JP2012097310A - Method of manufacturing vacuum heat insulation double container - Google Patents

Method of manufacturing vacuum heat insulation double container Download PDF

Info

Publication number
JP2012097310A
JP2012097310A JP2010244846A JP2010244846A JP2012097310A JP 2012097310 A JP2012097310 A JP 2012097310A JP 2010244846 A JP2010244846 A JP 2010244846A JP 2010244846 A JP2010244846 A JP 2010244846A JP 2012097310 A JP2012097310 A JP 2012097310A
Authority
JP
Japan
Prior art keywords
vacuum
double container
manufacturing
outer cylinder
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010244846A
Other languages
Japanese (ja)
Other versions
JP5312431B2 (en
Inventor
Shuichi Shibuki
収一 澁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEVEN SEVEN KK
Seven Seven Co Ltd
Original Assignee
SEVEN SEVEN KK
Seven Seven Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEVEN SEVEN KK, Seven Seven Co Ltd filed Critical SEVEN SEVEN KK
Priority to JP2010244846A priority Critical patent/JP5312431B2/en
Priority to CN201110329264.8A priority patent/CN102551462B/en
Publication of JP2012097310A publication Critical patent/JP2012097310A/en
Application granted granted Critical
Publication of JP5312431B2 publication Critical patent/JP5312431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Packages (AREA)
  • Thermally Insulated Containers For Foods (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a vacuum heat insulation double container with a very high commercial value.SOLUTION: The method of manufacturing a vacuum heat insulation double container is such that a metal inner cylinder 2 is arranged in a metal outer cylinder 1 through a space S, and the space S between the outer cylinder 1 and the inner cylinder 2 is made a vacuum heat insulation space, and is characterized in that while heating a process object 3 consisting of the outer cylinder 1 and the inner cylinder 2 by a vacuum heating furnace, the space S of the process object 3 is deaerated, and a deaeration hole is vacuum locked, then a nitrogen gas is introduced into the vacuum heating furnace, and a nitrided part 10 is formed on a surface of the process object 3, and the nitrided part 10 is ground.

Description

本発明は、真空断熱二重容器の製造方法に関するものである。   The present invention relates to a method for manufacturing a vacuum insulated double container.

ビール等の飲料を注ぐ容器として、これまで、ガラス製、陶製等の種々の素材のものが提案されており、本出願人は特開2003−129291号に開示される金属製(チタン製)の真空断熱二重容器を提案している。   As containers for pouring beverages such as beer, various materials such as glass and ceramics have been proposed so far, and the applicant of the present invention is made of metal (made of titanium) disclosed in Japanese Patent Application Laid-Open No. 2003-129291. A vacuum insulated double container is proposed.

特開2003−129291号公報JP 2003-129291 A

本出願人は、この金属製の真空断熱二重容器について更なる研究開発を進めた結果、極めて商品価値の高い真空断熱二重容器を提供し得る画期的な製造方法を開発した。   As a result of further research and development of this metal vacuum insulated double container, the present applicant has developed an innovative manufacturing method capable of providing a vacuum insulated double container having extremely high commercial value.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

金属製の外筒1内に空間部Sを介して金属製の内筒2を配設し、前記外筒1と前記内筒2との間の空間部Sを真空断熱空間部とする真空断熱二重容器の製造方法であって、前記外筒1及び前記内筒2から成る被処理体3を真空加熱炉6で加熱しながら該被処理体3の前記空間部Sを脱気し且つ脱気孔を真空封止し、その後、前記真空加熱炉6内に窒素ガスTを導入して前記被処理体3の表面に窒化部10を形成し、この窒化部10を研磨することを特徴とする真空断熱二重容器の製造方法に係るものである。   A vacuum insulation is provided in which a metal inner cylinder 2 is disposed in a metal outer cylinder 1 through a space S, and the space S between the outer cylinder 1 and the inner cylinder 2 is a vacuum heat insulation space. In the method for manufacturing a double container, the space S of the object to be treated 3 is degassed and removed while the object to be treated 3 comprising the outer cylinder 1 and the inner cylinder 2 is heated in a vacuum heating furnace 6. The pores are vacuum-sealed, and then a nitrogen gas T is introduced into the vacuum heating furnace 6 to form a nitriding portion 10 on the surface of the object 3 to be processed, and the nitriding portion 10 is polished. The present invention relates to a method for manufacturing a vacuum insulated double container.

また、金属製の外筒1内に空間部Sを介して金属製の内筒2を配設し、前記外筒1と前記内筒2との間の空間部Sを真空断熱空間部とする真空断熱二重容器の製造方法であって、前記外筒1及び前記内筒2から成る被処理体3を真空加熱炉6で加熱しながら該被処理体3の前記空間部Sを脱気し且つ脱気孔を真空封止し、その後、前記被処理体3を冷却し、続いて、前記被処理体3を前記真空加熱炉6で加熱し、その後、前記真空加熱炉6内に窒素ガスTを導入して前記被処理体3の表面に窒化部10を形成し、この窒化部10を研磨することを特徴とする真空断熱二重容器の製造方法に係るものである。   Moreover, the metal inner cylinder 2 is arrange | positioned through the space part S in the metal outer cylinder 1, and the space part S between the said outer cylinder 1 and the said inner cylinder 2 is made into a vacuum heat insulation space part. A method for manufacturing a vacuum insulated double container, wherein the object 3 comprising the outer cylinder 1 and the inner cylinder 2 is heated in a vacuum heating furnace 6 while the space S of the object 3 is degassed. The deaeration holes are vacuum-sealed, and then the object to be processed 3 is cooled. Subsequently, the object to be processed 3 is heated in the vacuum heating furnace 6, and then the nitrogen gas T is placed in the vacuum heating furnace 6. Is applied to form a nitriding portion 10 on the surface of the object 3 to be processed, and the nitriding portion 10 is polished.

また、請求項1,2いずれか1項に記載の真空断熱二重容器の製造方法において、前記外筒1はチタン製であることを特徴とする真空断熱二重容器の製造方法に係るものである。   Moreover, in the manufacturing method of the vacuum heat insulation double container of any one of Claim 1, 2, The said outer cylinder 1 concerns on the manufacturing method of the vacuum heat insulation double container characterized by being made from titanium. is there.

また、請求項1〜3いずれか1項に記載の真空断熱二重容器の製造方法において、前記真空加熱炉6内の温度が約700℃以下になった時点で該真空加熱炉6内に窒素ガスTを導入することを特徴とする真空断熱二重容器の製造方法に係るものである。   Moreover, in the manufacturing method of the vacuum heat insulation double container of any one of Claims 1-3, when the temperature in the said vacuum heating furnace 6 becomes about 700 degrees C or less, nitrogen is contained in this vacuum heating furnace 6 The present invention relates to a method for producing a vacuum heat insulating double container characterized by introducing a gas T.

また、請求項1〜4いずれか1項に記載の真空断熱二重容器の製造方法において、前記被処理体3の開口部3aを閉塞した状態で前記真空加熱炉6内へ窒素ガスTを導入することを特徴とする真空断熱二重容器の製造方法に係るものである。   Moreover, in the manufacturing method of the vacuum heat insulation double container of any one of Claims 1-4, nitrogen gas T is introduce | transduced in the said vacuum heating furnace 6 in the state which obstruct | occluded the opening part 3a of the said to-be-processed object 3. The present invention relates to a method for manufacturing a vacuum heat insulating double container.

また、請求項1〜5いずれか1項に記載の真空断熱二重容器の製造方法において、前記研磨としてバフ研磨を採用したことを特徴とする真空断熱二重容器の製造方法に係るものである。   Moreover, in the manufacturing method of the vacuum heat insulation double container of any one of Claims 1-5, it is based on the manufacturing method of the vacuum heat insulation double container characterized by employ | adopting buffing as said grinding | polishing. .

また、請求項1〜6いずれか1項に記載の真空断熱二重容器の製造方法において、前記窒素ガスTの導入による昇圧により前記外筒1及び前記内筒2の表面に凹凸部4,5を設けることを特徴とする真空断熱二重容器の製造方法に係るものである。   Moreover, in the manufacturing method of the vacuum heat insulation double container of any one of Claims 1-6, uneven | corrugated | grooved parts 4, 5 are formed in the surface of the said outer cylinder 1 and the said inner cylinder 2 by the pressure_rising | fluctuation by the introduction of the said nitrogen gas T. It is related with the manufacturing method of the vacuum heat insulation double container characterized by providing.

本発明により得られる真空断熱二重容器は、金属表面に形成された窒化部を研磨することで得られる従来にない独特な質感を呈する極めて高品位な真空断熱二重容器となり、しかも、この真空断熱二重容器の表面に設けられる独特な質感が、該真空断熱二重容器を製造する際の真空加熱炉内の冷却に用いられる窒素ガスによる窒化を利用したものであるから、確実に実現できるものであり、前述した高品位な真空断熱二重容器を確実且つ効率良く製造することができるなど従来にない作用効果を発揮する画期的な真空断熱二重容器の製造方法となる。   The vacuum heat insulating double container obtained by the present invention becomes an extremely high quality vacuum heat insulating double container that exhibits an unprecedented unique texture obtained by polishing a nitrided portion formed on a metal surface. The unique texture provided on the surface of the heat insulating double container can be reliably realized because it uses nitridation by nitrogen gas used for cooling in the vacuum heating furnace when manufacturing the vacuum heat insulating double container. This is an epoch-making method for producing a vacuum insulated double container that exhibits unprecedented effects such as the ability to reliably and efficiently produce the above-described high-quality vacuum insulated double container.

本実施例により製造された真空断熱二重容器である。It is a vacuum heat insulation double container manufactured by the present Example. 本実施例により製造された真空断熱二重容器の平断面図である。It is a plane sectional view of the vacuum heat insulation double container manufactured by the present Example. 本実施例に係る真空断熱二重容器の製造工程説明図である。It is manufacturing process explanatory drawing of the vacuum heat insulation double container which concerns on a present Example. 被処理体3の説明断面図である。It is explanatory sectional drawing of the to-be-processed object 3. FIG. 被処理体3の説明断面図である。It is explanatory sectional drawing of the to-be-processed object 3. FIG. 本実施例に係る真空断熱二重容器の製造工程説明図である。It is manufacturing process explanatory drawing of the vacuum heat insulation double container which concerns on a present Example. 本実施例に係る真空断熱二重容器の製造工程説明図である。It is manufacturing process explanatory drawing of the vacuum heat insulation double container which concerns on a present Example.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

本発明は、外筒1及び内筒2から成る被処理体3を真空加熱炉6で加熱しながら該被処理体3の空間部Sを脱気し且つ脱気孔を真空封止し、その後、真空加熱炉6内に窒素ガスTを導入して被処理体3の表面に窒化部10を形成し、この窒化部10を研磨すると、この被処理体3の表面は、黒色に輝く独特な質感を呈する。   The present invention degass the space S of the object to be processed 3 while heating the object to be processed 3 consisting of the outer cylinder 1 and the inner cylinder 2 in the vacuum heating furnace 6 and vacuum seals the deaeration holes, Nitrogen gas T is introduced into the vacuum heating furnace 6 to form a nitriding portion 10 on the surface of the object to be processed 3, and when the nitriding portion 10 is polished, the surface of the object to be processed 3 has a unique texture that shines black. Presents.

従って、簡易な方法により、表面が黒色に輝き独特な質感を呈する今までに無い全く新しいデザインの容器を製造することができる。   Therefore, by a simple method, it is possible to manufacture a container with a completely new design that has never been seen so that the surface is black and has a unique texture.

本発明の具体的な一実施例について図面に基づいて説明する。   A specific embodiment of the present invention will be described with reference to the drawings.

本実施例は、外筒1内に空間部Sを介して内筒2を配設し、外筒1と内筒2との間の空間部Sを真空断熱空間部とする真空断熱二重容器の製造方法である。尚、本実施例では、真空断熱二重容器を、ワインやウイスキーなどのアルコール飲料を飲む際に使用するタンブラーとして構成しているが、これに限るものではない。   In the present embodiment, the inner cylinder 2 is disposed in the outer cylinder 1 via the space S, and the vacuum insulation double container having the space S between the outer cylinder 1 and the inner cylinder 2 as a vacuum insulation space. It is a manufacturing method. In the present embodiment, the vacuum insulated double container is configured as a tumbler used when drinking alcoholic beverages such as wine and whiskey, but is not limited thereto.

また、本実施例に係る外筒1及び内筒2は、図1,2に図示したように金属製(チタン製)の有底筒状体であり、内筒2は外筒1に比して径小で高さが低く設定され、また、夫々の開口部1a,2aは略同一径に設定されている。尚、外筒1及び内筒2を構成する素材はステンレスなどその他の金属でも良い。   The outer cylinder 1 and the inner cylinder 2 according to the present embodiment are metal (titanium) bottomed cylindrical bodies as shown in FIGS. 1 and 2, and the inner cylinder 2 is in comparison with the outer cylinder 1. The diameter is small and the height is set low, and the openings 1a and 2a are set to have substantially the same diameter. The material constituting the outer cylinder 1 and the inner cylinder 2 may be other metals such as stainless steel.

従って、外筒1内に内筒2を配して開口部1a,2a同士を接合した際、外筒1と内筒2との間には空間部Sが形成される。   Therefore, when the inner cylinder 2 is arranged in the outer cylinder 1 and the openings 1 a and 2 a are joined to each other, a space S is formed between the outer cylinder 1 and the inner cylinder 2.

尚、本明細書におけるチタンとは、純チタン及びチタン合金を示す。また、外筒1及び内筒2夫々の素材(成分)や板厚や大きさ(形状)は、後述する真空断熱二重容器として製造した際に、該真空断熱二重容器の機能(特に断熱機能)を低下させない程度に凹凸部4,5が形成されることを考慮して適宜選択される。   In addition, the titanium in this specification shows pure titanium and a titanium alloy. The material (component), thickness and size (shape) of each of the outer cylinder 1 and the inner cylinder 2 are the functions (particularly heat insulation) of the vacuum heat insulating double container when manufactured as a vacuum heat insulating double container described later. It is appropriately selected in consideration of the formation of the concavo-convex portions 4 and 5 to such an extent that the function) is not lowered.

また、外筒1の底部中央には凹部1bが設けられ、この凹部1bの中央位置には真空封止する際の脱気孔1b’が設けられている。   A recess 1b is provided at the center of the bottom of the outer cylinder 1, and a deaeration hole 1b 'for vacuum sealing is provided at the center of the recess 1b.

また、外筒1及び内筒2には、図1,2に図示したように後述する製造過程においてその表面に凹凸部4,5が無数に設けられている。   The outer cylinder 1 and the inner cylinder 2 are provided with an infinite number of concave and convex portions 4 and 5 on the surfaces thereof in the manufacturing process described later as shown in FIGS.

従って、この外筒1と内筒2とから成る真空断熱二重容器の表面に設けられる凹凸部4,5により、チタン製(金属製)でありながら、あたかも陶器のようなデコボコ感のあるデザインを呈することになる。   Therefore, the uneven parts 4 and 5 provided on the surface of the vacuum heat insulating double container composed of the outer cylinder 1 and the inner cylinder 2 are made of titanium (metal), but have a design that feels like a pottery. Will be presented.

以上の外筒1及び内筒2を用いた真空断熱二重容器の製造方法について説明する。   The manufacturing method of the vacuum heat insulation double container using the above outer cylinder 1 and the inner cylinder 2 is demonstrated.

先ず、外筒1内に内筒2を配して互いに開口部1a,2a同士を溶接(アルゴン溶接)により接合し、被処理体3を設ける。この被処理体3を構成する外筒1の内面と内筒2の外面との間には空間部Sが形成される。この空間部Sは後に真空処理されることで真空断熱空間部となる。   First, the inner cylinder 2 is arranged in the outer cylinder 1, the openings 1a and 2a are joined to each other by welding (argon welding), and the object to be processed 3 is provided. A space S is formed between the inner surface of the outer cylinder 1 and the outer surface of the inner cylinder 2 constituting the workpiece 3. This space part S becomes a vacuum heat insulation space part by vacuum processing later.

続いて、外筒1と内筒2との空間部Sを脱気し且つ脱気孔1b’を真空封止する。   Subsequently, the space S between the outer cylinder 1 and the inner cylinder 2 is deaerated and the deaeration hole 1b 'is vacuum-sealed.

具体的には、図3,4に図示したように被処理体3を真空過熱炉6内に配する。この際、被処理体3は開口部3aが閉塞されるように平坦な載置面6aに逆さ状態に配され、この状態で外筒1の底部に設けた脱気孔1b’の周囲にロウ材7(チタンロウ)を配するとともに、このロウ材7の上に封止板8を載せる。   Specifically, as shown in FIGS. 3 and 4, the workpiece 3 is placed in the vacuum superheated furnace 6. At this time, the object to be processed 3 is placed upside down on the flat mounting surface 6a so that the opening 3a is closed, and in this state, the brazing material is disposed around the deaeration hole 1b 'provided at the bottom of the outer cylinder 1. 7 (titanium brazing) is disposed, and a sealing plate 8 is placed on the brazing material 7.

この状態で真空加熱炉6内の温度を約800℃以上とするとともに、徐々に脱気して真空状態(10-3〜10-4Torr)とし、更に、温度を約1050℃まで上げる。 In this state, the temperature in the vacuum heating furnace 6 is set to about 800 ° C. or higher, gradually deaerated to a vacuum state (10 −3 to 10 −4 Torr), and the temperature is further increased to about 1050 ° C.

この際、ロウ材7が熔融して外筒1と封止板8が一体化して脱気孔1b’が閉塞され、外筒1と内筒2との間の空間部Sが真空状態のまま封止されて真空断熱空間部が形成される(図5参照)。   At this time, the brazing material 7 is melted, the outer cylinder 1 and the sealing plate 8 are integrated, the deaeration hole 1b ′ is closed, and the space S between the outer cylinder 1 and the inner cylinder 2 is sealed in a vacuum state. It stops and a vacuum heat insulation space part is formed (refer FIG. 5).

加熱を停止して自然冷却により真空加熱炉6内の温度が700℃よりも低い温度(約630℃〜670℃)に下がった時点で真空加熱炉6内に窒素ガスTを導入して常圧に戻し(この時点で凹凸部4,5が形成される)、一気に常温まで温度を下げて被処理体3を冷却して真空封止作業は完了する。   When the heating is stopped and the temperature in the vacuum heating furnace 6 is lowered to a temperature lower than 700 ° C. (about 630 ° C. to 670 ° C.) by natural cooling, nitrogen gas T is introduced into the vacuum heating furnace 6 and normal pressure is applied. Then, the uneven portions 4 and 5 are formed. At this time, the temperature is lowered to room temperature to cool the workpiece 3 and the vacuum sealing operation is completed.

具体的には、真空加熱炉6内の温度を約800℃以上(チタンの再結晶温度以上、且つチタンの変態点880℃(α組織からβ組織の変わる温度)を超える約1,050℃)とするとともに、真空状態(10-3〜10-4Torr)とし、この状態を15分〜20分保持する。この際、被処理体3の外筒1及び内筒2は再結晶し(α組織となり)、延性が増加する(再結晶しない部分は結晶粒が粗大化した状態となっている。)。その後、加熱を停止し、自然冷却により真空加熱炉6内の温度が約700℃以下になった時点で、真空加熱炉6内に窒素ガスTを導入して一気に常圧常温まで戻して被処理体3を急速冷却する。この加熱冷却常圧処理において、外筒1及び内筒2には凹凸部4,5が生じる。 Specifically, the temperature in the vacuum heating furnace 6 is about 800 ° C. or more (about 1,050 ° C. exceeding the recrystallization temperature of titanium and exceeding the transformation point of 880 ° C. (temperature at which the α structure is changed to the β structure)). And a vacuum state (10 −3 to 10 −4 Torr), and this state is maintained for 15 to 20 minutes. At this time, the outer cylinder 1 and the inner cylinder 2 of the workpiece 3 are recrystallized (having an α structure), and the ductility is increased (the crystal grains are coarsened in the portion that is not recrystallized). Thereafter, the heating is stopped, and when the temperature in the vacuum heating furnace 6 becomes about 700 ° C. or less due to natural cooling, nitrogen gas T is introduced into the vacuum heating furnace 6 to return to normal pressure and normal temperature at once. The body 3 is rapidly cooled. In this heating / cooling normal pressure process, the outer cylinder 1 and the inner cylinder 2 have uneven portions 4 and 5.

大気圧状況下に戻す(窒素ガスを導入する)時点を700℃よりも低い温度で行なうのは、約700℃以上の高温下においては素材が柔らか過ぎてしまい、この状態で大気圧環境下(常圧下)に戻すと外筒1及び内筒2に大きく凹む部分が生じて外筒1と内筒2とが当接してしまう部位ができてしまい、これを防止するためである。ただ、あまりにも低い温度で常圧下に戻しても凹凸は形成されにくく且つ時間がかかり過ぎてしまい、生産性が悪くなる。   The reason for returning to the atmospheric pressure state (introducing nitrogen gas) at a temperature lower than 700 ° C. is that the material is too soft at a high temperature of about 700 ° C. or higher. When the pressure is returned to normal pressure), the outer cylinder 1 and the inner cylinder 2 are largely recessed, and a portion where the outer cylinder 1 and the inner cylinder 2 come into contact with each other is formed. This is to prevent this. However, even if the pressure is returned to normal pressure at a too low temperature, the unevenness is hardly formed and it takes too much time, resulting in poor productivity.

この大気圧環境下の真空加熱炉6内におかれた外筒1及び内筒2は、その表面にはくっきりとした大きな凹凸部4,5が無数に形成され(図5参照)、窒素ガスTの導入により常温に戻ってこの凹凸部4,5は固定される。   The outer cylinder 1 and the inner cylinder 2 placed in the vacuum heating furnace 6 under the atmospheric pressure environment have countless large uneven portions 4 and 5 formed on the surface (see FIG. 5), and nitrogen gas With the introduction of T, the concavo-convex portions 4 and 5 are fixed by returning to normal temperature.

また、図示していないが、この真空封止作業の際には、予め各被処理体3にはカバー体が被嵌されており、窒素ガスTを用いた急速冷却の際には、各被処理体3が窒素ガスTに触れないようにしている。この真空封止作業の際に被処理体3にカバー体を被嵌するのは、ロウ材7としてチタンロウを採用した場合、高温化で窒素ガスTに触れるとロウ材としての性能が急激に低下してしまうからであり、ロウ材7が窒素ガスTに触れないようにする為である。尚、被処理体3に窒化部10を形成しないように冷却する場合にはアルゴンガスを用いても良い。   Although not shown, a cover body is previously fitted to each object 3 during this vacuum sealing operation, and each object is covered during rapid cooling using nitrogen gas T. The treatment body 3 is prevented from touching the nitrogen gas T. In the vacuum sealing operation, the cover body is fitted to the object 3 to be processed. When a titanium brazing material is used as the brazing material 7, when the nitrogen gas T is touched at a high temperature, the performance as the brazing material sharply decreases. This is because the brazing material 7 does not touch the nitrogen gas T. Note that argon gas may be used when the object to be processed 3 is cooled so as not to form the nitriding portion 10.

続いて、真空封止作業が済んだ被処理体3の表面に窒化部10(窒化層・窒化皮膜)を形成する。   Subsequently, a nitride portion 10 (nitride layer / nitride film) is formed on the surface of the workpiece 3 that has been vacuum-sealed.

具体的には、真空加熱炉6内で、被処理体3をカバー体で被嵌されない状態とし、この状態で前述と同様に加熱するとともに窒素ガスTを用いて急速冷却すると、被処理体3の表面には、窒素ガスTに触れることで窒化部10が形成される。この窒化部10は黒色でつや消し状態である。尚、被処理体3の内面(内筒2の内面)は、窒素ガスTに触れない為に窒化せず、素材(チタン)が持つ色に輝く質感を呈する(図1参照)。   Specifically, in the vacuum heating furnace 6, the object to be processed 3 is not covered with the cover body, and when heated in the same manner as described above and rapidly cooled using the nitrogen gas T, the object to be processed 3 is obtained. A nitriding portion 10 is formed on the surface of the substrate by touching the nitrogen gas T. The nitriding portion 10 is black and frosted. Note that the inner surface of the object to be processed 3 (the inner surface of the inner cylinder 2) is not nitrided because it does not touch the nitrogen gas T, and exhibits a texture shining in the color of the material (titanium) (see FIG. 1).

続いて、被処理体3の窒化部10を研磨して完成する。   Subsequently, the nitriding portion 10 of the workpiece 3 is polished and completed.

具体的には、本実施例では、図7に図示したように被処理体3の表面に形成された窒化部10をバフ研磨(高速回転するバフ9に被処理体3の表面を押し当てて磨く加工)しており、この窒化部10を研磨した後の被処理体3の表面は、黒色(濃度が薄い黒色)に輝く独特な質感を呈する。   Specifically, in this embodiment, as shown in FIG. 7, the nitriding portion 10 formed on the surface of the object 3 is buffed (the surface of the object 3 is pressed against the buff 9 rotating at high speed). The surface of the object 3 to be processed after the nitriding portion 10 has been polished exhibits a unique texture that shines in black (light density is black).

尚、本実施例では、凹部4,5を良好に形成すべく、窒化部10の研磨を行うよりも前に、被処理体3を加熱した後に冷却する加熱冷却常圧処理を複数回(合計2回)行っているが、真空封止作業の際の1回のみとしても良い。この場合、被処理体3にカバー体を被嵌しない状態で行われ、真空封止作業と窒化部10の形成作業とが同時に行われる。   In this embodiment, in order to form the recesses 4 and 5 satisfactorily, the heating / cooling normal pressure treatment for cooling the workpiece 3 after heating is performed a plurality of times (total) before the nitriding portion 10 is polished. 2 times), but only once during the vacuum sealing operation. In this case, the process is performed in a state in which the cover body is not fitted to the object 3 to be processed, and the vacuum sealing operation and the forming operation of the nitriding unit 10 are performed simultaneously.

本実施例は上述のように構成したから、チタン表面に形成された窒化部10を研磨することで得られる従来にない独特な質感を呈する極めて高品位な真空断熱二重容器が得られることになり、しかも、この真空断熱二重容器の表面に設けられる独特な質感が、該真空断熱二重容器を製造する際の真空加熱炉内を冷却する際の窒素ガスによる窒化を利用したものであるから、確実に実現できるものであり、前述した高品位な真空断熱二重容器を確実且つ効率良く製造することができる。   Since the present embodiment is configured as described above, it is possible to obtain an extremely high-quality vacuum insulated double container that exhibits an unprecedented unique texture obtained by polishing the nitride portion 10 formed on the titanium surface. In addition, the unique texture provided on the surface of the vacuum insulated double container utilizes nitridation by nitrogen gas when cooling the inside of the vacuum heating furnace when manufacturing the vacuum insulated double container. Therefore, the high-quality vacuum insulated double container described above can be reliably and efficiently manufactured.

また、本実施例は、チタン製でありながら、その表面に設けられる凹凸部4,5から成る凹凸感からあたかも陶器のようなデザインを呈する極めて高品位な(芸術性の高い)高品位で且つ同じものが二つとないという付加価値を有する真空断熱二重容器が得られることになり、しかも、この真空断熱二重容器の表面に設けられる凹凸部がチタンの再結晶を利用したものであるから、確実に実現できるものであり、前述した高品位で且つ同じものが二つとない真空断熱二重容器を確実且つ効率良く製造することができることになる。   In addition, the present embodiment is made of titanium, and has an extremely high-grade (high artistic) high-quality that exhibits a design like a pottery from the unevenness formed by the uneven portions 4 and 5 provided on the surface thereof. A vacuum insulated double container having the added value that there is no two of the same will be obtained, and the uneven part provided on the surface of this vacuum insulated double container uses recrystallization of titanium. Therefore, it is possible to reliably and efficiently manufacture the above-described high-quality vacuum insulated double container that does not have two identical ones.

また、本実施例は、被処理体3の外筒1及び内筒2を加熱することで結晶粒の大きな独特な風合いのデザイン(チタン結晶模様)が得られ、しかも、このチタン結晶模様の大きさや形状や配置等がランダムとなり、よって、前述した凹凸部4,5だけでなく様々な模様のものを意図せずとも製造することができる。実際の製造工程において再結晶しない部分も生じることになり、これがかえってオリジナルな模様として現れることになり、しかも、本実施例は加熱して常温に戻す工程を複数回繰り返し行なうから、その都度異なった部位に凹凸が形成されることになり、このことによってもオリジナルな模様が形成されることになる。   Further, in this embodiment, a unique texture design (titanium crystal pattern) with large crystal grains can be obtained by heating the outer cylinder 1 and the inner cylinder 2 of the object 3 to be processed. The sheath, shape, arrangement, and the like are random, so that not only the uneven portions 4 and 5 described above but also various patterns can be manufactured without intention. In the actual manufacturing process, a portion that does not recrystallize will also appear, and this will appear as an original pattern. In addition, in this example, the process of heating and returning to room temperature is repeated a plurality of times. Concavities and convexities are formed on the part, and this also forms an original pattern.

また、本実施例は、外筒1だけでなく内筒2もチタン製としたから、オールチタン製とすることでより一層高級感を増すことができる。   Further, in the present embodiment, not only the outer cylinder 1 but also the inner cylinder 2 is made of titanium, so that the quality can be further enhanced by making it all titanium.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   The present invention is not limited to the present embodiment, and the specific configuration of each component can be designed as appropriate.

S 空間部
T 窒素ガス
1 外筒
2 内筒
3 被処理体
3a 開口部
4 凹凸部
5 凹凸部
6 真空加熱炉
10 窒化部
S space part T nitrogen gas 1 outer cylinder 2 inner cylinder 3 to-be-processed object 3a opening part 4 uneven part 5 uneven part 6 vacuum heating furnace
10 Nitriding part

Claims (7)

金属製の外筒内に空間部を介して金属製の内筒を配設し、前記外筒と前記内筒との間の空間部を真空断熱空間部とする真空断熱二重容器の製造方法であって、前記外筒及び前記内筒から成る被処理体を真空加熱炉で加熱しながら該被処理体の前記空間部を脱気し且つ脱気孔を真空封止し、その後、前記真空加熱炉内に窒素ガスを導入して前記被処理体の表面に窒化部を形成し、この窒化部を研磨することを特徴とする真空断熱二重容器の製造方法。   A method for manufacturing a vacuum insulated double container in which a metal inner cylinder is disposed in a metal outer cylinder via a space, and the space between the outer cylinder and the inner cylinder is a vacuum heat insulating space. The process object comprising the outer cylinder and the inner cylinder is heated in a vacuum heating furnace to degas the space of the process object and vacuum seal the deaeration holes, and then the vacuum heating A method for producing a vacuum insulated double container, wherein nitrogen gas is introduced into a furnace to form a nitriding portion on the surface of the object to be processed, and the nitriding portion is polished. 金属製の外筒内に空間部を介して金属製の内筒を配設し、前記外筒と前記内筒との間の空間部を真空断熱空間部とする真空断熱二重容器の製造方法であって、前記外筒及び前記内筒から成る被処理体を真空加熱炉で加熱しながら該被処理体の前記空間部を脱気し且つ脱気孔を真空封止し、その後、前記被処理体を冷却し、続いて、前記被処理体を前記真空加熱炉で加熱し、その後、前記真空加熱炉内に窒素ガスを導入して前記被処理体の表面に窒化部を形成し、この窒化部を研磨することを特徴とする真空断熱二重容器の製造方法。   A method for manufacturing a vacuum insulated double container in which a metal inner cylinder is disposed in a metal outer cylinder via a space, and the space between the outer cylinder and the inner cylinder is a vacuum heat insulating space. The object to be processed comprising the outer cylinder and the inner cylinder is heated in a vacuum heating furnace to deaerate the space of the object to be processed and the deaeration holes are vacuum-sealed, and then the object to be processed The body is cooled, and then the object to be processed is heated in the vacuum heating furnace, and then a nitrogen gas is introduced into the vacuum heating furnace to form a nitriding portion on the surface of the object to be processed. A method for producing a vacuum insulated double container, characterized by polishing a part. 請求項1,2いずれか1項に記載の真空断熱二重容器の製造方法において、前記外筒はチタン製であることを特徴とする真空断熱二重容器の製造方法。   The method for manufacturing a vacuum insulated double container according to any one of claims 1 and 2, wherein the outer cylinder is made of titanium. 請求項1〜3いずれか1項に記載の真空断熱二重容器の製造方法において、前記真空加熱炉内の温度が約700℃以下になった時点で該真空加熱炉内に窒素ガスを導入することを特徴とする真空断熱二重容器の製造方法。   In the manufacturing method of the vacuum heat insulation double container of any one of Claims 1-3, when the temperature in the said vacuum heating furnace becomes about 700 degrees C or less, nitrogen gas is introduce | transduced in this vacuum heating furnace. A method for producing a vacuum insulated double container characterized by the above. 請求項1〜4いずれか1項に記載の真空断熱二重容器の製造方法において、前記被処理体の開口部を閉塞した状態で前記真空加熱炉内へ窒素ガスを導入することを特徴とする真空断熱二重容器の製造方法。   In the manufacturing method of the vacuum heat insulation double container of any one of Claims 1-4, nitrogen gas is introduce | transduced in the said vacuum heating furnace in the state which obstruct | occluded the opening part of the said to-be-processed object. A method for manufacturing a vacuum insulated double container. 請求項1〜5いずれか1項に記載の真空断熱二重容器の製造方法において、前記研磨としてバフ研磨を採用したことを特徴とする真空断熱二重容器の製造方法。   The manufacturing method of the vacuum heat insulation double container of any one of Claims 1-5 WHEREIN: Buffing was employ | adopted as the said grinding | polishing. 請求項1〜6いずれか1項に記載の真空断熱二重容器の製造方法において、前記窒素ガスの導入による昇圧により前記外筒及び前記内筒の表面に凹凸部を設けることを特徴とする真空断熱二重容器の製造方法。   In the manufacturing method of the vacuum heat insulation double container of any one of Claims 1-6, an uneven | corrugated | grooved part is provided in the surface of the said outer cylinder and the said inner cylinder by the pressurization by introduction | transduction of the said nitrogen gas, The vacuum characterized by the above-mentioned. A method of manufacturing an insulated double container.
JP2010244846A 2010-10-30 2010-10-30 Method for manufacturing vacuum insulated double container Active JP5312431B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010244846A JP5312431B2 (en) 2010-10-30 2010-10-30 Method for manufacturing vacuum insulated double container
CN201110329264.8A CN102551462B (en) 2010-10-30 2011-10-26 The manufacture method of vacuum thermal-insulation double-layer container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244846A JP5312431B2 (en) 2010-10-30 2010-10-30 Method for manufacturing vacuum insulated double container

Publications (2)

Publication Number Publication Date
JP2012097310A true JP2012097310A (en) 2012-05-24
JP5312431B2 JP5312431B2 (en) 2013-10-09

Family

ID=46389554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244846A Active JP5312431B2 (en) 2010-10-30 2010-10-30 Method for manufacturing vacuum insulated double container

Country Status (2)

Country Link
JP (1) JP5312431B2 (en)
CN (1) CN102551462B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128434A (en) * 2012-12-28 2014-07-10 Seven Seven:Kk Method for manufacturing vacuum insulation double container
CN108888053A (en) * 2018-07-18 2018-11-27 台州市泰澄电子科技有限公司 A kind of pure titanium metal vacuum cup and its manufacturing process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111629979A (en) * 2018-01-26 2020-09-04 松下知识产权经营株式会社 Coating film for vacuum container, coating liquid, and vacuum heat-insulating container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895863A (en) * 1972-03-21 1973-12-08
JPH06299318A (en) * 1993-04-08 1994-10-25 Citizen Watch Co Ltd Method for finishing titanium ornament
JP2001301400A (en) * 2000-04-19 2001-10-31 Citizen Watch Co Ltd Base material having hard decoration film and manufacturing method for the same
JP2010069254A (en) * 2008-09-22 2010-04-02 Seven Seven:Kk Manufacturing method of vacuum insulation double wall container

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672489A1 (en) * 1994-03-18 1995-09-20 Asulab S.A. Titanium based article with high hardness and high gloss process for preparing and process for hardening and colouring the surface of this article
CN1185724A (en) * 1996-02-09 1998-06-24 日本酸素株式会社 Heat accumulating pan and heat insulation cooking container
JP3996370B2 (en) * 2001-10-24 2007-10-24 株式会社セブン・セブン Titanium container and method for producing titanium beverage container
US7431777B1 (en) * 2003-05-20 2008-10-07 Exxonmobil Research And Engineering Company Composition gradient cermets and reactive heat treatment process for preparing same
CN101518410B (en) * 2009-03-19 2013-12-18 严卫星 Fabricating method of stainless cast iron cooker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895863A (en) * 1972-03-21 1973-12-08
JPH06299318A (en) * 1993-04-08 1994-10-25 Citizen Watch Co Ltd Method for finishing titanium ornament
JP2001301400A (en) * 2000-04-19 2001-10-31 Citizen Watch Co Ltd Base material having hard decoration film and manufacturing method for the same
JP2010069254A (en) * 2008-09-22 2010-04-02 Seven Seven:Kk Manufacturing method of vacuum insulation double wall container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128434A (en) * 2012-12-28 2014-07-10 Seven Seven:Kk Method for manufacturing vacuum insulation double container
CN108888053A (en) * 2018-07-18 2018-11-27 台州市泰澄电子科技有限公司 A kind of pure titanium metal vacuum cup and its manufacturing process

Also Published As

Publication number Publication date
CN102551462A (en) 2012-07-11
CN102551462B (en) 2015-11-18
JP5312431B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5312431B2 (en) Method for manufacturing vacuum insulated double container
CN103691953B (en) The manufacture method of the manufacture method of tungsten titanium target material and tungsten titanium target material combination
US6835348B2 (en) Method and device for producing open type polymide moldings, and base material for reflective bodies in lighting equipment
JP5297436B2 (en) Method for manufacturing vacuum insulated double container
JPWO2018128160A1 (en) Alloy member and surface hardening method thereof
JP4767298B2 (en) Method for manufacturing vacuum insulated double container
CN113210832A (en) Diffusion welding method for aluminum-scandium alloy target
JP7074715B2 (en) Heat dissipation device
JP7419233B2 (en) SiC wafer manufacturing method
JP5977669B2 (en) Method for manufacturing vacuum insulated double container
JP6947444B1 (en) Titanium metal member obtained by the surface treatment method of titanium metal member and the surface treatment method of titanium metal member.
WO2018128160A1 (en) Alloy member and method for hardening surface thereof
JP2009516130A (en) Surface treatment process for pump ceramic seal ring and ring obtained by the above process
JP6295279B2 (en) Method for manufacturing vacuum insulated double container
TWI569761B (en) Titanium vacuum insulated cup and method for manufacturing the same
TWI674947B (en) Polishing pad, manufacturing method of polishing pad and polishing method
RU2354632C2 (en) Method of ceramics metallisation
TWI827089B (en) Gas quench for diffusion bonding
JP2739196B2 (en) Diamond dies and method of manufacturing the same
TW201903347A (en) Heat dissipation device and manufacturing method thereof
CH539128A (en) Surface hardening of titanium - by diffusion treatment with oxygen, nitrogen or hydrogen at low press and high temp followed by
JP3581639B2 (en) Manufacturing method of titanium vacuum insulated double container
JPH08219656A (en) Hot isotropic pressure pressurizing vessel
JP6506093B2 (en) Ceramic structure and method of manufacturing ceramic structure
KR101231330B1 (en) Method for manufacturing sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250