JP6343314B2 - Shochu storage container - Google Patents

Shochu storage container Download PDF

Info

Publication number
JP6343314B2
JP6343314B2 JP2016174758A JP2016174758A JP6343314B2 JP 6343314 B2 JP6343314 B2 JP 6343314B2 JP 2016174758 A JP2016174758 A JP 2016174758A JP 2016174758 A JP2016174758 A JP 2016174758A JP 6343314 B2 JP6343314 B2 JP 6343314B2
Authority
JP
Japan
Prior art keywords
shochu
container
crystal grains
subject
taste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016174758A
Other languages
Japanese (ja)
Other versions
JP2018039530A (en
Inventor
澁木 収一
収一 澁木
智之 本間
智之 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2016174758A priority Critical patent/JP6343314B2/en
Publication of JP2018039530A publication Critical patent/JP2018039530A/en
Application granted granted Critical
Publication of JP6343314B2 publication Critical patent/JP6343314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Table Devices Or Equipment (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Packages (AREA)

Description

本発明は、焼酎収納容器に関するものである。 The present invention relates to a shochu container.

従来から酒類を収納する容器として、例えば特開平9−58787に開示されるような酒類用タンク(以下、従来例)が提案されている。   Conventionally, as a container for storing alcoholic beverages, for example, a tank for alcoholic beverages (hereinafter referred to as a conventional example) as disclosed in JP-A-9-58787 has been proposed.

この従来例は、貯蔵用のタンク本体の内面にチタンを内張りしたもので、たとえば金属製の容器の場合、酒類を収納した際、鉄イオンが溶出し、酒類の変色、味の変化が生じるが、上述のようにチタンを内張りした場合、前記変質が可及的に防止され、酒類の良好な収納が可能とされる。   In this conventional example, titanium is lined on the inner surface of a tank body for storage. For example, in the case of a metal container, when liquor is stored, iron ions are eluted, causing discoloration of liquor and change in taste. When the titanium is lined as described above, the alteration is prevented as much as possible, and the liquor can be satisfactorily stored.

特開平9−58787号公報JP-A-9-58787

本発明者等は、前述した酒を収納するチタン製の容器に関して更なる研究・開発を進めた結果、従来にない作用効果を発揮する焼酎収納容器を開発した。 As a result of further research and development on the aforementioned titanium container for storing sake, the present inventors have developed a shochu storage container that exhibits an unprecedented effect.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

焼酎の渋味を低減させるための焼酎収納容器であって、容器本体1の内表面1’は多数の結晶粒10を有するチタンで構成され、前記結晶粒10は、80%以上が20μm以上の大きさで且つ7つ以上の角を有する結晶粒10であり、更に、前記20μm以上の大きさで且つ7つ以上の角を有する結晶粒10は、X線解析におけるブラッグ角34度〜41度の範囲において六方最密充填構造の底面及び上面が前記内表面1’の板面に対して平行となる集合組織であることを特徴とする焼酎収納容器に係るものである A shochu container for reducing the astringent taste of shochu, wherein the inner surface 1 ' of the container body 1 is made of titanium having a large number of crystal grains 10 , and 80% or more of the crystal grains 10 are 20 μm or more. The crystal grains 10 having a size and seven or more corners, and the crystal grains 10 having a size of 20 μm or more and having seven or more corners have a Bragg angle of 34 to 41 degrees in X-ray analysis. those according to shochu container, wherein the bottom surface and the top surface of the hexagonal close-packed structure in the range of a texture to be parallel to the plate surface of the inner surface 1 '.

また、請求項1記載の焼酎収納容器において、前記容器本体1の内表面1’は真空雰囲気中加熱処理されたものであることを特徴とする焼酎収納容器に係るものであるFurther, in shochu container of claim 1 Symbol placement, the inner surface 1 of the container body 1 'is one of the shochu container which is characterized in that which has been heat treated in a vacuum atmosphere.

また、請求項1,2いずれか1項に記載の焼酎収納容器において、前記容器本体1は、外筒2内にチタン製の内筒3を空間部Sを介して配設するとともに、前記外筒2と前記内筒3との空間部Sを真空断熱空間部とした真空容器構造であることを特徴とする焼酎収納容器に係るものである。 Further, in the shochu storage container according to any one of claims 1 and 2 , the container main body 1 includes a titanium inner cylinder 3 disposed in an outer cylinder 2 through a space S, and the outer body 2 is disposed outside. The present invention relates to a shochu storage container having a vacuum container structure in which a space S between the cylinder 2 and the inner cylinder 3 is a vacuum heat insulating space.

本発明は上述のようにしたから、焼酎の味を良好にすることができるなど、従来にない作用効果を発揮する画期的な焼酎収納容器となる。 The invention because I as described above, such as it is possible to improve the taste of shochu, a breakthrough shochu container to exert effects unprecedented.

