JP6343637B2 - Membrane structure - Google Patents

Membrane structure Download PDF

Info

Publication number
JP6343637B2
JP6343637B2 JP2016137402A JP2016137402A JP6343637B2 JP 6343637 B2 JP6343637 B2 JP 6343637B2 JP 2016137402 A JP2016137402 A JP 2016137402A JP 2016137402 A JP2016137402 A JP 2016137402A JP 6343637 B2 JP6343637 B2 JP 6343637B2
Authority
JP
Japan
Prior art keywords
phosphor
layer
tetrafluoroethylene
structure according
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016137402A
Other languages
Japanese (ja)
Other versions
JP2016191068A (en
Inventor
成教 田村
成教 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chukoh Chemical Industries Ltd
Original Assignee
Chukoh Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chukoh Chemical Industries Ltd filed Critical Chukoh Chemical Industries Ltd
Priority to JP2016137402A priority Critical patent/JP6343637B2/en
Publication of JP2016191068A publication Critical patent/JP2016191068A/en
Application granted granted Critical
Publication of JP6343637B2 publication Critical patent/JP6343637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、蛍光複合体に関する。   The present invention relates to a fluorescent complex.

中大型テント等の膜構造物において、消灯時及び突発的な停電時に、電力を必要とすることなく、膜材自体が発光して、一時的に照明の代わりになり、混乱を避けると共に、大衆の目印、道標となることが可能な光天井用膜材の開発が行われている。   In membrane structures such as medium- and large-sized tents, the film material itself emits light without requiring power when the lights are turned off or during a sudden power failure, temporarily replacing lighting, avoiding confusion, Development of membrane materials for optical ceilings that can serve as landmarks and signposts.

例えば特許文献1は、繊維材料より形成された芯体と、その少なくとも1面に形成された白色樹脂層と、白色樹脂層の上に形成された蓄光性蛍光樹脂層と、蓄光性蛍光樹脂層の上に形成された光触媒層とを有する蓄光性蛍光膜材料を開示している。特許文献1の蓄光性蛍光膜材料のJIS K7105に規定される全光線透過率は50%以上である。また、蓄光性蛍光樹脂層には、塩化ビニル樹脂のような熱可塑性樹脂が用いられている。   For example, Patent Document 1 discloses a core formed of a fiber material, a white resin layer formed on at least one surface thereof, a phosphorescent fluorescent resin layer formed on the white resin layer, and a phosphorescent fluorescent resin layer. A phosphorescent phosphor film material having a photocatalyst layer formed thereon is disclosed. The total light transmittance defined in JIS K7105 of the phosphorescent phosphor film material of Patent Document 1 is 50% or more. In addition, a thermoplastic resin such as vinyl chloride resin is used for the phosphorescent fluorescent resin layer.

一方、特許文献2は、ガラス繊維糸条、シリカ繊維糸条及びこれらの混用繊維糸条からなる繊維織物の表片面上に、蓄光性蛍光体物質を20〜60質量%含有する蓄光蛍光性樹脂層を設け、可視光透過率(JIS Z8722)が20〜60%である積層体とすることで、特に、コーンカロリーメーター試験(ASTM−E1354)に適合する不燃性の光天井用膜材を得ることを開示している。また、特許文献2の蓄光蛍光性樹脂層には、塩化ビニル樹脂のような熱可塑性樹脂が用いられている。   On the other hand, Patent Document 2 discloses a phosphorescent fluorescent resin containing 20 to 60% by mass of a phosphorescent phosphor substance on the surface of a fiber fabric composed of glass fiber yarns, silica fiber yarns, and mixed fiber yarns thereof. By providing a layer and providing a laminate having a visible light transmittance (JIS Z8722) of 20 to 60%, in particular, a nonflammable optical ceiling film material suitable for the cone calorimeter test (ASTM-E1354) is obtained. It is disclosed. Further, a thermoplastic resin such as vinyl chloride resin is used for the phosphorescent fluorescent resin layer of Patent Document 2.

光天井用膜材には、耐候性をさらに改善することが要望されている。   Optical ceiling membrane materials are required to further improve the weather resistance.

特開2008−12901号公報JP 2008-12901 A 特開2009−263606号公報JP 2009-263606 A

実施形態の目的は、耐候性に優れた蛍光複合体を提供することである。   An object of the embodiment is to provide a fluorescent composite having excellent weather resistance.

実施形態によれば、耐熱性織布と、前記耐熱性織布の両面に形成されたフッ素樹脂層とを含む芯体と、
蛍光体及び四ふっ化エチレン樹脂を含む蛍光体層とを含むことを特徴とする蛍光複合体を含んだ膜構造物が提供される。
According to the embodiment, a core including a heat resistant woven fabric and a fluororesin layer formed on both surfaces of the heat resistant woven fabric,
There is provided a film structure including a fluorescent composite comprising a fluorescent material and a fluorescent material layer containing a tetrafluoroethylene resin.

実施形態によれば、耐候性に優れた蛍光複合体を提供することができる。   According to the embodiment, a fluorescent composite having excellent weather resistance can be provided.

実施形態に係る蛍光複合体を示す断面図である。It is sectional drawing which shows the fluorescence composite_body | complex which concerns on embodiment. 実施形態に係る蛍光複合体を示す断面図である。It is sectional drawing which shows the fluorescence composite_body | complex which concerns on embodiment. 実施形態に係る蛍光複合体を示す断面図である。It is sectional drawing which shows the fluorescence composite_body | complex which concerns on embodiment. 実施形態に係る蛍光複合体を示す断面図である。It is sectional drawing which shows the fluorescence composite_body | complex which concerns on embodiment. 実施形態に係る蛍光複合体を示す断面図である。It is sectional drawing which shows the fluorescence composite_body | complex which concerns on embodiment. 実施形態に係る蛍光複合体を示す断面図である。It is sectional drawing which shows the fluorescence composite_body | complex which concerns on embodiment. 比較例1の蛍光複合体を示す断面図である。6 is a cross-sectional view showing a fluorescent composite of Comparative Example 1. FIG. 比較例2の蛍光複合体を示す断面図である。6 is a cross-sectional view showing a fluorescent composite of Comparative Example 2. FIG. 比較例3の蛍光複合体を示す断面図である。6 is a cross-sectional view showing a fluorescent composite of Comparative Example 3. FIG.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

実施形態によれば、芯体と、蛍光体層とを含む蛍光複合体が提供される。芯体は、耐熱性織布と、耐熱性織布の両面に形成されたフッ素樹脂層とを含む。蛍光体層は、蛍光体粒子及び四ふっ化エチレン樹脂(PTFE)を含む。本発明者らは、蛍光体粒子に塩化ビニル樹脂を混合させると、優れた透明性が得られるものの、水分により蛍光体粒子が劣化しやすく、一方、塩化ビニル樹脂の代りにPTFEを蛍光体粒子に混合させると、PTFEが蛍光体粒子を被覆し、蛍光体粒子と水との接触を防止するため、蛍光体層の耐水性が高められ、蛍光体粒子の加水分解が抑制されることを究明したのである。また、この蛍光体層は、芯体のフッ素樹脂層との相溶融性に優れるため、蛍光複合体の一体化強度を高めることができる。以上のことから、実施形態によれば、蛍光複合体の耐候性を向上することができる。   According to the embodiment, a fluorescent composite including a core and a phosphor layer is provided. The core includes a heat resistant woven fabric and a fluororesin layer formed on both surfaces of the heat resistant woven fabric. The phosphor layer includes phosphor particles and tetrafluoroethylene resin (PTFE). When the present inventors have mixed vinyl chloride resin with phosphor particles, although excellent transparency is obtained, phosphor particles are easily deteriorated by moisture, while PTFE is used instead of vinyl chloride resin as phosphor particles. When mixed with PTFE, the PTFE coats the phosphor particles and prevents contact between the phosphor particles and water, so that the water resistance of the phosphor layer is increased and the hydrolysis of the phosphor particles is suppressed. It was. Moreover, since this fluorescent substance layer is excellent in a phase meltability with the fluororesin layer of a core, the integrated intensity | strength of a fluorescent composite can be raised. From the above, according to the embodiment, the weather resistance of the fluorescent composite can be improved.

実施形態の蛍光複合体を図面を参照して説明する。図1に示すように、実施形態の蛍光複合体は、芯体1と、芯体1の一方の面に形成された蛍光体層2と、芯体1の他方の面に形成された第1の保護層31と、蛍光体層2上に形成された第2の保護層32とを有する。芯体1は、耐熱性織布1aと、耐熱性織布1aの両面に形成されたフッ素樹脂層1bとを含む。また、蛍光体層2は、蛍光体及び四ふっ化エチレン樹脂を含む。蛍光複合体を構成するこれらの部材について説明する。 The fluorescent complex of the embodiment will be described with reference to the drawings. As shown in FIG. 1, the fluorescent composite according to the embodiment includes a core 1, a phosphor layer 2 formed on one surface of the core 1, and a first formed on the other surface of the core 1. Protective layer 3 1, and second protective layer 3 2 formed on phosphor layer 2. The core 1 includes a heat resistant woven fabric 1a and a fluororesin layer 1b formed on both surfaces of the heat resistant woven fabric 1a. Moreover, the fluorescent substance layer 2 contains fluorescent substance and tetrafluoroethylene resin. These members constituting the fluorescent composite will be described.

1)芯体
耐熱性織布の例には、ガラス繊維、炭素繊維、セラミックス繊維、アラミド繊維及び金属繊維よりなる群から選択される少なくとも一種類を含むものが挙げられる。これらの繊維は長繊維であることが望ましい。ここで、長繊維は、紡績せずに糸として利用可能なものである。耐熱性織布として好ましいのは、ガラス繊維を含むものである。
1) Core body Examples of the heat-resistant woven fabric include those containing at least one selected from the group consisting of glass fiber, carbon fiber, ceramic fiber, aramid fiber and metal fiber. These fibers are preferably long fibers. Here, the long fiber can be used as a yarn without spinning. Preferred as the heat resistant woven fabric is one containing glass fibers.

耐熱性織布の織組織は、朱子織、平織、バスケット織、綾織または変形綾織にすることができる。   The woven structure of the heat-resistant woven fabric can be satin weave, plain weave, basket weave, twill or modified twill.

フッ素樹脂層に含まれるフッ素樹脂の例には、溶融時に流動性を示さない四ふっ化エチレン樹脂(PTFE)、並びに、溶融流動性ふっ素樹脂(例えば、四ふっ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂(PFA)、四ふっ化エチレン−六ふっ化プロピレン共重合樹脂(FEP))が含まれる。使用するふっ素樹脂の種類は、1種または2種以上にすることができる。PTFEを含むフッ素樹脂層は、撥水性を有するため、蛍光体粒子への水分の浸入を抑制することができると共に、蛍光体層との相溶融性を向上させることができる。   Examples of the fluororesin contained in the fluororesin layer include a tetrafluoroethylene resin (PTFE) that does not exhibit fluidity when melted, and a melt flowable fluororesin (for example, a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin). (PFA), ethylene tetrafluoride-hexafluoropropylene copolymer resin (FEP)). The kind of fluororesin to be used can be 1 type or 2 types or more. Since the fluororesin layer containing PTFE has water repellency, it can suppress the intrusion of moisture into the phosphor particles, and can improve the phase meltability with the phosphor layer.

フッ素樹脂層は、例えば、以下の方法で形成される。まず、水を溶媒とし、粒子径0.1〜0.4μmのフッ素樹脂粒子及び懸濁安定剤(例えば、陰イオン界面活性剤または非イオン界面活性剤)を含む水系懸濁液を耐熱性織布の両面に含浸によって塗布し、雰囲気温度が100℃以上200℃以下で乾燥させた後、雰囲気温度が330℃以上400℃以下で焼成する。この塗布、乾燥及び焼成を複数回繰り返すことにより、フッ素樹脂層を得る。   For example, the fluororesin layer is formed by the following method. First, an aqueous suspension containing fluororesin particles having a particle size of 0.1 to 0.4 μm and a suspension stabilizer (for example, an anionic surfactant or a nonionic surfactant) is used as a solvent. After being applied to both sides of the cloth by impregnation and drying at an ambient temperature of 100 ° C. or higher and 200 ° C. or lower, firing is performed at an ambient temperature of 330 ° C. or higher and 400 ° C. or lower. By repeating this coating, drying and baking a plurality of times, a fluororesin layer is obtained.

2)蛍光体層
蛍光体は、特に限定されるものではないが、例えば、蓄光性蛍光体(長残光性蛍光体)等を挙げることができる。蓄光性蛍光体の種類は、例えば、硫化物、酸硫化物、酸化物(例えば、アルミン酸塩)等を挙げることができる。硫化物の例には、CaSrS:Bi(発光色は青)、ZnS:Cu(発光色は黄緑)、ZnS:Cu,Co(発光色は黄緑)、CaS:Eu,Tm(発光色は赤)等が含まれる。酸硫化物の例には、Y22S:Eu,Mg,Ti(発光色は黄褐又は赤)等が含まれる。アルミン酸塩の例には、CaAl24:Eu,Nd(発光色は紫青)、Sr4Al1425:Eu,Dy(発光色は青緑)、SrAl24:Eu,Dy(発光色は黄緑)、SrAl24:Eu(発光色は黄緑)、M1-XAl24-X(Mは、Ca、Sr及びBaからなる群から選ばれる少なくとも1つ以上の金属元素からなる化合物を母結晶にしたものが用いられ、Xが−0.33≦X≦0.60の範囲にあり、賦活剤としてEuを、Mで表す金属元素に対するモル%で0.001%以上10%以下添加し、共賦活剤としてNd、Sm、Dy、Ho、Er、Tm、Yb及びLuからなる群の少なくとも1つ以上の元素を、Mで表わす金属元素に対するモル%で0.001%以上10%以下添加したもの)で表わされる組成の化合物(発光色は緑)等が含まれる。使用する蛍光体の種類は、1種類または2種類以上にすることができる。M1-XAl24-Xのような酸化物蛍光体の粒子は、PTFE水系懸濁液に対する分散性に優れるため、蛍光体層中に均一分散することが可能である。
2) Phosphor layer The phosphor is not particularly limited, and examples thereof include a phosphorescent phosphor (long afterglow phosphor). Examples of the phosphorescent phosphor include a sulfide, an oxysulfide, and an oxide (for example, aluminate). Examples of sulfides include CaSrS: Bi (light emission color is blue), ZnS: Cu (light emission color is yellow-green), ZnS: Cu, Co (light emission color is yellow-green), CaS: Eu, Tm (light emission color is Red) etc. are included. Examples of oxysulfides include Y 2 O 2 S: Eu, Mg, Ti (the emission color is yellow brown or red). Examples of aluminates include CaAl 2 O 4 : Eu, Nd (the emission color is purple-blue), Sr 4 Al 14 O 25 : Eu, Dy (the emission color is blue-green), SrAl 2 O 4 : Eu, Dy (The emission color is yellow-green), SrAl 2 O 4 : Eu (the emission color is yellow-green), M 1-X Al 2 O 4-X (M is at least one selected from the group consisting of Ca, Sr and Ba) A compound composed of the above metal element as a mother crystal is used, X is in the range of −0.33 ≦ X ≦ 0.60, Eu as an activator is 0% by mol% with respect to the metal element represented by M. 0.001% or more and 10% or less, and at least one element selected from the group consisting of Nd, Sm, Dy, Ho, Er, Tm, Yb and Lu as a co-activator in mol% with respect to the metal element represented by M Compound having a composition represented by 0.001% or more and 10% or less added (light emission) It is included in green), and the like. The kind of fluorescent substance to be used can be made into one type or two types or more. Oxide phosphor particles such as M 1-X Al 2 O 4-X are excellent in dispersibility with respect to the PTFE aqueous suspension, and therefore can be uniformly dispersed in the phosphor layer.

蛍光体層中の蛍光体粒子の含有量は10重量%以上25重量%以下の範囲にすることが望ましい。蛍光体粒子の含有量を10重量%以上にすることによって、十分な輝度を得ることができる。また、蛍光体粒子の含有量を25重量%以下にすることによって、屈曲による蛍光体粒子近傍における応力集中を低減させることができ、屈曲強度の低下を抑制することができるため、蛍光複合体に折り曲げ等の変形を加えた際に蛍光複合体にクラック等が生じるのを回避することができる。   The content of the phosphor particles in the phosphor layer is desirably in the range of 10 wt% to 25 wt%. Sufficient luminance can be obtained by setting the content of the phosphor particles to 10% by weight or more. In addition, by making the content of the phosphor particles 25% by weight or less, stress concentration in the vicinity of the phosphor particles due to bending can be reduced, and a decrease in bending strength can be suppressed. It is possible to avoid the occurrence of cracks or the like in the fluorescent composite when deformation such as bending is applied.

蛍光体層は、蛍光体粒子及び四ふっ化エチレン樹脂以外の成分を含んでいても良い。蛍光体層が蛍光体粒子及び四ふっ化エチレン樹脂からなる場合、蛍光体層中の四ふっ化エチレン樹脂の含有量は75重量%以上90重量%以下の範囲であることが望ましい。   The phosphor layer may contain components other than the phosphor particles and the tetrafluoroethylene resin. When the phosphor layer is composed of phosphor particles and ethylene tetrafluoride resin, the content of the ethylene tetrafluoride resin in the phosphor layer is preferably in the range of 75 wt% to 90 wt%.

蛍光体層は、例えば、以下の方法で形成される。まず、水を分散液とし、PTFE粒子及び懸濁安定剤(例えば、陰イオン界面活性剤または非イオン界面活性剤)を含む水系懸濁液に蛍光体の粒子を分散させる。得られた分散液を基材(例えば、芯体のフッ素樹脂層、保護層)の少なくとも片面に含浸によって塗布し、雰囲気温度が100℃以上200℃以下で乾燥させた後、雰囲気温度が330℃以上400℃以下で焼成する。この塗布、乾燥及び焼成を複数回繰り返すことにより、蛍光体層を得る。この方法によると、蛍光体粒子が均一に分散された懸濁液を基材に塗布し、乾燥し、焼成する工程を繰り返すことにより蛍光体層が得られるため、懸濁液中の蛍光体粒子の分散性をほぼそのまま維持した蛍光体層を実現することができ、蛍光体層中の蛍光体粒子含有量が少量でも十分な輝度を得ることができる。その結果、屈曲による蛍光体粒子近傍における応力集中を低減させることができ、屈曲強度の低下を抑制することができるため、蛍光複合体に折り曲げ等の変形を加えた際に蛍光複合体にクラック等が生じるのを避けることができる。特に、M1-XAl24-Xのような酸化物蛍光体の粒子は、PTFE水系懸濁液に対する分散性に優れるため、懸濁液の塗布・乾燥・焼成により、酸化物蛍光体粒子が均一分散された蛍光体層を実現することができる。 The phosphor layer is formed by the following method, for example. First, water is used as a dispersion liquid, and phosphor particles are dispersed in an aqueous suspension containing PTFE particles and a suspension stabilizer (for example, an anionic surfactant or a nonionic surfactant). The obtained dispersion is applied by impregnation on at least one surface of a substrate (for example, a fluororesin layer or a protective layer of a core), dried at an ambient temperature of 100 ° C. or higher and 200 ° C. or lower, and then the ambient temperature is 330 ° C. Firing is performed at 400 ° C. or lower. A phosphor layer is obtained by repeating this coating, drying, and baking a plurality of times. According to this method, a phosphor layer is obtained by repeating the steps of applying a suspension in which phosphor particles are uniformly dispersed to a substrate, drying, and firing. Thus, a phosphor layer in which the dispersibility of the phosphor layer is maintained as it is can be realized, and sufficient luminance can be obtained even if the phosphor particle content in the phosphor layer is small. As a result, stress concentration in the vicinity of the phosphor particles due to bending can be reduced, and a decrease in bending strength can be suppressed. Therefore, when the fluorescent composite is subjected to deformation such as bending, cracks etc. Can be avoided. In particular, particles of oxide phosphors such as M 1-X Al 2 O 4-X have excellent dispersibility in PTFE aqueous suspensions. A phosphor layer in which particles are uniformly dispersed can be realized.

蛍光体粒子の平均粒径は、大きい方が残光輝度が高くなるものの、懸濁液中での蛍光体粒子の沈降が起き易く、蛍光体層の機械的強度が低くなる傾向がある。一方、蛍光体粒子の平均粒径は、小さい方が、懸濁液中での分散性及び蛍光体層の機械的強度に優れるものの、残光輝度が低くなる傾向がある。   The larger the average particle diameter of the phosphor particles, the higher the afterglow luminance. However, the phosphor particles tend to settle in the suspension, and the mechanical strength of the phosphor layer tends to decrease. On the other hand, the smaller the average particle diameter of the phosphor particles, the better the dispersibility in the suspension and the mechanical strength of the phosphor layer, but the afterglow brightness tends to be low.

3)保護層
保護層は、溶融流動性フッ素樹脂を含有する。蛍光体層は、後述する通り、PTFE水系懸濁液を基材に塗布し、乾燥し、焼成する工程を繰り返すことにより得られるため、焼結体の一種である。このため、焼結体のピンホールを通して内部に水が浸入し、蛍光体粒子が加水分解する恐れがある。保護層は、溶融流動性フッ素樹脂を含むため、緻密性の高い成型体であることから、蛍光体層への水分の浸入を抑制することが可能である。保護層の配置は、特に限定されるものではないが、蛍光体層の少なくとも一方の面に配置するか、最外層に位置させることが望ましい。これにより、蛍光複合体の耐候性をより改善することができる。
3) Protective layer The protective layer contains a melt-flowable fluororesin. As will be described later, the phosphor layer is a kind of sintered body because it is obtained by repeating the steps of applying a PTFE aqueous suspension to a substrate, drying, and firing. For this reason, water may enter the inside through the pinhole of the sintered body, and the phosphor particles may be hydrolyzed. Since the protective layer contains a melt-flowable fluororesin, it is a highly dense molded body, and therefore it is possible to suppress the intrusion of moisture into the phosphor layer. The arrangement of the protective layer is not particularly limited, but it is desirable that the protective layer is arranged on at least one surface of the phosphor layer or positioned on the outermost layer. Thereby, the weather resistance of the fluorescent composite can be further improved.

溶融流動性フッ素樹脂には、四ふっ化エチレン樹脂(PTFE)以外のフッ素樹脂を使用することができる。好ましい例には、四ふっ化エチレン−六ふっ化プロピレン共重合樹脂(FEP)、四ふっ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂(PFA)、ポリふっ化ビニリデン(PVDF)及びエチレン四ふっ化エチレン共重合樹脂(ETFE)が含まれる。FEP及びPFAは、PTFEとの相溶融性に優れており、また、FEPは蛍光複合体の製造コストを低く抑えることができる。使用する溶融流動性フッ素樹脂の種類は、1種類又は2種類以上にすることができる。   As the melt-flowable fluororesin, a fluororesin other than tetrafluoroethylene resin (PTFE) can be used. Preferred examples include ethylene tetrafluoride-hexafluoropropylene copolymer resin (FEP), tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin (PFA), polyvinylidene fluoride (PVDF), and ethylene tetrafluoride ethylene copolymer. Polymerized resin (ETFE) is included. FEP and PFA are excellent in phase meltability with PTFE, and FEP can keep the production cost of the fluorescent composite low. The type of the melt flowable fluororesin used can be one type or two or more types.

保護層は、例えば、以下の方法で形成される。まず、溶融流動性フッ素樹脂及び懸濁安定剤(例えば、陰イオン界面活性剤または非イオン界面活性剤)を含む水系懸濁液を基材(例えば、芯体、蛍光体層)の少なくとも片面に含浸によって塗布し、雰囲気温度が100℃以上200℃以下で乾燥させた後、雰囲気温度が300℃以上400℃以下で焼成する。この塗布、乾燥及び焼成を複数回繰り返すことにより、保護層を得る。   The protective layer is formed by the following method, for example. First, an aqueous suspension containing a melt-flowable fluororesin and a suspension stabilizer (for example, an anionic surfactant or a nonionic surfactant) is provided on at least one surface of a substrate (for example, a core or a phosphor layer). After applying by impregnation and drying at an ambient temperature of 100 ° C. to 200 ° C., firing is performed at an ambient temperature of 300 ° C. to 400 ° C. A protective layer is obtained by repeating this coating, drying and baking a plurality of times.

蛍光複合体の積層構造は、図1に示すものに限られず、蛍光体層と芯体とを備えるものであれば良い。具体例を図2〜図6に示す。   The laminated structure of the fluorescent composite is not limited to that shown in FIG. 1, and any structure including a fluorescent layer and a core may be used. Specific examples are shown in FIGS.

図2に例示されるように、第1の保護層31を最外層に配置する代りに、蛍光体層2と芯体1のフッ素樹脂層1bの間に配置しても良い。また、図3に例示されるように、保護層を三層設け、蛍光複合体の両方の最外層に第1,第2の保護層31,32を配置し、かつ蛍光体層2と芯体1のフッ素樹脂層1bの間に第3の保護層33を配置しても良い。 As illustrated in FIG. 2, instead of arranging the first protective layer 3 1 to the outermost layer may be disposed between the fluororesin layer 1b of the phosphor layer 2 and the core 1. Further, as illustrated in FIG. 3, three protective layers are provided, the first and second protective layers 3 1 and 3 2 are disposed on the outermost layers of both of the fluorescent composites, and the phosphor layer 2 and between the fluororesin layer 1b of the core body 1 may be a third protective layer 3 3 is arranged.

蛍光体層の層数は一層に限られず、例えば二層以上にすることができる。この例を図4〜図6に示す。図4に示すように、芯体1の両方のフッ素樹脂層1bに第1,第2の蛍光体層21,22を積層し、さらにその外側に第1,第2の保護層31,32を配置しても良い。また、図5に示すように、第1の蛍光体層21と芯体1のフッ素樹脂層1bの間に第3の保護層33を配置するか、図6に示すように、第2の蛍光体層22と芯体1のフッ素樹脂層1bの間に第3の保護層33を配置しても良い。 The number of phosphor layers is not limited to one, and can be two or more, for example. Examples of this are shown in FIGS. As shown in FIG. 4, first and second phosphor layers 2 1 and 2 2 are laminated on both fluororesin layers 1b of the core body 1 , and the first and second protective layers 3 1 are further formed on the outer sides thereof. , 3 2 may be arranged. Further, as shown in FIG. 5, third or placing a protective layer 3 3 between the first phosphor layer 2 1 and the core 1 of the fluororesin layer 1b, as shown in FIG. 6, the second the third protective layer 3 3 may be disposed between the phosphor layer 2 2 and core 1 of the fluororesin layer 1b.

蛍光複合体には、芯体、蛍光体層、保護層以外の層(例えば、光拡散層、防汚層)を含むことを許容する。   The fluorescent composite is allowed to include layers other than the core, the phosphor layer, and the protective layer (for example, a light diffusion layer and an antifouling layer).

蛍光複合体は、JIS Z8722に規定される可視光透過率が20%未満である。   The fluorescent composite has a visible light transmittance of less than 20% as defined in JIS Z8722.

蛍光複合体の用途には、中大型テント等の膜構造物があり、例えば、ドーム型競技場における防災時の避難誘導等の光天井用膜材が挙げられる。装飾等のデザイン性を重視するコンサートホール、多目的ホール等で蛍光複合体を使用する場合、デザイン性を考慮し、蓄光性蛍光体(長残光性蛍光体)以外の蛍光体(例えば、ブラックライトを照射することによって発光するもの)を蛍光複合体に設けることができる。また、蓄光性蛍光体(長残光性蛍光体)を使用する場合、残光時間を調節する機能を蛍光複合体に設けることができる。   Applications of the fluorescent composite include membrane structures such as medium and large tents, and examples thereof include optical ceiling membrane materials for evacuation guidance during disaster prevention in a dome-type stadium. When using fluorescent composites in concert halls and multipurpose halls that place emphasis on design such as decoration, phosphors other than phosphorescent phosphors (long-afterglow phosphors) (for example, black light) Can be provided in the fluorescent composite. In addition, when a phosphorescent phosphor (long afterglow phosphor) is used, a function for adjusting the afterglow time can be provided in the fluorescent composite.

以下、実施例を図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(実施例1)
耐熱性織布として厚さが450μmで、織組織が平織のガラス繊維織物(日東紡績製)を用い、ガラス繊維織物の両面に、四ふっ化エチレン樹脂微粒子分が60重量%、非イオン界面活性剤が6重量%及び水が34重量%からなる四ふっ化エチレン樹脂微粒子水系分散液(ダイキン工業製)を含浸することによって塗布し、雰囲気温度を100℃に調整した密封炉で5分乾燥させ、水分を飛ばしたのち、雰囲気温度を360℃に調整した密封炉にて5分焼成した。この工程を複数回繰り返すことによって、両面の厚さの合計が130μmの四ふっ化エチレン樹脂層を得ることにより、芯体を得た。
Example 1
A glass fiber woven fabric (manufactured by Nitto Boseki) with a thickness of 450 μm as a heat-resistant woven fabric and a woven structure made by Nitto Boseki. It was applied by impregnating with a tetrafluoroethylene resin fine particle aqueous dispersion (made by Daikin Industries) consisting of 6% by weight of the agent and 34% by weight of water, and dried for 5 minutes in a sealed oven with the atmospheric temperature adjusted to 100 ° C. After the moisture was blown off, the substrate was baked for 5 minutes in a sealed furnace whose atmospheric temperature was adjusted to 360 ° C. By repeating this step a plurality of times, a core body was obtained by obtaining an ethylene tetrafluoride ethylene resin layer having a total thickness of both surfaces of 130 μm.

次に、四ふっ化エチレン樹脂微粒子分が60重量%、非イオン界面活性剤が6重量%及び水が34重量%からなる四ふっ化エチレン樹脂微粒子水系分散液(ダイキン工業製)1.58kgに対して、SrAl24:Eu,Dyで表されるアルミン酸ストロンチウム系蓄光性蛍光体(根本特殊化学製)粉末を50g混合攪拌して蓄光蛍光体粉末が混合された四ふっ化エチレン樹脂微粒子水系分散液を調整した。この時の蓄光性蛍光体粉末の混合率は、四ふっ化エチレン樹脂微粒子分95重量%に対して5重量%となる。次に、上記四ふっ化エチレン樹脂層と同じ製造条件の塗布、乾燥及び焼成によって、芯体の一方の四ふっ化エチレン樹脂層上に厚さ200μmの蛍光体層を作製した。 Next, 1.58 kg of a tetrafluoroethylene resin fine particle aqueous dispersion (made by Daikin Industries) consisting of 60% by weight of the tetrafluoroethylene resin fine particle, 6% by weight of the nonionic surfactant and 34% by weight of water. On the other hand, 50 g of strontium aluminate phosphorescent phosphor (manufactured by Nemoto Special Chemical) represented by SrAl 2 O 4 : Eu, Dy is mixed and stirred, and the tetrafluoroethylene resin fine particles are mixed with phosphorescent phosphor powder. An aqueous dispersion was prepared. The mixing ratio of the phosphorescent phosphor powder at this time is 5% by weight with respect to 95% by weight of the tetrafluoroethylene resin fine particles. Next, a phosphor layer having a thickness of 200 μm was formed on one of the tetrafluoroethylene resin layers of the core by applying, drying and firing under the same production conditions as the above-described tetrafluoroethylene resin layer.

さらに、四ふっ化エチレン−六ふっ化プロピレン共重合樹脂微粒子分54重量%、非イオン界面活性剤が15.5重量%及び水が40.5重量%からなる四ふっ化エチレン−六ふっ化プロピレン共重合樹脂微粒子水系分散体(Dupont製)を用いて上記と同じ製造条件の塗布、乾燥及び焼成によって、蛍光体層及び芯体の他方の四ふっ化エチレン樹脂層上に厚さ20μmの保護層(最外層)を形成した。得られた蛍光複合体は、図1に示す積層構造を有するものであった。得られた蛍光複合体のJIS Z8722に規定される可視光透過率は20%未満であった。   Furthermore, ethylene tetrafluoride-hexafluoropropylene copolymer resin 54% by weight fine particle, nonionic surfactant 15.5% by weight and water 40.5% by weight ethylene tetrafluoride-hexafluoropropylene A protective layer having a thickness of 20 μm is formed on the phosphor layer and the other tetrafluoroethylene resin layer of the core body by coating, drying and firing under the same production conditions as above using a copolymer resin fine particle aqueous dispersion (manufactured by Dupont). (Outermost layer) was formed. The obtained fluorescent composite had the laminated structure shown in FIG. The visible light transmittance defined in JIS Z8722 of the obtained fluorescent composite was less than 20%.

(実施例2)
実施例1と同様な方法で芯体を作製した。
(Example 2)
A core body was produced in the same manner as in Example 1.

次に、実施例1と同様な組成の四ふっ化エチレン樹脂微粒子水系分散液(ダイキン工業製)1.5kgに対して、実施例1と同様な組成のアルミン酸ストロンチウム系蓄光性蛍光体粉末を100g混合攪拌して蓄光蛍光体粉末が混合された四ふっ化エチレン樹脂微粒子水系分散液を調整した。この時の蓄光性蛍光体粉末の混合率は、四ふっ化エチレン樹脂微粒子分90重量%に対して10重量%となる。次に、実施例1と同じ製造条件の塗布、乾燥及び焼成によって、芯体の一方の四ふっ化エチレン樹脂層上に厚さ200μmの蛍光体層を得た。   Next, strontium aluminate-based phosphorescent phosphor powder having the same composition as that of Example 1 was applied to 1.5 kg of an ethylene tetrafluoride resin fine particle aqueous dispersion (manufactured by Daikin Industries) having the same composition as that of Example 1. 100 g of the mixture was mixed and stirred to prepare an aqueous dispersion of ethylene tetrafluoride resin fine particles mixed with phosphorescent phosphor powder. The mixing ratio of the phosphorescent phosphor powder at this time is 10% by weight with respect to 90% by weight of the tetrafluoroethylene resin fine particles. Next, a phosphor layer having a thickness of 200 μm was obtained on one of the tetrafluoroethylene resin layers of the core by application, drying and firing under the same production conditions as in Example 1.

さらに、実施例1と同様な組成の四ふっ化エチレン−六ふっ化プロピレン共重合樹脂微粒子水系分散体(Dupont製)を用いて上記と同じ製造条件の塗布、乾燥及び焼成によって、蛍光体層及び芯体の他方の四ふっ化エチレン樹脂層上に厚さ20μmの保護層(最外層)を得た。得られた蛍光複合体は、図1に示す積層構造を有するものであった。得られた蛍光複合体のJIS Z8722に規定される可視光透過率は20%未満であった。   Further, by using a tetrafluoroethylene-hexafluoropropylene copolymer resin fine particle aqueous dispersion (manufactured by Dupont) having the same composition as in Example 1, the phosphor layer and A protective layer (outermost layer) having a thickness of 20 μm was obtained on the other tetrafluoroethylene resin layer of the core. The obtained fluorescent composite had the laminated structure shown in FIG. The visible light transmittance defined in JIS Z8722 of the obtained fluorescent composite was less than 20%.

(実施例3)
実施例1と同様な方法で芯体を作製した。
(Example 3)
A core body was produced in the same manner as in Example 1.

次に、実施例1と同様な組成の四ふっ化エチレン樹脂微粒子水系分散液(ダイキン工業製)1.33kgに対して、実施例1と同様な組成のアルミン酸ストロンチウム系蓄光性蛍光体粉末を200g混合攪拌して蓄光蛍光体粉末が混合された四ふっ化エチレン樹脂微粒子水系分散液を調整した。この時の蓄光性蛍光体粉末の混合率は、四ふっ化エチレン樹脂微粒子分80重量%に対して20重量%となる。次に、実施例1と同じ製造条件の塗布、乾燥及び焼成によって、芯体の一方の四ふっ化エチレン樹脂層上に厚さ200μmの蛍光体層を作製した。   Next, a strontium aluminate-based phosphorescent phosphor powder having the same composition as that of Example 1 was applied to 1.33 kg of an ethylene tetrafluoride resin fine particle aqueous dispersion (made by Daikin Industries) having the same composition as that of Example 1. An aqueous dispersion of fine tetrafluoroethylene resin particles mixed with 200 g of phosphorescent phosphor powder was prepared by mixing and stirring. The mixing ratio of the phosphorescent phosphor powder at this time is 20% by weight with respect to 80% by weight of the tetrafluoroethylene resin fine particles. Next, a phosphor layer having a thickness of 200 μm was produced on one of the tetrafluoroethylene resin layers of the core by application, drying and firing under the same production conditions as in Example 1.

さらに実施例1と同様な組成の四ふっ化エチレン−六ふっ化プロピレン共重合樹脂微粒子水系分散体(Dupont製)を用いて上記と同じ製造条件の塗布、乾燥及び焼成によって、蛍光体層及び芯体の他方の四ふっ化エチレン樹脂層上に厚さ20μmの保護層(最外層)を得た。得られた蛍光複合体は、図1に示す積層構造を有するものであった。得られた蛍光複合体のJIS Z8722に規定される可視光透過率は20%未満であった。   Further, the phosphor layer and the core were formed by coating, drying and firing under the same production conditions as described above using an ethylene tetrafluoride-hexafluoropropylene copolymer resin fine particle aqueous dispersion (manufactured by Dupont) having the same composition as in Example 1. A protective layer (outermost layer) having a thickness of 20 μm was obtained on the other tetrafluoroethylene resin layer of the body. The obtained fluorescent composite had the laminated structure shown in FIG. The visible light transmittance defined in JIS Z8722 of the obtained fluorescent composite was less than 20%.

(実施例4)
実施例1と同様な方法で芯体を作製した。
Example 4
A core body was produced in the same manner as in Example 1.

次に、実施例1と同様な組成の四ふっ化エチレン樹脂微粒子水系分散液(ダイキン工業製)1.25kgに対して、実施例1と同様な組成のアルミン酸ストロンチウム系蓄光性蛍光体粉末を250g混合撹拌して蓄光蛍光体粉末が混合された四ふっ化エチレン樹脂微粒子水系分散液を調整した。この時の蓄光性蛍光体粉末の混合率は、四ふっ化エチレン樹脂微粒子分75重量%に対して25重量%となる。次に、実施例1と同じ製造条件の塗布、乾燥及び焼成によって、芯体の一方の四ふっ化エチレン樹脂層上に厚さ200μmの蛍光体層を得た。   Next, strontium aluminate-based phosphorescent phosphor powder having the same composition as that of Example 1 was applied to 1.25 kg of an ethylene tetrafluoride resin fine particle aqueous dispersion (made by Daikin Industries) having the same composition as that of Example 1. An aqueous dispersion of ethylene tetrafluoride resin fine particles mixed with 250 g of phosphorescent phosphor powder was prepared by mixing and stirring. The mixing ratio of the phosphorescent phosphor powder at this time is 25% by weight with respect to 75% by weight of the tetrafluoroethylene resin fine particles. Next, a phosphor layer having a thickness of 200 μm was obtained on one of the tetrafluoroethylene resin layers of the core by application, drying and firing under the same production conditions as in Example 1.

さらに、実施例1と同様な組成の四ふっ化エチレン−六ふっ化プロピレン共重合樹脂微粒子水系分散体(Dupont製)を用いて上記と同じ製造条件の塗布、乾燥及び焼成によって、蛍光体層及び芯体の他方の四ふっ化エチレン樹脂層上に厚さ20μmの保護層(最外層)を得た。得られた蛍光複合体は、図1に示す積層構造を有するものであった。得られた蛍光複合体のJIS Z8722に規定される可視光透過率は20%未満であった。   Further, by using a tetrafluoroethylene-hexafluoropropylene copolymer resin fine particle aqueous dispersion (manufactured by Dupont) having the same composition as in Example 1, the phosphor layer and A protective layer (outermost layer) having a thickness of 20 μm was obtained on the other tetrafluoroethylene resin layer of the core. The obtained fluorescent composite had the laminated structure shown in FIG. The visible light transmittance defined in JIS Z8722 of the obtained fluorescent composite was less than 20%.

(比較例1)
実施例1と同様な種類のガラス繊維織物(日東紡績製)に対して、実施例1と同様な組成の四ふっ化エチレン樹脂微粒子水系分散液(ダイキン工業製)を含浸することによって塗布し、雰囲気温度を100℃に調整した密封炉で5分乾燥させ、水分を飛ばしたのち、雰囲気温度を360℃に調整した密封炉にて5分焼成した。この工程を複数回繰り返すことによって両面の厚さ合計が330μmの四ふっ化エチレン樹脂層を得ることにより、芯体を得た。さらに実施例1と同様な組成の四ふっ化エチレン−六ふっ化プロピレン共重合樹脂微粒子水系分散体(Dupont製)を用いて上記と同じ製造方法によって、芯体の両面に厚さ20μmの保護層を形成した。得られた複合体は、蛍光体層を含まないものである。
(Comparative Example 1)
The same kind of glass fiber fabric as in Example 1 (manufactured by Nitto Boseki) was applied by impregnating with a tetrafluoroethylene resin fine particle aqueous dispersion (manufactured by Daikin Industries) having the same composition as in Example 1. After drying for 5 minutes in a sealed furnace with the atmospheric temperature adjusted to 100 ° C. and removing the moisture, it was fired for 5 minutes in a sealed furnace with the atmospheric temperature adjusted to 360 ° C. By repeating this process a plurality of times, a core body was obtained by obtaining a tetrafluoroethylene resin layer having a total thickness of 330 μm on both sides. Further, a protective layer having a thickness of 20 μm is formed on both surfaces of the core by the same production method as described above using a tetrafluoroethylene-hexafluoropropylene copolymer resin fine particle aqueous dispersion (manufactured by Dupont) having the same composition as in Example 1. Formed. The obtained composite does not include a phosphor layer.

(比較例2)
図7に示す積層構造を有する蛍光複合体を以下の方法で作製した。
(Comparative Example 2)
A fluorescent composite having the laminated structure shown in FIG. 7 was produced by the following method.

まず、実施例1と同様な方法で芯体1を作製した。   First, the core body 1 was produced by the same method as in Example 1.

次に、四ふっ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂(PFA)が60重量%、非イオン界面活性剤が6重量%及び水が34重量%からなるPFA微粒子水系分散液(三井デュポンフロロケミカル製)1.33kgに対して、実施例1と同様な組成のアルミン酸ストロンチウム系蓄光性蛍光体粉末を200g混合攪拌して蓄光蛍光体粉末が混合されたPFA微粒子水系分散液を調整した。この時の蓄光性蛍光体粉末の混合率は、PFA微粒子分80重量%に対して20重量%となる。次に、実施例1と同じ製造条件の塗布、乾燥及び焼成によって、芯体1の両方のPFA1b層上に厚さ200μmの第1,第2の蛍光体層111,112を作製した。 Next, a PFA fine particle aqueous dispersion (made by Mitsui DuPont Fluorochemical Co., Ltd.) comprising 60% by weight of a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin (PFA), 6% by weight of a nonionic surfactant and 34% by weight of water. ) With respect to 1.33 kg, 200 g of strontium aluminate phosphorescent phosphor powder having the same composition as in Example 1 was mixed and stirred to prepare a PFA fine particle aqueous dispersion in which phosphorescent phosphor powder was mixed. The mixing ratio of the phosphorescent phosphor powder at this time is 20% by weight with respect to 80% by weight of the PFA fine particles. Next, the first and second phosphor layers 11 1 and 11 2 having a thickness of 200 μm were formed on both PFA 1b layers of the core 1 by coating, drying and firing under the same manufacturing conditions as in Example 1.

さらに実施例1と同様な組成の四ふっ化エチレン−六ふっ化プロピレン共重合樹脂微粒子水系分散体(Dupont製)を用いて上記と同じ製造条件の塗布、乾燥及び焼成によって、両方の蛍光体層上に厚さ20μmの保護層(最外層)31,32を得た。 Further, both phosphor layers were obtained by coating, drying and firing under the same production conditions as described above using an ethylene tetrafluoride-hexafluoropropylene copolymer resin fine particle aqueous dispersion (manufactured by Dupont) having the same composition as in Example 1. On top, protective layers (outermost layers) 3 1 and 3 2 having a thickness of 20 μm were obtained.

(比較例3)
図8に示す積層構造を有する蛍光複合体を以下の方法で作製した。
(Comparative Example 3)
A fluorescent composite having the laminated structure shown in FIG. 8 was produced by the following method.

実施例1と同様な方法で芯体1を作製した。   A core body 1 was produced in the same manner as in Example 1.

次に、四ふっ化エチレン−六ふっ化プロピレン共重合樹脂(FEP)が54重量%、非イオン界面活性剤が5.5重量%及び水が40.5重量%からなる四ふっ化エチレン−六ふっ化プロピレン共重合樹脂微粒子水系分散体(Dupont製)1.33kgに対して、実施例1と同様な組成のアルミン酸ストロンチウム系蓄光性蛍光体(根本特殊化学製)粉末を200g混合攪拌して蓄光蛍光体粉末が混合されたFEP微粒子水系分散液を調整した。この時の蓄光性蛍光体粉末の混合率は、FEP微粒子分80重量%に対して20重量%となる。次に、実施例1と同じ製造条件の塗布、乾燥及び焼成によって、芯体1の両方のFEP層1b上に厚さ200μmの第1,第2の蛍光体層121,122を作製した。 Next, ethylene tetrafluoride-6 hexapropylene-hexafluoropropylene copolymer resin (FEP) comprising 54% by weight, nonionic surfactant 5.5% by weight and water 40.5% by weight. 200 g of strontium aluminate phosphorescent phosphor (manufactured by Nemoto Special Chemical Co., Ltd.) having the same composition as in Example 1 was mixed and stirred with respect to 1.33 kg of propylene fluoride copolymer resin fine particle aqueous dispersion (manufactured by Dupont). An FEP fine particle aqueous dispersion mixed with phosphorescent phosphor powder was prepared. The mixing ratio of the phosphorescent phosphor powder at this time is 20% by weight with respect to 80% by weight of the FEP fine particle content. Next, first and second phosphor layers 12 1 and 12 2 having a thickness of 200 μm were produced on both FEP layers 1b of the core 1 by coating, drying and firing under the same production conditions as in Example 1. .

(比較例4)
最外層に保護層31,32を設けないこと以外は、比較例2と同様な方法で、図9に示す積層構造の蛍光複合体を作製した。
(Comparative Example 4)
A fluorescent composite having a multilayer structure shown in FIG. 9 was produced in the same manner as in Comparative Example 2 except that the protective layers 3 1 and 3 2 were not provided on the outermost layer.

実施例1〜4の蛍光複合体を、24時間光を遮断した環境で保管した。保管後の蛍光複合体に、照度5000Lxの光を1時間照射した。照射後、暗室に移し、1分後、LS−100輝度計(コニカミノルタ製)を使用し、90°の角度で0.2mの距離から残光輝度を測定した。測定時間を、暗室移動後、10分、30分及び60分に変更し、残光輝度を測定した。
The fluorescent composites of Examples 1 to 4 were stored in an environment where light was blocked for 24 hours. The fluorescent composite after storage was irradiated with light having an illuminance of 5000 Lx for 1 hour. After irradiation, it was transferred to a dark room, and after 1 minute, afterglow luminance was measured from a distance of 0.2 m at an angle of 90 ° using an LS-100 luminance meter (manufactured by Konica Minolta). The measurement time was changed to 10 minutes, 30 minutes and 60 minutes after moving into the dark room, and the afterglow luminance was measured.

表1から、蛍光体層中の蛍光体粒子の含有量が多い方が残光輝度が高いことがわかる。
以下に、原出願の当初の特許請求の範囲に記載された発明を付記する。
[1]
耐熱性織布と、前記耐熱性織布の両面に形成されたフッ素樹脂層とを含む芯体と、
蛍光体及び四ふっ化エチレン樹脂を含む蛍光体層とを含むことを特徴とする蛍光複合体。
[2]
前記蛍光体層中の前記蛍光体の含有量は10重量%以上25重量%以下の範囲であることを特徴とする[1]記載の蛍光複合体。
[3]
前記フッ素樹脂層は、四ふっ化エチレン樹脂、四ふっ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂、及び、四ふっ化エチレン−六ふっ化プロピレン共重合樹脂よりなる群から選択される少なくとも一種類を含むことを特徴とする[1]〜[2]いずれか1記載の蛍光複合体。
[4]
溶融流動性フッ素樹脂を含有する保護層をさらに含み、前記保護層が少なくとも前記蛍光体層の片面に配置されることを特徴とする[1]〜[3]いずれか1記載の蛍光複合体。
[5]
溶融流動性フッ素樹脂を含有する保護層をさらに含み、前記保護層が少なくとも最外層に配置されることを特徴とする[1]〜[3]いずれか1記載の蛍光複合体。
[6]
前記耐熱性織布は、ガラス繊維、炭素繊維、セラミックス繊維、アラミド繊維及び金属繊維よりなる群から選択される少なくとも一種類を含むことを特徴とする[1]〜[5]いずれか1記載の蛍光複合体。
[7]
前記耐熱性織布の織組織は、バスケット織、綾織、変形綾織、朱子織または平織であることを特徴とする[1]〜[6]いずれか1記載の蛍光複合体。
[8]
前記蛍光体は、蓄光性蛍光体であることを特徴とする[1]〜[7]いずれか1記載の蛍光複合体。
[9]
JIS Z8722に規定される可視光透過率が20%未満である[1]〜[8]いずれか1記載の蛍光複合体。
From Table 1, it can be seen that the afterglow luminance is higher when the content of the phosphor particles in the phosphor layer is larger.
The invention described in the scope of the claims of the original application is appended below.
[1]
A core including a heat-resistant woven fabric and a fluororesin layer formed on both surfaces of the heat-resistant woven fabric;
A phosphor composite comprising a phosphor and a phosphor layer containing an ethylene tetrafluoride resin.
[2]
The phosphor composite according to [1], wherein the content of the phosphor in the phosphor layer is in the range of 10 wt% to 25 wt%.
[3]
The fluororesin layer includes at least one selected from the group consisting of a tetrafluoroethylene resin, a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin, and a tetrafluoroethylene-hexafluoropropylene copolymer resin. The fluorescent complex according to any one of [1] to [2], wherein
[4]
The fluorescent composite according to any one of [1] to [3], further comprising a protective layer containing a melt-flowable fluororesin, wherein the protective layer is disposed on at least one surface of the phosphor layer.
[5]
The fluorescent composite according to any one of [1] to [3], further comprising a protective layer containing a melt-flowable fluororesin, wherein the protective layer is disposed at least in the outermost layer.
[6]
The heat-resistant woven fabric includes at least one selected from the group consisting of glass fiber, carbon fiber, ceramic fiber, aramid fiber, and metal fiber, [1] to [5] Fluorescent complex.
[7]
The fluorescent composite according to any one of [1] to [6], wherein the woven structure of the heat-resistant woven fabric is basket weave, twill weave, deformed twill weave, satin weave or plain weave.
[8]
The phosphor composite according to any one of [1] to [7], wherein the phosphor is a phosphorescent phosphor.
[9]
The fluorescent composite according to any one of [1] to [8], wherein the visible light transmittance defined in JIS Z8722 is less than 20%.

1…芯体、1a…耐熱性織布、1b…フッ素樹脂層、21〜22,111〜112,121〜122…蛍光体層。 1 ... core, 1a ... heat resistant woven textile, 1b ... fluororesin layer, 2 1 to 2 2, 11 1 to 11 2, 12 1 to 12 2 ... phosphor layer.

Claims (11)

耐熱性織布と、前記耐熱性織布の両面に形成されたフッ素樹脂層とを含む芯体と、
蛍光体及び四ふっ化エチレン樹脂を含む蛍光体層とを含む蛍光複合体を含んだ膜構造物。
A core including a heat-resistant woven fabric and a fluororesin layer formed on both surfaces of the heat-resistant woven fabric;
A film structure including a fluorescent composite including a phosphor and a phosphor layer containing an ethylene tetrafluoride resin.
前記蛍光体層中の前記蛍光体の含有量は10重量%以上25重量%以下の範囲であることを特徴とする請求項1記載の膜構造物。   2. The film structure according to claim 1, wherein the content of the phosphor in the phosphor layer is in the range of 10 wt% to 25 wt%. 前記フッ素樹脂層は、四ふっ化エチレン樹脂、四ふっ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂、及び、四ふっ化エチレン−六ふっ化プロピレン共重合樹脂よりなる群から選択される少なくとも一種類を含むことを特徴とする請求項1〜2いずれか1項記載の膜構造物。   The fluororesin layer includes at least one selected from the group consisting of a tetrafluoroethylene resin, a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin, and a tetrafluoroethylene-hexafluoropropylene copolymer resin. The film structure according to claim 1, wherein the film structure is a film structure. 溶融流動性フッ素樹脂を含有する保護層をさらに含み、前記保護層が少なくとも前記蛍光体層の片面に配置され
前記溶融流動性フッ素樹脂は、四ふっ化エチレン−六ふっ化プロピレン共重合樹脂(FEP)及び四ふっ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂(PFA)からなる群より選択される少なくとも1つを含むことを特徴とする請求項1〜3いずれか1項記載の膜構造物。
It further includes a protective layer containing a melt-flowable fluororesin, and the protective layer is disposed on at least one side of the phosphor layer ,
The melt flowable fluororesin includes at least one selected from the group consisting of a tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) and a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin (PFA). The membrane structure according to any one of claims 1 to 3, wherein:
溶融流動性フッ素樹脂を含有する保護層をさらに含み、前記保護層が少なくとも最外層に配置され
前記溶融流動性フッ素樹脂は、四ふっ化エチレン−六ふっ化プロピレン共重合樹脂(FEP)及び四ふっ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂(PFA)からなる群より選択される少なくとも1つを含むことを特徴とする請求項1〜3いずれか1項記載の膜構造物。
It further includes a protective layer containing a melt-flowable fluororesin, and the protective layer is disposed at least in the outermost layer ,
The melt flowable fluororesin includes at least one selected from the group consisting of a tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) and a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin (PFA). The membrane structure according to any one of claims 1 to 3, wherein:
前記耐熱性織布は、ガラス繊維、炭素繊維、セラミックス繊維、アラミド繊維及び金属繊維よりなる群から選択される少なくとも一種類を含むことを特徴とする請求項1〜5いずれか1項記載の膜構造物。   The film according to any one of claims 1 to 5, wherein the heat-resistant woven fabric includes at least one selected from the group consisting of glass fiber, carbon fiber, ceramic fiber, aramid fiber, and metal fiber. Structure. 前記耐熱性織布の織組織は、バスケット織、綾織、変形綾織、朱子織または平織であることを特徴とする請求項1〜6いずれか1項記載の膜構造物。   The membrane structure according to any one of claims 1 to 6, wherein a woven structure of the heat resistant woven fabric is a basket weave, a twill weave, a deformed twill weave, a satin weave or a plain weave. 前記蛍光体は、蓄光性蛍光体であることを特徴とする請求項1〜7いずれか1項記載の膜構造物。   The film structure according to claim 1, wherein the phosphor is a phosphorescent phosphor. JIS Z8722に規定される可視光透過率が20%未満である請求項1〜8いずれか1項記載の膜構造物。   The membrane structure according to any one of claims 1 to 8, wherein the visible light transmittance defined in JIS Z8722 is less than 20%. 前記蛍光複合体が膜材として使用されている請求項1〜9いずれか1項に記載の膜構造物。   The membrane structure according to any one of claims 1 to 9, wherein the fluorescent composite is used as a membrane material. 前記膜材が光天井用膜材である請求項10に記載の膜構造物。   The film structure according to claim 10, wherein the film material is an optical ceiling film material.
JP2016137402A 2016-07-12 2016-07-12 Membrane structure Active JP6343637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016137402A JP6343637B2 (en) 2016-07-12 2016-07-12 Membrane structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016137402A JP6343637B2 (en) 2016-07-12 2016-07-12 Membrane structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012153793A Division JP5972077B2 (en) 2012-07-09 2012-07-09 Fluorescent complex

Publications (2)

Publication Number Publication Date
JP2016191068A JP2016191068A (en) 2016-11-10
JP6343637B2 true JP6343637B2 (en) 2018-06-13

Family

ID=57245687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137402A Active JP6343637B2 (en) 2016-07-12 2016-07-12 Membrane structure

Country Status (1)

Country Link
JP (1) JP6343637B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761967B2 (en) * 1990-06-12 1998-06-04 淀川化成株式会社 Fluororesin sheet material
JP2009263606A (en) * 2008-04-30 2009-11-12 Hiraoka & Co Ltd Membrane material for luminous ceiling
JP5286622B2 (en) * 2008-12-18 2013-09-11 平岡織染株式会社 Optical ceiling lighting shade, optical ceiling lighting system having emergency light function, and emergency light lighting method thereof

Also Published As

Publication number Publication date
JP2016191068A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP5979319B2 (en) Wavelength conversion sheet and backlight unit
JP5972077B2 (en) Fluorescent complex
JP6110104B2 (en) Complex
JP2011168627A (en) Wavelength converting member, method for manufacturing the same and light-emitting equipment using the same
KR20180044895A (en) Wavelength conversion member, fluorescent sheet, white light source device, and display device
US20200123439A1 (en) Nanophosphor-attached inorganic particles and wavelength conversion member
TWI541324B (en) Fluorescent substance material and light-emitting device
JP6343637B2 (en) Membrane structure
JP2018077324A (en) Wavelength conversion member and light emitting device
JP2009263606A (en) Membrane material for luminous ceiling
TWI594462B (en) Light-emitting device
WO2014021353A1 (en) Fluorescent material, and light-emitting device
WO2010143618A1 (en) Fluorescent material and luminescent device
JP2008012901A (en) Light-accumulating fluorescent screen material and its production method
JP2017136737A (en) Protective film for fluophor and wavelength conversion sheet using the same
JP6277297B2 (en) Membrane structure
JP2009249396A (en) Luminous white light emitting phosphor, fluorescent lamp, luminous display, and luminous molded product
KR101804072B1 (en) Wavelength conversion film for display of electronic home appliance
CN106497250A (en) Luminous membrane preparation method
JP7207931B2 (en) Luminous fiber
JP5820606B2 (en) Method for manufacturing phosphor material, phosphor material, and light emitting device
JP2023056388A (en) Adhesive tape
JP2011042702A (en) Phosphor, method for producing phosphor and fluorescent lamp
WO2015198939A1 (en) Production method for particulate phosphorescent body, particulate phosphorescent body, glass collision-prevention safety mark, and evacuation guide mark
JP2006073410A (en) Dispersion type electroluminescent element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6343637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250