JP6342501B2 - 測定ギャップパターン - Google Patents

測定ギャップパターン Download PDF

Info

Publication number
JP6342501B2
JP6342501B2 JP2016547069A JP2016547069A JP6342501B2 JP 6342501 B2 JP6342501 B2 JP 6342501B2 JP 2016547069 A JP2016547069 A JP 2016547069A JP 2016547069 A JP2016547069 A JP 2016547069A JP 6342501 B2 JP6342501 B2 JP 6342501B2
Authority
JP
Japan
Prior art keywords
measurement gap
frequency
measurement
inter
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016547069A
Other languages
English (en)
Other versions
JP2017503437A (ja
Inventor
ターン,ヤーン
イーウ,キャンディ
ホワーン,ルイ
ジャーン,ユイジエン
Original Assignee
インテル アイピー コーポレイション
インテル アイピー コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インテル アイピー コーポレイション, インテル アイピー コーポレイション filed Critical インテル アイピー コーポレイション
Publication of JP2017503437A publication Critical patent/JP2017503437A/ja
Application granted granted Critical
Publication of JP6342501B2 publication Critical patent/JP6342501B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

無線モバイル通信技術は、様々な規格及びプロトコルを使用して、ノード(たとえば、送信局)と無線装置(たとえば、モバイル装置)との間でデータを送信する。いくつかの無線装置は、ダウンリンク(DL)送信の際には、直交周波数分割多元接続(OFDMA)を使用し、アップリンク(UL)送信の際には、単一キャリア周波数分割多元接続(SC−FDMA)を使用して通信する。信号送信に直交周波数分割多重化(OFDM)を使用する規格及びプロトコルには、第3世代パートナーシッププロジェクト(3GPP)ロングタームエボリューション(LTE)、WiMAX(Worldwide interoperability for Microwave Access)として業界団体には一般的に知られているInstitute of Electrical and Electronics Engineers(IEEE)802.16規格(たとえば、802.16e、802.16m)、及びWiFiとして業界団体には一般的に知られているIEEE802.11規格が含まれる。
3GPP無線アクセスネットワーク(RAN)LTEシステムにおいては、ノードは、進化型ユニバーサル地上波無線接続ネットワーク(E−UTRAN)ノードB(進化型ノードB、拡張型ノードB、eノードB、又はeNBとも一般に示される)と、無線ネットワークコントローラ(RNC)との組合せとすることができ、ユーザ装置(user equipment:UE)として知られている無線装置と通信する。ダウンリンク(DL)送信は、ノード(たとえば、eノードB)から無線装置(たとえば、UE)への通信とすることができ、アップリンク(UL)送信は、無線装置からノードへの通信とすることができる。
同種ネットワークにおいては、マクロノードとも呼ばれるノードは、セルの中の無線装置に対する基本的なワイヤレスカバレッジを提供することができる。セルは、無線装置が、マクロノードとその中で通信するように動作可能なエリアとすることができる。異種ネットワーク(Heterogeneous network:HetNet)は、無線装置の増加した使用量及び機能に起因したマクロノードにおける増加したトラフィック負荷に対処するために使用され得る。HetNetは、計画された高電力マクロノード(又はマクロeNB)の層を含むことができ、この層には、マクロノードのカバレッジエリア(セル)内であまりよく計画されていない、又は全く調整されていない形にさえも配備され得る、より低い電力ノード(スモールeNB、マイクロeNB、ピコeNB、フェムトeNB、若しくはホームeNB(HeNB))の層が重なっている。より低い電力ノード(lower power nodes:LPN)は、一般に、「低電力ノード」、スモールノード、又はスモールセルと称される場合がある。
LTEにおいては、データは、物理ダウンリンク共用チャネル(PDSCH)を介してeノードBからUEに送信可能である。物理アップリンク制御チャネル(PUCCH)は、データが受信済みであることを確認するために使用され得る。ダウンリンク及びアップリンクのチャネル又は送信は、時分割複信(time−division duplexing:TDD)、又は周波数分割複信(frequency−division duplexing:FDD)を使用し得る。
本開示の特徴及び利点は、後に続く詳細な説明と、本開示の特徴を例としてともに示す添付の図面と併せて解釈されることにより明らかになろう。
例による、定義済みの周波数層をそれぞれが有する複数のセルについての測定ギャップを示す図である。 例による、複数の測定ギャップパターンを構成するための進化型ノードB(eNB)とユーザ装置(UE)との間の信号伝達を示す図である。 例による、ユーザ装置(UE)についての複数の測定ギャップパターンを示す図である。 例による、ユーザ装置(UE)についての複数の測定ギャップパターンを示す図である。 例による、様々な時間のユーザ装置(UE)についての複数の測定ギャップパターンを示す図である。 例による、様々な時間のユーザ装置(UE)についての複数の測定ギャップパターンを示す図である。 例による、様々な時間のユーザ装置(UE)についての複数の測定ギャップパターンを示す図である。 例による、ユーザ装置(UE)についての複数の測定ギャップパターンを示す図である。 例による、ユーザ装置(UE)についての複数の測定ギャップパターンを示す図である。 例による、測定ギャップパターンを構成するように動作可能な進化型ノードB(eNB)の機能を描く図である。 例による、周波数間測定を行うように構成されたユーザ装置(UE)の機能を描く図である。 例による、測定ギャップパターンを構成するための方法の流れ図を描く図である。 例による、無線装置(たとえば、UE)を示す略図である。
次に、図示される例示的な実施形態が参照され、これを説明するために本明細書においては、特定の文言が使用されることになる。にもかかわらず、それによって、本発明の範囲を限定することを意図するものが何もないことは理解されよう。
本発明が開示され、説明される前に、本発明が、本明細書において開示される特定の構造、方法ステップ、又は材料に限定されるのではなく、当業者によって認識されるであろうようにその等価物にまで拡張されることを理解されたい。また、本明細書において採用される専門用語は、特定の例を説明する目的のためにのみ使用されるにすぎず、限定しているように意図していないことも理解すべきである。異なる図面の中の同じ参照符号は、同じ要素を表している。流れ図及び方法の中に与えられる番号は、図示するステップ及び動作において明瞭にするために与えられており、必ずしも特定の順番又は順序を示しているわけではない。
例示的な実施形態
技術的実施形態の最初の概観が、以下に与えられ、次いで、特定の技術的実施形態が、その後にさらに詳細に説明される。この最初の概要は、本技術をより迅速に理解する際に役立つように意図されているのであって、本技術の主要な特徴若しくは基本的な特徴を特定するようにも、又は特許請求される主題の範囲を限定するようにも意図していない。
ユーザ装置(UE)についての複数の測定ギャップパターン(gap pattern)を構成するための技術が説明される。複数の測定ギャップパターンは、進化型ノードB(eNB)によって生成可能であり、次いで、UEは、複数の測定ギャップパターンにより構成可能である。1つの例においては、複数の測定ギャップパターンは、UEにおいて、1つ以上の受信(Rx)チェーンの中でスケジューリング可能である。UEは、キャリアアグリゲーション(carrier aggregation:CA)をサポートするように構成可能である。そのため、UEは、隣接バンド(band)内CA構成、又はバンド間CA構成のいずれかにおいて、2つ以上のキャリアの同時受信をサポートすることができる。言い換えれば、UEは、種々のRF周波数においてデータを受信することができる。加えて、UEは、バンド内で非隣接(non−contiguous:NC)キャリアをサポートすることができる。本明細書において説明される本技術においては、UEがキャリアアグリゲーションをサポートするという理由から、UEは、複数のRxチェーン(又はRFチェーン)について複数の測定ギャップパターンを実装することができる。
1つの例においては、各測定ギャップパターンは、UEが選定済みのセルについて周波数間測定を行う間の定義済みの時間期間内での連続サブフレームの少なくとも1つの組を示すことができる。周波数間チャネル測定は、周波数間及び無線間アクセス技術(inter−RAT)測定とも称される場合がある。選定済みのセルは、セルのグループ内にあることができ、ここで、グループの中の各セルは、別個の周波数層において動作し、特定の測定ギャップパターンを使用して測定される。選定済みのセルについての周波数間測定は、参照信号受信電力(reference signal received power:RSRP)測定、又は参照信号受信品質(reference signal received quality:RSRQ)測定とすることができる。そのため、UEは、複数の測定ギャップパターンに従って、セルのグループ内の(別の周波数層においてそれぞれ動作する)選定済みのセルについて周波数間測定を行うことができる。UEが周波数間測定を行うセルのグループは、キャリアアグリゲーション、又はデータオフローディングに使用され得る。
限定しない例として、第1の測定ギャップパターンは、UEに、80サブフレームごとに5連続サブフレームの組を使用して、第1の選定済みのセルについて周波数間測定を行うように指示することができる。第2の測定ギャップパターンは、UEに、40サブフレームごとに3連続サブフレームの組を使用して、第2の選定済みのセルについて周波数間測定を行うように指示することができる。第1の選定済みのセル及び第2の選定済みのセルはそれぞれ、別の周波数層において動作することができる。したがって、UEは、別の測定ギャップパターンに従って、第1のセル及び第2のセルを測定することができる。言い換えれば、UEは、複数の測定ギャップパターンに基づいて、複数のセル(別の周波数層においてそれぞれ)について周波数間測定を同時に行うことができる。
