JP6295279B2 - Method for manufacturing vacuum insulated double container - Google Patents

Method for manufacturing vacuum insulated double container Download PDF

Info

Publication number
JP6295279B2
JP6295279B2 JP2016000491A JP2016000491A JP6295279B2 JP 6295279 B2 JP6295279 B2 JP 6295279B2 JP 2016000491 A JP2016000491 A JP 2016000491A JP 2016000491 A JP2016000491 A JP 2016000491A JP 6295279 B2 JP6295279 B2 JP 6295279B2
Authority
JP
Japan
Prior art keywords
outer cylinder
vacuum
inner cylinder
double container
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016000491A
Other languages
Japanese (ja)
Other versions
JP2017121944A (en
Inventor
澁木 収一
収一 澁木
Original Assignee
株式会社セブン・セブン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社セブン・セブン filed Critical 株式会社セブン・セブン
Priority to JP2016000491A priority Critical patent/JP6295279B2/en
Publication of JP2017121944A publication Critical patent/JP2017121944A/en
Application granted granted Critical
Publication of JP6295279B2 publication Critical patent/JP6295279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Table Devices Or Equipment (AREA)

Description

本発明は、真空断熱二重容器の製造方法に関するものである。   The present invention relates to a method for manufacturing a vacuum insulated double container.

ビール等の飲料を注ぐ容器として、これまで、ガラス製、陶製等の種々の素材のものが提案されており、本出願人は特開2003−129291号に開示される金属製(チタン製)の真空断熱二重容器を提案している。   As containers for pouring beverages such as beer, various materials such as glass and ceramics have been proposed so far, and the applicant of the present invention is made of metal (made of titanium) disclosed in Japanese Patent Application Laid-Open No. 2003-129291. A vacuum insulated double container is proposed.

特開2003−129291号公報JP 2003-129291 A

本出願人は、この金属製の真空断熱二重容器について更なる研究開発を進めた結果、極めて商品価値の高い真空断熱二重容器を提供し得る画期的な製造方法を開発した。   As a result of further research and development of this metal vacuum insulated double container, the present applicant has developed an innovative manufacturing method capable of providing a vacuum insulated double container having extremely high commercial value.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

チタン製の外筒1内に空間部Sを介してチタン製の内筒2を配設し、前記外筒1と前記内筒2との間の空間部Sを真空断熱空間部とする真空断熱二重容器の製造方法であって、前記外筒1及び前記内筒2を真空加熱炉6で加熱しながら前記空間部Sを脱気して脱気孔を真空封止し、続いて、前記真空加熱炉6内に窒素ガスTを導入して前記外筒1の表面に窒化部10を形成し、続いて、前記窒化部10を加熱処理し、続いて、前記外筒1の表面を下記の陽極酸化処理して着色することを特徴とする真空断熱二重容器の製造方法に係るものである。

陽極として前記外筒1、陰極として通電性金属を採用し、前記外筒1の表面に陽極酸化被膜9を形成する処理であって、前記陽極酸化被膜9の厚さを印加電圧と時間とにより適宜調整する処理。
A titanium inner cylinder 2 is disposed in the titanium outer cylinder 1 through a space S, and a vacuum insulation is provided with the space S between the outer cylinder 1 and the inner cylinder 2 as a vacuum heat insulation space. A method of manufacturing a double container, wherein the space S is deaerated while the outer cylinder 1 and the inner cylinder 2 are heated in a vacuum heating furnace 6 to vacuum seal the deaeration holes, and then the vacuum Nitrogen gas T is introduced into the heating furnace 6 to form a nitriding part 10 on the surface of the outer cylinder 1, and then the nitriding part 10 is heat-treated . The present invention relates to a method for producing a vacuum heat insulating double container characterized by anodizing and coloring.
Record
The outer cylinder 1 is used as an anode, and a conductive metal is used as a cathode, and an anodic oxide film 9 is formed on the surface of the outer cylinder 1, and the thickness of the anodic oxide film 9 is determined depending on the applied voltage and time. Process to adjust appropriately.

また、チタン製の外筒1内に空間部Sを介してチタン製の内筒2を配設し、前記外筒1と前記内筒2との間の空間部Sを真空断熱空間部とする真空断熱二重容器の製造方法であって、前記外筒1及び前記内筒2を真空加熱炉6で加熱しながら前記空間部Sを脱気して脱気孔を真空封止し、続いて、前記外筒1及び前記内筒2を冷却し、続いて、前記外筒1及び前記内筒2を前記真空加熱炉6で加熱し、続いて、前記真空加熱炉6内に窒素ガスTを導入して前記外筒1の表面に窒化部10を形成し、続いて、前記窒化部10を加熱処理し、続いて、前記外筒1の表面を下記の陽極酸化処理して着色することを特徴とする真空断熱二重容器の製造方法に係るものである。

陽極として前記外筒1、陰極として通電性金属を採用し、前記外筒1の表面に陽極酸化被膜9を形成する処理であって、前記陽極酸化被膜9の厚さを印加電圧と時間とにより適宜調整する処理。
Further, a titanium inner cylinder 2 is disposed in the titanium outer cylinder 1 via a space S, and the space S between the outer cylinder 1 and the inner cylinder 2 is used as a vacuum heat insulating space. A method for manufacturing a vacuum insulated double container, wherein the outer cylinder 1 and the inner cylinder 2 are heated in a vacuum heating furnace 6 to degas the space S and vacuum seal the deaeration holes, The outer cylinder 1 and the inner cylinder 2 are cooled, then the outer cylinder 1 and the inner cylinder 2 are heated in the vacuum heating furnace 6, and then nitrogen gas T is introduced into the vacuum heating furnace 6. Then, a nitriding part 10 is formed on the surface of the outer cylinder 1, and then the nitriding part 10 is heat-treated, and then the surface of the outer cylinder 1 is colored by the following anodizing process. It concerns on the manufacturing method of the vacuum heat insulation double container.
Record
The outer cylinder 1 is used as an anode, and a conductive metal is used as a cathode, and an anodic oxide film 9 is formed on the surface of the outer cylinder 1, and the thickness of the anodic oxide film 9 is determined depending on the applied voltage and time. Process to adjust appropriately.

