 6, some of them correspond to the seal usage conditions (fluid pressure, reciprocating speed, required sliding distance, reciprocating operation frequency, etc.) They can be arranged so that they overlap, or conversely, do not overlap.

1 (三角状)頂部
2 (矩形状)胴部
3 (溝底側)膨出部
4 溝底側角部
5 表て面
6 裏面
7 小突起
8 平端面(頂上平坦面)
10 周囲壁面
21 内周端縁
22 外周端縁
7 小突起の基底のラジアル方向寸法
C 隅部
7 小突起の基底の周方向寸法
D シールの外径寸法
G 環状凹溝
1 溝底
0 シール全体高さ寸法
1 頂部の高さ寸法
2 胴部の高さ寸法(表て面・裏面の一定幅寸法)
N 小突起の個数
7 ピッチ
R ラジアル外方向
S 隙間
X 摺動部材
Y 摺動部材
β 傾斜角度
θ 頂角
1 (triangular) top 2 (rectangular) body 3 (groove bottom side) bulging portion 4 groove bottom side corner 5 front surface 6 back surface 7 small protrusion 8 flat end surface (top flat surface)
10 Surrounding wall
21 Inner edge
22 Outer peripheral edge B 7 Radial dimension of the base of the small protrusion C Corner C 7 Circumferential dimension of the base of the small protrusion D Seal outer diameter G Ring groove G 1 Groove bottom H 0 Overall seal height H 1 Height dimension of the top part H 2 Height dimension of the body part
N Number of small protrusions P 7 pitch R Radial outward direction S Clearance X Sliding member Y Sliding member β Inclination angle θ Vertical angle

Claims (3)