1つの構成においては、UEが選定済みのセルについて周波数間測定を行う間の定義済みの時間期間は、測定ギャップ繰返し期間(measurement gap repetition period:MGRP)と称される場合がある。MGRPは、40ミリ秒(ms)、80ms、120ms、160ms、200ms、又は240msとすることができる。1サブフレームは、1msに対応することができ、したがって、40msは、40サブフレームに対応し、80msは、80サブフレームに対応する、などである。したがって、UEは、40秒ごとに、80秒ごとになど、周期的に、選定済みのセルについて周波数間測定を行うことができる。加えて、MGRPは、周波数間測定の目的に基づいて可変であってよい。たとえば、目的がセル識別向けである場合、UEは、40サブフレームごとに、第1のセルについて周波数間測定を行うことができる。一方、目的がセル測定向けである場合、UEは、80サブフレームごとに、第2のセルについて周波数間測定を行うことができる。別の例においては、UEが選定済みのセルについて周波数間測定を行う間の測定ギャップ長さ(measurement gap length:MGL)は、UEが選定済みのセルについて周波数間測定を行うときに検出される同期化シンボルの位置に基づいて可変である。MGLは、UEが選定済みのセルについて周波数間測定を行う間の定義済みの時間期間内での連続サブフレームの組と対応することができる。1つの例においては、MGLは、1ミリ秒(ms)から5msにまで及ぶことができる。言い換えれば、UEは、選定済みのセルについて周波数間測定を行うのに(定義済みの時間期間のうち)1〜5msを費やし得る。別の例においては、セルのグループ内の選定済みのセルは、マクロセル、マイクロセル、ピコセル、又はフェムトセルを含むことができる。
3GPPのLTE仕様の以前のリリースによれば、UEは、周波数間、又は無線間アクセス技術(RAT間)の測定を行うことができる。UEは、定義済みの周波数(たとえば、周波数0)において動作するセルによってサービス提供され得るが、他の周波数層において動作する他のセルのチャネル品質を周期的にモニタリングすることができる。UEが別のセルのチャネル品質をモニタリングするとき、UEは、測定が行われるセルに合うようにその周波数を切り替える。たとえば、周波数1において動作する別のセルについて測定を行うには、UEは、それ自体のデフォルト周波数(たとえば周波数0)を周波数1に一時的に切り替えて、周波数1において動作する他のセルについて測定を行わなくてはならない。UEが他のセルについての測定を完了するとき、UEは、デフォルト周波数(たとえば、周波数0)に戻すことができ、又は別のセルに関連付けられるさらなる別の周波数(たとえば、周波数2)に切り替えて、追加の測定を行うことができる。1つの例においては、他のセルは、一定の状況において(たとえば、データオフローディングのために)、UEに近接していても、及び/又はUEによって使用されてもよい。UEによって測定されるチャネル品質は、参照信号受信電力(RSRP)測定、及び/又は参照信号受信品質(RSRQ)測定を含むことができる。RSRP測定及びRSRQ測定は、他の周波数層において動作する他のセルからの信号強度を示すことができる。
UEが周波数間セル及びRAT間セルの測定を行うとき、UEは、その受信機を異なるキャリア周波数に合わせることができる。たとえば、UEは、受信(Rx)キャリア周波数を、デフォルト周波数(たとえば、サービングセルの周波数0)から、測定すべきセルに対応する別の周波数に切り替えることができる。周波数間測定又はRAT間測定は、すべてのサブキャリアにおけるアップリンク及びダウンリンクのデータ送信の際に一定の休止を構成することによって、並びにUEが休止期間において周波数間測定又はRAT間測定を行うことができるようにすることによって促進され得る。送信の際のそのような休止期間又はギャップは、測定ギャップと呼ばれる。UEは、周波数内セルを測定するのにいずれの測定ギャップも必要としない。測定ギャップ中に、UEは、いずれのデータも送信せず、又はUEは、サウンディング基準信号(SRS)、CQI/PMI/RI及びHARQフィードバックを送信することもしない。測定ギャップにおいてリソースを割り当てるアップリンク付与がある場合には、UEは、その付与を処理するが、UEは、割り当てられたアップリンクリソースにおいての送信はしない。UEはまた、測定ギャップの直後には、サブフレームにおいての送信をしない。
レガシーシステムにおいては、UEは、信号Rxを使用して動作する。UEが複数の周波数において複数のセルについて測定を行うべきである場合には、UEは、無線周波数(RF)チェーン間で切り替えなくてはならない。RFチェーンは、1つ以上のセルが動作する定義済みの周波数を示すことができる。言い換えれば、種々のRFチェーン間で切り替えることによって、UEは、測定を行うために種々の周波数間で切り替えている。例として、UEが周波数1において動作するセルの測定を行うために、周波数0から周波数1に切り替える場合には、UEは、この期間(すなわち、測定ギャップ)中に、周波数0に関するデータを受信することができない。言い換えれば、レガシーシステムにおいては、UEは、周波数1についての測定を行っているとき、周波数0に関するデータを受信することができない。結果として、周波数0はサービングセルが位置している周波数であるので、UEの実行は、周波数0において影響を受ける可能性がある。言い換えれば、周波数0は、データがUEにおいて送信又は受信される一次周波数とすることができる。
3GPPのLTE仕様の以前のリリースによれば、UEは、周波数間測定を行うために、40ms当たり6msについて、異なる周波数(すなわち、サービングセル周波数以外の周波数)に切り替えることができる。言い換えれば、UEは、異なる周波数(たとえば、周波数1)において、40ms中6msを費やし得る。代替としては、UEは、周波数間測定を行うために、別の周波数において、80ms当たり6msを費やし得る。UEがLTEキャリア(たとえば、周波数1)を測定するとき、UEは、6ms長さギャップにおいて、プライマリ同期信号(Primary Synchronization Signal:PSS)及びセカンダリ同期信号(Secondary Synchronization Signal:SSS)を、PSSとSSSとが5msごとに繰り返すように取り込むことができる。また、6ms長さ測定ギャップは、チャネル推定に十分なセル固有の参照シンボルを含む。6ms長さ測定ギャップは、UEが、異なるLTEキャリア(たとえば、周波数1)に合わせるため、及びサービングLTEキャリア(たとえば、周波数0)に戻るためのマージンを含む。
測定ギャップ中に、UEは、RAT間測定を行うことができ、それは、LTEネットワークの中のUEが、たとえば、3Gネットワーク、符号分割多元接続(CDMA)ネットワーク、進化型ユニバーサル地上波無線接続ネットワーク(E−UTRAN)などについてのチャネル状態をモニタリングするときに行われる。UEがこれらの測定を行う間の時間期間は、測定ギャップと称される。そのため、以前のバージョンにおいては、測定ギャップは、40ms又は80ms当たり6msであると定義付けられ得る。測定ギャップ中に、UEは、利用可能なリソースを使用して、周波数間測定を行うことができる。概して、ネットワークは、最初、UEについての測定ギャップパターンをスケジューリングすることができ、次いで、UEは、定義済みの継続時間の残りの間、その同じ測定ギャップパターンが、繰り返してスケジューリングされることを求める。UEは、ネットワークが既存の測定ギャップパターンを変更するように追加の信号伝達を送るとき、新規測定ギャップを実装することができる。
したがって、以前のバージョンにおいては、UEは、概して、6ms測定ギャップが、40ms又は80msごとに実質的にいつでも生じることを求める。先に説明したように、UEは、この測定ギャップ(すなわち、6ms期間)中に、アップリンク(UL)又はダウンリンク(DL)の送信を行わない。UEが測定を行うのに40ms中6msを費やさざるを得ないとき、(すなわち、UEは、この時間中に、UL又はDLにおいて通信しないので)利用可能なリソースのうちの約15%が、そのような測定に使用されている。この15%は、UEスケジューリングに使用され得ない。結果として、UEのスループットは、UEが測定を実行することに起因として悪影響を受ける可能性がある。
1つの構成においては、UEは、キャリアアグリゲーションをサポートすることができる。キャリアアグリゲーションの際に、UEは、複数のバンド又はセルから信号を同時に受信することができる。キャリアアグリゲーションは、帯域幅と、それによってビットレートとを増加させるのに使用され得る。UEは、2つ以上の成分キャリア(component carrier:CC)から成る集約されたリソースにDL又はULのリソースが割り当てられ得る。最大で5つの成分キャリアまでが集約可能である。1つの例においては、すべて同じ動作周波数バンド内にある隣接成分キャリアが使用され得る。代替としては、成分キャリアは、種々の動作周波数バンドに属することが可能である。UEは、キャリアアグリゲーション中に利用可能な(すなわち、成分キャリアと関連付けられる複数の周波数に対応する)複数のRFチェーンを有することができるが、以前の解決策は、複数のRFチェーンの場合について考慮していない測定ギャップパターンについて説明している。
以前の解決策においては、単一の測定ギャップパターンのみ、RFチェーンを測定するのに使用され得る。単一の測定ギャップパターンは、単一のRFチェーンについて測定を行うのに使用され得る。UEが2つのRFチェーンを有する(たとえば、UEが2つの他の周波数において測定を行わなくてはならない)場合には、UEは、測定を行うのに、なおも単一のギャップ測定パターンを使用しなくてはならない。そのため、本明細書において説明される本技術は、1つ以上のRFチェーンについて、UE当たり複数の測定ギャップパターンを使用することを教示する。
図1は、定義済みの周波数層をそれぞれが有する複数のセルについての例示的な測定ギャップを示している。異種ネットワークにおいては、別個の周波数レベルにおいて動作するあるタイプのセルは、オフローディングの目的のために配備され得る。これらのセルは、たとえば、マクロセル、マイクロセル、ピコセル、フェムトセル、又は中継セルを含むことができる。マクロセルは、概して、最も広範囲のセルサイズについて説明した。マクロセルは、地方エリア、又は高速道路に沿って見出され得る。より小さいセルエリアに対して、マクロセルは、人口密集した都市エリアの中で使用され得る。ピコセルは、大きいオフィス、モール、又は鉄道駅の中など、マイクロセルよりも小さいエリアの中で使用され得る。フェムトセルは、ピコセルと比較して、より小さいエリアのカバレッジに使用される。たとえば、フェムトセルは、住宅又は小さいオフィスの中で使用され得る。中継セルは、相対的に低電力を使用し、また相対的に小さいエリアにカバレッジを提供する。それぞれマクロセル、マイクロセル、ピコセルなどは、別の周波数層(たとえば、周波数0、周波数1、及び周波数2など)において動作し得る。