また、請求項1,2いずれか1項に記載の真空断熱二重容器の製造方法において、前記内筒2の開口部を閉塞した状態で前記真空加熱炉6内に窒素ガスTを導入して前記外筒1の表面に窒化部10を形成することを特徴とする真空断熱二重容器の製造方法に係るものである。Moreover, in the manufacturing method of the vacuum heat insulation double container of any one of Claim 1, 2, nitrogen gas T is introduce | transduced in the said vacuum heating furnace 6 in the state which obstruct | occluded the opening part of the said inner cylinder 2. The present invention relates to a method for manufacturing a vacuum insulated double container, characterized in that a nitriding portion 10 is formed on the surface of the outer cylinder 1.

また、請求項3記載の真空断熱二重容器の製造方法において、前記真空加熱炉6の載置面6aに前記内筒2を逆さ状態に配して該内筒2の開口部を閉塞することを特徴とする真空断熱二重容器の製造方法に係るものである。Moreover, in the manufacturing method of the vacuum heat insulation double container of Claim 3, it arrange | positions the said inner cylinder 2 to the mounting surface 6a of the said vacuum heating furnace 6, and closes the opening part of this inner cylinder 2 The present invention relates to a method for producing a vacuum heat insulating double container.

本発明により得られる真空断熱二重容器は、金属表面に形成された窒化部を加熱処理した後に陽極酸化処理して着色するから、従来にない独特な質感を呈する極めて高品位な真空断熱二重容器となり、しかも、この表面の独特な質感は、真空加熱炉内の冷却に用いられる窒素ガスによる窒化を利用したものであるから、確実に実現でき、前述した高品位な真空断熱二重容器を確実且つ効率良く製造することができるなど、従来にない作用効果を発揮する画期的な真空断熱二重容器の製造方法となる。   The vacuum insulated double container obtained by the present invention is colored by subjecting the nitrided portion formed on the metal surface to heat treatment and then anodizing, so that it has an unprecedented unique texture and is very high quality. The unique texture of this surface uses nitridation by nitrogen gas used for cooling in the vacuum heating furnace, so it can be realized reliably, and the high-quality vacuum insulated double container described above can be realized. This is an epoch-making method for producing a vacuum insulated double container that exhibits unprecedented effects such as reliable and efficient production.

本実施例により製造された真空断熱二重容器の斜視図である。It is a perspective view of the vacuum heat insulation double container manufactured by the present Example. 本実施例により製造された真空断熱二重容器の部分拡大図である。It is the elements on larger scale of the vacuum heat insulation double container manufactured by the present Example. 本実施例により製造された真空断熱二重容器の平断面図である。It is a plane sectional view of the vacuum heat insulation double container manufactured by the present Example. 本実施例に係る真空断熱二重容器の製造工程説明図である。It is manufacturing process explanatory drawing of the vacuum heat insulation double container which concerns on a present Example. 被処理体3の説明断面図である。It is explanatory sectional drawing of the to-be-processed object 3. FIG. 被処理体3の説明断面図である。It is explanatory sectional drawing of the to-be-processed object 3. FIG. 本実施例に係る真空断熱二重容器の製造工程説明図である。It is manufacturing process explanatory drawing of the vacuum heat insulation double container which concerns on a present Example. 本実施例に係る真空断熱二重容器の製造工程説明図である。It is manufacturing process explanatory drawing of the vacuum heat insulation double container which concerns on a present Example. 本実施例に係る真空断熱二重容器の製造工程説明図である。It is manufacturing process explanatory drawing of the vacuum heat insulation double container which concerns on a present Example. 被処理体3の説明斜視図である。FIG. 3 is an explanatory perspective view of an object to be processed 3. 本実施例に係る真空断熱二重容器の製造工程説明図である。It is manufacturing process explanatory drawing of the vacuum heat insulation double container which concerns on a present Example.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

本発明は、外筒1及び内筒2を真空加熱炉6で加熱しながら空間部Sを脱気して脱気孔を真空封止し、続いて、真空加熱炉6内に窒素ガスTを導入して外筒1の表面に窒化部10を形成し、続いて、窒化部10を加熱処理し、続いて、外筒1の表面を陽極酸化処理して着色する。この外筒1の表面は、陽極酸化処理により着色(例えば紫色や黄色に着色)された金属の結晶模様でキラキラ光る独特な質感を呈する。   In the present invention, while the outer cylinder 1 and the inner cylinder 2 are heated in the vacuum heating furnace 6, the space S is deaerated to vacuum seal the deaeration holes, and then the nitrogen gas T is introduced into the vacuum heating furnace 6. Then, the nitriding part 10 is formed on the surface of the outer cylinder 1, and then the nitriding part 10 is heat-treated, and then the surface of the outer cylinder 1 is anodized and colored. The surface of the outer cylinder 1 has a unique texture that glitters with a metal crystal pattern colored by anodizing (for example, purple or yellow).