相互に軸方向摺動可能な摺動部材 (X)(Y) のいずれか一方の環状凹溝(G)内に装着される往復動用シールに於て、
横断面形状が三角状頂部(1)と、矩形状胴部(2)と、溝底側膨出部(3)を、有し、上記膨出部(3)の溝底側角部(4)が円弧状又はC形面取り状に形成されて、溝底(G1 )の隅部(C)に隙間(S)を形成するように構成され、
上記矩形状胴部(2)の表て面(5)及び裏面(6)に、複数の小突起(7)を周方向に所定ピッチ(P7 )にて散点状に突設し、
上記小突起(7)の外形の形状における重心点(G 0 )の位置が、全体がラジアル方向に一定幅寸法(H 2 )の円環帯状の上記表て面(5)・裏面(6)の内周端縁(21)よりも外周端縁(22)に接近するように、ラジアル外方(R)に偏在していることを特徴とする往復動用シール。
In the reciprocating seal mounted in any one of the annular grooves (G) of the sliding members (X) and (Y) that can slide in the axial direction with respect to each other,
The cross-sectional shape has a triangular top (1), a rectangular body (2), and a groove bottom side bulge (3), and the groove bottom side corner (4) of the bulge (3). ) Is formed in an arc shape or a C-shaped chamfered shape, and a gap (S) is formed in the corner (C) of the groove bottom (G 1 ),
A plurality of small protrusions (7) are projected in a dotted manner in the circumferential direction at a predetermined pitch (P 7 ) on the front surface (5) and the back surface (6) of the rectangular body (2) ,
The position of the center of gravity (G 0 ) in the external shape of the small protrusion (7) is the annular surface having the constant width dimension (H 2 ) in the radial direction as described above (5) and back surface (6) A reciprocating seal characterized in that it is unevenly distributed radially outward (R) so as to be closer to the outer peripheral edge (22) than to the inner peripheral edge (21) .
相互に軸方向摺動可能な摺動部材 (X)(Y) のいずれか一方の環状凹溝(G)内に装着される往復動用シールに於て、
横断面形状が三角状頂部(1)と、矩形状胴部(2)と、溝底側膨出部(3)を、有し、上記膨出部(3)の溝底側角部(4)が円弧状又はC形面取り状に形成されて、溝底(G 1 )の隅部(C)に隙間(S)を形成するように構成され、
上記矩形状胴部(2)の表て面(5)及び裏面(6)に、複数の小突起(7)を周方向に所定ピッチ(P 7 )にて散点状に突設し、上記小突起(7)が、その基底断面積(S 7 )の85%以上の面積(S 8 )を有する先端平坦面(8)を備えたテーブルマウンテン型であり、
上記三角状頂部(1)の頂角(θ)を80°≦θ≦ 120°に設定したことを特徴とする往復動用シール。
In the reciprocating seal mounted in any one of the annular grooves (G) of the sliding members (X) and (Y) that can slide in the axial direction with respect to each other,
The cross-sectional shape has a triangular top (1), a rectangular body (2), and a groove bottom side bulge (3), and the groove bottom side corner (4) of the bulge (3). ) Is formed in an arc shape or a C-shaped chamfered shape, and a gap (S) is formed in the corner (C) of the groove bottom (G 1 ),
A plurality of small protrusions (7) are projected in a dotted manner in the circumferential direction at a predetermined pitch (P 7 ) on the front surface (5) and the back surface (6) of the rectangular body (2). The small protrusion (7) is a table mountain type having a flat tip surface (8) having an area (S 8 ) of 85% or more of its basal cross-sectional area (S 7 ) ,
A reciprocating seal, wherein the apex angle (θ) of the triangular apex (1) is set to 80 ° ≦ θ ≦ 120 °.
相互に軸方向摺動可能な摺動部材 (X)(Y) のいずれか一方の環状凹溝(G)内に装着される往復動用シールに於て、
横断面形状が三角状頂部(1)と、矩形状胴部(2)と、溝底側膨出部(3)を、有し、上記膨出部(3)の溝底側角部(4)が円弧状又はC形面取り状に形成されて、溝底(G 1 )の隅部(C)に隙間(S)を形成するように構成され、
上記矩形状胴部(2)の表て面(5)及び裏面(6)に、複数の小突起(7)を周方向に所定ピッチ(P 7 )にて散点状に突設し、
上記表て面(5)に上記所定ピッチ(P 7 )にて配設された複数の小突起(7)と、上記裏面(6)に同一の上記所定ピッチ(P 7 )にて配設された複数の小突起(7)とが、上記所定ピッチの半分( 0.5・P 7 )だけ、周方向に位置をずらせて、配置し、
下記各寸法に於て、以下の数式が成立することを特徴とする往復動用シール。
(H 1 +H 2 )≧ 0.6・H 0
(H 1 +H 2 )/3≦B 7 ≦2・(H 1 +H 2 )/3
πD/5N≦C 7 ≦πD/ 1.3N
但し、
1 :頂部(1)の高さ寸法
2 :胴部(2)の高さ寸法
0 :シール全体高さ寸法
7 :小突起(7)の基底のラジアル方向寸法
7 :小突起(7)の基底の周方向寸法
D :シールの外径寸法
N :表て面・裏面の各々の小突起(7)の個数
In the reciprocating seal mounted in any one of the annular grooves (G) of the sliding members (X) and (Y) that can slide in the axial direction with respect to each other,
The cross-sectional shape has a triangular top (1), a rectangular body (2), and a groove bottom side bulge (3), and the groove bottom side corner (4) of the bulge (3). ) Is formed in an arc shape or a C-shaped chamfered shape, and a gap (S) is formed in the corner (C) of the groove bottom (G 1 ),
A plurality of small protrusions (7) are projected in a dotted manner in the circumferential direction at a predetermined pitch (P 7 ) on the front surface (5) and the back surface (6) of the rectangular body (2) ,
A plurality of small projections disposed at the predetermined pitch (P 7) on the surface (5) Te Table (7), disposed on the rear surface (6) in the same said predetermined pitch (P 7) A plurality of small protrusions (7) are arranged with their positions shifted in the circumferential direction by half of the predetermined pitch (0.5 · P 7 ),
A reciprocating seal characterized in that the following formula is established for each of the following dimensions:
(H 1 + H 2 ) ≧ 0.6 · H 0
(H 1 + H 2 ) / 3 ≦ B 7 ≦ 2 · (H 1 + H 2 ) / 3
πD / 5N ≦ C 7 ≦ πD / 1.3N
However,
H 1 : Height of top (1)
H 2 : Body (2) height dimension
H 0 : Overall seal height dimension
B 7 : Radial dimension of the base of the small protrusion (7)
C 7 : Dimension in the circumferential direction of the base of the small protrusion (7)
D: outer diameter of the seal
N: Number of small protrusions (7) on the front and back surfaces
JP2015517000A 2013-05-17 2014-04-16 Reciprocating seal Active JP6346607B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013105099 2013-05-17
JP2013105099 2013-05-17
PCT/JP2014/060817 WO2014185207A1 (en) 2013-05-17 2014-04-16 Seal for reciprocating motion

Publications (2)

Publication Number Publication Date
JPWO2014185207A1 JPWO2014185207A1 (en) 2017-02-23
JP6346607B2 true JP6346607B2 (en) 2018-06-20

Family

ID=51898188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015517000A Active JP6346607B2 (en) 2013-05-17 2014-04-16 Reciprocating seal

Country Status (5)

Country Link
JP (1) JP6346607B2 (en)
KR (1) KR102203341B1 (en)
CN (1) CN104937317B (en)
TW (1) TWI591277B (en)
WO (1) WO2014185207A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121718A (en) * 2014-12-24 2016-07-07 Nok株式会社 Sealing device
CN106257113A (en) * 2015-06-19 2016-12-28 镇江耀华密封电器有限公司 A kind of oil cylinder sealing member
JP2017036754A (en) * 2015-08-07 2017-02-16 三菱電線工業株式会社 seal

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472256U (en) * 1977-10-31 1979-05-23
JPH0579128A (en) 1991-09-19 1993-03-30 Matsushita Electric Works Ltd Roof structure
JP2573038Y2 (en) * 1992-03-27 1998-05-28 三菱電線工業株式会社 Packing for sliding
JPH07269733A (en) * 1994-03-31 1995-10-20 Nippon Valqua Ind Ltd Ring packing
JP2898904B2 (en) * 1995-05-18 1999-06-02 シーケーディ株式会社 Packing
JP5151241B2 (en) * 2007-05-10 2013-02-27 Nok株式会社 Sealing structure
JP5049993B2 (en) * 2009-03-19 2012-10-17 三菱電線工業株式会社 Sealing material
JP5415316B2 (en) * 2010-02-05 2014-02-12 大同工業株式会社 Seal chain
JP5835836B2 (en) 2011-05-26 2015-12-24 内山工業株式会社 Sealing structure

Also Published As

Publication number Publication date
JPWO2014185207A1 (en) 2017-02-23
WO2014185207A1 (en) 2014-11-20
CN104937317A (en) 2015-09-23
CN104937317B (en) 2017-12-26
TWI591277B (en) 2017-07-11
KR102203341B1 (en) 2021-01-15
KR20160009009A (en) 2016-01-25
TW201445065A (en) 2014-12-01

Similar Documents

Publication Publication Date Title
US8282107B2 (en) Oil seal for reciprocation motion
CN107407412B (en) Side rail
JP5591896B2 (en) Sealing device
JP6346607B2 (en) Reciprocating seal
JP5365484B2 (en) Gasket and sealing structure
CN110678677B (en) Rotary seal assembly with loopback function and rotary seal
JP2010138957A (en) Gasket
CN107850213B (en) Compression piston ring with special-shaped section
JP2017116015A (en) Oil ring
JP5041896B2 (en) High pressure sealing device
CN108431467A (en) The multi-piece type oil of friction with reduction controls piston ring
JP6088374B2 (en) Shaft seal
CN112703339A (en) Combined piston ring
CN206889674U (en) A kind of sealing ring that can be compensated automatically
CN203023478U (en) Lip seal assembly
CN106062440A (en) Oil control ring assembly
JP2009287659A (en) Sliding seal
CN203023474U (en) Lip seal assembly provided with supporting spring at lip port
CN103047416B (en) Be suitable for the seal ring assembly of pressurized container
JP2005221028A (en) Sealing device
CN105934614A (en) Rotary hydraulic actuator seal
CN203023473U (en) Seal assembly
CN212106903U (en) High stability oil filling riser is sealed
CN215672976U (en) Piston sealing structure
CN105673861A (en) Sealing device capable of relieving pressure automatically

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180525

R150 Certificate of patent or registration of utility model

Ref document number: 6346607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250