図1に示されているように、第1のマクロセル110が、周波数0において動作することができ、第2のマクロセル120が、周波数1において動作することができ、ピコセル130が、周波数2において動作することができる。第1のマクロセル110及び第2のマクロセル120はともに、類似するカバレッジエリアを有することができるのに対して、ピコセル130は、オフローディング向けに配備され得る。3GPPのLTE仕様の以前のバージョンにおいては、測定ギャップは、ユーザ装置(UE)140が周波数間測定を行う間の期間(すなわち、サブフレーム)と定義付けられる。この期間中に、ダウンリンク(DL)又はアップリンク(UL)の送信はいずれも、UE140においてスケジューリングされ得ない。UE140は、最初、マクロセル110内で動作することができる。言い換えれば、第1のマクロセル110は、UE140についてのサービングセルとすることができる。UE140は、ネットワークによって定義付けられた各測定ギャップ期間の周波数間層すべてについて測定を行うことができる。この例においては、UE140は、(周波数1において動作する)第2のマクロセル120について、及び(周波数2において動作する)ピコセル130について測定を行うことができる。
測定ギャップは、UE140が周波数1及び周波数2について測定を行う間の期間を示すことができる。測定ギャップは、UE140が周波数0について測定を行う間の期間を示していない。(周波数0に対応する)第1のマクロセル110がサービングセルであるので、UE140は、周波数0について測定を行うとき、なおも第1のマクロセル110(すなわち、UEのサービングセル)を用いてデータを受信又は送信することができる。
1つの例においては、(周波数0に対応する)第1のマクロセル110、及び(周波数1に対応する第2のマクロセル120が類似のカバレッジエリアを有するので、第1のマクロセル110内のUE140は、第2のマクロセル120についてあまり頻繁な測定を行わなくてよい。UE140は、標準的な周期性に従って、(周波数1に対応する)ピコセル130について周波数間測定を行うことができる。しかしながら、3GPPのLTE仕様の以前のバージョンは、ネットワークが、種々の周波数について種々の測定ギャップパターン(たとえば、種々の周波数において動作する様々なセル)を構成することを許容していない。加えて、3GPPのLTE仕様の以前のバージョンは、ネットワークが、UE140が測定を行うための目的に基づいて、種々の測定ギャップパターンを構成することを許容していない。
複数の測定ギャップパターンを構成することができないネットワークの以前の能力は、UEの電力消費レベルを増加させる可能性がある。測定ギャップが、相対的に長さが短いとき、UE140は、すべての周波数層において頻繁に測定を行う可能性がある。結果として、UE140は、追加の電力を消費する可能性がある。加えて、UE140は、測定ギャップ中に、DL/ULの送信を行うことができないので、全データ速度は低下し得る。加えて、複数の測定ギャップパターンを構成することができないネットワークの以前の能力は、結果的に、スモールセルの発見を相対的に遅くさせる可能性がある。測定ギャップが相対的に長いとき、UE140は、隣接するセルを発見する機会が低い可能性がある。これらの問題は、配備されるスモールセルの数及び周波数層の数が増加するとき、悪化する可能性がある。
図1に示されているように、UE140は、(事例1に示されるように)第2のマクロセル120に対して周波数間測定を行うために、周波数1に切り替えることができる。周波数1における一定の時間期間後に、UE140は、周波数間ハンドオーバーを行い、(ピコセル130と対応する)周波数2に切り替えることができる。UE140は、最初、周波数2において動作することができ、一定の時間期間後に、UE140は、(事例2に示されるように)ピコセル130に対して周波数間測定を行うことができる。UE140は、周波数間ハンドオーバーを行い、周波数1に戻るように切り替えることができる。UE140は、最初、周波数1において動作することができ、一定の時間期間後に、UE140は、(事例3に示されるように)第2のマクロセル120に対して周波数間測定を行うことができる。その後、UE140は、周波数間ハンドオーバーを行い、(周波数1に対応する)第1のマクロセル110に戻るように切り替えることができる。
図2は、複数の測定ギャップパターンを構成するための進化型ノードB(eNB)220とユーザ装置(UE)210との間の例示的な信号伝達を示している。eNB220は、UE210について複数の測定ギャップパターンを生成することができる。各測定ギャップパターンは、UE210が選定済みのセルについて周波数間測定を行うべき間の定義済みの時間期間内での連続サブフレームの少なくとも1つの組を示すことができる。eNB220は、UE210について複数の測定ギャップパターンを構成することができ、ここで、UE210は、複数の測定ギャップパターンに従って、セルのグループ内の選定済みのセルについて周波数間測定を行うことができる。
1つの例においては、測定ギャップパターンは、UE210が、周波数間測定を行うべき間のサブフレームを示すことができる。周波数間測定は、参照信号受信電力(RSRP)測定、又は参照信号受信品質(RSRQ)測定を含むことができる。1つの例においては、UE210は、測定ギャップパターン中に、(定義済みの周波数において動作する)特定のセルについて測定を行うことができる。代替としては、UE210は、同じ測定ギャップパターン中に、(別個の周波数においてそれぞれが動作する)複数のセルについて測定を行うことができる。
1つの例においては、UE210は、2つ以上の無線周波数(RF)チェーンについて複数の測定ギャップパターンを実装することができる。RFチェーンは、1つ以上のセルが動作する定義済みの周波数を示すことができる。UE210は、2つの別個のRFチェーンにおいて並行測定を行うことができる。各個々のRFチェーンは、eNB220によって独立してスケジューリングされ得る。言い換えれば、対応するセル(又はRFチェーン)についての各測定ギャップパターンは、eNB220によって独立してスケジューリングされ得る。例として、UE210は、第1の測定ギャップパターンに従って、第1のRFチェーン(すなわち、第1の周波数において動作する第1のセル)について測定を行うことができる。加えて、UE210は、第2の測定ギャップパターンに従って、第2のRFチェーン(すなわち、第2の周波数において動作する第2のセル)について測定を行うことができる。第1の測定ギャップパターン及び第2の測定ギャップパターンは、eNB220によって独立してスケジューリングされ得る。したがって、eNB220は、UE210について複数の測定ギャップパターンを構成して、UE210が複数のセルについて周波数間測定を同時に行うことができるようにし得る。言い換えれば、UE210は、複数のRFチェーンについて並行測定を行うために、第1の測定ギャップパターン及び第2の測定ギャップパターンを並行して実装することができる。UE210は、キャリアアグリゲーションを使用して動作する(すなわち、複数のセルから複数の信号を同時に受信する)ことができるので、周波数間測定は、第2のRFチェーンについての周波数間測定の実行と重なり合う時に、第1のRFチェーンについて行われ得る。これは、UEが周波数間測定を行っているときに他のタスクを行うことができなかったLTE仕様の以前のバージョンとは(すなわち、UEは、以前の解決策においては、単一のRxを有するので)対照的である。
1つの構成においては、セルのグループ内の各セルは、定義済みの周波数層において動作し、特定の測定ギャップパターンを使用して測定される。UE210が、周波数間測定を行うセルのグループは、キャリアアグリゲーション、又はデータオフローディングに使用され得る。加えて、UE210が周波数間測定を行うセルは、マクロセル、マイクロセル、ピコセル、又はフェムトセルを含むことができる。
限定しない例として、測定ギャップパターンは、UE210に、40ミリ秒(ms)ごとに第1のRFチェーンを測定するように指示することができ、ここで、40msは、UE210が周波数間測定を行うべき間の定義済みの時間期間を示す。測定ギャップパターンにおける定義済みの時間期間はまた、測定ギャップ繰返し期間(MGRP)とも称される場合がある。言い換えれば、UE210は、MGRP当たり第1のRFチェーンについて測定を行うことになる。1つの例においては、MGRPは、40ms、80ms、120ms、160ms、200ms、又は240msとすることができる。概して、MGRPは、後方互換性を維持するために、40msの倍数とすることができる。UE210は、第1のRFチェーンを、(RFチェーンと関連付けられている)セルが動作する周波数に一時的に切り替えることによって測定することができる。
1つの例においては、UE210は、キャリアアグリゲーションをサポートすることができ、したがって、UE210は、複数のバンド又はセルから信号を同時に受信することができる。UE210が、第1のRFチェーンについて測定を行っているとき、UE210は、なおも第2のRFチェーンにおいてデータを送信又は受信することができ得る。言い換えれば、UE210が、(第1の周波数において動作する)第1のセルについて測定を行っているとき、UE210は、なおも(第2の周波数において動作する)第2のセルを用いてデータを送信又は受信することができる。結果として、UE210は、第1のセル及び第2のセルについての測定を、一方の測定が他方の測定に影響を及ぼすことなく、互いに独立して行うことができる。
1つの構成においては、eNB220は、並行して1つ以上のRFチェーンについてUE当たり複数の測定ギャップパターンを同時に構成することができる。そのため、ネットワークは、周波数層当たり種々の測定ギャップパターンにおける設定を最適化することができる。加えて、ネットワークは、種々のRFチェーンにわたって測定負荷のバランスを取るようにさらなる柔軟性を有する。1つの例においては、測定ギャップパターンは、1つ以上の周波数にリンクすることができる。言い換えれば、特定の測定ギャップパターンは、第1のRFチェーンと第2のRFチェーンとの両方について測定を行うことができる。別の例においては、測定ギャップ繰返し期間(MGRP)は、UE測定を同調させるための最小ギャップの倍数とすることができる。結果として、UE210が測定を行うのに必要な回数は、最小限にされ得、測定衝突が回避され得る。