従って、簡易な方法により、独特な質感を呈する今までに無い全く新しいデザインの容器を製造することができる。   Therefore, it is possible to manufacture a container with a completely new design that exhibits a unique texture by a simple method.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、外筒1内に空間部Sを介して内筒2を配設し、外筒1と内筒2との間の空間部Sを真空断熱空間部とする真空断熱二重容器の製造方法である。尚、本実施例では、真空断熱二重容器を、ワインやウイスキーなどのアルコール飲料を飲む際に使用するタンブラーとして構成しているが、これに限るものではない。   In the present embodiment, the inner cylinder 2 is disposed in the outer cylinder 1 via the space S, and the vacuum insulation double container having the space S between the outer cylinder 1 and the inner cylinder 2 as a vacuum insulation space. It is a manufacturing method. In the present embodiment, the vacuum insulated double container is configured as a tumbler used when drinking alcoholic beverages such as wine and whiskey, but is not limited thereto.

本実施例に係る外筒1及び内筒2は、図1,3に図示したように金属製(チタン製)の有底筒状体であり、内筒2は外筒1に比して径小で高さが低く設定され、また、夫々の開口部1a,2aは略同一径に設定されている。   As shown in FIGS. 1 and 3, the outer cylinder 1 and the inner cylinder 2 according to the present embodiment are bottomed cylindrical bodies made of metal (made of titanium), and the inner cylinder 2 has a diameter as compared with the outer cylinder 1. Small and low in height, and the openings 1a and 2a are set to have substantially the same diameter.

従って、外筒1内に内筒2を同軸で配して開口部1a,2a同士を接合して、外筒1と内筒2との間に空間部Sが形成される。   Therefore, the inner cylinder 2 is coaxially arranged in the outer cylinder 1 and the openings 1 a and 2 a are joined together, so that a space S is formed between the outer cylinder 1 and the inner cylinder 2.

本明細書におけるチタンとは、純チタン及びチタン合金を示す。また、外筒1及び内筒2夫々の素材(成分)や板厚や大きさ(形状)は、後述する真空断熱二重容器として製造した際に、該真空断熱二重容器の機能(特に断熱機能)を低下させない程度に後述する凹凸部4,5が形成されることを考慮して適宜選択される。   Titanium in this specification refers to pure titanium and titanium alloys. The material (component), thickness and size (shape) of each of the outer cylinder 1 and the inner cylinder 2 are the functions (particularly heat insulation) of the vacuum heat insulating double container when manufactured as a vacuum heat insulating double container described later. It is selected as appropriate in consideration of the formation of concavo-convex portions 4 and 5 which will be described later to such an extent that the function is not lowered.

尚、外筒1及び内筒2を構成する素材はステンレスなどその他の金属でも良く、本実施例の特性を発揮する構成であれば適宜採用するものである。   In addition, the raw material which comprises the outer cylinder 1 and the inner cylinder 2 may be other metals, such as stainless steel, and will be employ | adopted suitably if it is the structure which exhibits the characteristic of a present Example.

また、外筒1の底部中央には凹部1bが設けられ、この凹部1bの中央位置には真空封止する際の脱気孔1b’が設けられている。   A recess 1b is provided at the center of the bottom of the outer cylinder 1, and a deaeration hole 1b 'for vacuum sealing is provided at the center of the recess 1b.

また、外筒1及び内筒2には、図1,3に図示したように後述する製造過程においてその表面に凹凸部4,5が無数に形成される。   The outer cylinder 1 and the inner cylinder 2 are formed with innumerable irregularities 4 and 5 on the surfaces thereof in the manufacturing process described later as shown in FIGS.

従って、この外筒1と内筒2とから成る真空断熱二重容器の表面に設けられる凹凸部4,5により、チタン製(金属製)でありながら、あたかも陶器のようなデコボコ感のあるデザインを呈することになる。   Therefore, the uneven parts 4 and 5 provided on the surface of the vacuum heat insulating double container composed of the outer cylinder 1 and the inner cylinder 2 are made of titanium (metal), but have a design that feels like a pottery. Will be presented.

以上の構成から成る外筒1及び内筒2を用いた真空断熱二重容器の製造方法について説明する。   The manufacturing method of the vacuum heat insulation double container using the outer cylinder 1 and the inner cylinder 2 which consist of the above structure is demonstrated.

先ず、外筒1内に内筒2を配して互いに開口部1a,2a同士を溶接(TIG溶接)により接合し、被処理体3を設ける。この被処理体3を構成する外筒1の内面と内筒2の外面との間には空間部Sが形成される。この空間部Sは後に真空処理されることで真空断熱空間部となる。   First, the inner cylinder 2 is arranged in the outer cylinder 1, the openings 1a and 2a are joined to each other by welding (TIG welding), and the object 3 is provided. A space S is formed between the inner surface of the outer cylinder 1 and the outer surface of the inner cylinder 2 constituting the workpiece 3. This space part S becomes a vacuum heat insulation space part by vacuum processing later.

続いて、外筒1と内筒2との空間部Sを脱気して脱気孔1b’を真空封止する。   Subsequently, the space S between the outer cylinder 1 and the inner cylinder 2 is deaerated to vacuum seal the deaeration hole 1b '.

具体的には、図4,5に図示したように被処理体3を真空加熱炉6内に配する。この際、被処理体3は開口部3aが閉塞されるように平坦な載置面6aに逆さ状態に配され、この状態で外筒1の底部に設けた脱気孔1b’の周囲にロウ材7(チタンロウ)を配するとともに、このロウ材7の上に封止板8を載せる。   Specifically, as shown in FIGS. 4 and 5, the object 3 is placed in the vacuum heating furnace 6. At this time, the object to be processed 3 is placed upside down on the flat mounting surface 6a so that the opening 3a is closed, and in this state, the brazing material is disposed around the deaeration hole 1b 'provided at the bottom of the outer cylinder 1. 7 (titanium brazing) is disposed, and a sealing plate 8 is placed on the brazing material 7.

この状態で真空加熱炉6内の温度を約800℃以上とするとともに、徐々に脱気して高真空状態(10−3〜10−5Torr)とし、更に、温度を約1050℃まで上げる。 In this state, the temperature in the vacuum heating furnace 6 is set to about 800 ° C. or higher, gradually deaerated to a high vacuum state (10 −3 to 10 −5 Torr), and the temperature is further increased to about 1050 ° C.

この際、ロウ材7が熔融して外筒1と封止板8が一体化して脱気孔1b’が閉塞され、外筒1と内筒2との間の空間部Sが真空状態のまま封止されて真空断熱空間部が形成される(図6参照)。   At this time, the brazing material 7 is melted, the outer cylinder 1 and the sealing plate 8 are integrated, the deaeration hole 1b ′ is closed, and the space S between the outer cylinder 1 and the inner cylinder 2 is sealed in a vacuum state. It stops and a vacuum heat insulation space part is formed (refer FIG. 6).

加熱を停止して自然冷却により真空加熱炉6内の温度が700℃よりも低い温度(約630℃〜670℃)に下がった時点で真空加熱炉6内に窒素ガスTを導入して常圧に戻し(この時点で凹凸部4,5が形成される)、一気に常温まで温度を下げて被処理体3を冷却し真空封止作業は完了する。   When the heating is stopped and the temperature in the vacuum heating furnace 6 is lowered to a temperature lower than 700 ° C. (about 630 ° C. to 670 ° C.) by natural cooling, nitrogen gas T is introduced into the vacuum heating furnace 6 and normal pressure is applied. (At this point, the concave and convex portions 4 and 5 are formed), the temperature of the object to be processed 3 is cooled down to room temperature at once, and the vacuum sealing operation is completed.

具体的には、真空加熱炉6内の温度をチタンの再結晶温度以上、且つチタンの変態点880℃(α組織からβ組織の変わる温度)を超える約1,050℃とするとともに、高真空状態(10−3〜10−5Torr)とし、この状態を15分〜20分保持する。これにより、被処理体3の外筒1及び内筒2は再結晶し(β組織となり)、延性が増加する(再結晶しない部分は結晶粒が粗大化した状態となっている。)。その後、加熱を停止し、自然冷却により真空加熱炉6内の温度が約700℃以下になった時点で、真空加熱炉6内に窒素ガスTを導入して一気に常圧常温まで戻して被処理体3を急速冷却する。この加熱冷却常圧処理において、外筒1及び内筒2には凹凸部4,5が生じる。 Specifically, the temperature in the vacuum heating furnace 6 is set to about 1,050 ° C. which is equal to or higher than the recrystallization temperature of titanium and exceeds the transformation point 880 ° C. of titanium (a temperature at which the α structure changes from the β structure). The state (10 −3 to 10 −5 Torr) is set, and this state is maintained for 15 to 20 minutes. Thereby, the outer cylinder 1 and the inner cylinder 2 of the to-be-processed object 3 recrystallize (it becomes (beta) structure | tissue), and ductility increases (the part which is not recrystallized is in the state where the crystal grain became coarse). Thereafter, the heating is stopped, and when the temperature in the vacuum heating furnace 6 becomes about 700 ° C. or less due to natural cooling, nitrogen gas T is introduced into the vacuum heating furnace 6 to return to normal pressure and normal temperature at once. The body 3 is rapidly cooled. In this heating / cooling normal pressure process, the outer cylinder 1 and the inner cylinder 2 have uneven portions 4 and 5.

大気圧状況下に戻す(窒素ガスを導入する)処理を700℃よりも低い温度で行なうのは、約700℃以上の高温下においては素材が柔らか過ぎてしまい、この状態で大気圧環境下(常圧下)に戻すと外筒1及び内筒2に大きく凹む部分が生じて外筒1と内筒2とが当接してしまう部位ができてしまい、これを防止するためである。ただ、あまりにも低い温度で常圧下に戻しても凹凸は形成されにくく且つ時間がかかり過ぎてしまい、生産性が悪くなる。   The process of returning to atmospheric pressure (introducing nitrogen gas) at a temperature lower than 700 ° C. is because the material is too soft at a high temperature of about 700 ° C. or higher. When the pressure is returned to normal pressure), the outer cylinder 1 and the inner cylinder 2 are largely recessed, and a portion where the outer cylinder 1 and the inner cylinder 2 come into contact with each other is formed. This is to prevent this. However, even if the pressure is returned to normal pressure at a too low temperature, the unevenness is hardly formed and it takes too much time, resulting in poor productivity.

この大気圧環境下の真空加熱炉6内におかれた外筒1及び内筒2は、その表面にはくっきりとした大きな凹凸部4,5が無数に形成され(図6参照)、窒素ガスTの導入により常温に戻ってこの凹凸部4,5は固定される。   The outer cylinder 1 and the inner cylinder 2 placed in the vacuum heating furnace 6 under the atmospheric pressure environment have countless large uneven portions 4 and 5 formed on the surface (see FIG. 6), and nitrogen gas With the introduction of T, the concavo-convex portions 4 and 5 are fixed by returning to normal temperature.

また、図示していないが、この真空封止作業の際には、予め各被処理体3にはカバー体が被嵌されており、窒素ガスTを用いた冷却に際しては、被処理体3が窒素ガスTに触れないようにしている。被処理体3にカバー体を被嵌するのは、ロウ材7としてチタンロウを採用した場合、高温化で窒素ガスTに触れるとロウ材7が窒化してロウ材7としての性能が低下してしまうから、ロウ材7が窒素ガスTに触れないようにする為である。尚、この時、被処理体3を冷却する場合にはアルゴンガスを用いて冷却しても良い。   Although not shown, a cover body is fitted in advance on each object to be processed 3 during the vacuum sealing operation, and when the object to be processed 3 is cooled with the nitrogen gas T, The nitrogen gas T is not touched. When the titanium brazing material is used as the brazing material 7, the brazing material 7 is nitrided when it is exposed to the nitrogen gas T at a high temperature, and the performance as the brazing material 7 is deteriorated. Therefore, the brazing material 7 is prevented from touching the nitrogen gas T. At this time, when the object 3 is cooled, it may be cooled using argon gas.

続いて、この真空封止作業を行った被処理体3を再び真空加熱炉6内に配してカバー体を被嵌した状態とし、前述したのと同様の加熱・冷却から成る加熱冷却常圧処理を行う。   Subsequently, the object to be processed 3 that has been subjected to the vacuum sealing operation is again placed in the vacuum heating furnace 6 so that the cover body is fitted, and heating / cooling normal pressure including heating / cooling similar to that described above is performed. Process.

この工程によりチタンの結晶粒子はより大きく成長し、凹凸部4,5もより大きくなる。   By this process, titanium crystal grains grow larger and the uneven portions 4 and 5 become larger.

続いて、真空封止作業が済んだ被処理体3(外筒1)の表面に窒化部10(窒化層)を形成する。   Subsequently, a nitriding portion 10 (nitriding layer) is formed on the surface of the workpiece 3 (outer cylinder 1) that has been vacuum-sealed.

具体的には、真空加熱炉6内で、被処理体3をカバー体で被嵌されない状態とし、この状態で加熱し(ロウ材7が溶融しない程度)、その後、窒素ガスTを用いて急速冷却すると、被処理体3の外表面3bには、窒素ガスTに触れることで窒化部10が形成される。この窒化部10は黒色でつや消し状態である。また、被処理体3の内表面3b(内筒2の内面)は、窒素ガスTに触れない為に窒化せず、素材(チタン)が持つ銀白色に輝く質感を呈する。   Specifically, in the vacuum heating furnace 6, the object to be processed 3 is not covered with the cover body, and is heated in this state (to the extent that the brazing material 7 is not melted). When cooled, the nitriding portion 10 is formed on the outer surface 3 b of the workpiece 3 by touching the nitrogen gas T. The nitriding portion 10 is black and frosted. Further, the inner surface 3b (the inner surface of the inner cylinder 2) of the object to be processed 3 is not nitrided because it does not touch the nitrogen gas T, and exhibits a silvery white texture of the material (titanium).

この窒化部10の形成に際しても、前述した工程ほどではないが、凹凸部4,5の形成が行われる。   In forming the nitriding portion 10, the concavo-convex portions 4 and 5 are formed although not as in the steps described above.

尚、この被処理体3の内表面3bに窒素ガスTに触れない為の構成としては、被処理体3の開口部3aに蓋をすることで行っても良い。   In addition, you may carry out by covering the opening part 3a of the to-be-processed body 3 as a structure for not touching the nitrogen gas T to the inner surface 3b of this to-be-processed body 3. FIG.

また、本実施例では、凹凸部4,5を良好に形成すべく、被処理体3を加熱した後に冷却する加熱冷却常圧処理を合計3回行っているが、真空封止の際の1回のみでも、真空封止の際と窒化部10の形成の際の2回でも良い。前者の場合、被処理体3にカバー体を被嵌しない状態で行われ、ロウ材7の多少の性能低下は否めないが、真空封止と窒化部10の形成とが効率よく同時に行われることになる。   In this embodiment, in order to form the uneven portions 4 and 5 satisfactorily, the heating / cooling normal pressure treatment for cooling the object to be processed 3 after heating is performed three times in total. It may be performed only once, or twice during the vacuum sealing and the formation of the nitride portion 10. In the former case, it is performed in a state in which the cover body is not fitted to the object to be processed 3 and the performance of the brazing material 7 cannot be denied, but the vacuum sealing and the formation of the nitriding portion 10 can be performed efficiently and simultaneously. become.

続いて、被処理体3の窒化部10を加熱処理する。   Subsequently, the nitriding portion 10 of the workpiece 3 is heat-treated.

具体的には、被処理体3を真空加熱炉6内に配した状態とする。この際、被処理体3は開口部3aが閉塞されるように平坦な載置面6aに逆さ状態に配され、更に、被処理体3にはカバー体11が被嵌されている。   Specifically, the workpiece 3 is placed in the vacuum heating furnace 6. At this time, the object to be processed 3 is arranged upside down on the flat mounting surface 6a so that the opening 3a is closed, and a cover body 11 is fitted on the object to be processed 3.

この状態で真空加熱炉6内の温度を約1050℃まで上げると、窒化部10は加熱されて白色(灰色)になる(図8参照)。この際、被処理体3の外表面3c全体にチタンの結晶がキラキラしたものが30%程度発生するが、本実施例では、これを後述のように陽極酸化処理してその表面を着色する。尚、窒化部10を加熱処理した後、急速冷却すべく窒素ガスTを導入しても被処理体3はカバー体11が被嵌されている為、その外表面3cに窒化部10は形成されない(図9,10参照)。   When the temperature in the vacuum heating furnace 6 is raised to about 1050 ° C. in this state, the nitriding section 10 is heated to become white (gray) (see FIG. 8). At this time, about 30% of the titanium crystal glitters on the entire outer surface 3c of the object 3 to be processed. In this embodiment, this is anodized as described later to color the surface. Even if the nitrogen gas T is introduced for rapid cooling after the nitriding portion 10 is heat-treated, the nitriding portion 10 is not formed on the outer surface 3c of the object 3 because the cover body 11 is fitted. (See FIGS. 9 and 10).

続いて、この被処理体3を陽極酸化処理し内外表面3b,3cを着色して完成する。   Subsequently, the object 3 is anodized to color the inner and outer surfaces 3b and 3c to complete.

具体的には、この陽極酸化処理は、図10に図示したように陽極としての被処理体3と、陰極としての通電性金属15(例えばアルミニウムや銅)とを、導電性の水溶液13(電解質溶液/硫酸水溶液やリン酸水溶液など)中に配して電圧を印加し、被処理体3の内外表面3b,3cに陽極酸化被膜9を形成する処理である。符号12は処理容体、14は電気回路である。   Specifically, as shown in FIG. 10, the anodizing treatment is performed by subjecting an object to be treated 3 as an anode and a conductive metal 15 (for example, aluminum or copper) as a cathode to a conductive aqueous solution 13 (electrolyte). Solution / sulfuric acid aqueous solution or phosphoric acid aqueous solution), and a voltage is applied to form the anodic oxide film 9 on the inner and outer surfaces 3b, 3c of the object 3 to be treated. Reference numeral 12 denotes a processing container, and 14 denotes an electric circuit.

この陽極酸化処理により被処理体3の内外表面3b,3cは着色される。   By this anodic oxidation treatment, the inner and outer surfaces 3b and 3c of the workpiece 3 are colored.

この被処理体3の内外表面3b,3cに形成される陽極酸化被膜9は、陰極としての通電性金属15や水溶液13の組成によって種々の色となり得るが、更に、陽極酸化被膜9は、光の屈折作用(干渉作用)から陽極酸化処理前の地色と異なる色が発色する(図1,2参照)。   The anodized film 9 formed on the inner and outer surfaces 3b and 3c of the object 3 can be various colors depending on the composition of the conductive metal 15 and the aqueous solution 13 as a cathode. Due to the refraction action (interference action), a color different from the ground color before the anodizing treatment is developed (see FIGS. 1 and 2).

また、印加電圧と時間を調整して陽極酸化被膜9の厚さを異ならせることができ、この陽極酸化被膜9は厚さに応じて色が変化する。具体的には、例えば、陽極酸化被膜9の厚さが厚い方から薄い方へ順に、黄、青、紫などの色を自然に発色させることができる。   Further, the thickness of the anodic oxide coating 9 can be varied by adjusting the applied voltage and time, and the color of the anodic oxide coating 9 changes depending on the thickness. Specifically, for example, colors such as yellow, blue, and purple can be naturally developed in order from the thicker to the thinner anodic oxide coating 9.

尚、チタンの再結晶温度以下で溶融するロウ材を用いれば、凹凸部4,5が形成されない真空断熱の空間部を有する二重容器が形成される。この二重容器を用いて外筒1の外表面3cを窒化し、内外表面3b,3cを陽極酸化処理しても良い。また、陽極酸化処理は窒化部10が形成される外筒1の外表面3cのみに施すようにしても良い。   If a brazing material that melts at a temperature lower than the recrystallization temperature of titanium is used, a double container having a vacuum heat-insulating space portion in which the uneven portions 4 and 5 are not formed is formed. Using this double container, the outer surface 3c of the outer cylinder 1 may be nitrided, and the inner and outer surfaces 3b, 3c may be anodized. Further, the anodizing treatment may be performed only on the outer surface 3c of the outer cylinder 1 where the nitriding portion 10 is formed.

本実施例は上述のように構成したから、金属表面3cに形成された窒化部10を加熱処理した後に陽極酸化処理して着色するから、従来にない独特な質感を呈する極めて高品位な真空断熱二重容器となり、しかも、この真空断熱二重容器の表面の独特な質感は、該真空断熱二重容器を製造する際の真空加熱炉内の冷却に用いられる窒素ガスによる窒化を利用したものであるから、確実に実現でき、前述した高品位な真空断熱二重容器を確実且つ効率良く製造することができる。   Since the present embodiment is configured as described above, the nitrided portion 10 formed on the metal surface 3c is heated and then anodized to be colored, so that the vacuum insulation with a very high quality exhibiting an unprecedented unique texture. The unique texture of the surface of this vacuum insulated double container is based on the use of nitriding with nitrogen gas used for cooling in the vacuum heating furnace when manufacturing the vacuum insulated double container. Therefore, it can be surely realized, and the above-described high-quality vacuum insulated double container can be reliably and efficiently manufactured.

また、本実施例は、窒化部10を形成しなかった内表面3bにも陽極酸化処理により着色されることで高級感を向上することができ、より一層商品価値を高めることができる。   In the present embodiment, the inner surface 3b where the nitriding portion 10 is not formed is also colored by anodizing treatment, so that a high-class feeling can be improved and the commercial value can be further enhanced.

また、本実施例は、チタン製でありながら、その表面に設けられる凹凸部4,5から成る凹凸感からあたかも陶器のようなデザインを呈する極めて高品位な(芸術性の高い)高品位で且つ同じものが二つとないという付加価値を有する真空断熱二重容器が得られることになり、しかも、この真空断熱二重容器の表面に設けられる凹凸部がチタンの再結晶を利用したものであるから、確実に実現できるものであり、前述した高品位で且つ同じものが二つとない真空断熱二重容器を確実且つ効率良く製造することができることになる。   In addition, the present embodiment is made of titanium, and has an extremely high-grade (high artistic) high-quality that exhibits a design like a pottery from the unevenness formed by the uneven portions 4 and 5 provided on the surface thereof. A vacuum insulated double container having the added value that there is no two of the same will be obtained, and the uneven part provided on the surface of this vacuum insulated double container uses recrystallization of titanium. Therefore, it is possible to reliably and efficiently manufacture the above-described high-quality vacuum insulated double container that does not have two identical ones.

また、本実施例は、被処理体3の外筒1及び内筒2を加熱することで結晶粒の大きな独特な風合いのデザイン(チタン結晶模様)が得られ、しかも、このチタン結晶模様の大きさや形状や配置等がランダムとなり、よって、前述した凹凸部4,5だけでなく様々な模様のものを意図せずとも製造することができる。実際の製造工程において再結晶しない部分も生じることになり、これがかえってオリジナルな模様として現れることになり、しかも、本実施例は加熱して常温に戻す工程を複数回繰り返し行なうから、その都度異なった部位に凹凸が形成されることになり、このことによってもオリジナルな模様が形成されることになる。   Further, in this embodiment, a unique texture design (titanium crystal pattern) with large crystal grains can be obtained by heating the outer cylinder 1 and the inner cylinder 2 of the object 3 to be processed. The sheath, shape, arrangement, and the like are random, so that not only the uneven portions 4 and 5 described above but also various patterns can be manufactured without intention. In the actual manufacturing process, a portion that does not recrystallize will also appear, and this will appear as an original pattern. In addition, in this example, the process of heating and returning to room temperature is repeated a plurality of times. Concavities and convexities are formed on the part, and this also forms an original pattern.

また、本実施例は、外筒1及び内筒2をチタン製としたから、オールチタン製とすることでより一層高級感を増すことができる。   In the present embodiment, since the outer cylinder 1 and the inner cylinder 2 are made of titanium, it is possible to further increase the sense of quality by making them all titanium.

また、本実施例は、陽極酸化被膜には抗菌作用、耐食性を向上する作用があるから、この点においても有用である。   In addition, this example is also useful in this respect because the anodized film has an action of improving antibacterial action and corrosion resistance.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

S 空間部
T 窒素ガス
1 外筒
2 内筒
6 真空加熱炉
6a 載置面
9 陽極酸化被膜
10 窒化部
S space T nitrogen gas 1 outer cylinder 2 inner cylinder 6 vacuum heating furnace
6a mounting surface 9 anodized film
10 Nitriding part

Claims (4)

チタン製の外筒内に空間部を介してチタン製の内筒を配設し、前記外筒と前記内筒との間の空間部を真空断熱空間部とする真空断熱二重容器の製造方法であって、前記外筒及び前記内筒を真空加熱炉で加熱しながら前記空間部を脱気して脱気孔を真空封止し、続いて、前記真空加熱炉内に窒素ガスを導入して前記外筒の表面に窒化部を形成し、続いて、前記窒化部を加熱処理し、続いて、前記外筒の表面を下記の陽極酸化処理して着色することを特徴とする真空断熱二重容器の製造方法。

陽極として前記外筒、陰極として通電性金属を採用し、前記外筒の表面に陽極酸化被膜を形成する処理であって、前記陽極酸化被膜の厚さを印加電圧と時間とにより適宜調整する処理。
A method for manufacturing a vacuum insulated double container in which a titanium inner cylinder is disposed in a titanium outer cylinder via a space, and the space between the outer cylinder and the inner cylinder is a vacuum heat insulating space. The space and the inner cylinder are heated in a vacuum heating furnace while the space is deaerated to vacuum seal the deaeration holes, and then nitrogen gas is introduced into the vacuum heating furnace. the nitride portion is formed on the surface of the outer cylinder, then, the nitride portion heat treatment, followed by vacuum insulated double characterized by coloring the surface of the outer cylinder and anodized below Container manufacturing method.
Record
A process of adopting the outer cylinder as the anode and a conductive metal as the cathode, and forming an anodic oxide film on the surface of the outer cylinder, and appropriately adjusting the thickness of the anodic oxide film according to the applied voltage and time .
チタン製の外筒内に空間部を介してチタン製の内筒を配設し、前記外筒と前記内筒との間の空間部を真空断熱空間部とする真空断熱二重容器の製造方法であって、前記外筒及び前記内筒を真空加熱炉で加熱しながら前記空間部を脱気して脱気孔を真空封止し、続いて、前記外筒及び前記内筒を冷却し、続いて、前記外筒及び前記内筒を前記真空加熱炉で加熱し、続いて、前記真空加熱炉内に窒素ガスを導入して前記外筒の表面に窒化部を形成し、続いて、前記窒化部を加熱処理し、続いて、前記外筒の表面を下記の陽極酸化処理して着色することを特徴とする真空断熱二重容器の製造方法。

陽極として前記外筒、陰極として通電性金属を採用し、前記外筒の表面に陽極酸化被膜を形成する処理であって、前記陽極酸化被膜の厚さを印加電圧と時間とにより適宜調整する処理。
A method for manufacturing a vacuum insulated double container in which a titanium inner cylinder is disposed in a titanium outer cylinder via a space, and the space between the outer cylinder and the inner cylinder is a vacuum heat insulating space. The outer cylinder and the inner cylinder are heated in a vacuum heating furnace and the space is deaerated to vacuum seal the deaeration holes, and then the outer cylinder and the inner cylinder are cooled. The outer cylinder and the inner cylinder are heated in the vacuum heating furnace, and then nitrogen gas is introduced into the vacuum heating furnace to form a nitriding portion on the surface of the outer cylinder, and then the nitriding A method for producing a vacuum heat insulating double container, characterized in that the part is heat-treated and then the surface of the outer cylinder is colored by the following anodizing treatment.
Record
A process of adopting the outer cylinder as the anode and a conductive metal as the cathode, and forming an anodic oxide film on the surface of the outer cylinder, and appropriately adjusting the thickness of the anodic oxide film according to the applied voltage and time .
請求項1,2いずれか1項に記載の真空断熱二重容器の製造方法において、前記内筒の開口部を閉塞した状態で前記真空加熱炉内に窒素ガスを導入して前記外筒の表面に窒化部を形成することを特徴とする真空断熱二重容器の製造方法。The method for manufacturing a vacuum insulated double container according to any one of claims 1 and 2, wherein nitrogen gas is introduced into the vacuum heating furnace with the opening of the inner cylinder closed, and the surface of the outer cylinder A method for producing a vacuum heat insulating double container, characterized in that a nitriding part is formed in 請求項3記載の真空断熱二重容器の製造方法において、前記真空加熱炉の載置面に前記内筒を逆さ状態に配して該内筒の開口部を閉塞することを特徴とする真空断熱二重容器の製造方法。4. The method for manufacturing a vacuum insulated double container according to claim 3, wherein the inner cylinder is placed upside down on the mounting surface of the vacuum heating furnace to close the opening of the inner cylinder. A method of manufacturing a double container.
JP2016000491A 2016-01-05 2016-01-05 Method for manufacturing vacuum insulated double container Active JP6295279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016000491A JP6295279B2 (en) 2016-01-05 2016-01-05 Method for manufacturing vacuum insulated double container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016000491A JP6295279B2 (en) 2016-01-05 2016-01-05 Method for manufacturing vacuum insulated double container

Publications (2)

Publication Number Publication Date
JP2017121944A JP2017121944A (en) 2017-07-13
JP6295279B2 true JP6295279B2 (en) 2018-03-14

Family

ID=59306092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016000491A Active JP6295279B2 (en) 2016-01-05 2016-01-05 Method for manufacturing vacuum insulated double container

Country Status (1)

Country Link
JP (1) JP6295279B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224698A (en) * 1986-03-26 1987-10-02 Sumitomo Metal Ind Ltd Production of fine color developed titanium material
JP2006063406A (en) * 2004-08-27 2006-03-09 Techno Kogyo Kk Method for manufacturing titanium material having highly abrasion-resistant film with interference color
JP5515030B2 (en) * 2009-12-10 2014-06-11 国立大学法人東北大学 Visible light responsive rutile titanium dioxide photocatalyst
JP5297436B2 (en) * 2010-10-30 2013-09-25 株式会社セブン・セブン Method for manufacturing vacuum insulated double container
JP2013001989A (en) * 2011-06-21 2013-01-07 Seiko Instruments Inc Decorative component, timepiece, and method for manufacturing decorative component
JP5977669B2 (en) * 2012-12-28 2016-08-24 株式会社セブン・セブン Method for manufacturing vacuum insulated double container
JP5490303B1 (en) * 2013-12-27 2014-05-14 株式会社昭和 A method for producing an edible oil deterioration preventing member and an edible oil deterioration preventing member.

Also Published As

Publication number Publication date
JP2017121944A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
TWI477657B (en) Anodized clad copper cookware
JP6295279B2 (en) Method for manufacturing vacuum insulated double container
JP5297436B2 (en) Method for manufacturing vacuum insulated double container
CN109468554A (en) The removing method of cold rolling aluminium flanging part annealing hickie
JP5977669B2 (en) Method for manufacturing vacuum insulated double container
JP4767298B2 (en) Method for manufacturing vacuum insulated double container
KR101861108B1 (en) Method for color anodizing of aluminum product and the product of thereof
CN107338403A (en) A kind of processing method and aluminum alloy battery cover plate of Al-alloy parts shaping
JPH11164784A (en) Metallic vacuum double container
JP2012097310A (en) Method of manufacturing vacuum heat insulation double container
JP2002226219A5 (en)
CN107127250A (en) The rapid prototyping stamping tool being manufactured from aluminium for unimach thermoforming
CN107739922B (en) One kind can punching press aluminium alloy extruded plate and its heat treatment method
US20070248485A1 (en) Titanium face plate for cellular phone with crystalline grain texture
CN113355631A (en) Thin iron cookware and method for forming decorative nitride layer on thin iron cookware
TW201726038A (en) Titanium vacuum insulated cup and method for manufacturing the same
JPH02200758A (en) Method for annealing extra thin titanium alloy coil
JP2021054669A (en) Production method of amorphous 6-aluminum oxide film and amorphous 6-aluminum oxide film
KR100636700B1 (en) Manufacturing method of aluminum cooking vessel
JP6343314B2 (en) Shochu storage container
JP2001123277A (en) Method for surface treating die for diecasting and same die
US1982810A (en) Magnetic material
JP2005539148A (en) Non-planar sputter target having a crystal orientation that promotes uniform adhesion of sputtered material to a substrate and method of manufacturing the target
JP2021165425A (en) Aluminum alloy composite plate to be chassis of electronic component and its manufacturing method
CH539128A (en) Surface hardening of titanium - by diffusion treatment with oxygen, nitrogen or hydrogen at low press and high temp followed by

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6295279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250