本実施例の説明断面図である。It is explanatory sectional drawing of a present Example. 結晶粒10の粒径評価を示す説明図である。3 is an explanatory diagram showing the evaluation of the grain size of crystal grains 10. FIG. 結晶粒の画数を示す説明図である。It is explanatory drawing which shows the number of strokes of a crystal grain. 本実施例の有効性を示す味覚試験で使用する被験体A〜Dを示す表である。It is a table | surface which shows subject AD used by the taste test which shows the effectiveness of a present Example. 被験体Bの表面に設けられる結晶粒10を示す拡大説明図である。2 is an enlarged explanatory view showing crystal grains 10 provided on the surface of a subject B. FIG. 被験体Cの表面に設けられる結晶粒10を示す拡大説明図である。2 is an enlarged explanatory view showing crystal grains 10 provided on the surface of a subject C. FIG. 被験体Dの表面に設けられる結晶粒10を示す拡大写真図である。2 is an enlarged photograph showing a crystal grain 10 provided on the surface of a subject D. FIG. 材料、被験体B及び被験体DにおけるX線解析結果を示すグラフである。It is a graph which shows the X-ray-analysis result in material, subject B, and subject D. 本実施例の有効性を示す味覚試験結果(焼酎)を示すグラフである。It is a graph which shows the taste test result (shochu) which shows the effectiveness of a present Example. 本実施例の有効性を示す味覚試験結果(焼酎)を示すグラフである。It is a graph which shows the taste test result (shochu) which shows the effectiveness of a present Example. 本実施例の有効性を示す味覚試験結果(ウイスキー)を示すグラフである。It is a graph which shows the taste test result (whiskey) which shows the effectiveness of a present Example. 本実施例の有効性を示す味覚試験結果(ウイスキー)を示すグラフである。It is a graph which shows the taste test result (whiskey) which shows the effectiveness of a present Example. 本実施例の有効性を示す味覚試験結果を示す表である。It is a table | surface which shows the taste test result which shows the effectiveness of a present Example. 本実施例の有効性を示す味覚試験結果を示す表である。It is a table | surface which shows the taste test result which shows the effectiveness of a present Example.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

本発明者は、チタンを加熱した際に表面に生じる結晶粒が、液体(酒)に対し所定の作用を奏することに着目して試験を行い、この結果をもとに本発明を完成させた。   The present inventor conducted a test focusing on the fact that the crystal grains generated on the surface when titanium was heated exerted a predetermined action on the liquid (sake), and completed the present invention based on this result. .

即ち、製造工程の異なる複数のチタン製の容器を用意し、これら容器に焼酎を収納して該焼酎の味試験(味認識装置による試験)を行ったところ、この結晶粒の大きさや状態(形状)に応じて焼酎の渋味が低減するという事実を確認した。これは結晶粒の大きさに応じて焼酎に含まれる渋味の元となるタンニンを吸着する特異吸着という考えとも整合するものである。 That is, when preparing a plurality of containers made of titanium having different manufacturing processes, and storing the shochu in these containers and conducting a taste test of the shochu (test using a taste recognition device), the size and state (shape) of the crystal grains astringency of shochu has confirmed the fact that the reduced accordingly). This is to consistent with the idea that specific adsorption to adsorb tannins as a source of astringency contained in shochu according to the size of the crystal grains.

この結果をもとに、本発明は、焼酎の渋味を低減させるための容器を得るべく、容器本体1の内表面1’をチタンで構成し、この内表面1’を20μm以上の大きさで且つ7つ以上の角を有する結晶粒10が多数設けたものにした。この20μm以上の大きさで且つ7つ以上の角を有する結晶粒10は、α相からβ相に相変態する温度以上に加熱処理して得た。 Based on this result, the present invention is to obtain a container for reducing the astringency of shochu, the inner surface 1 of the container body 1 'was composed of titanium, the inner surface 1' or more size 20μm and In addition, a large number of crystal grains 10 having seven or more corners were provided. The crystal grains 10 having a size of 20 μm or more and having seven or more corners were obtained by heat treatment at a temperature higher than the temperature at which the α phase was transformed into the β phase.

実際に、本発明に係る酒収納容器に焼酎を収納すると、渋味が減ってまろやかとなり、味わいが良好となる。 In fact, and to accommodate the shochu to drink container according to the present invention, astringency becomes mellow decreased, the taste will be good.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、焼酎若しくはウイスキーの渋味を低減させるための容器であって、容器本体1の内表面1’をチタンで構成し、この内表面1’には、α相からβ相に相変態する温度以上に加熱処理されることで、20μm以上の大きさで且つ7つ以上の角を有する結晶粒10が多数設けられたものである。   This embodiment is a container for reducing the astringent taste of shochu or whiskey, and the inner surface 1 ′ of the container body 1 is made of titanium, and this inner surface 1 ′ has a phase from α phase to β phase. By being heat-treated above the transformation temperature, a large number of crystal grains 10 having a size of 20 μm or more and having seven or more corners are provided.

尚、本実施例では、容器本体1を、酒を飲む際に使用する飲料用容器として構成しているが、例えば酒を熟成させながら保存する貯蔵用容器(サーバー)でも良いなど、これに限るものではない。   In this embodiment, the container body 1 is configured as a beverage container used when drinking alcohol. However, the container body 1 may be a storage container (server) for storing alcohol while aging, for example. It is not a thing.

この容器本体1は、外筒2内に内筒3を空間部Sを介して配設するとともに、これら外筒2と内筒3との空間部Sを真空断熱空間部とした真空容器構造である。尚、容器本体1は、空間部Sを真空としない中空二重構造でも良く、また、中空二重構造でなく一重構造でも良いが、いずれも容器本体1の内表面1’は真空雰囲気内にてα相からβ相に相変態する温度(882℃)以上に加熱処理されたものが望ましい。   The container body 1 has a vacuum container structure in which an inner cylinder 3 is disposed in an outer cylinder 2 via a space S, and the space S between the outer cylinder 2 and the inner cylinder 3 is a vacuum heat insulating space. is there. The container body 1 may have a hollow double structure in which the space portion S is not evacuated, or may have a single structure instead of a hollow double structure. In any case, the inner surface 1 ′ of the container body 1 is in a vacuum atmosphere. It is desirable that the heat treatment be performed at a temperature higher than the temperature at which the α phase is transformed into the β phase (882 ° C.).

具体的には、この容器本体1を構成する外筒2及び内筒3は、図1に図示したようにチタン製の有底筒状体であり、内筒3は外筒2に比して径小で高さが低く設定されており、また、夫々の開口端部2a,3aは略同一径に設定されている。   Specifically, the outer cylinder 2 and the inner cylinder 3 constituting the container body 1 are bottomed cylindrical bodies made of titanium as illustrated in FIG. 1, and the inner cylinder 3 is compared with the outer cylinder 2. The diameter is small and the height is set low, and the open end portions 2a and 3a are set to have substantially the same diameter.

従って、外筒2内に内筒3を配して開口端部2a,3a同士を接合した際、外筒2と内筒3との間には空間部Sが形成される。   Therefore, when the inner cylinder 3 is arranged in the outer cylinder 2 and the opening end portions 2 a and 3 a are joined together, a space S is formed between the outer cylinder 2 and the inner cylinder 3.

尚、本明細書におけるチタンとは、純チタンを示し、内筒3のみをチタン製とし、外筒2はチタン製に限らずその他の金属でも合成樹脂でも良い。   Titanium in this specification indicates pure titanium, and only the inner cylinder 3 is made of titanium, and the outer cylinder 2 is not limited to titanium but may be other metals or synthetic resins.

また、外筒2の底部中央には凹部2bが設けられ、この凹部2bの中央位置には真空封止する際の脱気孔2b’が設けられている。   A recess 2b is provided at the center of the bottom of the outer cylinder 2, and a deaeration hole 2b 'for vacuum sealing is provided at the center of the recess 2b.

また、容器本体1には、図1に図示したように後述する製造過程においてその内表面1’及び外表面1”に20μm以上の大きさの結晶粒10が多数設けられている。この結晶粒10の大きさは、後述する試験結果からすると、焼酎若しくはウイスキーに与える影響は粒径が大きい程良いと思われるが、味に関する影響を考慮すると下限は20μmに設定され、生産性を考慮すると上限は11mmに設定される。   Further, as shown in FIG. 1, the container body 1 is provided with a large number of crystal grains 10 having a size of 20 μm or more on the inner surface 1 ′ and the outer surface 1 ″ in the manufacturing process described later. From the test results described later, the size of 10 seems to have a better effect on shochu or whiskey, but the lower limit is set to 20 μm considering the effect on taste, and the upper limit is considered when productivity is considered. Is set to 11 mm.

本実施例では、以下の製造方法により結晶粒10が20μm以上の大きさで且つ7つ以上の角を有する結晶粒10となるようにした。 In this embodiment, so that by Riyui Akiratsubu 10 in the following method for producing the crystal grains 10 and having a seven or more corners in the above size 20 [mu] m.

即ち、先ず、外筒2内に内筒3を配して互いに開口端部2a,3a同士を溶接(アルゴン溶接)により接合し、容器本体1を設ける。この容器本体1を構成する外筒2の内面と内筒3の外面との間には空間部Sが形成される。この空間部Sは後に真空処理されることで真空断熱空間部となる。   That is, first, the inner cylinder 3 is arranged in the outer cylinder 2, and the opening end portions 2 a and 3 a are joined to each other by welding (argon welding) to provide the container body 1. A space S is formed between the inner surface of the outer cylinder 2 constituting the container body 1 and the outer surface of the inner cylinder 3. This space part S becomes a vacuum heat insulation space part by vacuum processing later.

続いて、容器本体1を加熱した後に冷却する加熱冷却処理(常圧処理)を複数回(2回)行なう。   Subsequently, a heating / cooling process (normal pressure process) for cooling the container body 1 after heating is performed a plurality of times (twice).

具体的には、容器本体1を真空過熱炉内に配する。この際、外筒2の底部に設けた脱気孔2b’の周囲にロウ材4(チタンロウ)を配するとともに、このロウ材4の上に封止板5を載せる。   Specifically, the container body 1 is placed in a vacuum superheated furnace. At this time, a brazing material 4 (titanium brazing) is disposed around a deaeration hole 2 b ′ provided at the bottom of the outer cylinder 2, and a sealing plate 5 is placed on the brazing material 4.

この状態で真空加熱炉内の温度を約800℃以上(チタンの再結晶温度以上、且つチタンの変態点882℃(α組織(最密六法構造)からβ組織(体心立方構造)へ変わる温度)を超える約1,050℃)とするとともに、徐々に脱気して真空状態(10-3〜10-5Torr)とし、更に、温度を約1050℃まで上げる。この状態を15分〜20分保持する。この際、容器本体1の外筒2及び内筒3は再結晶し(α組織となり)、延性が増加する(再結晶しない部分は結晶粒が粗大化した状態となっている。)。 In this state, the temperature in the vacuum heating furnace is about 800 ° C. or more (above the recrystallization temperature of titanium, and the temperature at which the transformation point of titanium is 882 ° C. (change from α structure (close-packed six-method structure) to β structure (body-centered cubic structure)). ) Exceeding about 1,050 ° C.) and gradually degassing to a vacuum state (10 −3 to 10 −5 Torr), and further raising the temperature to about 1050 ° C. This state is maintained for 15 to 20 minutes. At this time, the outer cylinder 2 and the inner cylinder 3 of the container body 1 are recrystallized (having an α structure), and the ductility is increased (the crystal grains are coarsened in the portion not recrystallized).

この際、ロウ材4が熔融して外筒2と封止板5が一体化して脱気孔2b’が閉塞され、外筒2と内筒3との間の空間部Sが真空状態のまま封止されて真空断熱空間部が形成される。   At this time, the brazing material 4 is melted, the outer cylinder 2 and the sealing plate 5 are integrated, the deaeration hole 2b ′ is closed, and the space S between the outer cylinder 2 and the inner cylinder 3 is sealed in a vacuum state. It is stopped and a vacuum heat insulation space part is formed.

加熱を停止して自然冷却により真空加熱炉内の温度が700℃よりも低い温度(約630℃〜670℃)に下がった時点で真空加熱炉内に窒素ガスを導入して常圧に戻し、一気に常温まで温度を下げて容器本体1を冷却して真空封止作業は完了する。   When the heating is stopped and the temperature in the vacuum heating furnace is lowered to a temperature lower than 700 ° C. (about 630 ° C. to 670 ° C.) by natural cooling, nitrogen gas is introduced into the vacuum heating furnace to return to normal pressure, The temperature of the container body 1 is cooled down to room temperature at once, and the vacuum sealing operation is completed.

大気圧状況下に戻す(窒素ガスを導入する)時点を700℃よりも低い温度で行なうのは、約700℃以上の高温下においては素材が柔らか過ぎてしまい、この状態で大気圧環境下(常圧下)に戻すと外筒2及び内筒3に大きく凹む部分が生じて外筒2と内筒3とが当接してしまう部位ができてしまい、これを防止するためである。   The reason for returning to the atmospheric pressure state (introducing nitrogen gas) at a temperature lower than 700 ° C. is that the material is too soft at a high temperature of about 700 ° C. or higher. When the pressure is returned to normal pressure), the outer cylinder 2 and the inner cylinder 3 are largely recessed to form a portion where the outer cylinder 2 and the inner cylinder 3 come into contact with each other, and this is prevented.

また、窒素ガスを導入して急激に冷却するのは、後述するようにチタンの再結晶温度以上に加熱することで同方向を向いた結晶粒10を、急激に冷却することでこの結晶粒10の配向を固定化するためである。   In addition, nitrogen gas is introduced and rapidly cooled, as will be described later, by heating to a temperature higher than the recrystallization temperature of titanium, the crystal grains 10 facing in the same direction are rapidly cooled to rapidly cool the crystal grains 10. This is to fix the orientation of.

また、前述した加熱冷却処理を真空加熱炉(真空雰囲気中)で行なうのは、酸素雰囲気中で処理した場合に生じ得る酸化や窒化(黒ずんで商品価値が著しく低下する)を阻止するためであり、また、真空加熱炉内の温度が700℃よりも温度が低くなった時点で真空加熱炉内に窒素ガスを導入するのは、作業時間を短縮させる為なのは勿論、窒素は約800℃以上の温度帯において窒化し易いからである。   The reason why the heating and cooling treatment described above is performed in a vacuum heating furnace (in a vacuum atmosphere) is to prevent oxidation and nitridation (blackening that significantly reduces the commercial value) that can occur when processing in an oxygen atmosphere. In addition, when the temperature in the vacuum heating furnace becomes lower than 700 ° C., nitrogen gas is introduced into the vacuum heating furnace in order to shorten the working time, and nitrogen is about 800 ° C. or more. This is because nitriding is easy in the temperature range.

尚、本実施例における加熱冷却処理の際、容器本体1には本出願人が特許第3581639号で提案するカバー体を被せた状態で処理を行ない、この点においても酸素や窒素との接触を制限することで容器本体1が酸化や窒化して黒ずんでしまうのを確実に防止することができる。   In the heating / cooling process in the present embodiment, the container body 1 is processed with the cover body proposed by the present applicant in Patent No. 3581639 covered, and also in this respect, contact with oxygen or nitrogen is performed. By limiting, it is possible to reliably prevent the container body 1 from being darkened due to oxidation or nitridation.

引き続き、前述と同様に、1回目の加熱冷却処理済の容器本体1を再び加熱冷却処理する。図2に図示した結晶粒10の粒径評価(交差法)の結果、この2回目の加熱冷却処理により容器本体1の外表面1”及び内外面1’に設けられる結晶粒10(粒径)は20μm以上の大きさである。   Subsequently, in the same manner as described above, the container body 1 that has been subjected to the first heating and cooling process is again subjected to the heating and cooling process. As a result of the grain size evaluation (crossing method) of the crystal grain 10 shown in FIG. 2, the crystal grain 10 (grain diameter) provided on the outer surface 1 ″ and the inner / outer surface 1 ′ of the container body 1 by this second heating / cooling process. Is a size of 20 μm or more.

尚、この加熱冷却処理の回数や時間を増やせばそれだけ結晶粒10の大きさは大きくなるが、生産性(コスト性)を考慮すると2回(各回15〜20分程度)が妥当と考える。   Note that the size of the crystal grains 10 increases as the number of heating and cooling processes and the time are increased. However, considering productivity (cost efficiency), two times (about 15 to 20 minutes each time) are considered appropriate.

次に、前述のように製造された本実施例に係る酒収納容器の有効性を示す試験について説明する。   Next, the test which shows the effectiveness of the liquor storage container which concerns on the present Example manufactured as mentioned above is demonstrated.

即ち、図4に示す被験体A,被験体B,被験体C及び被験体Dと、サンプル液としての焼酎を用意し、味認識装置((株)インテリジェントセンサーテクノロジー製のTS−5000Z)を用いて夫々における味覚試験を行った。尚、この味認識装置は、味覚センサーを基準液とサンプル液夫々に漬けた際の電位差により、食品を口に含んだ瞬間の味(先味)と、食品を飲み込んだ後に残る持続性のある味(後味)との2種類で味を評価するものである。   That is, subject A, subject B, subject C and subject D shown in FIG. 4 and shochu as sample liquid are prepared, and a taste recognition device (TS-5000Z manufactured by Intelligent Sensor Technology Co., Ltd.) is used. Taste test was conducted in each. In addition, this taste recognition device has a lasting taste that lasts after swallowing the food due to the difference in potential when the taste sensor is immersed in the reference solution and the sample solution. Taste is evaluated with two types of taste (aftertaste).

被験体Aはガラス製の容器である。   Subject A is a glass container.

被験体Bはチタン製の容器であり、チタン製の外筒2内にチタン製の内筒3を空間部Sを介して配設したもので、これら外筒2と内筒3との空間部Sは真空でない中空二重構造である(1回目の加熱冷却処理前の状態と同等のもの)。この被験体2は容器形状とするスピニング加工の際に加熱され、図2に図示した結晶粒10の粒径評価(交差法)の結果、この容器本体1の外表面1”及びサンプル液に触れる内表面1’には11μm以下の大きさの結晶粒10が設けられ、7つ以上の角を有する結晶粒10は表面積(電子顕微鏡により観察した全面積)の59.4%であった。尚、本実施例を構成する外筒2及び内筒3を成形する前の材料(圧延まま材)の表面には16μm以下の大きさの結晶粒10を有する。   The subject B is a titanium container in which a titanium inner cylinder 3 is disposed in a titanium outer cylinder 2 via a space S, and the space between the outer cylinder 2 and the inner cylinder 3 is provided. S has a hollow double structure that is not vacuum (equivalent to the state before the first heating and cooling treatment). The subject 2 is heated during the spinning process into the container shape, and as a result of the particle size evaluation (crossing method) of the crystal grains 10 shown in FIG. 2, the outer surface 1 ″ of the container body 1 and the sample liquid are touched. The inner surface 1 ′ was provided with crystal grains 10 having a size of 11 μm or less, and the crystal grains 10 having seven or more corners accounted for 59.4% of the surface area (total area observed with an electron microscope). The surface of the material (as-rolled material) before forming the outer cylinder 2 and the inner cylinder 3 constituting the present embodiment has crystal grains 10 having a size of 16 μm or less.

被験体Cはチタン製の容器であり、加熱温度条件を530℃までに抑えたこと以外は前述した本実施例に係る製造方法により得られたもので(2回の加熱冷却処理を行ったもの)、図2に図示した結晶粒10の粒径評価(交差法)の結果、この容器本体1の外表面1”及びサンプル液に触れる内表面1’には20μmよりも小さい大きさの結晶粒10が設けられ、表面積に設けられる7つ以上の角を有する結晶粒10は(電子顕微鏡により観察した全面積)の54.0%であった。   Subject C is a titanium container, which was obtained by the manufacturing method according to this example described above except that the heating temperature condition was suppressed to 530 ° C. (Those subjected to two heating / cooling treatments) 2) As a result of the grain size evaluation (crossing method) of the crystal grain 10 shown in FIG. 2, the outer surface 1 ″ of the container body 1 and the inner surface 1 ′ in contact with the sample liquid have a crystal grain size smaller than 20 μm. 10 and the crystal grains 10 having seven or more corners provided on the surface area accounted for 54.0% of (the total area observed with an electron microscope).

被験体Dはチタン製の容器であり、前述した本実施例に係る製造方法により得られたもので(2回の加熱冷却処理を行ったもの)、図2に図示した結晶粒10の粒径評価(交差法)の結果、この容器本体1の外表面1”及びサンプル液に触れる内表面1’には20μm以上の大きさの結晶粒10が設けられ、7つ以上の角を有する結晶粒10は表面積(電子顕微鏡により観察した全面積)の100%であった。   Subject D is a titanium container, which is obtained by the manufacturing method according to the above-described embodiment (two heat-cooling treatments are performed), and the grain size of the crystal grain 10 illustrated in FIG. As a result of the evaluation (crossing method), crystal grains 10 having a size of 20 μm or more are provided on the outer surface 1 ″ of the container main body 1 and the inner surface 1 ′ in contact with the sample liquid, and the crystal grains having seven or more corners are provided. 10 was 100% of the surface area (total area observed with an electron microscope).

結晶粒10は、円形であるほどエネルギー的に安定しており、この点、7つ以上の角を有することでより円形に近付くことから本実施例の作用効果を発揮する結晶粒10は7つ以上の角を有するものが最適と考える。   The crystal grains 10 are more stable in terms of energy as they are circular. In this regard, since the crystal grains 10 are closer to a circle by having seven or more corners, the seven crystal grains 10 that exhibit the effects of the present embodiment are seven. Those having the above corners are considered optimal.

また、図8に示されるように被験体Dは、材料(圧延まま材)や被験体Bと明らかに結晶粒10の配向性が異なり、この被験体Dの20μm以上の大きさで且つ7つ以上の角を有する多数の結晶粒10は、X線解析におけるブラッグ角が34〜41度の範囲においてチタンの六方最密充填構造の底面及び上面が前記内表面1’の板面に対して平行となる集合組織に形成されている。   In addition, as shown in FIG. 8, the subject D is clearly different from the material (as-rolled material) and the subject B in the orientation of the crystal grains 10, and the subject D has a size of 20 μm or more and seven The large number of crystal grains 10 having the above-mentioned angles are such that the bottom surface and the top surface of the hexagonal close-packed structure of titanium are parallel to the plate surface of the inner surface 1 'in a Bragg angle range of 34 to 41 degrees in the X-ray analysis. It is formed in the texture.

これら被験体A〜Dに入れたサンプル液(焼酎)に対して味認識装置を用いて味覚試験を行った結果は図9,10の通りである。尚、サンプル液を入れて30分間放置した場合(図9)と、3時間放置した場合(図10)を試している。   The results of a taste test using the taste recognition device for the sample liquids (shochu) placed in these subjects A to D are as shown in FIGS. In addition, the case where the sample liquid is put and left for 30 minutes (FIG. 9) and the case where it is left for 3 hours (FIG. 10) are tried.

図9,10に示されるように被験体Aには大きな味の変化はなかったものの、チタン製の被験体B,C及びDには味の変化がみられ、特に被験体Dが渋味及び塩味の低下がみられ、時間が経つほど塩味の低下がみられた。このことから、焼酎を飲む際に使用する飲料用容器として適し、更に、焼酎を収納して所定期間熟成させる貯蔵用容器にも適用し得ることが分かる。   As shown in FIGS. 9 and 10, subject A did not have a significant change in taste, but titanium subjects B, C, and D showed a change in taste. The saltiness decreased, and the saltiness decreased as time passed. This shows that it is suitable as a beverage container used when drinking shochu, and can also be applied to a storage container that contains shochu and aged for a predetermined period.

実際に試飲してみたところ、被験体Dは明らかにまろやかになっていることが確認された。   When actually tasting, it was confirmed that the subject D was clearly mellow.

また、サンプル液としてウイスキーを採用し、このウイスキーを被験体A及びDに入れて味認識装置を用いて味覚試験を2回行った結果は図11,12の通りである。   Moreover, the result of having performed whiskey as a sample liquid, having put this whiskey in the test subject A and D, and having performed the taste test twice using the taste recognition apparatus is as FIG.

図11,12に示されるように被験体Aには大きな味の変化はなかったものの、被験体Dには味の変化がみられ、特に被験体Dが渋味の低下がみられた。このことから、ウイスキーにも有効であることが分かる。   As shown in FIGS. 11 and 12, subject A did not have a significant change in taste, but subject D showed a change in taste, and subject D in particular showed a decrease in astringency. This shows that it is also effective for whiskey.

以上のように本実施例は、焼酎やウイスキーを収納すると、渋味が減ってまろやかとなり、味わいが良好となる。   As described above, in this embodiment, when shochu or whiskey is stored, the astringency is reduced and the taste becomes mellow, and the taste is improved.

これは、焼酎やウイスキーなどの味を決めているものはエタノール濃度であり、エタノールと水が混合したエタノール水溶液はクラスター構造を形成しており、このような構造を持った液体を、本実施例のような結晶粒10を有する容器に入れるとエタノールが壁面に吸着されることから、この点において焼酎やウイスキーの味がまろやかになっていると思われる。   This is because the ethanol concentration is what determines the taste of shochu and whiskey, and the ethanol aqueous solution in which ethanol and water are mixed forms a cluster structure. Since ethanol is adsorbed on the wall when placed in a container having crystal grains 10 such as this, the taste of shochu and whiskey seems to be mild.

更に、酒に含まれる渋味の元となるタンニンを吸着する特異吸着も影響しているものと考えられる。   Furthermore, it is thought that the specific adsorption which adsorb | sucks the tannin which becomes the origin of the astringency contained in liquor is also influenced.

また、本実施例は、容器本体1は真空二重構造であり、更に蓋で閉じるような構造とすれば、外気温の影響を受けにくいことになるから、常に一定の温度が維持でき、熟成させるに適したものとなる。   Further, in this embodiment, the container body 1 has a vacuum double structure, and if it is further closed with a lid, it is difficult to be affected by the outside air temperature. It will be suitable for

次に、本実施例に係る酒収納容器の有効性を示す官能評価について説明する。   Next, sensory evaluation showing the effectiveness of the sake container according to the present embodiment will be described.

前述した被験体A,被験体B及び被験体Dに焼酎(芋焼酎)を注ぎ、蓋をして1分若しくは30分放置後、食味官能検査を実施した。   The test subject A, test subject B, and test subject D were poured into shochu (sake shochu), covered and left for 1 minute or 30 minutes, and then a taste sensory test was performed.

試験方法は、以下の通り。   The test method is as follows.

(1) 5人の評価者により行う。   (1) Performed by 5 evaluators.

(2) 臭気・旨味(こく)・総合について評価する。評価点として、1点(かなり悪い
)、2点(僅かに悪い)、3点(普通)、4点(僅かに良い)、5点(かなり良い
い)を採点基準とする(以下、官能評価1という。)。
(2) Evaluate odor, umami, and generality. The scoring criteria are 1 point (very bad), 2 points (slightly bad), 3 points (normal), 4 points (slightly good), and 5 points (very good). 1).

(3) 渋味・苦味・酸味についても評価する。評価点として、5点(かなり減じた)、
4点(僅かに減じた)、3点(普通)、2点(僅かに残っている)、1点(かなり
残っている)を採点基準とする(以下、官能評価2という。)。
(3) Evaluate astringency, bitterness, and sourness. As an evaluation point, 5 points (substantially reduced),
4 points (slightly reduced), 3 points (ordinary), 2 points (slightly remaining), and 1 point (slightly remaining) are used as scoring standards (hereinafter referred to as sensory evaluation 2).

(4) 5名の採点結果の平均値を算出し、比較品としての被験体Aを基準の3点(普通
)とし、被験体A,被験体B及び被験体Dの相対評価を行う。
(4) The average value of the scoring results of the five subjects is calculated, and subject A as a reference product is set to 3 points (normal) as a reference, and subject A, subject B, and subject D are subjected to relative evaluation.

官能評価1の結果は図13の通りであり、被験体Dは、被験体A及び被験体Bより高い得点を獲得した。   The result of sensory evaluation 1 is as shown in FIG. 13, and subject D obtained a higher score than subject A and subject B.

この結果から、被験体Dは焼酎の味を良好にし、焼酎を注いだ飲料用容器として適用し得ることが分かる。   From this result, it can be seen that the subject D can improve the taste of shochu and can be applied as a beverage container poured with shochu.

官能評価2の結果は図14の通りであり、被験体Dは、被験体A及び被験体Bより高い得点を獲得した。   The result of sensory evaluation 2 is as shown in FIG. 14, and subject D obtained a higher score than subject A and subject B.

この結果から、被験体Dは酒の味をまろやかにし、官能評価1の結果と同様、焼酎を注いだ飲料用容器として適用し得ることが分かる。この官能評価2の結果は前述した味覚試験の結果とほぼ同様であり、酒収納容器として有効であることが確認された。   From this result, it can be seen that the subject D can be applied as a beverage container poured with shochu like the result of sensory evaluation 1 with mild taste of sake. The result of this sensory evaluation 2 was almost the same as the result of the taste test described above, and it was confirmed that it was effective as a sake container.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

S 空間部
1 容器本体
1’ 内表面
2 外筒
3 内筒
10 結晶粒
S space part 1 container main body 1 'inner surface 2 outer cylinder 3 inner cylinder
10 grains

Claims (3)

焼酎の渋味を低減させるための焼酎収納容器であって、容器本体の内表面は多数の結晶粒を有するチタンで構成され、前記結晶粒は、80%以上が20μm以上の大きさで且つ7つ以上の角を有する結晶粒であり、更に、前記20μm以上の大きさで且つ7つ以上の角を有する結晶粒は、X線解析におけるブラッグ角34度〜41度の範囲において六方最密充填構造の底面及び上面が前記内表面の板面に対して平行となる集合組織であることを特徴とする焼酎収納容器A shochu storage container for reducing the astringent taste of shochu , wherein the inner surface of the container body is made of titanium having a large number of crystal grains, and the crystal grains are 80% or more in size of 20 μm or more and 7 Further, the crystal grains having a size of 20 μm or more and 7 or more angles are hexagonal close-packed in a Bragg angle range of 34 ° to 41 ° in X-ray analysis. A shochu storage container , characterized in that the bottom and top surfaces of the structure are textures parallel to the plate surface of the inner surface . 請求項1記載の焼酎収納容器において、前記容器本体の内表面は真空雰囲気中加熱処理されたものであることを特徴とする焼酎収納容器In shochu container of claim 1 Symbol placement, shochu container, wherein the inner surface of the container body is one that has been heat treated in a vacuum atmosphere. 請求項1,2いずれか1項に記載の焼酎収納容器において、前記容器本体は、外筒内にチタン製の内筒を空間部を介して配設するとともに、前記外筒と前記内筒との空間部を真空断熱空間部とした真空容器構造であることを特徴とする焼酎収納容器 3. The shochu storage container according to claim 1 , wherein the container main body includes a titanium inner cylinder disposed in an outer cylinder through a space portion, and the outer cylinder and the inner cylinder. A shochu storage container characterized by having a vacuum container structure in which the space portion is a vacuum heat insulating space portion.
JP2016174758A 2016-09-07 2016-09-07 Shochu storage container Active JP6343314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016174758A JP6343314B2 (en) 2016-09-07 2016-09-07 Shochu storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016174758A JP6343314B2 (en) 2016-09-07 2016-09-07 Shochu storage container

Publications (2)

Publication Number Publication Date
JP2018039530A JP2018039530A (en) 2018-03-15
JP6343314B2 true JP6343314B2 (en) 2018-06-13

Family

ID=61625039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016174758A Active JP6343314B2 (en) 2016-09-07 2016-09-07 Shochu storage container

Country Status (1)

Country Link
JP (1) JP6343314B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297436B2 (en) * 2010-10-30 2013-09-25 株式会社セブン・セブン Method for manufacturing vacuum insulated double container

Also Published As

Publication number Publication date
JP2018039530A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
KR100726155B1 (en) Manufacturing device and method of instant boiled rice
JP2023175802A (en) Method for forming golf club head assembly
JP6343314B2 (en) Shochu storage container
JPH11164784A (en) Metallic vacuum double container
CN107974550A (en) A kind of copper wire annealing method
JPS61124361A (en) Canned drink filled with nitrogen gas and having negative pressure, and preparation thereof
JP4767298B2 (en) Method for manufacturing vacuum insulated double container
JP5297436B2 (en) Method for manufacturing vacuum insulated double container
JP5312431B2 (en) Method for manufacturing vacuum insulated double container
CN107030448B (en) Titanium vacuum cup and its manufacturing method
TWI569761B (en) Titanium vacuum insulated cup and method for manufacturing the same
JP2007169767A (en) Packing container and its production method
Sugimoto et al. The effect of grain constraint, heat treatment and compositional change on the behavior of martensitic transformations in alloys with the composition near Cu-13Al-4Ni-1Zn (mass%)
JP6295279B2 (en) Method for manufacturing vacuum insulated double container
CN104611173A (en) Production method of fig wine
Liu et al. Effects of aging treatment on shape memory characteristics of Ni-Ti-Ta alloy.
JP5977669B2 (en) Method for manufacturing vacuum insulated double container
JP2007113025A (en) Manufacturing method of stainless steel container for drink
JP4490147B2 (en) Black vinegar drink
JP2007124916A (en) Pressurizing, heating, sealing and charging method
JP2004353079A (en) Aluminum alloy sheet for cap, and its production method
JP3414210B2 (en) Manufacturing method of metal vacuum double container
US117256A (en) Improvement in preserving cranberries
JPH0953163A (en) Method for heat treating vacuum vessel made of titanium
JP2007113069A (en) Method for manufacturing beverage container made from stainless steel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180518

R150 Certificate of patent or registration of utility model

Ref document number: 6343314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250