1つの例においては、UE210は、特定のセルについての現在のトラフィック状態に基づいて複数の測定ギャップパターンを修正することができる。概して、MGRPは、特定のRFチェーンについて周期的である。たとえば、UE210は、40msごとにそれぞれ、第1のRFチェーン及び第2のRFチェーンについて測定を行うことができる。UE210が複数のRFチェーンについて測定を行うとき、UE210は、種々のRFチェーンにわたって測定負荷のバランスを取るための柔軟性を有する。各周波数層の並列測定は、1つのRFチェーンにおいてか、又は複数のRFチェーンにわたってかのいずれかで柔軟に行われ得る。測定ギャップ(すなわち、UE210が測定を行う間のサブフレーム)は、ダウンリンクリソースの相対的に大きい割合を消費する可能性がある。UE210が、第1のRFチェーンから有意な量のリソースを使用しており(すなわち、第1のRFチェーンがビジーであり)、第2のRFチェーンから低減された量のリソースを使用している(すなわち、第2のRFチェーンは、第1のRFチェーンよりもビジーでない)場合には、eNB220は、第2のRFチェーンに追加の測定負荷を割り振り、第1のRFチェーンにおける測定負荷を低下させることができる。第1のRFチェーンにおける測定負荷を低下させることによって、UE210は、第1のRFチェーンに対する(チャネル測定とは反対に)UL/DLのデータ送信について追加のサブフレームを得ることができる。言い換えれば、測定ギャップの密度は、さらなるDL受信及びUL送信のために、第1のRFチェーンについて低減され得る。限定しない例として、第1のRFチェーンにおける測定負荷を低下させることによって、第1のRFチェーンについてUE210によって使用されるリソースの量は、一定の時間期間の間、15%から5%に低減され得る。UE210は、キャリア周波数を使用して動作するので、UE210は、第2のRFチェーンについての測定が行われているとき、なおも第1のRFチェーンにおけるUL/DL送信を行うことができる。第1のRFチェーンが、RFチェーン2よりも軽い負荷を有するようになってから後に、eNB220は、2つのRFチェーン間の測定負荷のバランスを取り直すことができる。したがって、eNB220は、種々のRFチェーンにわたって測定作業を柔軟に管理することができる。
1つの構成においては、UEが選定済みのセルについて周波数間測定を行う間の測定ギャップ長さ(MGL)は、可変である。MGLは、定義済みの時間期間内での連続サブフレームの組に対応し得る。1つの例においては、MGLは、長さが1ミリ秒(ms)から5msにまで及ぶことができる。MGLは、UE210が選定済みのセルについて周波数間測定を行うときに検出される同期化シンボルの位置に基づいて変わることができる。
以前の解決策において、MGLは、6msという固定された長さであり、相対的に長い時間期間の間に均等に分布している。言い換えれば、50ms又は80msごとに6msのMGLは、相対的に長い時間期間にわたってきわめて均等に分布している。本明細書において説明される本技術においては、測定ギャップ長さは、可変であり、1msから5msにまで及ぶことができる。以前の解決策においては、6msという測定ギャップは、同期化シンボルの少なくとも1つのペアを見出すのに十分な時間期間を確保するのに選定された。UEが他の周波数セルについて測定を行うとき、同期化がまずは完了され、次いで、測定が行われる。6msは、同期化シンボルが5msごとに繰り返すので、同期化シンボルの少なくとも1つのペアが、6ms期間内に含まれていることを可能にすることができる。以前の解決策は、非同期ネットワークが使用されていることについて説明しており、その事例においては、UEは、同期化シンボルの位置をあらかじめ知っていない。結果として、UEは、同期ペアを得るために6ms全体を待たなくてはならない。しかしながら、現在の技術の中で利用される同期ネットワークにおいては、UE210は、これらの同期化シンボルがどの位置に置かれている可能性があるかを知ることができる。同期ネットワークにおいては、種々の周波数間に同期化が存在する。そのため、UE210は、以前の解決策にあるような6ms全体を待つ必要がない。むしろ、UE210は、同期化シンボルの位置に応じて、1msから5msを使用して測定を行うことができる。測定ギャップを低減させることによって、ダウンリンクリソースは、節約され得る。たとえば、40サブフレーム中6サブフレーム使用することは、利用可能なリソースのうちの15%を消費する。しかしながら、40サブフレーム中3サブフレーム使用することは、利用可能なリソースのうちの7.5%を消費し、それは、有意な低減である。
1つの構成においては、MGRPは、周波数間測定の目的に基づいて可変であってよい。UEの電力節約方策及び測定の目的(たとえば、セル識別、セル測定、ネットワーク制御割込み)に応じて、eNB220は、並列又は非並列の測定のいずれかについて可変測定ギャップパターンを構成することができる。そのため、UE210は、第1及び第2のRFチェーンの目的に応じて、第2のRFチェーンに比較してそれほど頻繁には第1のRFチェーンについての測定を行わなくてよい。言い換えれば、不均等に分布した測定ギャップパターンが、UE210について構成可能である。
1つの例においては、UE210は、UE210についてのカバレッジを保証するマクロセルによってサービス提供され得る。言い換えれば、UE210は、マクロセルと接続解除される可能性は低い。UEは、スモールセルに接続する別のRFチェーンを有する。スモールセルは、データオフローディングに使用され得る。言い換えれば、UE210はまた、大量のデータがUE210に通信されることになるとき、スモールセルを使用することができる。UE210が、いかなるカバレッジ懸念もはらんでいない(すなわち、マクロセルが、UE210を概ねカバーすると仮定される)場合には、UE210は、単に、オフローディング目的のために、他のセル周波数(たとえば、スモールセル)を測定するだけでよい。そのため、UE210は、頻繁にスモールセルを測定する必要がない。言い換えれば、UE210は、概ね、そのカバレッジについて心配する必要がないので、UE210は、頻繁に他のセル周波数を測定する必要がない。UE210がたとえスモールセルとの接続を失っても、UE210は、なおも、マクロセルによってカバーされるので、UE210は、別のスモールセル(仮にあった場合)を探すのにその時間を取ることができる。カバレッジのための周波数間測定に比較して、オフローディング目的のための周波数間測定は、それほど測定遅延要件を定めていない。したがって、UE210がカバレッジ目的のためにマクロセルを測定しているのか、それともUE210がオフローディング目的のためにスモールセルを測定しているのかに基づいて、eNB220は、測定ギャップパターンの密度を調整することができる。
1つの例においては、測定ギャップパターンの密度は、UEの速度に基づいて調整され得る。UEの速度が高い場合には、UE210は、潜在的なカバレッジ懸念をはらんでいる可能性があり得る。この事例においては、eNB220は、より高密度な測定ギャップパターンを構成することができる(たとえば、40msごとに6msという既存のルールが使用され得る)。ネットワークがUEの速度が低いことを検出するときには、カバレッジ問題は全く存在していない可能性がある。この事例においては、eNB220は、疎らな測定ギャップパターンをスケジューリングすることが可能であり、それにより、ダウンリンクリソースを節約し、UEの電力を温存することが可能になる。疎らな測定パターンの限定しない例は、120ms中4msを使用して、測定を行うこととなり得る。測定ギャップパターンは、UEの状況及びUEのカバレッジ状態に依存し得る。したがって、UEの速さは、ギャップパターン密度(すなわち、測定がいかに頻繁に行われるか)を調整するのに使用される1つの要因であり得る。
1つの例においては、測定ギャップパターンの密度は、接続のユーザの品質に基づいて調整され得る。マクロセルからのRSRPが弱い場合には、ネットワークは、UE210が、潜在的なカバレッジ問題をはらんでいることを決定することができる。この事例においては、eNB220は、UEの速度が速いか、又は遅いかにかかわらず、相対的に高密度な測定ギャップパターンを構成することができる。したがって、RSRP(又はチャネル品質)は、測定ギャップパターンの密度に影響を及ぼし得る別の要因である。一方、RSRPが相対的に良好であり、UEの速度が低い場合には、eNB220は、スペアの測定ギャップパターンを構成することができる。測定ギャップパターンの密度に影響を及ぼし得る別の要因は、UE210がどれだけ数多くの周波数をモニタリングすべきであるかということである。LTE仕様の以前のバージョンにおいては、UEは、最大11の周波数をモニタリングすることができる。この事例においては、ネットワークは、必要なセルのすべてを測定するために、相対的に高密度な測定ギャップパターンを割り振ることができる。UEがモニタリングする周波数(又はセル)をほとんど有していない場合には、疎らな又はそれほど高密度でない測定ギャップパターンが、eNB220によって構成され得る。
図3は、ユーザ装置(UE)についての例示的な複数の測定ギャップパターンを示している。複数の測定ギャップパターンは、測定ギャップパターン1及び測定ギャップパターン2を含むことができる。複数の測定ギャップパターンは、UE向けに進化型ノードB(eNB)によって構成され得る。UEは、複数の測定ギャップパターンを同時に実装するように構成され得る。言い換えれば、UEは、測定ギャップパターン2と並行して測定ギャップパターン1を実装することができる。したがって、eNBは、2つ以上のRFチェーンについてUE当たり複数の測定ギャップパターンを構成することができる。
測定ギャップパターン1によれば、UEは、(たとえば、第1のセルに対応する)周波数1をモニタリングするのに40サブフレームごとに4サブフレーム(又は4秒)を費やし得る。たとえば、UEは、測定を行うのに40サブフレーム時間フレームの中のサブフレーム5〜8を費やし得る。40サブフレーム期間の終わりに、UEは、同じ測定ギャップを繰り返すことができる(すなわち、UEは、続く40サブフレーム時間フレームの中のサブフレーム5〜8を費やし得る)。測定ギャップパターン2によれば、UEは、(たとえば、第2のセルに対応する)周波数2をモニタリングするのに40サブフレームごとに4サブフレームを費やし得る。たとえば、UEは、測定を行うのに40サブフレーム時間フレームの中のサブフレーム13〜16を費やし得る)。40サブフレーム期間の終わりに、UEは、同じ測定ギャップを繰り返すことができる(すなわち、UEは、続く40サブフレーム時間フレームの中のサブフレーム13〜16を費やし得る)。測定ギャップパターン1と測定ギャップパターン2との両方においては、UEは、40サブフレームごとに測定を繰り返すことができる。
図4は、ユーザ装置(UE)についての例示的な複数の測定ギャップパターンを示している。複数の測定ギャップパターンは、測定ギャップパターン1及び測定ギャップパターン2を含むことができる。測定ギャップパターン1によれば、UEは、(たとえば、第1のセルに対応する)周波数1をモニタリングするのに40サブフレームごとに4サブフレーム(又は4秒)を費やし得る。測定ギャップパターン2によれば、UEは、(たとえば、第2のセルに対応する)周波数2をモニタリングするのに80サブフレームごとに4サブフレームを費やし得る。したがって、UEは、測定ギャップパターンについて40サブフレームごとに測定を繰り返すことができ、一方、測定ギャップパターン2についての測定は、80サブフレームごとに繰り返される。
図5A〜図5Cは、様々な時間のユーザ装置(UE)についての例示的な複数の測定ギャップパターンを示している。複数の測定ギャップパターンは、測定ギャップパターン1及び測定ギャップパターン2を含むことができる。複数の測定ギャップパターンは、UE向けに進化型ノードB(eNB)によって構成され得る。
図5Aの中に示されているように、UEは、T=1において、測定ギャップパターン1及び測定ギャップパターン2を実装することができる。測定ギャップパターン1によれば、UEは、(たとえば、第1のセルに対応する)周波数1をモニタリングするのに40サブフレームごとに定義済みの数のサブフレーム(たとえば、2〜5サブフレーム)を費やし得る。測定ギャップパターン2によれば、UEは、(たとえば、第2のセルに対応する)周波数2をモニタリングするのに40サブフレームごとに定義済みの数のサブフレーム(たとえば、2〜5サブフレーム)を費やし得る。
図5Bの中に示されているように、UEは、T=2において、修正された測定ギャップパターン1及び修正された測定ギャップパターン2を実装することができる。1つの例においては、eNBは、特定のセル(又はRFチェーン)におけるトラフィック負荷に基づいて測定ギャップパターンを修正することができる。(たとえば、第2のセルに対応する)周波数2におけるトラフィック負荷が、(たとえば、第1のセルに対応する)周波数1におけるトラフィック負荷に比較して相対的に高い場合には、eNBは、一時的に、複数のRFチェーンの中で測定作業のバランスを取り直すことができる。そのため、修正された測定ギャップパターン1によれば、UEは、(たとえば、第1のセルに対応する)周波数1について、80サブフレームごとに、測定の3つの組を行うことができる。修正された測定ギャップパターン2によれば、UEは、(たとえば、第2のセルに対応する)周波数2について、80サブフレームごとに、単に1測定を行うことができる。言い換えれば、周波数2におけるトラフィックの量が相対的に高いので、eNBは、周波数2についての測定負荷を低下させ得る。周波数2についての測定負荷を低下させることによって、(普通なら測定を行うために使われることになる)追加のリソースが得られる可能性がある。加えて、周波数1におけるトラフィックの量が相対的に低いので、eNBは、周波数1についての測定負荷を増加させることができる。
図5Cの中に示されているように、UEは、T=3において、元の測定ギャップパターン1及び測定ギャップパターン2に戻ることができる。UEは、トラフィック状態が、定義済みのレベルに復帰したとき、元のギャップ測定パターンに戻ることができる。たとえば、周波数1におけるトラフィックの量が、定義済みのレベルに戻るように減少した場合には、UEは、以前の測定ギャップパターン2(たとえば、各80サブフレーム窓について2測定)を実装することができる。
図6は、ユーザ装置(UE)についての例示的な複数の測定ギャップパターンを示している。複数の測定ギャップパターンは、測定ギャップパターン1及び測定ギャップパターン2を含むことができる。複数の測定ギャップパターンは、UE向けに進化型ノードB(eNB)によって構成され得る。測定ギャップパターン1によれば、UEは、第1のRFチェーン(たとえば、周波数1)及び第2のRFチェーン(たとえば、周波数2)について測定を行うことができる。UEは、第1のRFチェーンについて測定を行うのに1サブフレームを費やし得る。加えて、UEは、第2のRFチェーンについて測定を行うのに4サブフレームを費やし得る。測定ギャップパターン2によれば、UEは、2サブフレーム期間中に、第3のRFチェーン(たとえば、周波数2)について測定を行うことができる。したがって、測定ギャップ長さ(すなわち、UEが測定を行う間の期間)は、可変であってよい。1つの例においては、測定ギャップ長さは、UEが特定の周波数について測定を行うときに検出される同期化シンボルの位置に基づいて可変であってよい。
図7は、ユーザ装置(UE)についての例示的な複数の測定ギャップパターンを示している。複数の測定ギャップパターンは、測定ギャップパターン1及び測定ギャップパターン2を含むことができる。複数の測定ギャップパターンは、進化型ノードB(eNB)によって構成され得、次いで、UEに通信され得る。測定ギャップパターン1によれば、UEは、80サブフレーム期間中に、第1のRFチェーン(たとえば、第1の周波数)について2測定を行い、次いで、続く80サブフレーム期間中に、第1のRFチェーンについて単一の測定を行うことができる。したがって、UEは、第1のRFチェーンの測定を行っているとき、不均等に分布した測定ギャップパターンを実装することができる。一方、UEは、80サブフレームごとに第2のRFチェーン(たとえば、周波数2)について測定を行っているとき、均等に分布した測定ギャップパターンに従うことができる。言い換えれば、測定ギャップパターン1は、非周期的な測定ギャップを提供し、それに対して、測定ギャップパターン2は、周期的な測定ギャップを提供する。
別の例が、図8の中の流れ図に示されるように、測定ギャップパターンを構成するように動作可能な進化型ノードB(eNB)の機能800を提供している。機能は、方法として実装され得、又は機能は、機械における命令として実行され得、ただし、命令は、少なくとも1つのコンピュータ可読媒体又は1つの非一時的機械可読記憶媒体において含まれている。ブロック810の中に示すように、eNBは、ユーザ装置(UE)について複数の測定ギャップパターンを生成するように構成された1つ以上のプロセッサを含むことができ、ここで、各測定ギャップパターンは、UEが選定済みのセルについて周波数間測定を行うべき間の定義済みの時間期間内での連続サブフレームの少なくとも1つの組を示す。ブロック820の中に示すように、eNBは、UEへの複数の測定ギャップパターンを構成するように構成された1つ以上のプロセッサを含むことができ、UEは、複数の測定ギャップパターンに従って、セルのグループ内の選定済みのセルについて周波数間測定を行うように構成されている。
1つの例においては、1つ以上のプロセッサは、UEへの複数の測定ギャップパターンを構成して、UEが複数のセルについて周波数間測定を同時に行うことを可能にするように構成され得る。別の例においては、1つ以上のプロセッサは、セルのグループ内の選定済みのセルについての現在のトラフィック状態に基づいて複数の測定ギャップパターンを修正するようにさらに構成され得る。さらなる別の例においては、測定ギャップパターンにおける定義済みの時間期間は、測定ギャップ繰返し期間(MGRP)であり、ここで、MGRPは、周波数間測定の目的に基づいて可変である。
1つの例においては、セルのグループ内の各セルは、定義済みの周波数層において動作し、特定の測定ギャップパターンを使用して測定される。別の例においては、UEが選定済みのセルについて周波数間測定を行う間の測定ギャップ長さ(MGL)は、UEが選定済みのセルについて周波数間測定を行うときに検出される同期化シンボルの位置に基づいて可変であり、MGLは、定義済みの時間期間内での連続サブフレームの組に対応する。さらなる別の例においては、UEが周波数間測定を行う間の連続サブフレームの組は、長さが1ミリ秒(ms)から5msにまで及ぶ。
1つの例においては、1つ以上のプロセッサは、UEの速度、UEにおける品質、又はUEが周波数間測定を行うセルの数のうちの少なくとも1つに基づいて、複数の測定ギャップパターンの密度を調整するようにさらに構成され得る。別の例においては、定義済みの時間期間は、40ミリ秒(ms)、80ms、120ms、160ms、200ms、又は240msのうちの少なくとも1つである。さらなる別の例においては、セルのグループ内の選定済みのセルは、マクロセル、マイクロセル、ピコセル、又はフェムトセルのうちの少なくとも1つである。1つの構成においては、選定済みのセルについての周波数間測定は、参照信号受信電力(RSRP)測定、又は参照信号受信品質(RSRQ)測定を含む。別の構成においては、UEが周波数間測定を行うセルのグループは、キャリアアグリゲーション、又はデータオフローディングに使用される。
別の例が、図9の中の流れ図に示されるように、周波数間測定を行うように構成されたユーザ装置(UE)910の機能900を提供している。機能は、方法として実装され得、又は機能は、機械における命令として実行され得、ただし、命令は、少なくとも1つのコンピュータ可読媒体又は1つの非一時的機械可読記憶媒体において含まれている。UE910は、進化型ノードB(eNB)920によって構成された複数の測定ギャップパターンを識別するように構成された通信モジュール912を含むことができ、ここで、各測定ギャップパターンは、UE910が選定済みのセルについて周波数間測定を行うべき間の定義済みの時間期間内での連続サブフレームの少なくとも1つの組を示す。UE910は、eNB920によって構成された複数の測定ギャップパターンにより、セルのグループ内の選定済みのセルについて周波数間測定を行うように構成された測定モジュール914を含むことができる。
1つの例においては、測定モジュール914は、eNB920によって構成された複数の測定ギャップパターンにより、複数のセルについて周波数間測定を同時に行うようにさらに構成され得る。1つの例においては、通信モジュール912は、セルのグループ内の選定済みのセルについての現在のトラフィック状態に基づいて修正される更新された複数の測定ギャップパターンを受信するようにさらに構成され得、測定モジュール914は、更新された複数の測定ギャップモジュールに従って、周波数間測定を行うようにさらに構成され得る。
1つの例においては、セルのグループ内の各セルは、定義済みの周波数層において動作し、特定の測定ギャップパターンを使用して測定される。別の例においては、定義済みの時間期間は、測定ギャップ繰返し期間(MGRP)であり、MGRPは、周波数間測定の目的に基づいて可変である。さらなる別の例においては、測定モジュール914は、複数の測定ギャップパターンにより、最大11のセルについて周波数間測定を行うようにさらに構成され得る。加えて、UE910が選定済みのセルについて周波数間測定を行う間の測定ギャップ長さ(MGL)は、UE910が選定済みのセルについて周波数間測定を行うときに検出される同期化シンボルの位置に基づいて可変であり、MGLは、定義済みの時間期間内での連続サブフレームの組に対応する。
別の例が、図10の中の流れ図に示されるように、測定ギャップパターンを構成するための方法1000を提供している。方法は、機械における命令として実行され得、ただし、命令は、少なくとも1つのコンピュータ可読媒体又は1つの非一時的機械可読記憶媒体において含まれている。方法は、ブロック1010に示すように、進化型ノードB(eNB)において、ユーザ装置(UE)について複数の測定ギャップパターンを生成する動作を含むことができ、ここで、各測定ギャップパターンは、UEが選定済みのセルについて周波数間測定を行うべき間の定義済みの時間期間内での連続サブフレームの少なくとも1つの組を示す。方法は、ブロック1020に示すように、eNBからUEへの複数の測定ギャップパターンを構成する動作を含むことができ、UEは、複数の測定ギャップパターンに従って、セルのグループ内の選定済みのセルについて周波数間測定を行うように構成されている。
1つの例においては、方法は、セルのグループ内の選定済みのセルについての現在のトラフィック状態に基づいて複数の測定ギャップパターンを修正する動作を含むことができる。別の例においては、方法は、UEが選定済みのセルについて周波数間測定を行うべき間の可変測定ギャップ長さ(MGL)を含むように、複数の測定ギャップパターンを生成する動作を含むことができる。
1つに例においては、方法は、UEの速度、UEにおけるチャネル品質、又はUEが周波数間測定を行うセルの数のうちの少なくとも1つに基づいて、複数の測定ギャップパターンの密度を調整する動作を含むことができる。別の例においては、方法は、UEが周波数間測定を行うべき間の連続サブフレームの少なくとも1つの組を含むように、複数の測定ギャップパターンを生成する例を含むことができ、連続サブフレームの組は、長さが、1ミリ秒(ms)から5msにまで及ぶ。さらなる別の例においては、方法は、40ミリ秒(ms)、80ms、120ms、160ms、200ms、又は240msのうちの少なくとも1つであるように、複数の測定ギャップパターンにおける定義済みの時間期間を設定する動作を含むことができる。
図11は、ユーザ装置(UE)、モバイル局(MS)、モバイル無線装置、モバイル通信装置、タブレット、ハンドセット、又は他のタイプの無線装置など、無線装置の例示的な図を提供している。無線装置は、ノード、マクロノード、低電力ノード(low power node:LPN)、若しくは基地局(BS)などの送信局、進化型ノードB(eNB)、ベースバンドユニット(baseband unit:BBU)、遠隔無線ヘッド(remote radio head:RRH)、遠隔無線装置(remote radio equipment:RRE)、中継局(relay station:RS)、無線装置(radio equipment:RE)、又は他のタイプのワイヤレス広域ネットワーク(wireless wide area network:WWAN)アクセスポイントと通信するように構成された1つ或いは複数のアンテナを含むことができる。無線装置は、3GPPのLTE、WiMAX、High Speed Packet Access(HSPA)、Bluetooth(登録商標)、及びWiFiを含んだ少なくとも1つのワイヤレス通信規格を使用して通信するように構成され得る。無線装置は、各ワイヤレス通信規格について別個のアンテナを使用して、又は複数のワイヤレス通信規格について共有のアンテナを使用して通信することができる。無線装置は、ワイヤレスローカルエリアネットワーク(wireless local area network:WLAN)、ワイヤレスパーソナルエリアネットワーク(wireless personal area network:WPAN)、及び/又はWWANの中で通信することができる。
図11は、無線装置からのオーディオ入力と出力とに使用可能なマイクロフォン及び1つ以上のスピーカの図を提供している。ディスプレイ画面は、液晶ディスプレイ(LCD)画面、又は有機発光ダイオード(OLED)ディスプレイなどの他のタイプのディスプレイ画面であってよい。ディスプレイ画面は、タッチ画面として構成され得る。タッチ画面は、容量性、抵抗性、又は別のタイプのタッチ画面技術を使用し得る。アプリケーションプロセッサ及びグラフィックスプロセッサが、内部メモリに連結されて、処理機能及び表示機能を提供することができる。不揮発性メモリポートもまた、ユーザにデータ入力/出力の選択肢を提供するために使用され得る。不揮発性メモリポートはまた、無線装置のメモリ機能を拡張するのにも使用され得る。キーボードが、追加的なユーザ入力を提供するために、無線装置と一体化されても、又は無線装置にワイヤレスで接続されてもよい。仮想キーボードもまた、タッチ画面を使用して提供され得る。
様々な技法、又は特定の態様、若しくはその一部分が、フロッピーディスク、CD−ROM、ハードドライブ、非一時的コンピュータ可読記憶媒体、又は任意の他の機械可読記憶媒体などの有形媒体の中に具現化されたプログラムコード(すなわち、命令)の形態をとることができ、ここで、プログラムコードが、コンピュータなどの機械にロードされ、機械によって実行されるとき、機械は、様々な技法を実施するための機器になる。回路部は、ハードウェア、ファームウェア、プログラムコード、実行可能なコード、コンピュータ命令、及び/又はソフトウェアを含むことができる。非一時的コンピュータ可読記憶媒体は、信号を含まないコンピュータ可読記憶媒体とすることができる。プログラマブルコンピュータにおけるプログラムコード実行の事例においては、コンピューティング装置は、プロセッサ、プロセッサによって読取り可能な記憶媒体(揮発性並びに不揮発性のメモリ及び/又は記憶要素を含む)と、少なくとも1つの入力装置と、少なくとも1つの出力装置とを含むことができる。揮発性並びに不揮発性のメモリ及び/又は記憶要素は、RAM、EPROM、フラッシュドライブ、光ドライブ、磁気ハードドライブ、ソリッドステートドライブ、又は電子データを記憶するための他の媒体とすることができる。ノード及び無線装置はまた、送受信機モジュール、カウンタモジュール、プロセッシングモジュール、及び/又はクロックモジュール若しくはタイマモジュールを含むことができる。本明細書において説明した様々な技法を実装する、若しくは利用することができる1つ以上のプログラムは、アプリケーションプログラミングインターフェース(API)、及び再利用可能制御部などを使用することができる。そのようなプログラムは、コンピュータシステムと通信するように、高レベルな手続き型又はオブジェクト指向型のプログラミング言語において実装され得る。しかしながら、プログラムは、必要ならば、アセンブリ言語又は機械言語において実装され得る。いずれの事例においても、言語は、コンパイルされた言語、又は解釈された言語であってよく、ハードウェア実装形態と組み合わされてもよい。
本明細書において説明した機能ユニットの多くは、それらの実装形態の独立性をより具体的に強調するために、モジュールとしてラベル付けされていることを理解すべきである。たとえば、モジュールは、カスタムVLSI回路、若しくはゲートアレイ、ロジックチップなどの既製半導体、トランジスタ、又は他の個別の構成要素を含むハードウェア回路として実装され得る。モジュールはまた、フィールドプログラマブルゲートアレイ、プログラマブルアレイロジック、又はプログラマブルロジック装置などのプログラマブルハードウェア装置などの中で実装され得る。
1つの例においては、複数のハードウェア回路が、本明細書において説明した機能的ユニットを実装するのに使用され得る。たとえば、第1のハードウェア回路が、処理動作を行うのに使用され得、第2のハードウェア回路(たとえば、送受信機)が、他のエンティティと通信するのに使用され得る。第1のハードウェア回路及び第2のハードウェア回路は、単一のハードウェア回路の中に一体化されてよく、又は代替としては、第1のハードウェア回路及び第2のハードウェア回路は、別個のハードウェア回路であってもよい。
モジュールはまた、様々なタイプのプロセッサによって実行されるように、ソフトウェアの中で実装され得る。例として、実行可能なコードの識別されたモジュールは、例として、オブジェクト、手続き、若しくは機能として体系化され得るコンピュータ命令の1つ以上の物理的若しくは論理的ブロックを含み得る。にもかかわらず、識別されたモジュールの実行可能ファイルは、物理的に一緒に置かれている必要はなく、種々の位置に記憶された異種命令を含むことができ、この異種命令は、モジュールを含み、論理的に一緒に結び付けられると、モジュールについて明記された目的を達成する。
実際には、実行可能コードのモジュールは、単一の命令であっても、又は数多くの命令であってもよく、さらにはいくつかの異なるコードセグメントにわたって、異なるプログラムの中で、且ついくつかのメモリ装置にまたがって分散されてもよい。同様に、動作データは、本明細書においてはモジュール内で識別及び例示され得、任意の適した形態で具現化され得、任意の適したタイプのデータ構造内で体系化され得る。動作データは、単一のデータセットとして収集されても、又は種々の記憶装置を介することを含む、種々の位置を介して分散されてもよく、単にシステム又はネットワーク上の電子信号として、少なくとも部分的に存在してもよい。モジュールは、所望の機能を行うように動作可能なエージェントを含んだ、受動型又は能動型とすることができる。
本明細書全体を通じて、「例(an example)」を参照することは、例と関連して説明した特定の特徴、構造、又は特性が、本発明の少なくとも1つの実施形態の中に含まれていることを意味する。したがって、本明細書全体を通じて様々な所に、句「例において(in an example)」が登場しても、必ずしもすべて同じ実施形態を示しているとは限らない。
本明細書に使用されるとき、複数の項目、構造的要素、組成要素、及び/又は材料は、便宜上、共通のリストの中に提示され得る。しかしながら、これらのリストは、リストの各メンバが、別個で独自のメンバとして個々に識別されるかのように解釈すべきである。したがって、そのようなリストの個々のメンバは、共通のグループにおけるそれらの提示にのみ基づいて、その反対を示すことなしに、同じリストの任意の他のメンバの事実上の等価物と見なされるべきものはまったくない。加えて、本発明の様々な実施形態及び例は、その様々な構成要素の代替形態とともに本明細書においては示され得る。そのような実施形態、例、及び代替形態は、互いの事実上の等価物と解釈されるべきではなく、本発明の別個で自律的な表現と解釈されるべきであることが理解される。
さらには、説明した特徴、構造、又は特性は、1つ以上の実施形態における任意の適した形で組み合わされてよい。以下の説明においては、本発明の実施形態の完全な理解を提供するために、レイアウト、距離の例、ネットワーク例などの多数の具体的な詳細が提供される。しかしながら、当業者は、本発明が、具体的な詳細のうちの1つ以上がなくても、或いは他の方法、構成要素、レイアウトなどを用いて実践可能であることを認識するであろう。他の例においては、よく知られている構造、材料、又は動作は、本発明の態様を曖昧にしないようにするために、詳細に示さず、又は説明されていない。
前述の諸例は、1つ以上の具体的な適用例における本発明の原理を示しているが、実装形態の形態、使用法、及び詳細における多数の修正が、発明的能力を働かせることなく、並びに本発明の原理及び概念から逸脱することなく行われ得ることは、当業者には明らかになろう。したがって、本発明は、特許請求の範囲によって後述されている場合を除き、限定されることを意図していない。

Claims (19)

  1. 測定ギャップパターンを構成するように動作可能であり、1つ以上のプロセッサを有する進化型ノードB(eNB)であって、前記1つ以上のプロセッサが、
    ユーザ装置(UE)について複数の測定ギャップパターンを生成することであって、各測定ギャップパターンは、前記UEが選定済みのセルについて周波数間測定を行うべき間の定義済みの時間期間内での連続サブフレームの少なくとも1つの組を示す、生成することと、
    前記UEへの前記複数の測定ギャップパターンを構成することであって、前記UEが、前記複数の測定ギャップパターンに従って、セルのグループ内の選定済みのセルについて前記周波数間測定を行うように構成された、構成することと
    を行うように構成されている、eNBであって、
    前記1つ以上のプロセッサが、セルの前記グループ内の前記選定済みのセルについての現在のトラフィック状態に基づいて前記複数の測定ギャップパターンを修正するようにさらに構成され、
    前記UEが前記選定済みのセルについて前記周波数間測定を行う間の測定ギャップ長さ(MGL)は、前記UEが前記選定済みのセルについて前記周波数間測定を行うときに検出される同期化シンボルの位置に基づいて可変であり、前記MGLが、前記定義済みの時間期間内での連続サブフレームの前記組に対応する、eNB。
  2. 前記1つ以上のプロセッサが、前記UEへの前記複数の測定ギャップパターンを構成して、前記UEが複数のセルについて周波数間測定を同時に行うことを可能にするように構成されている、請求項1に記載のeNB。
  3. 前記測定ギャップパターンにおける前記定義済みの時間期間が、測定ギャップ繰返し期間(MGRP)であり、前記MGRPが、前記周波数間測定の目的に基づいて可変である、請求項1に記載のeNB。
  4. セルの前記グループ内の各セルが、定義済みの周波数層において動作し、特定の測定ギャップパターンを使用して測定される、請求項1に記載のeNB。
  5. 前記UEが前記周波数間測定を行う間の連続サブフレームの前記組は、長さが1ミリ秒(ms)から5msにまで及ぶ、請求項に記載のeNB。
  6. 前記1つ以上のプロセッサが、前記UEの速度、前記UEにおける品質、又は前記UEが前記周波数間測定を行うセルの数のうちの少なくとも1つに基づいて、前記複数の測定ギャップパターンの密度を調整するようにさらに構成されている、請求項1に記載のeNB。
  7. 前記定義済みの時間期間が、40ミリ秒(ms)、80ms、120ms、160ms、200ms、又は240msのうちの少なくとも1つである、請求項1に記載のeNB。
  8. セルの前記グループ内の前記選定済みのセルが、マクロセル、マイクロセル、ピコセル、又はフェムトセルのうちの少なくとも1つである、請求項1に記載のeNB。
  9. 前記選定済みのセルについての前記周波数間測定が、参照信号受信電力(RSRP)測定、又は参照信号受信品質(RSRQ)測定を含む、請求項1に記載のeNB。
  10. 前記UEが前記周波数間測定を行うセルの前記グループは、キャリアアグリゲーション、又はデータオフローディングに使用される、請求項1に記載のeNB。
  11. 周波数間測定を行うように構成されたユーザ装置(UE)であって、
    進化型ノードB(eNB)によって構成された複数の測定ギャップパターンを識別するように構成された通信モジュールであって、各測定ギャップパターンは、前記UEが選定済みのセルについて周波数間測定を行うべき間の定義済みの時間期間内での連続サブフレームの少なくとも1つの組を示し、当該通信モジュールが、デジタルメモリ装置の中に記憶される、又はハードウェア回路の中に実装される、通信モジュールと、
    前記eNBによって構成された前記複数の測定ギャップパターンにより、セルのグループ内の選定済みのセルについて前記周波数間測定を行うように構成された測定モジュールであって、デジタルメモリ装置の中に記憶される、又はハードウェア回路の中に実装される、測定モジュールと
    を備え
    前記通信モジュールが、セルの前記グループ内の前記選定済みのセルについての現在のトラフィック状態に基づいて修正される、更新された複数の測定ギャップパターンを受信するようにさらに構成され、
    前記測定モジュールが、前記更新された複数の測定ギャップパターンに従って、前記周波数間測定を行うようにさらに構成され、
    前記UEが前記選定済みのセルについて前記周波数間測定を行う間の測定ギャップ長さ(MGL)は、前記UEが前記選定済みのセルについて前記周波数間測定を行うときに検出される同期化シンボルの位置に基づいて可変であり、前記MGLが、前記定義済みの時間期間内での連続サブフレームの前記組に対応する、UE。
  12. 前記測定モジュールが、前記eNBによって構成された前記複数の測定ギャップパターンにより、複数のセルについて周波数間測定を同時に行うようにさらに構成されている、請求項11に記載のUE。
  13. セルの前記グループ内の各セルが、定義済みの周波数層において動作し、特定の測定ギャップパターンを使用して測定される、請求項11に記載のUE。
  14. 前記定義済みの時間期間が、測定ギャップ繰返し期間(MGRP)であり、前記MGRPが、前記周波数間測定の目的に基づいて可変である、請求項11に記載のUE。
  15. 前記測定モジュールが、前記複数の測定ギャップパターンにより、最大11のセルについて前記周波数間測定を行うようにさらに構成されている、請求項11に記載のUE。
  16. 測定ギャップパターンを構成するための方法であって、
    進化型ノードB(eNB)において、ユーザ装置(UE)について複数の測定ギャップパターンを生成するステップであって、各測定ギャップパターンは、前記UEが選定済みのセルについて周波数間測定を行うべき間の定義済みの時間期間内での連続サブフレームの少なくとも1つの組を示す、ステップと、
    前記eNBから前記UEへの前記複数の測定ギャップパターンを構成するステップであって、前記UEが、前記複数の測定ギャップパターンに従って、セルのグループ内の選定済みのセルについて前記周波数間測定を行うように構成されている、ステップと
    セルの前記グループ内の前記選定済みのセルについての現在のトラフィック状態に基づいて前記複数の測定ギャップパターンを修正するステップと
    前記UEが前記選定済みのセルについて前記周波数間測定を行うべき間の可変測定ギャップ長さ(MGL)を含むように前記複数の測定ギャップパターンを生成するステップと、
    含む、方法。
  17. 前記UEの速度、前記UEにおけるチャネル品質、又は前記UEが前記周波数間測定を行うセルの数のうちの少なくとも1つに基づいて、前記複数の測定ギャップパターンの密度を調整するステップをさらに含む、請求項16に記載の方法。
  18. 前記UEが前記周波数間測定を行うべき間の連続サブフレームの少なくとも1つの組を含むように前記複数の測定ギャップパターンを生成するステップであって、連続サブフレームの前記組は、長さが1ミリ秒(ms)から5msにまで及ぶ、ステップをさらに含む、請求項16に記載の方法。
  19. 40ミリ秒(ms)、80ms、120ms、160ms、200ms、又は240msのうちの少なくとも1つであるように前記複数の測定ギャップパターンにおける前記定義済みの時間期間を設定するステップをさらに含む、請求項16に記載の方法。
JP2016547069A 2014-02-24 2015-01-22 測定ギャップパターン Expired - Fee Related JP6342501B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461943982P 2014-02-24 2014-02-24
US61/943,982 2014-02-24
PCT/US2015/012498 WO2015126568A1 (en) 2014-02-24 2015-01-22 Measurement gap patterns

Publications (2)

Publication Number Publication Date
JP2017503437A JP2017503437A (ja) 2017-01-26
JP6342501B2 true JP6342501B2 (ja) 2018-06-13

Family

ID=53878803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016547069A Expired - Fee Related JP6342501B2 (ja) 2014-02-24 2015-01-22 測定ギャップパターン

Country Status (6)

Country Link
US (1) US20150245235A1 (ja)
EP (1) EP3111691B1 (ja)
JP (1) JP6342501B2 (ja)
KR (1) KR101828424B1 (ja)
CN (1) CN106416350B (ja)
WO (1) WO2015126568A1 (ja)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034126A1 (en) * 2008-08-08 2010-02-11 Qualcomm Incorporated Method and apparatus for handling measurement gaps in wireless networks
US20150327104A1 (en) * 2014-05-08 2015-11-12 Candy Yiu Systems, methods, and devices for configuring measurement gaps for dual connectivity
MX359224B (es) * 2014-05-08 2018-09-19 Intel Ip Corp Identificación de célula priorizada y método de medición.
US9729175B2 (en) * 2014-05-08 2017-08-08 Intel IP Corporation Techniques to manage radio frequency chains
WO2016153286A1 (ko) * 2015-03-26 2016-09-29 엘지전자 주식회사 복수의 rf 체인을 구비하는 무선 기기에서 측정을 수행하는 방법
US10103867B2 (en) * 2015-04-13 2018-10-16 Alcatel Lucent Methods, apparatuses and systems for enhancing measurement gap in synchronized networks
US11039330B2 (en) * 2015-08-12 2021-06-15 Apple Inc. Method of measurement gap enhancement
US20180192315A1 (en) * 2015-09-10 2018-07-05 Guangdong Oppo Mobile Telecommunications Corp. Ltd. Channel measurement and measurement result reporting method and device
US20170086210A1 (en) * 2015-09-23 2017-03-23 Qualcomm Incorporated Managing Inter-Radio Access Technology Procedure Concurrency
EP3403455B1 (en) * 2016-01-11 2019-07-24 Telefonaktiebolaget LM Ericsson (PUBL) Data block repetitions with transmission gaps
US20190021021A1 (en) * 2016-01-13 2019-01-17 Telefonaktiebolaget L M Ericsson (Publ) Adapting measurement procedure of nb-iot
US10477580B2 (en) * 2016-04-20 2019-11-12 Qualcomm Incorporated Collision deadlock resolution
CN107645732B (zh) * 2016-07-22 2020-09-11 展讯通信(上海)有限公司 基站及其异频小区的测量方法
CN107645736B (zh) * 2016-07-22 2020-08-07 展讯通信(上海)有限公司 基站及其异频小区的测量方法
US11082901B2 (en) * 2016-11-04 2021-08-03 Apple Inc. Signaling of support for network controlled small gap, NCSG, for interruption control
US10200828B2 (en) 2017-02-08 2019-02-05 Qualcomm Incorporated Techniques and apparatuses for utilizing measurement gaps to perform signal decoding for a multimedia broadcast or multicast service
US10931344B2 (en) * 2017-02-20 2021-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for information reception during intra-frequency measurement gap
US11044626B2 (en) 2017-03-14 2021-06-22 Apple Inc. Systems, methods, and apparatuses for configuring measurement gap per frequency group and per cell
US10779278B2 (en) * 2017-03-24 2020-09-15 Nokia Technologies Oy Inter-frequency and intra-frequency measurement management
JP7016885B2 (ja) 2017-04-28 2022-02-07 エルジー エレクトロニクス インコーポレイティド 5gのためのnrにおける測定を実行する方法及び無線機器
US11070999B2 (en) 2017-05-02 2021-07-20 Apple Inc. Gap pattern design for new radio (NR) systems
CN110583039B (zh) * 2017-05-12 2024-01-19 苹果公司 用于下一代无线电(nr)和长期演进(lte)的测量设计
WO2018212692A1 (en) * 2017-05-15 2018-11-22 Telefonaktiebolaget Lm Ericsson (Publ) System and method for controlling measurement gaps in a communication system
CN110537375B (zh) * 2017-05-16 2022-08-02 苹果公司 每ue网络控制的小间隙(ncsg)信令
AU2017414949B2 (en) 2017-05-16 2022-09-01 Ntt Docomo, Inc. User terminal and radio communciation method
CN109151922B (zh) 2017-06-16 2021-05-14 华为技术有限公司 测量方法、测量配置方法和相关设备
US11212690B2 (en) 2017-07-18 2021-12-28 Shenzhen Heytap Technology Corp., Ltd. Inter-frequency/inter-system measurement method, terminal device, and network device
US10412614B2 (en) 2017-10-20 2019-09-10 Futurewei Technologies, Inc. Coordination of measurement gaps across sets of multiple frequencies
CN109714781B (zh) * 2017-10-25 2021-02-23 华为技术有限公司 测量方法及设备
CN111132220A (zh) * 2017-10-28 2020-05-08 Oppo广东移动通信有限公司 配置测量间隔的方法、终端设备和网络设备
BR112019016183A2 (pt) 2017-11-15 2020-04-07 Lg Electronics Inc método e equipamento de usuário para realizar medição em contexto de en-dc
CN111434140B (zh) * 2017-11-17 2023-11-14 上海诺基亚贝尔股份有限公司 Nr中用于rlm的间隙共享
CN110149696A (zh) * 2018-02-13 2019-08-20 北京展讯高科通信技术有限公司 一种用户设备选取测量资源的方法、装置、系统
CN110545547B (zh) * 2018-05-29 2020-11-27 中国移动通信有限公司研究院 一种测量方法、装置、终端、网络侧设备及存储介质
WO2019227486A1 (zh) * 2018-06-01 2019-12-05 北京小米移动软件有限公司 测量方法、装置、系统及存储介质
CN110636519B (zh) * 2018-06-21 2021-07-13 中国移动通信有限公司研究院 一种配置测量间隔的方法及设备
CN111866925B (zh) * 2019-04-25 2022-01-14 华为技术有限公司 频点测量方法、装置以及存储介质
CN113383571B (zh) * 2019-06-28 2023-03-14 Oppo广东移动通信有限公司 一种测量间隔的配置方法及装置、终端、网络设备
CN113498096B (zh) * 2020-03-20 2023-07-14 华为技术有限公司 一种测量方法及装置
CN113498092B (zh) * 2020-04-03 2023-06-02 维沃移动通信有限公司 信号测量、测量间隔配置、测量上报方法及相关设备
US11696146B1 (en) * 2020-05-07 2023-07-04 Cable Television Laboratories, Inc. Systems and methods for wireless coexistence of OFDM technologies
WO2022119832A1 (en) * 2020-12-01 2022-06-09 Intel Corporation User equipment configurable with more than one measurement gap pattern
EP4272480A1 (en) * 2021-01-04 2023-11-08 INTEL Corporation User equipment (ue) capability for a maximum number of gap instances of a multiple concurrent gap pattern
WO2022150136A1 (en) * 2021-01-07 2022-07-14 Intel Corporation Ue capability support for multiple concurrent and independent measurement gap configurations
WO2022150364A1 (en) * 2021-01-08 2022-07-14 Intel Corporation Ue configurable to support multiple measurement gaps
KR20230101897A (ko) * 2021-01-14 2023-07-06 엘지전자 주식회사 측정 갭에 기초한 측정
WO2022151158A1 (en) * 2021-01-14 2022-07-21 Apple Inc. Systems and methods for uplink gap configuration for transceiver calibration and transmit power management
WO2022151243A1 (en) * 2021-01-14 2022-07-21 Apple Inc. Measurement gap configuration for bandwidth part switching
CN116724590A (zh) * 2021-01-15 2023-09-08 苹果公司 混合测量间隙操作
CN113507720B (zh) * 2021-07-21 2023-11-14 惠州Tcl云创科技有限公司 终端测量模式管理方法、装置、存储介质及电子终端
WO2023068982A1 (en) * 2021-10-18 2023-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Multi-usim measurement gap based on signal reception proximity condition
CN114374698B (zh) * 2022-03-22 2022-05-17 环球数科集团有限公司 一种基于Ingress的自动NodePort池切换系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649869B2 (en) * 2005-08-12 2010-01-19 Qualcomm, Incorporated Efficient cell measurements during transmission gaps in a compressed mode
RU2009130406A (ru) * 2007-01-08 2011-02-20 Интердиджитал Текнолоджи Корпорейшн (Us) Планирование структуры промежутков измерений для поддержания
WO2008149534A1 (ja) * 2007-05-31 2008-12-11 Panasonic Corporation ギャップ支援測定方法
US8873522B2 (en) * 2008-08-11 2014-10-28 Qualcomm Incorporated Processing measurement gaps in a wireless communication system
CN101466106A (zh) * 2008-12-30 2009-06-24 上海无线通信研究中心 一种移动通信系统中多信道的测量方法及小区切换方法
US8300588B2 (en) * 2009-10-05 2012-10-30 Futurewei Technologies, Inc. System and method for user equipment measurement timing in a relay cell
JP5445186B2 (ja) * 2009-10-30 2014-03-19 ソニー株式会社 基地局、端末装置、通信制御方法及び無線通信システム
EP2584838A4 (en) * 2010-07-20 2017-07-19 ZTE Corporation Method and system for processing transmission gap pattern sequence
US8750807B2 (en) 2011-01-10 2014-06-10 Mediatek Inc. Measurement gap configuration in wireless communication systems with carrier aggregation
US9204354B2 (en) 2011-08-11 2015-12-01 Mediatek Inc. Method for small cell discovery in heterogeneous network
US9848340B2 (en) * 2012-05-18 2017-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Technique for performing cell measurement on at least two cells
WO2014184602A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment
KR20160130429A (ko) * 2014-03-04 2016-11-11 엘지전자 주식회사 탐색 신호를 수신하기 위하여 제어 정보를 수신하는 방법 및 장치

Also Published As

Publication number Publication date
KR101828424B1 (ko) 2018-03-29
CN106416350A (zh) 2017-02-15
EP3111691A4 (en) 2017-10-18
CN106416350B (zh) 2019-12-10
JP2017503437A (ja) 2017-01-26
KR20160101127A (ko) 2016-08-24
US20150245235A1 (en) 2015-08-27
EP3111691A1 (en) 2017-01-04
WO2015126568A1 (en) 2015-08-27
EP3111691B1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP6342501B2 (ja) 測定ギャップパターン
JP6382378B2 (ja) 時分割複信(tdd)アップリンク−ダウンリンク(ul−dl)再構成
KR102526033B1 (ko) 멀티캐리어 디바이스를 위한 캐리어 측정
US9509485B2 (en) Systems and methods for in-device co-existence interference avoidance for dual connectivity
JP6017024B2 (ja) 異種無線ネットワークにおけるハンドオーバーの実行
US9503232B2 (en) Methods and apparatus for inter-cell interference coordination with protected subframes
FI126925B (en) Ascending and descending configurations in a heterogeneous network of time-division duplexes
US9693304B2 (en) Rescheduling of a resource component of low power nodes (LPNs) in a coordination set

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6342501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees