JP6340186B2 - Cylindrical filter - Google Patents

Cylindrical filter Download PDF

Info

Publication number
JP6340186B2
JP6340186B2 JP2013235405A JP2013235405A JP6340186B2 JP 6340186 B2 JP6340186 B2 JP 6340186B2 JP 2013235405 A JP2013235405 A JP 2013235405A JP 2013235405 A JP2013235405 A JP 2013235405A JP 6340186 B2 JP6340186 B2 JP 6340186B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fabric layer
fiber diameter
layer
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013235405A
Other languages
Japanese (ja)
Other versions
JP2015093259A (en
Inventor
宏二 永井
宏二 永井
正彦 武田
正彦 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DaiwaboPolytecCo.,Ltd.
Daiwabo Holdings Co Ltd
Original Assignee
DaiwaboPolytecCo.,Ltd.
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaiwaboPolytecCo.,Ltd., Daiwabo Holdings Co Ltd filed Critical DaiwaboPolytecCo.,Ltd.
Priority to JP2013235405A priority Critical patent/JP6340186B2/en
Publication of JP2015093259A publication Critical patent/JP2015093259A/en
Application granted granted Critical
Publication of JP6340186B2 publication Critical patent/JP6340186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、不織布を用いた筒状フィルターに関する。   The present invention relates to a cylindrical filter using a nonwoven fabric.

不織布などの布帛を筒状に巻き回した筒状フィルターは、取り扱いが容易で製造コストも比較的安価なことから、清涼飲料水及び酒類などの飲料物、塗料、金属加工時に排出される金属微粉末を含む切削油などの液体のろ過に広く使用されている。これらの用途では、筒状フィルターで捕集できる固形物粒子の大きさ(サイズ)がより小さい、すなわち、より高いろ過精度が求められると同時に、1本の筒状フィルターがろ過可能な液体の量がより多い、すなわち、より長いろ過寿命が求められている。   A cylindrical filter in which a fabric such as a non-woven fabric is wound in a cylindrical shape is easy to handle and relatively inexpensive to manufacture. Widely used for filtering liquids such as cutting oil containing powder. In these applications, the size (size) of solid particles that can be collected by the cylindrical filter is smaller, that is, higher filtration accuracy is required, and at the same time, the amount of liquid that can be filtered by one cylindrical filter. There is a need for a greater filtration life, i.e., a longer filtration life.

筒状フィルターに用いる不織布などの布帛において、繊維径が小さい繊維で構成された布帛を使用したり、繊維が密に集合している高密度の布帛を使用したりすることで筒状フィルターのろ過精度を高めることができる。しかし、布帛を構成する繊維の繊維径を小さくしたり、布帛を高密度にしたりすると、繊維間の空隙が少なくなり、ろ過寿命が低下しやすくなる。逆に、ろ過寿命を長くするために布帛を構成する繊維の繊維径を大きくしたり、低密度の布帛を使用したりすると、繊維間の空隙が大きくなるため、ろ過寿命は長くなるが細かい粒子は捕集できなくなり、ろ過精度が低下する。このように、ろ過精度とろ過寿命は相反するものであり、高いろ過精度と長いろ過寿命の両立は、筒状フィルターにおいて長年の課題となっている。   Filtration of a cylindrical filter by using a fabric composed of fibers having a small fiber diameter or using a high-density fabric in which fibers are densely gathered, such as a nonwoven fabric used for a cylindrical filter. Accuracy can be increased. However, if the fiber diameter of the fibers constituting the fabric is reduced or the fabric is made dense, the gaps between the fibers are reduced and the filtration life is likely to be reduced. Conversely, if the fiber diameter of the fibers constituting the fabric is increased in order to prolong the filtration life, or if a low-density fabric is used, the gap between the fibers increases, so the filtration life becomes longer but fine particles. Can no longer be collected and the filtration accuracy decreases. Thus, the filtration accuracy and the filtration life are contradictory, and the compatibility between the high filtration accuracy and the long filtration life has been a long-standing problem in the cylindrical filter.

筒状フィルターにおいて、ろ過精度を向上し、同時にろ過寿命を長くする一つの手段として、ろ過の対象物が筒状フィルターに流れ込む側(以下、単に流入側とも称す。)により近い側の布帛の繊維径及び/又は孔径を大きくし、ろ過の対象物が筒状フィルターから流れ出る側(以下、単に流出側とも称す。)により近い側の布帛の繊維径及び/又は孔径を小さくすることで、筒状フィルター全体の構造を、筒状フィルターを構成する布帛の繊維径及び/又は孔径に勾配が設けられた構造にすることが知られている。筒状フィルターの流入側に近い側ほど繊維径及び/又は孔径の大きい布帛で構成し、流出側に向けて繊維径及び/又は孔径が徐々に小さくなる構成とすることで、ろ過の対象物に含まれている固形物のうち、サイズが大きい固形物は繊維径及び/又は孔径の大きい布帛で捕集され、サイズが小さい固形物は繊維径及び/又は孔径の小さい布帛で捕集されるようになり、固形物がそのサイズに対応する布帛で捕集されることから筒状フィルター全体が効率よくろ過に使用され、高いろ過精度と長いろ過寿命の両立が図られる。   In a cylindrical filter, as one means for improving the filtration accuracy and at the same time prolonging the filtration life, the fiber of the fabric closer to the side where the filtration object flows into the cylindrical filter (hereinafter also referred to simply as the inflow side). By increasing the diameter and / or the hole diameter and decreasing the fiber diameter and / or the hole diameter of the fabric closer to the side where the object to be filtered flows out of the cylindrical filter (hereinafter also referred to simply as the outflow side), It is known that the structure of the entire filter is a structure in which a gradient is provided in the fiber diameter and / or hole diameter of the fabric constituting the cylindrical filter. The side closer to the inflow side of the cylindrical filter is made of a fabric having a larger fiber diameter and / or hole diameter, and the fiber diameter and / or hole diameter gradually decreases toward the outflow side, so that the object to be filtered can be obtained. Among the contained solids, solids with a large size are collected by a fabric with a large fiber diameter and / or pore diameter, and solids with a small size are collected by a fabric with a small fiber diameter and / or pore diameter. Since the solid matter is collected by the cloth corresponding to the size, the entire cylindrical filter is efficiently used for filtration, and both high filtration accuracy and a long filtration life can be achieved.

筒状フィルターにおいて、ろ過精度を向上し、同時にろ過寿命を長くする別の手段として、種類の異なる2種類以上の布帛を重ね合わせて積層した状態で巻き回し、筒状フィルターを製造する方法が知られている。種類の異なる布帛を重ね合わせた状態で巻き回し、ろ過層を形成することで、得られる筒状フィルターは、種類の異なる布帛、例えば、繊維径や平均孔径の異なる布帛が交互に巻き回されるため、ろ過の対象物が種類の異なる不織布を交互に通過するようになり、ろ過寿命やろ過精度が向上しやすくなる。   In a cylindrical filter, as another means of improving the filtration accuracy and extending the filtration life at the same time, a method of manufacturing a cylindrical filter by winding two or more different kinds of fabrics in a stacked state is known. It has been. By winding the different types of fabrics in an overlapped state to form a filtration layer, the resulting cylindrical filter is alternately wound with different types of fabrics, for example, fabrics having different fiber diameters and average pore diameters. For this reason, the object to be filtered alternately passes through different types of non-woven fabric, and the filtration life and filtration accuracy are easily improved.

上述した構造を採用した筒状フィルターはこれまでに種々提案されている。筒状フィルター全体の構造が構成する布帛の繊維径及び/又は孔径に勾配が設けられた構造になっているものとして、例えば、特許文献1には、メルトブロープロセス又はジェット紡糸プロセスで作られた平均繊維径0.5〜50μmを有する繊維からなり、巻き回すべき筒の外側になる程、平均繊維径や平均孔径が大きくなるように構成した不織布を複数回巻き回してなるカートリッジフィルターが開示されている。特許文献2には、長手方向に孔径勾配を有する不織布を多孔性コアに巻き回したカートリッジフィルターが開示されている。特許文献3には、多孔筒状芯材に、不織布を連続的に巻き付けてなり、外周側から内周側に液体を通過させてろ過するデプス型フィルターにおいて、不織布を内周側から外周側に向かって繊維径を連続的に太くすることが提案されている。また、特許文献4には、不織布を製造する段階で、連続的に繊維径の勾配を設けながら巻き回したフィルターが開示されている。   Various cylindrical filters employing the above-described structure have been proposed so far. As an example of the structure in which the fiber diameter and / or the hole diameter of the fabric constituting the entire structure of the tubular filter is provided with a gradient, Patent Document 1 includes, for example, an average produced by a melt blow process or a jet spinning process. A cartridge filter is disclosed which is made of a fiber having a fiber diameter of 0.5 to 50 μm and wound with a non-woven fabric constituted so that the average fiber diameter and the average pore diameter become larger toward the outside of the tube to be wound. Yes. Patent Document 2 discloses a cartridge filter in which a nonwoven fabric having a pore diameter gradient in the longitudinal direction is wound around a porous core. In Patent Document 3, in a depth type filter in which a nonwoven fabric is continuously wound around a porous cylindrical core material and filtered by passing a liquid from the outer peripheral side to the inner peripheral side, the nonwoven fabric is moved from the inner peripheral side to the outer peripheral side. It has been proposed to increase the fiber diameter continuously. Further, Patent Document 4 discloses a filter that is wound while continuously providing a gradient of the fiber diameter at the stage of manufacturing a nonwoven fabric.

筒状フィルターにおいて、種類の異なる布帛を重ね合わせ、積層した状態で巻き回した構造を有するものとして、例えば、特許文献5には、熱接着性繊維を含み、構成繊維同士が交絡し、少なくともその一部が熱接着したスパンレース不織布と、前記スパンレース不織布の構成繊維よりも細い繊度の構成繊維からなる細繊度不織布を重ね合わせ、積層した状態で巻き回したろ過層を含む筒状フィルターが開示されている。また、特許文献6には、特定のろ過精度及び通気度の範囲を満たす粗ろ過不織布及び精密ろ過不織布を用い、前記2種類の不織布を重ね合わせた状態で1周以上巻き回し、粗ろ過層不織布のみで7周以上巻き回した筒状フィルターが開示されている。   In the cylindrical filter, as having a structure in which different types of fabrics are overlapped and wound in a laminated state, for example, Patent Document 5 includes a heat-adhesive fiber, and the constituent fibers are entangled, and at least the Disclosed is a tubular filter including a spun lace nonwoven fabric partially heat-bonded and a filtration layer wound in a stacked state by superimposing and laminating a fine fineness nonwoven fabric composed of fibers having a fineness smaller than that of the spun lace nonwoven fabric. Has been. Patent Document 6 uses a coarse filtration nonwoven fabric and a fine filtration nonwoven fabric satisfying specific filtration accuracy and air permeability ranges, and the two types of nonwoven fabrics are overlapped and wound one or more rounds to obtain a coarse filtration layer nonwoven fabric. A cylindrical filter wound only seven times or more is disclosed.

しかし、特許文献1〜3に提案されている、布帛を構成する繊維の平均繊維径や布帛の平均孔径に勾配を設けただけの筒状フィルターは、ろ過の対象物によってろ過性能が変化し、高いろ過精度と長いろ過寿命の両立ができない場合があるという問題があった。また、特許文献1〜3に提案されている筒状フィルターでは、筒状フィルターを構成する布帛の平均繊維径や布帛の平均孔径の勾配を緩やかなものにしているため、筒状フィルターを構成する布帛の種類を増やして製造しようとすると、多くの種類(例えば7種以上)の布帛を準備しなければならなくなる。さらに、筒状フィルターを製造するときには、筒状フィルターの生産設備を一旦停止させてから、巻き回す布帛を変更する必要があり、布帛の種類が多いほど生産性が低下するといった問題点もあった。そして、特許文献4に提案されているフィルターの場合、繊維径を連続的に変化させながら不織布を巻き回すため、生産性は高いものの、繊維径を連続的に変化させながら長繊維不織布を製造できる設備が必要になるという問題点があった。   However, the cylindrical filter proposed in Patent Documents 1 to 3, which has a gradient in the average fiber diameter of the fibers constituting the fabric and the average pore diameter of the fabric, the filtration performance varies depending on the object to be filtered, There was a problem that high filtration accuracy and a long filtration life could not be compatible. Moreover, in the cylindrical filter proposed by patent documents 1-3, since the gradient of the average fiber diameter of the cloth which comprises a cylindrical filter, or the average hole diameter of a cloth is made into a gentle thing, a cylindrical filter is comprised. If it is going to manufacture by increasing the kind of fabric, many types (for example, 7 or more types) of fabric must be prepared. Furthermore, when manufacturing the cylindrical filter, it is necessary to temporarily stop the production facility of the cylindrical filter and then change the fabric to be wound, and there is a problem that the productivity decreases as the number of types of the fabric increases. . And in the case of the filter proposed in Patent Document 4, since the nonwoven fabric is wound while continuously changing the fiber diameter, the long fiber nonwoven fabric can be manufactured while continuously changing the fiber diameter, although the productivity is high. There was a problem that equipment was required.

特許文献5に記載の筒状フィルターでは、繊維径が比較的大きい繊維を含むスパンレース不織布を、繊維径が小さい繊維を含む細繊度不織布と重ね合わせて巻き回しているため、直径が1μm以下の小さい粒子に対してスパンレース不織布では粒子を捕捉する効果が低く、所望するろ過精度及びろ過寿命が得られないおそれがある。また、特許文献6に記載の筒状フィルターでは、高いろ過精度が得られているものの、ろ過寿命が350リットル以下と短く、十分なろ過寿命が得られていない。   In the cylindrical filter described in Patent Document 5, a spunlace nonwoven fabric containing fibers having a relatively large fiber diameter is wound on a fine non-woven fabric containing fibers having a small fiber diameter so that the diameter is 1 μm or less. The spunlace nonwoven fabric has a low effect of capturing particles with respect to small particles, and the desired filtration accuracy and filtration life may not be obtained. Moreover, in the cylindrical filter of patent document 6, although the high filtration precision is obtained, the filtration life is as short as 350 liters or less, and sufficient filtration life is not obtained.

特開平01−297113号公報JP-A-01-297113 特開平6−218212号公報JP-A-6-218212 特開平11−156125号公報Japanese Patent Laid-Open No. 11-156125 国際公開98/13123号公報International Publication No. 98/13123 特開2004−851号公報JP 2004-851 A 特開2013−34919号公報JP 2013-34919 A

本発明は、上記従来の問題を解決するため、高いろ過精度と、長いろ過寿命が両立された筒状フィルターを提供する。   In order to solve the above-described conventional problems, the present invention provides a cylindrical filter that achieves both high filtration accuracy and a long filtration life.

本発明の筒状フィルターは、芯材に巻き回されているろ過層を含む筒状フィルターであって、
前記ろ過層は、ろ過対象物の流入側から順番に連続して巻き回されている不織布層A、不織布層B、不織布層Cの少なくとも3種類の不織布層で構成されており、
前記不織布層A、前記不織布層B及び前記不織布層Cの合計質量は、筒状フィルター全体の質量の20質量%以上であり、
前記不織布層Aの平均孔径は、10.5μm以上、17.5μm以下であり、
前記不織布層Bの平均孔径は、不織布層Aの平均孔径の0.6倍以上、0.95倍以下であり、
前記不織布層Cは、平均繊維径が2μm以下で、平均孔径が不織布層Aの平均孔径の0.37倍以上、0.86倍以下の細繊維径不織布を含む不織布層であり、前記細繊維径不織布は、少なくともその一部が、平均繊維径が2μmよりも大きい太繊維径不織布と重ね合わせて積層した状態で巻き回され、
不織布層A、不織布層B及び不織布層Cの合計質量に対して、前記不織布層Aの含有量は7.8質量%以上、27質量%以下であり、前記不織布層Bの含有量は38.2質量%以上、64質量%以下であり、前記細繊維径不織布の含有量は7.8質量%以上、25質量%以下の筒状フィルターである。
The cylindrical filter of the present invention is a cylindrical filter including a filtration layer wound around a core material,
The filtration layer is composed of at least three types of nonwoven fabric layers, a nonwoven fabric layer A, a nonwoven fabric layer B, and a nonwoven fabric layer C, which are continuously wound in order from the inflow side of the filtration object.
The total mass of the nonwoven fabric layer A, the nonwoven fabric layer B and the nonwoven fabric layer C is 20% by mass or more of the mass of the entire cylindrical filter,
The average pore diameter of the nonwoven fabric layer A is 10.5 μm or more and 17.5 μm or less,
The average pore diameter of the nonwoven fabric layer B is 0.6 times or more and 0.95 times or less of the average pore diameter of the nonwoven fabric layer A,
The non-woven fabric layer C is a non-woven fabric layer containing a non-woven fabric having a fine fiber diameter of not more than 2 μm and an average pore size of 0.37 times or more and 0.86 times or less of the average pore size of the nonwoven fabric layer A, and the fine fibers The diameter nonwoven fabric is wound in a state where at least a part thereof is laminated and laminated with a thick fiber diameter nonwoven fabric having an average fiber diameter larger than 2 μm,
With respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, the content of the nonwoven fabric layer A is 7.8 mass% or more and 27 mass% or less, and the content of the nonwoven fabric layer B is 38. It is 2 mass% or more and 64 mass% or less, and content of the said fine fiber diameter nonwoven fabric is a cylindrical filter of 7.8 mass% or more and 25 mass% or less.

本発明の筒状フィルターにおいて、前記不織布層Cに含まれる細繊維径不織布の平均繊維径は0.05μm以上、2μm以下であり、前記細繊維径不織布の平均孔径が前記不織布層Bの平均孔径の0.4倍以上、0.9倍以下であることが好ましい。   In the cylindrical filter of the present invention, the average fiber diameter of the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C is 0.05 μm or more and 2 μm or less, and the average pore diameter of the fine fiber diameter nonwoven fabric is the average pore diameter of the nonwoven fabric layer B. It is preferable that it is 0.4 times or more and 0.9 times or less.

本発明の筒状フィルターは、不織布層Cにおいて、細繊維径不織布が、巻き回した長さの50%以上の部分で、太繊維径不織布と重ね合わせて積層した状態で巻き回され、前記不織布層Cを形成していることが好ましい。そして、不織布層Cにおいて、最も流入側に位置する細繊維径不織布が、太繊維径不織布と重ねた状態で巻き回された層となっていることが好ましい。また、不織布層Bと、不織布層Cは接しており、不織布層Cにおいて不織布層Bと接している部分は、細繊維径不織布が、太繊維径不織布と重ねた状態で巻き回された層となっていることが好ましい。   In the nonwoven fabric layer C, the tubular filter of the present invention is wound in a state in which the fine fiber diameter nonwoven fabric is overlapped and laminated with the thick fiber diameter nonwoven fabric at a portion of 50% or more of the wound length. The layer C is preferably formed. And in the nonwoven fabric layer C, it is preferable that the fine fiber diameter nonwoven fabric located in the most inflow side becomes the layer wound in the state piled up with the thick fiber diameter nonwoven fabric. Further, the nonwoven fabric layer B and the nonwoven fabric layer C are in contact with each other, and the portion of the nonwoven fabric layer C that is in contact with the nonwoven fabric layer B is a layer in which the fine fiber diameter nonwoven fabric is wound in a state of being overlapped with the thick fiber diameter nonwoven fabric. It is preferable that

本発明の筒状フィルターにおいて、不織布層A、不織布層B及び不織布層Cを構成する不織布が、いずれもポリプロピレン樹脂からなる単一繊維で構成された不織布であることが好ましい。また、不織布層A、及び不織布層Bを構成する不織布、並びに不織布層Cに含まれる太繊維径不織布が、いずれもメルトブローン不織布であり、前記不織布層Cを構成する細繊維径不織布が、メルトブローン不織布、またはエレクトロスピニング法で得られた不織布であることが好ましい。そして、不織布層A、及び不織布層Bがそれぞれ1種類のメルトブローン不織布で構成され、不織布層Cが、1種類の細繊維径不織布及び1種類の太繊維径不織布のみで構成されていることが好ましい。   In the cylindrical filter of the present invention, it is preferable that the nonwoven fabrics constituting the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C are all nonwoven fabrics composed of a single fiber made of polypropylene resin. Moreover, the nonwoven fabric layer A and the nonwoven fabric which comprises the nonwoven fabric layer B, and the large fiber diameter nonwoven fabric contained in the nonwoven fabric layer C are all melt blown nonwoven fabrics, and the fine fiber diameter nonwoven fabric which comprises the said nonwoven fabric layer C is a melt blown nonwoven fabric. Or a nonwoven fabric obtained by electrospinning. And it is preferable that the nonwoven fabric layer A and the nonwoven fabric layer B are each comprised with one type of melt blown nonwoven fabric, and the nonwoven fabric layer C is comprised only with one type of fine fiber diameter nonwoven fabric and one type of thick fiber diameter nonwoven fabric. .

本発明の筒状フィルターは、芯材に巻き回されているろ過層を含む筒状フィルターであって、ろ過対象物の流入側から順番に連続して巻き回されている不織布層A、不織布層B、不織布層Cの各ろ過層が形成され、かつ、不織布層A、不織布層B及び不織布層Cの合計質量に対する不織布層A、不織布層B及び不織布層Cに含まれる細繊維径不織布の含有量が特定されている。そして、筒状フィルターのろ過精度、もしくはろ過効率を左右する不織布層Cが、平均繊維径が2μm以下の細繊維径不織布を含む不織布層であり、前記細繊維径不織布は、少なくともその一部が、平均繊維径が2μmよりも大きい太繊維径不織布と重ね合わせて積層した状態で巻き回されて不織布層Cを形成している。これらの構成により、本発明の筒状フィルターは、高いろ過精度と、長いろ過寿命とを達成する。本発明の筒状フィルターは、純水、飲料水、薬液、各種油脂、めっき液、塗料溶液または、電子工業用洗浄水などをろ過するのに適している。   The cylindrical filter of the present invention is a cylindrical filter including a filtration layer wound around a core material, the nonwoven fabric layer A being wound continuously in order from the inflow side of the filtration object, the nonwoven fabric layer B, each of the filtration layers of the nonwoven fabric layer C is formed, and the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C are included in the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. The amount is specified. And the nonwoven fabric layer C which influences the filtration accuracy of a cylindrical filter, or the filtration efficiency is a nonwoven fabric layer containing the fine fiber diameter nonwoven fabric with an average fiber diameter of 2 micrometers or less, The fine fiber diameter nonwoven fabric has at least one part. The non-woven fabric layer C is formed by being wound in a state in which the non-woven fabric is superposed on and laminated with a thick non-woven fabric having an average fiber diameter larger than 2 μm. With these configurations, the cylindrical filter of the present invention achieves high filtration accuracy and a long filtration life. The cylindrical filter of the present invention is suitable for filtering pure water, drinking water, chemicals, various oils and fats, plating solutions, coating solutions, washing water for electronic industries, and the like.

図1は、本発明の一実施形態の筒状フィルターの部分破断斜視図である。FIG. 1 is a partially broken perspective view of a tubular filter according to an embodiment of the present invention. 図2は、本発明の一実施形態の筒状フィルターにおいて、支持不織布4を巻き回す前の状態であって、その一部を分解して、不織布を巻き回した状態を示す部分破断斜視図である。FIG. 2 is a partially broken perspective view showing a state in which the support nonwoven fabric 4 is wound around the tubular filter according to the embodiment of the present invention, a part of which is disassembled and the nonwoven fabric is wound. is there. 図3は、本発明の筒状フィルターを製造する方法において、不織布層Cを形成する方法の一例を示す模式図である。FIG. 3 is a schematic view showing an example of a method for forming the nonwoven fabric layer C in the method for producing the cylindrical filter of the present invention.

高いろ過精度と、長いろ過寿命を有する筒状フィルターを得るには、上述した特許文献1〜3にも見られるように、繊維径及び/又は孔径が互いに異なる布帛(例えば不織布)を数種類使用し、複数のろ過層を形成し、ろ過層を形成する布帛が、繊維径及び/又は孔径が徐々に小さくなるような多層構造にすることが行われている。しかし、本発明者らは、単に筒状フィルターの構造を布帛の繊維径及び/又は孔径が徐々に小さくなるような多層構造にしただけでは、ろ過精度の向上及びろ過寿命の向上を両立させることは不十分であることを見いだした。また、高いろ過精度と、長いろ過寿命を有する筒状フィルターを得るために、上述した特許文献5、6に見られるように、異なる種類の布帛を重ね合わせて積層した状態で巻き回すことが知られている。しかし、布帛を構成する繊維の平均繊維径が2μm以下と小さい場合、単に異なる種類の布帛を重ね合わせて積層した状態で巻き回しただけではろ過精度及びろ過寿命の両立が不十分であり、重ね合わせた状態で巻き回した布帛のうち、より繊維径の細い布帛が一定量以上の長さで巻き回されている、言い換えるならば、より繊維径の細い布帛が筒状フィルターを構成するろ過層に対し、一定の割合以上を占めていなければならないことを見いだした。   In order to obtain a cylindrical filter having high filtration accuracy and a long filtration life, several types of fabrics (for example, non-woven fabrics) having different fiber diameters and / or pore diameters are used as seen in Patent Documents 1 to 3 described above. A plurality of filtration layers are formed, and the fabric forming the filtration layer is made to have a multilayer structure in which the fiber diameter and / or the pore diameter are gradually reduced. However, the present inventors can achieve both improvement in filtration accuracy and improvement in filtration life simply by making the structure of the cylindrical filter a multilayer structure in which the fiber diameter and / or pore diameter of the fabric is gradually reduced. Found inadequate. In addition, in order to obtain a cylindrical filter having high filtration accuracy and a long filtration life, it is known that different types of fabrics are wound in a stacked state as seen in Patent Documents 5 and 6 described above. It has been. However, when the average fiber diameter of the fibers constituting the fabric is as small as 2 μm or less, simply winding different types of fabrics in a stacked state is insufficient to achieve both filtration accuracy and filtration life. Among the fabrics wound in a combined state, a fabric with a smaller fiber diameter is wound with a length of a certain amount or more, in other words, a filter layer in which a fabric with a smaller fiber diameter constitutes a cylindrical filter. On the other hand, they found that they must occupy more than a certain percentage.

本発明の筒状フィルターは、特定の平均孔径の範囲を満たす不織布層A、不織布層B及び、平均繊維径が2μm以下の細繊維径不織布を含んでいる不織布層Cを含み、上記不織布層A、不織布層B及び不織布層Cの合計質量が、筒状フィルター全体の質量に対して20質量%以上であり、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層A、不織布層B、及び細繊維径不織布の含有量がそれぞれ特定の範囲を満たし、前記細繊維径不織布は、少なくともその一部が、平均繊維径が2μmよりも大きい太繊維径不織布と重ね合わせて積層した状態で巻き回されることで不織布層Cを形成し、上記不織布層A、不織布層B及び不織布層Cがろ過対象物の流入側から連続して巻き回してろ過層が構成された筒状フィルターであり、高いろ過精度と長いろ過寿命を有している。   The tubular filter of the present invention includes a non-woven fabric layer A, a non-woven fabric layer B satisfying a specific average pore diameter range, and a non-woven fabric layer C containing a fine fiber diameter non-woven fabric having an average fiber diameter of 2 μm or less. The total mass of the non-woven fabric layer B and the non-woven fabric layer C is 20% by mass or more with respect to the total mass of the cylindrical filter, and the non-woven fabric layer A with respect to the total mass of the non-woven fabric layer A, the non-woven fabric layer B and the non-woven fabric layer C. The nonwoven fabric layer B and the fine fiber diameter nonwoven fabric satisfy a specific range, and the fine fiber diameter nonwoven fabric is at least partially overlapped with a thick fiber diameter nonwoven fabric having an average fiber diameter of greater than 2 μm. A non-woven fabric layer C is formed by being wound in a laminated state, and the non-woven fabric layer A, the non-woven fabric layer B, and the non-woven fabric layer C are continuously wound from the inflow side of the filtration object to form a filtration layer. Filter Has high filtration accuracy and long filtration life.

本発明の筒状フィルターにおいて、ろ過層は不織布層A、不織布層B及び平均繊維径が2μm以下の細繊維径不織布を含む不織布層Cの3種類の不織布層を含む。このうち、不織布層A、不織布層Bを、それぞれ1種類の不織布を用いて構成しても高いろ過精度と長いろ過寿命を有する筒状フィルターを提供できる。その結果、筒状フィルターを製造するのに必要な布帛の種類が少なくなり、生産工程を簡略化できると同時に生産性も向上し得ることから生産コストを低減できる。なお、本発明の筒状フィルターのろ過層が不織布層A、不織布層B、不織布層Cの3種類の不織布層のみ、言い換えるならば筒状フィルターが不織布層A、不織布層B、不織布層Cからなる筒状フィルターに限定されるわけではないことはいうまでもない。例えば、不織布層Cよりも流出側に、不織布層Cよりも平均孔径の小さい不織布を巻き回して筒状フィルターとすることで、よりろ過精度を高めた構成の筒状フィルターとすることも可能である。また、不織布層Aよりも流入側に不織布層Aよりも平均繊維径及び/又は平均孔径の大きい不織布を巻き回して筒状フィルターとすることで、よりろ過寿命を長くした構成の筒状フィルターとすることも可能である。   In the cylindrical filter of the present invention, the filtration layer includes three types of nonwoven fabric layers: a nonwoven fabric layer A, a nonwoven fabric layer B, and a nonwoven fabric layer C that includes a nonwoven fabric having a fine fiber diameter of 2 μm or less. Among these, even if each of the nonwoven fabric layer A and the nonwoven fabric layer B is constituted by using one kind of nonwoven fabric, a cylindrical filter having high filtration accuracy and a long filtration life can be provided. As a result, the number of types of fabrics required to manufacture the cylindrical filter is reduced, the production process can be simplified, and at the same time the productivity can be improved, so that the production cost can be reduced. In addition, the filtration layer of the cylindrical filter of the present invention has only three types of nonwoven fabric layers, that is, the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. In other words, the tubular filter is formed from the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It goes without saying that the present invention is not limited to a cylindrical filter. For example, it is possible to obtain a cylindrical filter with a higher filtration accuracy by winding a nonwoven fabric having an average pore diameter smaller than that of the nonwoven fabric layer C on the outflow side of the nonwoven fabric layer C to form a cylindrical filter. is there. In addition, a tubular filter having a structure in which the filtration life is further extended by winding a nonwoven fabric having a larger average fiber diameter and / or average pore diameter than the nonwoven fabric layer A on the inflow side of the nonwoven fabric layer A to form a tubular filter; It is also possible to do.

本発明の筒状フィルターは、ろ過対象物の流入側から、平均孔径が特定の範囲を満たす不織布層A、不織布層B及び平均繊維径が2μm以下の細繊維径不織布を含む不織布層Cを、不織布の平均孔径が小さくなる順に配置してなるろ過層を含むため、ろ過の対象となる液体中の固形物(粒子)が、大きいサイズのものから順番に除かれる。また、不織布層A、不織布層B及び不織布層Cの合計質量に対する不織布層A、不織布層B、及び不織布層Cの含有量を20質量%以上にすることで、それぞれの平均孔径を有する不織布層A、不織布層B及び平均繊維径が2μm以下の細繊維径不織布を含む不織布層Cにおいて、対応するサイズの固形物をほぼ完全に除去でき、筒状フィルターの高いろ過精度と長いろ過寿命を両立している。   The cylindrical filter of the present invention is a non-woven fabric layer A including a non-woven fabric layer A, a non-woven fabric layer B, and a fine fiber diameter non-woven fabric having an average fiber diameter of 2 μm or less from the inflow side of the filtration object. Since the filtration layer formed by decreasing the average pore diameter of the nonwoven fabric is included, solids (particles) in the liquid to be filtered are removed in order from the larger size. Moreover, the nonwoven fabric layer which has each average pore diameter by making content of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C into 20 mass% or more. A, non-woven fabric layer B, and non-woven fabric layer C, which contains non-woven fabrics with an average fiber diameter of 2 μm or less, can remove solids of the corresponding size almost completely, achieving both high filtration accuracy and long filtration life of the cylindrical filter. doing.

本発明の筒状フィルターにおいて、不織布層A、不織布層B及び不織布層Cは、筒状フィルターの流入側から不織布層A、不織布層B、不織布層Cの順番に連続して配置されている。本発明において、不織布層が連続しているとは、不織布層と不織布層の間に他の部材がない場合と不織布層と不織布層の間に他の部材がある場合を含む。例えば、不織布層Aを構成する不織布と、不織布層Bを構成する不織布の末端部を接着する若しくは合わせること、不織布層Aの不織布と、不織布層Bの不織布の一部を重ね合わせることなどにより、他の部材を介在することなく不織布層Aと不織布層Bが連続して形成していてもよい。或いは、不織布層Bを形成した後、他の部材を、不織布層Aと不織布層Bの間にスペーサー層として巻き回した後、不織布層Aを形成してもよい。他の部材としては、例えば不織布層A及び不織布層Bの平均孔径の範囲を満たさない不織布などを用いる。同様に、不織布層Bと不織布層Cの間にもスペーサー層を設けてもよい。   In the tubular filter of the present invention, the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C are sequentially arranged in the order of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C from the inflow side of the tubular filter. In the present invention, that the nonwoven fabric layer is continuous includes the case where there is no other member between the nonwoven fabric layer and the nonwoven fabric layer and the case where there is another member between the nonwoven fabric layer and the nonwoven fabric layer. For example, by adhering or combining the nonwoven fabric constituting the nonwoven fabric layer A and the end of the nonwoven fabric constituting the nonwoven fabric layer B, overlapping the nonwoven fabric of the nonwoven fabric layer A and a portion of the nonwoven fabric of the nonwoven fabric layer B, etc. The nonwoven fabric layer A and the nonwoven fabric layer B may be formed continuously without interposing other members. Alternatively, after the nonwoven fabric layer B is formed, another member may be wound as a spacer layer between the nonwoven fabric layer A and the nonwoven fabric layer B, and then the nonwoven fabric layer A may be formed. As another member, the nonwoven fabric etc. which do not satisfy | fill the range of the average hole diameter of the nonwoven fabric layer A and the nonwoven fabric layer B are used, for example. Similarly, a spacer layer may be provided between the nonwoven fabric layer B and the nonwoven fabric layer C.

以下、図面などを用いて本発明の筒状フィルターを詳細に説明する。図1は、本発明の一実施形態の筒状フィルターの部分破断斜視図である。本発明の筒状フィルター1は、芯材2と、芯材2に巻き回されているろ過層3を含む。前記ろ過層3には不織布層A31、不織布層B32、不織布層C33の3種類の不織布層を含んでいる。図1に示す筒状フィルターでは、不織布層A31の外側に、平均孔径の大きい不織布(支持不織布4)を巻き回して形成した不織布層を有している。図2は、図1に示す筒状フィルターにおける、支持不織布4を巻き回す前の状態での部分破断斜視図である。ろ過層3は、不織布層A31、不織布層B32、不織布層C33を含んでいる。不織布層Aには不織布6が巻き回され、不織布層Bには不織布7が巻き回されている。不織布層Cは、平均繊維径が2μm以下の不織布である細繊維径不織布51を含む不織布層であり、前記細繊維径不織布51は、少なくともその一部が、平均繊維径が2μmよりも大きい太繊維径不織布52と重ね合わせて積層した状態で巻き回されることで不織布層C33を形成している。なお、図2に示す構造の不織布層C33は、図3に示す筒状フィルターの製造方法で得ることができる。即ち、筒状フィルター1を製造する際、芯材2に対し、細繊維径不織布51、太繊維径不織布52を重ね合わせた状態で巻き回すことで不織布層C33が製造できる。このとき、太繊維径不織布52の上に、細繊維径不織布51が載置されるように細繊維径不織布51、太繊維径不織布52を重ね合わせる。この状態で芯材2に両方の不織布を巻き回すと、細繊維径不織布51と太繊維径不織布52が交互に重ね合わせた状態であり、細繊維径不織布51が太繊維径不織布52の内側になった不織布層Cが形成される。   Hereinafter, the cylindrical filter of the present invention will be described in detail with reference to the drawings. FIG. 1 is a partially broken perspective view of a tubular filter according to an embodiment of the present invention. The cylindrical filter 1 of the present invention includes a core material 2 and a filtration layer 3 wound around the core material 2. The filtration layer 3 includes three types of nonwoven fabric layers, a nonwoven fabric layer A31, a nonwoven fabric layer B32, and a nonwoven fabric layer C33. The cylindrical filter shown in FIG. 1 has a nonwoven fabric layer formed by winding a nonwoven fabric (supporting nonwoven fabric 4) having a large average pore diameter outside the nonwoven fabric layer A31. FIG. 2 is a partially broken perspective view of the cylindrical filter shown in FIG. 1 in a state before the supporting nonwoven fabric 4 is wound. The filtration layer 3 includes a nonwoven fabric layer A31, a nonwoven fabric layer B32, and a nonwoven fabric layer C33. A nonwoven fabric 6 is wound around the nonwoven fabric layer A, and a nonwoven fabric 7 is wound around the nonwoven fabric layer B. The non-woven fabric layer C is a non-woven fabric layer including a fine fiber diameter non-woven fabric 51 which is a non-woven fabric having an average fiber diameter of 2 μm or less, and at least a part of the non-woven fabric layer 51 is a thick fiber having an average fiber diameter larger than 2 μm. The nonwoven fabric layer C33 is formed by being wound in a state where the fiber diameter nonwoven fabric 52 is overlapped and laminated. In addition, the nonwoven fabric layer C33 having the structure shown in FIG. 2 can be obtained by the manufacturing method of the cylindrical filter shown in FIG. That is, when manufacturing the cylindrical filter 1, the nonwoven fabric layer C33 can be manufactured by winding the core material 2 in a state where the fine fiber diameter nonwoven fabric 51 and the thick fiber diameter nonwoven fabric 52 are overlapped. At this time, the fine fiber diameter nonwoven fabric 51 and the thick fiber diameter nonwoven fabric 52 are overlapped on the thick fiber diameter nonwoven fabric 52 so that the fine fiber diameter nonwoven fabric 51 is placed thereon. When both nonwoven fabrics are wound around the core material 2 in this state, the fine fiber diameter nonwoven fabric 51 and the thick fiber diameter nonwoven fabric 52 are alternately overlapped, and the fine fiber diameter nonwoven fabric 51 is placed inside the thick fiber diameter nonwoven fabric 52. The formed nonwoven fabric layer C is formed.

(ろ過層)
ろ過層3は、ろ過の対象物が筒状フィルターに流れ込む流入側から順番に、不織布層A、不織布層B及び平均繊維径が2μm以下の細繊維径不織布を含む不織布層Cの少なくとも3種類の不織布層で構成されている。また、ろ過層3は、本発明の効果を阻害しない範囲において、不織布層A、不織布層B及び不織布層Cに加えて、他の部材を含んでもよい。不織布層Aの平均孔径は10.5μm以上、17.5μm以下であり、不織布層Bの平均孔径は不織布層Aの平均孔径の0.6倍以上、0.95倍以下であり、不織布層Cに含まれる平均繊維径が2μm以下の細繊維径不織布の平均孔径は、不織布層Aの平均孔径の0.37倍以上、0.86倍以下である。本発明の筒状フィルターにおいて、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量は7.8質量%以上、27質量%以下であり、不織布層Bの含有量は38.2質量%以上、64質量%以下であり、不織布層Cに含まれる細繊維径不織布の含有量は7.8質量%以上、25質量%以下である。より好ましくは、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が8質量%以上、26質量%以下であり、不織布層Bの含有量が40質量%以上、63質量%以下であり、不織布層Cに含まれる細繊維径不織布の含有量が8質量%以上、20質量%以下である。さらに好ましくは、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が9質量%以上、25質量%以下であり、不織布層Bの含有量が41質量%以上、62質量%以下であり、不織布層Cに含まれる細繊維径不織布の含有量が8.5質量%以上、18質量%以下である。
(Filtration layer)
The filtration layer 3 has at least three types of nonwoven fabric layer C including a nonwoven fabric layer A, a nonwoven fabric layer B, and a fine fiber diameter nonwoven fabric having an average fiber diameter of 2 μm or less in order from the inflow side into which the filtration target flows into the cylindrical filter. It is composed of a nonwoven fabric layer. Moreover, in addition to the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, the filtration layer 3 may contain another member in the range which does not inhibit the effect of this invention. The average pore diameter of the nonwoven fabric layer A is 10.5 μm or more and 17.5 μm or less, the average pore diameter of the nonwoven fabric layer B is 0.6 times or more and 0.95 times or less of the average pore diameter of the nonwoven fabric layer A, and the nonwoven fabric layer C The average pore diameter of the fine fiber diameter nonwoven fabric having an average fiber diameter of 2 μm or less is 0.37 times or more and 0.86 times or less of the average pore diameter of the nonwoven fabric layer A. In the cylindrical filter of the present invention, the content of the nonwoven fabric layer A is 7.8 mass% or more and 27 mass% or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. Is 38.2 mass% or more and 64 mass% or less, and content of the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C is 7.8 mass% or more and 25 mass% or less. More preferably, the content of the nonwoven fabric layer A is 8% by mass or more and 26% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, and the content of the nonwoven fabric layer B is 40% by mass. % Or more and 63% by mass or less, and the content of the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C is 8% by mass or more and 20% by mass or less. More preferably, with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, the content of the nonwoven fabric layer A is 9% by mass or more and 25% by mass or less, and the content of the nonwoven fabric layer B is 41% by mass. % Or more and 62% by mass or less, and the content of the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C is 8.5% by mass or more and 18% by mass or less.

本発明の筒状フィルターは、平均孔径が特定の範囲を満たす不織布層A、不織布層B及び、平均孔径が特定の範囲を満たす細繊維径不織布を含む不織布層Cを含む筒状フィルターであり、不織布層A、不織布層B及び不織布層Cの合計質量は、筒状フィルター全体の質量に対して20質量%以上である。好ましくは40質量%以上であり、50質量%以上であることがより好ましく、60質量%以上であると特に好ましい。本発明において、筒状フィルター全体の質量とは、筒状フィルター本体の全体質量をいい、付加的な部材の質量を含まない。上記筒状フィルター本体とは、筒状フィルターを構成している部材であって、繊維集合物で形成されている部材を指す。上記繊維集合物は、繊維径が1mm以下の繊維(合成樹脂からなる繊維だけではなく、天然繊維、半合成繊維、無機繊維などを含む)で構成されており、より具体的には、筒状フィルターの最も内側を構成する芯材であって、繊維集合物を熱接着などにより成形した芯材、ろ過層、最も表面側に巻き付ける意匠用の布帛などが含まれる。上記付加的な部材とは、筒状フィルターを構成している部材であって、繊維集合物ではない部材、具体的にはガスケット、エンドキャップ、フィルター本体を大きな異物から保護するプロテクターなどが挙げられるほか、筒状フィルターの最も内側を構成する芯材であって、射出成形や押出成形で成形された芯材などを指す。筒状フィルター全体の質量に対する不織布層A、不織布層B及び不織布層Cの合計質量を20質量%以上にすることで、本発明の筒状フィルターにおいて、主要なろ過層となる不織布層A、不織布層B及び不織布層Cが筒状フィルター全体の質量に対して一定の割合以上含まれるようになるため、高いろ過精度と長いろ過寿命を両立する筒状フィルターとなり得る。不織布層A、不織布層B及び不織布層Cの合計質量が筒状フィルター全体の質量に対して20質量%未満であると、筒状フィルターに占める不織布層A、不織布層B及び不織布層Cの割合が少なくなりすぎるため、筒状フィルターのろ過寿命及び/又はろ過精度が低下するおそれがある。   The cylindrical filter of the present invention is a cylindrical filter including a nonwoven fabric layer A, a nonwoven fabric layer B having an average pore diameter satisfying a specific range, and a nonwoven fabric layer C including a fine fiber diameter nonwoven fabric having an average pore diameter satisfying a specific range. The total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C is 20 mass% or more with respect to the mass of the whole cylindrical filter. The amount is preferably 40% by mass or more, more preferably 50% by mass or more, and particularly preferably 60% by mass or more. In the present invention, the total mass of the cylindrical filter refers to the total mass of the cylindrical filter body, and does not include the mass of additional members. The said cylindrical filter main body is the member which comprises the cylindrical filter, Comprising: The member formed with the fiber assembly is pointed out. The fiber assembly is composed of fibers having a fiber diameter of 1 mm or less (including not only synthetic resin fibers, but also natural fibers, semi-synthetic fibers, inorganic fibers, etc.). A core material that constitutes the innermost side of the filter, and includes a core material in which a fiber aggregate is formed by heat bonding or the like, a filtration layer, and a fabric for design wound around the outermost surface. The additional member is a member constituting a cylindrical filter and is not a fiber aggregate, specifically, a gasket, an end cap, a protector for protecting the filter body from a large foreign matter, or the like. In addition, it is a core material that constitutes the innermost side of the cylindrical filter, and refers to a core material formed by injection molding or extrusion molding. By making the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C with respect to the mass of the entire tubular filter 20% by mass or more, the nonwoven fabric layer A, which is a main filtration layer, and the nonwoven fabric in the tubular filter of the present invention Since the layer B and the nonwoven fabric layer C are contained in a certain ratio or more with respect to the mass of the entire cylindrical filter, it can be a cylindrical filter that achieves both high filtration accuracy and a long filtration life. When the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C is less than 20 mass% with respect to the mass of the entire tubular filter, the proportion of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C occupying the tubular filter Therefore, there is a possibility that the filtration life and / or filtration accuracy of the cylindrical filter may be reduced.

<不織布層A>
本発明の筒状フィルターにおいて、不織布層Aは不織布層B及び不織布層Cよりも流入側に位置し、不織布層B及び不織布層Cに対する前ろ過層として機能する。即ち、不織布層B及び/又は不織布層Cでろ過するのに適したサイズの固形物は通過させつつ、不織布層B及び/又は不織布層Cでろ過するには大きすぎるサイズの固形物を捕集し、不織布層B及び/又は不織布層Cには可能な限り流出させない。
<Nonwoven fabric layer A>
In the cylindrical filter of the present invention, the nonwoven fabric layer A is located on the inflow side with respect to the nonwoven fabric layer B and the nonwoven fabric layer C, and functions as a prefiltration layer for the nonwoven fabric layer B and the nonwoven fabric layer C. That is, solids having a size that is suitable for being filtered by the nonwoven fabric layer B and / or the nonwoven fabric layer C are allowed to pass through, and solids having a size that is too large to be filtered by the nonwoven fabric layer B and / or the nonwoven fabric layer C are collected. However, the non-woven fabric layer B and / or the non-woven fabric layer C is not allowed to flow out as much as possible.

不織布層Aの平均孔径は、10.5μm以上、17.5μm以下である。好ましくは12.2μm以上、14.9μm以下であり、12.5μm以上、14.2μm以下であることがより好ましい。不織布層Aの平均孔径がこの範囲を満たすことで、不織布層Aで捕集する固形物と不織布層Aを通過する固形物のバランスがとれる上、筒状フィルター全体を通じた孔径の勾配の配分が容易となる。不織布層Aの平均孔径が10.5μmよりも小さいと、不織布層Aの平均孔径が小さくなりすぎるため、不織布層Aでサイズの大きい固形物からサイズの小さい固形物まで捕集されるようになり、不織布層Aを通過して不織布層B及び/又は不織布層Cに流出する固形物が少なくなる。すなわち、不織布層Aの中でも流入側に近い部分に集中して固形物が捕集されるようになるため、不織布層Aが、他の不織布層に比べて極端に早く捕集した固形物によって完全に詰まった状態(この状態を「閉塞(した状態)」とも称す。)となり、筒状フィルターのろ過寿命が低下する。不織布層Aの平均孔径が17.5μmより大きくなると、不織布層Aを通過して不織布層B及び/又は不織布層Cに流出する固形物の量が増えすぎるため、不織布層Aが十分に固形物を捕集する前に不織布層B及び/又は不織布層Cが閉塞しやすくなり、筒状フィルターのろ過寿命が低下する。不織布層Aは、上記平均孔径の範囲を満たす不織布を1種類用いて構成してもよいし、上記平均孔径の範囲を満たす不織布を2種類以上用いて構成してもよい。不織布層Aに平均孔径の異なる2種類以上の不織布を用いる構成として、例えば、平均孔径が12μm、14μm、16μmの不織布を用いて不織布層Aを構成することが挙げられる。不織布層Aにおいて、平均孔径が異なる不織布を2種類以上用いる場合、流入側から流出側にかけて、平均孔径が小さくなるように不織布を順番に巻き回し、それぞれの不織布層を形成することが好ましい。   The average pore diameter of the nonwoven fabric layer A is 10.5 μm or more and 17.5 μm or less. It is preferably 12.2 μm or more and 14.9 μm or less, and more preferably 12.5 μm or more and 14.2 μm or less. When the average pore size of the nonwoven fabric layer A satisfies this range, the solid matter collected by the nonwoven fabric layer A and the solid matter passing through the nonwoven fabric layer A can be balanced, and the pore size gradient can be distributed throughout the tubular filter. It becomes easy. If the average pore size of the nonwoven fabric layer A is smaller than 10.5 μm, the average pore size of the nonwoven fabric layer A will be too small, and the nonwoven fabric layer A will collect from solids having a large size to solids having a small size. The solid matter that passes through the nonwoven fabric layer A and flows out into the nonwoven fabric layer B and / or the nonwoven fabric layer C is reduced. That is, since the solid matter is collected in the non-woven fabric layer A near the inflow side, the non-woven fabric layer A is completely collected by the solid matter collected extremely quickly compared to the other non-woven fabric layers. (This state is also referred to as “clogged (closed state)”), and the filtration life of the cylindrical filter is reduced. When the average pore diameter of the nonwoven fabric layer A is larger than 17.5 μm, the amount of solids passing through the nonwoven fabric layer A and flowing into the nonwoven fabric layer B and / or the nonwoven fabric layer C is excessively increased. Before collecting the non-woven fabric layer, the non-woven fabric layer B and / or the non-woven fabric layer C is likely to be blocked, and the filtration life of the cylindrical filter is reduced. The nonwoven fabric layer A may be configured using one type of nonwoven fabric satisfying the above average pore diameter range, or may be configured using two or more types of nonwoven fabric satisfying the above average pore diameter range. As a configuration using two or more types of nonwoven fabrics having different average pore diameters for the nonwoven fabric layer A, for example, the nonwoven fabric layer A may be configured using nonwoven fabrics having average pore sizes of 12 μm, 14 μm, and 16 μm. In the nonwoven fabric layer A, when two or more types of nonwoven fabrics having different average pore diameters are used, it is preferable that the nonwoven fabrics are wound in order so that the average pore diameter decreases from the inflow side to the outflow side to form the respective nonwoven fabric layers.

不織布層Aの含有量は、不織布層A、不織布層B及び不織布層Cの合計質量に対して、7.8質量%以上、27質量%以下である。好ましい不織布層Aの含有量は、不織布層A、不織布層B及び不織布層Cの合計質量に対して8質量%以上、26質量%以下であり、9質量%以上、25質量%以下であることがより好ましい。不織布層Aの含有量が7.8質量%未満であると、不織布層Aの割合が少なくなり、不織布層B及び/又は不織布層Cを十分にろ過に使用する前に不織布層Aが閉塞するか、不織布層Aそのものが少ないため、サイズの大きい固形物が不織布層B及び/又は不織布層Cに流入するようになり、不織布層B及び/又は不織布層Cが早く閉塞して、筒状フィルターのろ過寿命が低下するおそれがある。不織布層Aの含有量が27質量%を超えると、不織布層Aの割合が多くなりすぎることで、不織布層B及び/又は不織布層Cの割合が少なくなり、筒状フィルターのろ過精度が低下するおそれがある。不織布層Aが平均孔径の異なる2種類以上の不織布で構成されている場合、不織布層Aの含有量は、平均孔径の異なる不織布の含有量の合計である。例えば、不織布層Aが、平均孔径が12μmの不織布と平均孔径が14μmの不織布で構成され、平均孔径が12μmの不織布及び平均孔径が14μmの不織布の含有量が、不織布層A、不織布層B及び不織布層Cの合計質量に対して、それぞれ5質量%及び10質量%である場合、不織布層Aの含有量は不織布層A、不織布層B及び不織布層Cの合計質量に対して15質量%である。   Content of the nonwoven fabric layer A is 7.8 mass% or more and 27 mass% or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. The preferable content of the nonwoven fabric layer A is 8% by mass or more and 26% by mass or less, and 9% by mass or more and 25% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. Is more preferable. When the content of the non-woven fabric layer A is less than 7.8% by mass, the proportion of the non-woven fabric layer A decreases, and the non-woven fabric layer A is blocked before the non-woven fabric layer B and / or the non-woven fabric layer C is sufficiently used for filtration. In addition, since the nonwoven fabric layer A itself is small, a large-sized solid substance flows into the nonwoven fabric layer B and / or the nonwoven fabric layer C, and the nonwoven fabric layer B and / or the nonwoven fabric layer C is quickly blocked, so that the cylindrical filter There is a risk that the filtration life of the product may be reduced. If the content of the non-woven fabric layer A exceeds 27 mass%, the proportion of the non-woven fabric layer A will increase too much, so that the proportion of the non-woven fabric layer B and / or the non-woven fabric layer C will decrease and the filtration accuracy of the cylindrical filter will decrease. There is a fear. When the nonwoven fabric layer A is composed of two or more types of nonwoven fabrics having different average pore diameters, the content of the nonwoven fabric layer A is the total content of nonwoven fabrics having different average pore diameters. For example, the nonwoven fabric layer A is composed of a nonwoven fabric having an average pore diameter of 12 μm and a nonwoven fabric having an average pore diameter of 14 μm, and the nonwoven fabric layer A, the nonwoven fabric layer B, When it is 5 mass% and 10 mass% with respect to the total mass of the nonwoven fabric layer C, content of the nonwoven fabric layer A is 15 mass% with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, respectively. is there.

不織布層Aの平均繊維径(不織布層Aを構成する繊維の平均繊維径)は、平均孔径が上記範囲を満たすものとなる平均繊維径であればよく、特に限定されないが、1.7μm以上、3.2μm以下であることが好ましい。より好ましくは1.9μm以上、2.9μm以下であり、さらに好ましくは2.1μm以上、2.7μm以下である。不織布層Aの平均繊維径がこの範囲を満たすと、平均孔径が上記範囲を満たしやすくなる上、不織布層B及び不織布層Cの前ろ過層としての効果がより高いものとなる。不織布層Aの平均繊維径が3.2μmよりも大きいと、不織布層Aの平均孔径が上記範囲の上限を超えやすくなり、平均孔径の範囲を満たさなくなるおそれがある。また、不織布層Aを構成する繊維の平均繊維径が大きくなると、不織布層Aの目付によっては孔径分布のバラつきが大きくなりやすく、不織布層Aの最大孔径が極端に大きくなり、ろ過精度やろ過寿命が低下するおそれがある。不織布層Aの平均繊維径が1.7μmよりも小さいと不織布層Aの平均孔径が小さくなり、上記平均孔径の範囲を満たしにくくなるおそれがあり、筒状フィルターのろ過寿命が低下すると考えられる。   The average fiber diameter of the nonwoven fabric layer A (average fiber diameter of the fibers constituting the nonwoven fabric layer A) is not particularly limited as long as the average pore diameter satisfies the above range, and is 1.7 μm or more, It is preferably 3.2 μm or less. More preferably, they are 1.9 micrometers or more and 2.9 micrometers or less, More preferably, they are 2.1 micrometers or more and 2.7 micrometers or less. When the average fiber diameter of the nonwoven fabric layer A satisfies this range, the average pore diameter easily satisfies the above range, and the effect of the nonwoven fabric layer B and the nonwoven fabric layer C as the pre-filtration layer becomes higher. If the average fiber diameter of the nonwoven fabric layer A is larger than 3.2 μm, the average pore diameter of the nonwoven fabric layer A tends to exceed the upper limit of the above range, and the average pore diameter range may not be satisfied. In addition, when the average fiber diameter of the fibers constituting the nonwoven fabric layer A is increased, the pore size distribution is likely to vary depending on the basis weight of the nonwoven fabric layer A, and the maximum pore diameter of the nonwoven fabric layer A is extremely increased. May decrease. If the average fiber diameter of the nonwoven fabric layer A is smaller than 1.7 μm, the average pore diameter of the nonwoven fabric layer A becomes small, which may make it difficult to satisfy the above average pore diameter range, and the filtration life of the cylindrical filter is considered to be reduced.

不織布層Aの目付(不織布層Aを構成する不織布の目付)は、平均孔径が上記範囲を満たすものとなる目付であればよく、特に限定されないが、10g/m2以上、120g/m2以下であることが好ましい。より好ましくは15g/m2以上、100g/m2以下であり、20g/m2以上、80g/m2以下であることがさらに好ましい。不織布層Aの目付が上記範囲を満たすことで、平均孔径が上記範囲を満たしやすい上、筒状フィルターの生産性も向上すると考えられる。不織布層Aの目付が10g/m2未満であると、不織布層Aが薄い不織布となり、孔径分布においてバラつきが大きくなりやすく、不織布層Aの最大孔径が極端に大きくなり、ろ過精度やろ過寿命が低下するおそれがある。また、目付が小さくなりすぎることで不織布層Aの巻き回数(不織布層Aを構成する不織布を重ね合わせる積層回数)が多くなり、筒状フィルターの生産性が低下するおそれもある。不織布層Aの目付が120g/m2よりも大きいと、孔径分布のバラつきは小さくなるが、厚い不織布になり、筒状フィルターの外径が規格を超えるおそれや、筒状フィルターのろ過性能やが低下するおそれがある。 The basis weight of the nonwoven fabric layer A (the basis weight of the nonwoven fabric constituting the nonwoven fabric layer A) is not particularly limited as long as the average pore diameter satisfies the above range, and is not particularly limited, but is 10 g / m 2 or more and 120 g / m 2 or less. It is preferable that More preferably, it is 15 g / m 2 or more and 100 g / m 2 or less, and further preferably 20 g / m 2 or more and 80 g / m 2 or less. It is considered that when the basis weight of the nonwoven fabric layer A satisfies the above range, the average pore diameter easily satisfies the above range and the productivity of the cylindrical filter is also improved. If the basis weight of the non-woven fabric layer A is less than 10 g / m 2 , the non-woven fabric layer A becomes a thin non-woven fabric, the dispersion in the pore size distribution tends to be large, the maximum pore size of the non-woven fabric layer A becomes extremely large, and the filtration accuracy and the filtration life are improved. May decrease. Moreover, when the fabric weight becomes too small, the number of windings of the nonwoven fabric layer A (the number of times of stacking the nonwoven fabrics constituting the nonwoven fabric layer A) increases, and the productivity of the cylindrical filter may be reduced. If the basis weight of the nonwoven fabric layer A is larger than 120 g / m 2 , the variation in pore size distribution will be small, but the nonwoven fabric will be thick and the outer diameter of the tubular filter may exceed the standard, and the filtration performance of the tubular filter May decrease.

不織布層Aの最大孔径は、15.5μm以上、25μm以下であることが好ましい。より好ましくは16μm以上、23μm以下であり、さらに好ましくは17μm以上、21μm以下である。ろ過用途に使用する不織布において、不織布の最大孔径は、不織布を通過しうる固形物のサイズに影響を与える。不織布層Aの最大孔径が上記範囲を満たすことで、不織布層Aが不織布層B及び/又は不織布層Cで捕集することが好ましいサイズの固形物は通過させ、不織布層B及び/又は不織布層Cで捕集するにはサイズが大きすぎる固形物は捕集し、下流側には極力流出させないようになる。不織布層Aの最大孔径が25μmよりも大きいと、不織布層Aを通過しうる固形物のサイズが大きくなるため、不織布層B及び/又は不織布層Cにサイズが大きすぎる固形物が流れ込むようになり、不織布層B及び/又は不織布層Cが急速に閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。不織布層Aの最大孔径が15.5μmよりも小さいと、不織布層Aで捕集される固形物の割合が多くなることで、不織布層Aが他の不織布層よりも早い段階で閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。   The maximum pore diameter of the nonwoven fabric layer A is preferably 15.5 μm or more and 25 μm or less. More preferably, they are 16 micrometers or more and 23 micrometers or less, More preferably, they are 17 micrometers or more and 21 micrometers or less. In nonwoven fabrics used for filtration applications, the maximum pore size of the nonwoven fabric affects the size of solids that can pass through the nonwoven fabric. When the maximum pore diameter of the non-woven fabric layer A satisfies the above range, the non-woven fabric layer A passes through a solid having a size that is preferably collected by the non-woven fabric layer B and / or the non-woven fabric layer C. Solids that are too large to be collected by C are collected and prevented from flowing out as much as possible downstream. If the maximum pore size of the nonwoven fabric layer A is larger than 25 μm, the size of the solid material that can pass through the nonwoven fabric layer A becomes large, so that a solid material that is too large flows into the nonwoven fabric layer B and / or the nonwoven fabric layer C. The non-woven fabric layer B and / or the non-woven fabric layer C may be clogged rapidly, and the filtration life of the cylindrical filter may be reduced. If the maximum pore size of the nonwoven fabric layer A is smaller than 15.5 μm, the proportion of solids collected by the nonwoven fabric layer A increases, so that the nonwoven fabric layer A is blocked at an earlier stage than the other nonwoven fabric layers, The filtration life of the filter may be reduced.

不織布層Aの最多孔径は、9.8μm以上、16.5μm以下であることが好ましい。より好ましくは10μm以上、15μm以下であり、さらに好ましくは10.5μm以上、14μm以下である。ろ過用途に使用する不織布において、不織布の最多孔径は、不織布の最大孔径と同様、不織布を通過しうる固形物のサイズに影響を与える。不織布層Aの最多孔径が上記範囲を満たすことで、不織布層Aは、不織布層B及び/又は不織布層Cで捕集することが好ましいサイズの固形物は通過させ、不織布層B及び/又は不織布層Cで捕集するにはサイズが大きすぎる固形物は捕集し、下流側には極力流出させないようになる。不織布層Aの最多孔径が16.5μmよりも大きいと、不織布層Aを通過しうる固形物のサイズが大きくなるため、不織布層B及び/又は不織布層Cにサイズが大きすぎる固形物が流れ込むようになり、不織布層B及び/又は不織布層Cが急速に閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。不織布層Aの最多孔径が9.8μmよりも小さいと、不織布層Aで捕集される固形物の割合が多くなることで、不織布層Aが他の不織布層よりも早く閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。   The most porous diameter of the nonwoven fabric layer A is preferably 9.8 μm or more and 16.5 μm or less. More preferably, they are 10 micrometers or more and 15 micrometers or less, More preferably, they are 10.5 micrometers or more and 14 micrometers or less. In the nonwoven fabric used for filtration, the most porous diameter of the nonwoven fabric affects the size of the solid material that can pass through the nonwoven fabric, as does the maximum pore diameter of the nonwoven fabric. When the most porous diameter of the non-woven fabric layer A satisfies the above range, the non-woven fabric layer A allows a solid material having a size preferably collected by the non-woven fabric layer B and / or the non-woven fabric layer C to pass therethrough, and the non-woven fabric layer B and / or the non-woven fabric. Solids that are too large to be collected in layer C are collected and prevented from flowing out as much as possible downstream. If the most porous diameter of the non-woven fabric layer A is larger than 16.5 μm, the size of the solid material that can pass through the non-woven fabric layer A increases, so that the solid material having an excessively large size flows into the non-woven fabric layer B and / or the non-woven fabric layer C. Then, the non-woven fabric layer B and / or the non-woven fabric layer C may be clogged rapidly, and the filtration life of the cylindrical filter may be reduced. When the most porous diameter of the non-woven fabric layer A is smaller than 9.8 μm, the non-woven fabric layer A is blocked earlier than the other non-woven fabric layers because the ratio of the solid matter collected by the non-woven fabric layer A increases, and the cylindrical filter There is a risk that the filtration life of the product may be reduced.

<不織布層B>
不織布層Bは、不織布層Cの前ろ過層として機能し、不織布層Aを通過してきた固形物のうち、不織布層Cでろ過するのに適したサイズよりも大きい、比較的大きいサイズの固形物を捕集し、かつ不織布層Cでろ過するのに適したサイズの固形物は、ある程度捕集するものの不織布層Cにむけて流出させる役割を持つ。
<Nonwoven fabric layer B>
The non-woven fabric layer B functions as a pre-filtration layer for the non-woven fabric layer C. Among the solid materials that have passed through the non-woven fabric layer A, the non-woven fabric layer B is larger than the size suitable for filtering with the non-woven fabric layer C, and has a relatively large size. The solid material having a size suitable for collecting the water and filtering through the nonwoven fabric layer C has a role of flowing out toward the nonwoven fabric layer C although it is collected to some extent.

不織布層Bの平均孔径は、不織布層Aの平均孔径の0.6倍以上、0.95倍以下である。好ましくは0.65倍以上、0.85倍以下であり、0.68倍以上、0.8倍以下であることがより好ましい。不織布層Bの平均孔径が不織布層Aの平均孔径に対して一定の範囲を満たす倍率であると、不織布層Aと不織布層Bの間における平均孔径の勾配が適度なものとなり、主に筒状フィルターのろ過寿命の向上に寄与すると考えられる。不織布層Bの平均孔径が不織布層Aの平均孔径の0.95倍よりも大きいと、不織布層Aと不織布層Bの間における平均孔径の勾配が小さくなりすぎるため、不織布層Bが、不織布層Aを通過した固形物のうち、比較的大きい固形物を捕集するという機能を持たなくなる。そのため、不織布層Bよりさらに流出側に位置する不織布層Cに、不織布層Aを通過した固形物の大部分が流れ込み、不織布層Cが他の不織布層よりも早く閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。不織布層Bの平均孔径が不織布層Aの平均孔径の0.6倍よりも小さいと、不織布層Aと不織布層Bの間における平均孔径の勾配が大きくなりすぎるため、不織布層Aを通過した固形物の大部分が不織布層Bで捕集され、不織布層Bが他の不織布層よりも早く閉塞されるようになり、筒状フィルターのろ過寿命が低下するおそれがある。不織布層Aが、平均孔径が異なる2種類以上の不織布で構成されている場合、最も平均孔径の小さい不織布の平均孔径の値に基づいて、不織布層Bの平均孔径が決定される。例えば、不織布層Aが12μm、14μm、16μmの不織布で構成されている場合、不織布層Bの平均孔径の範囲は、平均孔径12μmの不織布の値を用いて決定され、不織布層Bの平均孔径の範囲は7.2μm以上、11.4μm以下になる。不織布層Bは、上記平均孔径の範囲を満たす不織布を1種類用いて構成してもよいし、上記平均孔径の範囲を満たす不織布を2種類以上用いて構成しても構わない。   The average pore diameter of the nonwoven fabric layer B is 0.6 times or more and 0.95 times or less of the average pore diameter of the nonwoven fabric layer A. Preferably they are 0.65 times or more and 0.85 times or less, and more preferably 0.68 times or more and 0.8 times or less. When the average pore diameter of the nonwoven fabric layer B is a magnification that satisfies a certain range with respect to the average pore diameter of the nonwoven fabric layer A, the average pore diameter gradient between the nonwoven fabric layer A and the nonwoven fabric layer B becomes moderate, and is mainly cylindrical. It is thought to contribute to the improvement of the filter life. If the average pore diameter of the nonwoven fabric layer B is larger than 0.95 times the average pore diameter of the nonwoven fabric layer A, the gradient of the average pore diameter between the nonwoven fabric layer A and the nonwoven fabric layer B becomes too small. Of the solids that have passed through A, the function of collecting relatively large solids is lost. Therefore, most of the solid material that has passed through the nonwoven fabric layer A flows into the nonwoven fabric layer C located further on the outflow side than the nonwoven fabric layer B, and the nonwoven fabric layer C is blocked earlier than the other nonwoven fabric layers. Life may be reduced. If the average pore size of the nonwoven fabric layer B is smaller than 0.6 times the average pore size of the nonwoven fabric layer A, the gradient of the average pore size between the nonwoven fabric layer A and the nonwoven fabric layer B becomes too large. Most of the matter is collected by the nonwoven fabric layer B, and the nonwoven fabric layer B becomes clogged earlier than other nonwoven fabric layers, which may reduce the filtration life of the cylindrical filter. When the nonwoven fabric layer A is composed of two or more types of nonwoven fabrics having different average pore diameters, the average pore diameter of the nonwoven fabric layer B is determined based on the average pore diameter value of the nonwoven fabric having the smallest average pore diameter. For example, when the nonwoven fabric layer A is composed of a nonwoven fabric of 12 μm, 14 μm, and 16 μm, the range of the average pore diameter of the nonwoven fabric layer B is determined using the value of the nonwoven fabric with an average pore diameter of 12 μm, and the average pore diameter of the nonwoven fabric layer B The range is 7.2 μm or more and 11.4 μm or less. The nonwoven fabric layer B may be configured using one type of nonwoven fabric satisfying the above average pore diameter range, or may be configured using two or more types of nonwoven fabric satisfying the above average pore diameter range.

本発明の筒状フィルターにおいて、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Bの含有量は38.2質量%以上、64質量%以下である。好ましい不織布層Bの含有量は、不織布層A、不織布層B及び不織布層Cの合計質量に対して、40質量%以上、63質量%以下であり、41質量%以上、62質量%以下であることがより好ましい。不織布層Bの含有量が38.2質量%未満であると、不織布層Bが他の不織布層よりも早く閉塞することや、不織布層Bで捕集される固形物の割合が少なくなるため、不織布層Cに多くの固形物が流出し、不織布層A及び/又は不織布層Bよりも、不織布層Cが早く閉塞することにより、筒状フィルターのろ過寿命が低下するおそれがある。不織布層Bの含有量が64質量%を超えると、不織布層Bの割合が多くなりすぎることで、不織布層A及び/又は不織布層Cの割合が少なくなり、ろ過寿命及び/又はろ過精度が低下するおそれがある。不織布層Bが平均孔径の異なる2種類以上の不織布で構成されている場合、不織布層Bの含有量は、これらの平均孔径の異なる不織布の含有量の合計であり、前記の不織布層Aの含有量を求めた方法と同じ計算方法で求める。   In the cylindrical filter of the present invention, the content of the nonwoven fabric layer B is 38.2 mass% or more and 64 mass% or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. A preferable content of the nonwoven fabric layer B is 40% by mass or more and 63% by mass or less, and 41% by mass or more and 62% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is more preferable. When the content of the non-woven fabric layer B is less than 38.2% by mass, the non-woven fabric layer B is blocked earlier than other non-woven fabric layers, and the proportion of solids collected by the non-woven fabric layer B is reduced. A large amount of solid matter flows into the nonwoven fabric layer C, and the nonwoven fabric layer C is blocked earlier than the nonwoven fabric layer A and / or the nonwoven fabric layer B, whereby the filtration life of the cylindrical filter may be reduced. If the content of the non-woven fabric layer B exceeds 64% by mass, the proportion of the non-woven fabric layer B is excessively increased, so that the proportion of the non-woven fabric layer A and / or the non-woven fabric layer C decreases, and the filtration life and / or filtration accuracy is reduced. There is a risk. When the nonwoven fabric layer B is composed of two or more types of nonwoven fabrics having different average pore diameters, the content of the nonwoven fabric layer B is the sum of the contents of these nonwoven fabrics having different average pore diameters. Use the same calculation method as that used to calculate the quantity.

不織布層Bの平均繊維径(不織布層Bを構成する繊維の平均繊維径)は、平均孔径が上記範囲を満たすものとなる平均繊維径であればよく、特に限定されないが、0.5μm以上、2.4μm以下であることが好ましい。より好ましくは0.6μm以上、2.2μm以下であり、さらに好ましくは0.8μm以上、2.0μm以下である。不織布層Bの平均繊維径がこの範囲を満たすことで、平均孔径が上記範囲を満たしやすくなる上、不織布層Cの前ろ過層としての効果がより高いものとなる。不織布層Bの平均繊維径が2.4μmよりも大きいと、不織布層Bの平均孔径が上記範囲の上限を超えやすくなり、上記範囲を満たさなくなるおそれがある。また、不織布層Bの平均繊維径が大きくなると、不織布層Bの目付によっては孔径分布のバラつきが大きくなりやすく、不織布層Bの最大孔径が極端に大きくなり、筒状フィルターのろ過精度が低下するおそれがある。不織布層Bの平均繊維径が0.5μmよりも小さいと、不織布層Bの平均孔径が上記範囲の下限を下回りやすく、平均孔径が上記範囲を満たしにくくなり、その結果、筒状フィルターのろ過寿命が低下すると考えられる。   The average fiber diameter of the nonwoven fabric layer B (average fiber diameter of the fibers constituting the nonwoven fabric layer B) is not particularly limited as long as the average pore diameter satisfies the above range, and is 0.5 μm or more, It is preferable that it is 2.4 micrometers or less. More preferably, they are 0.6 micrometer or more and 2.2 micrometers or less, More preferably, they are 0.8 micrometer or more and 2.0 micrometers or less. When the average fiber diameter of the nonwoven fabric layer B satisfies this range, the average pore diameter easily satisfies the above range, and the effect of the nonwoven fabric layer C as a pre-filtration layer becomes higher. When the average fiber diameter of the nonwoven fabric layer B is larger than 2.4 μm, the average pore diameter of the nonwoven fabric layer B tends to exceed the upper limit of the above range, and the above range may not be satisfied. Moreover, when the average fiber diameter of the nonwoven fabric layer B increases, the pore size distribution tends to vary depending on the basis weight of the nonwoven fabric layer B, the maximum pore diameter of the nonwoven fabric layer B becomes extremely large, and the filtration accuracy of the cylindrical filter decreases. There is a fear. If the average fiber diameter of the nonwoven fabric layer B is smaller than 0.5 μm, the average pore diameter of the nonwoven fabric layer B tends to be lower than the lower limit of the above range, and the average pore diameter becomes difficult to satisfy the above range. As a result, the filtration life of the cylindrical filter Is expected to decrease.

不織布層Bの目付(不織布層Bを構成する不織布の目付)は、平均孔径が上記範囲を満たすものとなる目付であればよく、特に限定されないが、10g/m2以上、120g/m2以下であることが好ましい。より好ましくは15g/m2以上、100g/m2以下であり、さらに好ましくは20g/m2以上、80g/m2以下であり、40g/m2以上、70g/m2以下であると特に好ましい。不織布層Bの目付がこの範囲を満たすことで、平均孔径が上記範囲を満たしやすくなる上、筒状フィルターの生産性も向上すると考えられる。不織布層Bの目付が10g/m2よりも小さいと、不織布層Bを構成する不織布が薄い不織布となり、不織布層Bの孔径分布においてバラつきが大きくなりやすく、不織布層Bの最大孔径が極端に大きくなるおそれがある。また、目付が小さくなりすぎることで不織布層Bの巻き回数(不織布層Bを構成する不織布を重ね合わせる積層回数)が多くなり、筒状フィルターの生産性が低下するおそれもある。不織布層Bの目付が120g/m2よりも大きいと、不織布層Bの孔径分布のバラつきは小さくなるが、厚い不織布になり、筒状フィルターの外径が規格を超えるおそれや、筒状フィルターのろ過性能が低下するおそれがある。 The basis weight of the nonwoven fabric layer B (the basis weight of the nonwoven fabric constituting the nonwoven fabric layer B) is not particularly limited as long as the average pore diameter satisfies the above range, and is not particularly limited, but is 10 g / m 2 or more and 120 g / m 2 or less. It is preferable that More preferably 15 g / m 2 or more and 100 g / m 2 or less, more preferably 20 g / m 2 or more and 80 g / m 2 or less, 40 g / m 2 or more, and particularly preferably 70 g / m 2 or less . It is considered that when the basis weight of the nonwoven fabric layer B satisfies this range, the average pore diameter easily satisfies the above range, and the productivity of the cylindrical filter is also improved. If the basis weight of the nonwoven fabric layer B is less than 10 g / m 2 , the nonwoven fabric constituting the nonwoven fabric layer B becomes a thin nonwoven fabric, and the variation in the pore size distribution of the nonwoven fabric layer B tends to be large, and the maximum pore size of the nonwoven fabric layer B is extremely large. There is a risk. Moreover, when the fabric weight becomes too small, the number of windings of the nonwoven fabric layer B (the number of times of laminating the nonwoven fabrics constituting the nonwoven fabric layer B) increases, and the productivity of the cylindrical filter may be reduced. If the basis weight of the nonwoven fabric layer B is larger than 120 g / m 2, the variation in the pore size distribution of the nonwoven fabric layer B will be small, but the nonwoven fabric layer will be thick and the outer diameter of the tubular filter may exceed the standard. Filtration performance may be reduced.

不織布層Bの最大孔径は、11.5μm以上、18.2μm以下であることが好ましい。より好ましくは12.5μm以上、17μm以下であり、さらに好ましくは14μm以上、16.5μm以下である。不織布層Bの最大孔径が上記範囲を満たすことで、不織布層Bが不織布層Cで捕集することが好ましいサイズの固形物は通過させ、不織布層Cで捕集するにはサイズが大きすぎる固形物は捕集し、不織布層Cには極力流出させないようになる。不織布層Bの最大孔径が18.2μmよりも大きいと、不織布層Bを通過しうる固形物のサイズが大きくなるため、不織布層Cが急激に閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。不織布層Bの最大孔径が11.5μmよりも小さいと、不織布層Bで捕集される固形物の割合が多くなることで、不織布層Bが他の不織布層よりも早い段階で閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。   The maximum pore size of the nonwoven fabric layer B is preferably 11.5 μm or more and 18.2 μm or less. More preferably, they are 12.5 micrometers or more and 17 micrometers or less, More preferably, they are 14 micrometers or more and 16.5 micrometers or less. When the maximum pore diameter of the non-woven fabric layer B satisfies the above range, the non-woven fabric layer B is preferably a solid that is too large to be collected by the non-woven fabric layer C. The matter is collected and prevented from flowing out to the nonwoven fabric layer C as much as possible. If the maximum pore size of the nonwoven fabric layer B is larger than 18.2 μm, the size of the solid material that can pass through the nonwoven fabric layer B increases, so that the nonwoven fabric layer C is abruptly blocked and the filtration life of the cylindrical filter may be reduced. There is. If the maximum pore size of the nonwoven fabric layer B is smaller than 11.5 μm, the proportion of solids collected by the nonwoven fabric layer B increases, so that the nonwoven fabric layer B is blocked at an earlier stage than the other nonwoven fabric layers, The filtration life of the filter may be reduced.

不織布層Bの最多孔径は6μm以上、12μm以下であることが好ましい。より好ましくは7μm以上、12μm以下であり、さらに好ましくは8μm以上、11.5μm以下である。ろ過用途に使用する不織布において、不織布層Bの最多孔径が上記範囲を満たすことで、不織布層Bが不織布層Cで捕集することが好ましいサイズの固形物は通過させ、不織布層Cで捕集するにはサイズが大きすぎる固形物は捕集し、不織布層Cには極力流出さないようになる。不織布層Bの最多孔径が12μmよりも大きいと、不織布層Bを通過しうる固形物のサイズが大きくなるため、不織布層Cが急激に閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。不織布層Bの最多孔径が6μmよりも小さいと、不織布層Bで捕集される固形物の割合が多くなることで、不織布層Bが他の不織布層よりも早い段階で閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。   The most porous diameter of the nonwoven fabric layer B is preferably 6 μm or more and 12 μm or less. More preferably, they are 7 micrometers or more and 12 micrometers or less, More preferably, they are 8 micrometers or more and 11.5 micrometers or less. In the non-woven fabric used for the filtration application, when the most porous diameter of the non-woven fabric layer B satisfies the above-mentioned range, the non-woven fabric layer B collects solids having a size that is preferably collected by the non-woven fabric layer C, and is collected by the non-woven fabric layer C. For this purpose, solids having a size that is too large are collected and prevented from flowing out into the nonwoven fabric layer C as much as possible. If the most porous diameter of the non-woven fabric layer B is larger than 12 μm, the size of solids that can pass through the non-woven fabric layer B becomes large, so that the non-woven fabric layer C is abruptly blocked and the filtration life of the cylindrical filter may be reduced. . When the most porous diameter of the non-woven fabric layer B is smaller than 6 μm, the proportion of solids collected by the non-woven fabric layer B increases, so that the non-woven fabric layer B is blocked at an earlier stage than the other non-woven fabric layers. There is a risk that the filtration life of the product may be reduced.

<不織布層C>
不織布層Cは、ろ過層を構成する不織布層A、不織布層B及び不織布層Cの中で、最も流出側に位置するろ過層であり、筒状フィルターのろ過精度に大きな影響を与える。
<Nonwoven fabric layer C>
The nonwoven fabric layer C is a filtration layer located on the most outflow side among the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C constituting the filtration layer, and greatly affects the filtration accuracy of the cylindrical filter.

本発明の筒状フィルターのろ過層を構成する不織布層Cは、平均繊維径が2μm以下の細繊維径不織布を含む不織布層である。この細繊維径不織布は、不織布層Cよりも流入側に位置する不織布層A及び不織布層Bと比較して平均繊維径が小さく、平均孔径が小さい不織布である。このため、不織布層Cに含まれる細繊維径不織布の平均繊維径や平均孔径、及び細繊維径不織布の巻き長などにより、本発明の筒状フィルターのろ過精度が決定される。   The nonwoven fabric layer C which comprises the filtration layer of the cylindrical filter of this invention is a nonwoven fabric layer containing the fine fiber diameter nonwoven fabric whose average fiber diameter is 2 micrometers or less. This fine fiber non-woven fabric is a non-woven fabric having a smaller average fiber diameter and a smaller average pore size than the non-woven fabric layer A and the non-woven fabric layer B positioned on the inflow side of the non-woven fabric layer C. For this reason, the filtration accuracy of the tubular filter of the present invention is determined by the average fiber diameter and average pore diameter of the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C, the winding length of the fine fiber diameter nonwoven fabric, and the like.

前記細繊維径不織布は、平均繊維径が2μm以下の不織布である。そのため、細繊維径不織布のみを巻き回す、即ち、細繊維径不織布同士が接触し、重ね合わさるように巻き回した場合、細繊維径不織布のみを巻き回した長さが長すぎると、平均繊維径が小さく、繊維間隔の狭い不織布同士が接触するため、細繊維径不織布同士が密着したような状態となり、ろ過時の圧力損失が大きくなるおそれがある。また、平均繊維径が小さく、繊維間隔の狭い不織布同士が接触するため、ろ過層を構成する不織布に存在する空隙が少なくなり、筒状フィルターのろ過寿命が極端に短くなるおそれがある。   The said thin fiber diameter nonwoven fabric is a nonwoven fabric with an average fiber diameter of 2 micrometers or less. Therefore, only the fine fiber diameter nonwoven fabric is wound, that is, when the fine fiber diameter nonwoven fabrics are in contact with each other and wound so as to overlap, if the length of only the thin fiber diameter nonwoven fabric wound is too long, the average fiber diameter However, since the non-woven fabrics having small fiber intervals are in contact with each other, the non-woven fabrics having a small fiber diameter are brought into close contact with each other, which may increase the pressure loss during filtration. Moreover, since the nonwoven fabrics with a small average fiber diameter and a narrow fiber space | interval contact, the space | gap which exists in the nonwoven fabric which comprises a filtration layer decreases, and there exists a possibility that the filtration life of a cylindrical filter may become extremely short.

本発明者等は鋭意検討し、細繊維径不織布を巻き回す際、平均繊維径が2μmよりも大きい不織布(太繊維径不織布)を細繊維径不織布に重ね合わせて積層した状態で巻き回すことで上記課題を解決し、このようにして得られる不織布層C、及び、前記不織布層A、不織布層Bを有する筒状フィルターが、高いろ過精度と長いろ過寿命を両立させることを見いだした。   The present inventors have intensively studied, and when winding a non-woven fabric having a small fiber diameter, by winding a non-woven fabric having a mean fiber diameter larger than 2 μm (thick fiber-diameter non-woven fabric) on top of the non-woven fabric having a fine fiber diameter. It has been found that the above-mentioned problems are solved, and the non-woven fabric layer C thus obtained and the cylindrical filter having the non-woven fabric layer A and the non-woven fabric layer B achieve both high filtration accuracy and a long filtration life.

本発明の筒状フィルターの一部を構成する不織布層Cは、平均繊維径が2μm以下の細繊維径不織布を含む不織布層であり、前記細繊維径不織布は、少なくともその一部が、平均繊維径が2μmよりも大きい不織布(太繊維径不織布)と重ね合わせて積層した状態で巻き回されることで不織布層Cを形成している。細繊維径不織布と太繊維径不織布を重ね合わせて積層した状態で巻き回して不織布層を形成すると、細繊維径不織布と太繊維径不織布が重なっている部分では細繊維径不織布同士が接触しないため、平均繊維径の小さい不織布同士の密着に起因する圧力損失の増加、及び、ろ過寿命の低下が発生しにくくなり、ろ過精度を保ちながらろ過寿命が向上しうる。   The non-woven fabric layer C constituting a part of the cylindrical filter of the present invention is a non-woven fabric layer including a non-woven fabric having a fine fiber diameter of 2 μm or less, and at least a part of the fine fiber diameter non-woven fabric is an average fiber. The nonwoven fabric layer C is formed by being wound in a state of being laminated and laminated with a nonwoven fabric having a diameter larger than 2 μm (thick fiber diameter nonwoven fabric). When a thin fiber diameter nonwoven fabric and a thick fiber diameter nonwoven fabric are overlapped and laminated to form a nonwoven fabric layer, the fine fiber diameter nonwoven fabric is not in contact with the portion where the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric overlap. In addition, an increase in pressure loss due to adhesion between non-woven fabrics having a small average fiber diameter and a decrease in filtration life are less likely to occur, and the filtration life can be improved while maintaining filtration accuracy.

本発明の筒状フィルターの一部を構成する不織布層Cは、少なくとも前記細繊維径不織布、即ち、平均繊維径が2μm以下の不織布が巻き回されている不織布層のことを指す。より具体的には、
1)平均繊維径が2μm以下の不織布(細繊維径不織布)が連続して巻き回されており、その一部が、平均繊維径が2μmよりも大きい不織布(太繊維径不織布)と積層して巻き回されている不織布層の中で、太繊維径不織布を含まず、細繊維径不織布が単独で巻き回されている不織布層
2)少なくとも2種類の不織布を含む不織布層であり、平均繊維径が2μm以下の不織布(細繊維径不織布)と、平均繊維径が2μmよりも大きい不織布(太繊維径不織布)が重ね合わせて積層した状態で巻き回されている不織布層
上記1)又は、2)が不織布層Cに含まれる。そして、
3)平均繊維径が2μmよりも大きい不織布(太繊維径不織布)が単独で巻き回されて形成された不織布の層
4)平均繊維径が2μm以下の連続した不織布(細繊維径不織布)が、巻き始めから巻き終わりまで、単独で巻き回されている不織布層であって、当該不織布層の流入側に位置する不織布層が、前記細繊維径不織布とは異なる種類の細繊維径不織布を含む不織布層となっている不織布層
上記3)又は、4)は不織布層Cには含まれない。
The nonwoven fabric layer C constituting a part of the cylindrical filter of the present invention refers to a nonwoven fabric layer in which at least the fine fiber diameter nonwoven fabric, that is, a nonwoven fabric having an average fiber diameter of 2 μm or less is wound. More specifically,
1) A nonwoven fabric (fine fiber diameter nonwoven fabric) having an average fiber diameter of 2 μm or less is continuously wound, and a part of the nonwoven fabric is laminated with a nonwoven fabric (thick fiber diameter nonwoven fabric) having an average fiber diameter larger than 2 μm. Among the wound nonwoven fabric layers, the nonwoven fabric layer does not include the thick fiber diameter nonwoven fabric, and the nonwoven fabric layer in which the thin fiber diameter nonwoven fabric is wound alone. 2) The nonwoven fabric layer includes at least two types of nonwoven fabric, and has an average fiber diameter. Is a nonwoven fabric layer wound in a state in which a nonwoven fabric (thin fiber diameter nonwoven fabric) having an average fiber diameter of 2 μm or less and a nonwoven fabric (thick fiber diameter nonwoven fabric) having an average fiber diameter larger than 2 μm are stacked and laminated 1) or 2) Is included in the nonwoven fabric layer C. And
3) Nonwoven fabric layer formed by winding a nonwoven fabric (thick fiber diameter nonwoven fabric) having an average fiber diameter larger than 2 μm alone. 4) A continuous nonwoven fabric (fine fiber diameter nonwoven fabric) having an average fiber diameter of 2 μm or less. A nonwoven fabric layer that is wound independently from the beginning to the end of winding, and the nonwoven fabric layer positioned on the inflow side of the nonwoven fabric layer includes a nonwoven fabric of a fine fiber diameter different from that of the fine fiber diameter nonwoven fabric. The nonwoven fabric layer which is a layer The above 3) or 4) is not included in the nonwoven fabric layer C.

上記1)で説明される不織布層とは、平均繊維径が2μm以下の連続した、言い換えるならば切れ目のない不織布(細繊維径不織布)を使用し、その一部分だけ、平均繊維径が2μmよりも大きい不織布(太繊維径不織布)と重ね合わせて巻き回した場合に発生する、太繊維径不織布と積層している部分からはみ出している細繊維径不織布が、単独で巻き回されている不織布層のことを指す。この層は不織布層Cに含まれる。また、上記3)で説明される不織布層とは、細繊維径不織布と太繊維径不織布を重ね合わせて巻き回す際に、細繊維径不織布よりも太繊維径不織布のほうが巻き長さが長い場合、巻き始め及び/又は巻き終わりに、太繊維径不織布のみが巻き回された不織布層が形成されるが、この不織布層のことを指す。この層は不織布層Cには含まれない。   The nonwoven fabric layer described in 1) above uses a continuous nonwoven fabric (fine fiber diameter nonwoven fabric) having an average fiber diameter of 2 μm or less, in other words, an average fiber diameter of less than 2 μm. A non-woven fabric layer in which a fine fiber diameter non-woven fabric protruding from a portion laminated with a large fiber diameter non-woven fabric, which is generated when a large non-woven fabric (thick fiber diameter non-woven fabric) is overlapped and wound, Refers to that. This layer is included in the nonwoven fabric layer C. In addition, the non-woven fabric layer described in the above 3) is a case where the large fiber diameter non-woven fabric has a longer winding length than the fine fiber diameter non-woven fabric when the fine fiber diameter non-woven fabric and the large fiber diameter non-woven fabric are wound together. At the beginning and / or end of winding, a nonwoven fabric layer in which only a thick fiber diameter nonwoven fabric is wound is formed, which refers to this nonwoven fabric layer. This layer is not included in the nonwoven fabric layer C.

上記4)に該当する不織布層を説明する。まず、平均繊維径が2μm以下の不織布(仮に細繊維径不織布イと称す)を、巻き始めから巻き終わりまで連続して巻き回し、細繊維径不織布イを切断し細繊維径不織布層イとする。次に、前記細繊維径不織布イとは異なる不織布で平均繊維径が2μm以下の不織布(仮に細繊維径不織布ロと称す)を細繊維径不織布層イの上に数周巻き回した後、平均繊維径が2μmより大きい不織布(仮に太繊維径不織布ロと称す)を準備して太繊維径不織布ロ及び細繊維径不織布ロを重ね合わせて所望の長さまで巻き回し、これらを切断して細繊維径不織布層ロとした場合を想定する。この場合、上記細繊維径不織布層ロのうち、細繊維径不織布ロと太繊維径不織布ロを重ね合わせて巻き回している層は、上記2)に該当するため不織布層Cに含まれる。細繊維径不織布ロの巻き始めに形成されている、細繊維径不織布ロのみが連続して巻き回されている層は、上記1)に該当するため、不織布層Cに含まれる。一方、細繊維径不織布イのみを巻き回した不織布層イは上記4)に該当するため不織布層Cには含まれない。   The nonwoven fabric layer corresponding to the above 4) will be described. First, a nonwoven fabric having an average fiber diameter of 2 μm or less (referred to as a “fine fiber diameter nonwoven fabric a”) is continuously wound from the beginning to the end of winding, and the fine fiber diameter nonwoven fabric “a” is cut into a thin fiber diameter nonwoven fabric layer “a”. . Next, a non-woven fabric different from the above-mentioned fine fiber diameter non-woven fabric A and having an average fiber diameter of 2 μm or less (referred to as a fine fiber diameter non-woven fabric) is wound around the fine fiber diameter non-woven fabric layer a few times, Prepare a non-woven fabric with a fiber diameter larger than 2 μm (referred to as a thick-fiber non-woven fabric) and wrap the thick-fiber non-woven fabric and the fine-fiber non-woven fabric to the desired length, cut them, and cut them into fine fibers. The case where it is set as the diameter nonwoven fabric layer b is assumed. In this case, among the fine fiber diameter nonwoven fabric layers B, the layer in which the fine fiber diameter nonwoven fabrics B and the thick fiber diameter nonwoven fabrics B are overlapped and wound is included in the nonwoven fabric layer C because it corresponds to 2) above. The layer in which only the fine fiber diameter non-woven cloth is continuously wound is included in the non-woven cloth layer C because it corresponds to the above 1). On the other hand, the non-woven fabric layer I in which only the non-woven fabric with a fine fiber diameter is wound corresponds to the above 4) and is not included in the non-woven fabric layer C.

上記の場合において、仮に、細繊維径不織布イと細繊維径不織布ロが同一の不織布である場合、細繊維径不織布イが一旦切断されているものの、連続して巻き回した場合と変わらないため、本発明では、細繊維径不織布イを連続して巻き回しているものとみなす。従って、細繊維径不織布層ロは全て不織布層Cに含まれることはもちろん、細繊維径不織布層イも不織布層Cに含まれる。   In the above case, if the fine fiber diameter nonwoven fabric A and the fine fiber diameter nonwoven fabric B are the same nonwoven fabric, the fine fiber diameter nonwoven fabric A is once cut, but is not different from the case of continuous winding. In the present invention, it is considered that the non-woven fabric of fine fiber diameter is continuously wound. Therefore, the fine fiber diameter nonwoven fabric layer (B) is all included in the nonwoven fabric layer C, and the fine fiber diameter nonwoven fabric layer (a) is also included in the nonwoven fabric layer C.

より具体的な例を説明する。ろ過の対象物となる流体が、外側(筒状フィルターの側面部)から内側の円柱状の空洞部に向けて通過する筒状フィルターにおいて、筒状フィルターの流出側から順に、下記の不織布層W〜Zを形成した場合を想定する。
不織布層W.平均繊維径が0.8μmの不織布(細繊維径不織布W)を1m巻き回した不織布層
不織布層X.平均繊維径が1.5μmの不織布(細繊維径不織布X)を1m巻き回した不織布層
不織布層Y.細繊維径不織布Xと、平均繊維径が2.3μmの不織布(太繊維径不織布Y)を重ね合わせて4m巻き回した不織布層
不織布層Z.太繊維径不織布Yのみを2m巻き回した不織布層
上記の場合、不織布層Wは、上記4)に該当するため、不織布層Cには該当しない。また不織布層Zは上記3)に該当し、不織布層Cには該当しない。不織布層X及び不織布層Yは不織布層Cに該当する。細繊維径不織布Xが連続している、即ち不織布層Xと不織布層Yを連続して形成している場合は、不織布層Xは上記1)に該当し、不織布層Yは上記2)に該当する。細繊維径不織布Xが不織布層Xと不織布層Yの間で一旦切断されていても、連続して巻き回しているとみなすため、不織布層Xは上記1)に該当し、不織布層Yは上記2)に該当する。
A more specific example will be described. In the cylindrical filter through which the fluid to be filtered passes from the outer side (side surface part of the cylindrical filter) toward the inner cylindrical cavity, the following nonwoven fabric layer W is sequentially formed from the outflow side of the cylindrical filter. Assume that ~ Z is formed.
Nonwoven fabric layer Nonwoven fabric layer obtained by winding a nonwoven fabric (fine fiber diameter nonwoven fabric W) having an average fiber diameter of 0.8 μm by 1 m Nonwoven fabric layer X. Nonwoven fabric layer obtained by winding 1 m of a nonwoven fabric (fine fiber diameter nonwoven fabric X) having an average fiber diameter of 1.5 μm. A non-woven fabric layer in which a fine fiber diameter non-woven fabric X and a non-woven fabric having an average fiber diameter of 2.3 μm (thick fiber diameter non-woven fabric Y) are overlapped and wound 4 m. In the above case, the nonwoven fabric layer W does not correspond to the nonwoven fabric layer C because the nonwoven fabric layer W corresponds to the above 4). The nonwoven fabric layer Z corresponds to the above 3), and does not correspond to the nonwoven fabric layer C. The nonwoven fabric layer X and the nonwoven fabric layer Y correspond to the nonwoven fabric layer C. When the fine fiber diameter nonwoven fabric X is continuous, that is, when the nonwoven fabric layer X and the nonwoven fabric layer Y are continuously formed, the nonwoven fabric layer X corresponds to the above 1) and the nonwoven fabric layer Y corresponds to the above 2). To do. Even if the fine fiber diameter non-woven fabric X is once cut between the non-woven fabric layer X and the non-woven fabric layer Y, the non-woven fabric layer X corresponds to the above 1) since it is considered to be continuously wound. It corresponds to 2).

不織布層Cに含まれる細繊維径不織布について説明する。細繊維径不織布の平均孔径は、不織布層Aの平均孔径の0.37倍以上、0.86倍以下である。好ましくは不織布層Aの平均孔径の0.4倍以上、0.6倍以下であり、0.41倍以上、0.55倍以下であることがより好ましく、0.42倍以上、0.5倍以下であることがさらに好ましい。本発明の筒状フィルターにおいて、細繊維径不織布の平均孔径は、不織布層Aの平均孔径に対し、一定の範囲を満たす倍率である。すなわち、不織布層A、不織布層B及び不織布層Cで構成されたろ過層の中で、最も流入側に位置する不織布層Aの平均孔径と、最も流出側に位置する不織布層Cに含まれる細繊維径不織布の平均孔径の比が一定の範囲を満たしている。そのため、不織布層Aと細繊維径不織布の間における平均孔径の勾配、すなわち、不織布層A、不織布層B及び不織布層Cで構成されるろ過層において、平均孔径の勾配が適度なものとなり、主に筒状フィルターのろ過寿命の向上に寄与すると考えられる。細繊維径不織布の平均孔径が不織布層Aの平均孔径の0.86倍よりも大きいと、不織布層Aと細繊維径不織布の間における平均孔径の勾配が小さくなりすぎる。そのため、不織布層A、不織布層B及び不織布層Cで構成されるろ過層全体の平均孔径の勾配が小さくなり、筒状フィルターのろ過精度とろ過寿命を両立することが難しくなる。また、細繊維径不織布の平均孔径が大きいため、筒状フィルターのろ過精度が低下するおそれがある。細繊維径不織布の平均孔径が、不織布層Aの平均孔径の0.37倍よりも小さいと、不織布層Aと細繊維径不織布の間における平均孔径の勾配が大きくなりすぎる。そのため、不織布層A及び/又は不織布層Bが、不織布層Cの前ろ過層として十分に機能しなくなり、不織布層Cが不織布層A及び/又は不織布層Bよりも早い段階で閉塞するようになり、筒状フィルターのろ過寿命が低下するおそれがある。   The fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C will be described. The average pore diameter of the fine fiber diameter nonwoven fabric is 0.37 times or more and 0.86 times or less of the average pore diameter of the nonwoven fabric layer A. Preferably, the average pore size of the nonwoven fabric layer A is 0.4 to 0.6 times, more preferably 0.41 to 0.55 times, more preferably 0.42 to 0.5 times More preferably, it is not more than twice. In the cylindrical filter of the present invention, the average pore diameter of the fine fiber diameter nonwoven fabric is a magnification that satisfies a certain range with respect to the average pore diameter of the nonwoven fabric layer A. That is, among the filtration layers composed of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, the average pore diameter of the nonwoven fabric layer A located on the most inflow side and the fine pores contained in the nonwoven fabric layer C located on the most outflow side. The ratio of the average pore diameter of the fiber diameter nonwoven fabric satisfies a certain range. Therefore, in the filtration layer composed of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, the average pore diameter gradient is moderate between the nonwoven fabric layer A and the fine fiber diameter nonwoven fabric. It is thought that it contributes to the improvement of the filtration life of the cylindrical filter. When the average pore diameter of the fine fiber diameter nonwoven fabric is larger than 0.86 times the average pore diameter of the nonwoven fabric layer A, the gradient of the average pore diameter between the nonwoven fabric layer A and the fine fiber diameter nonwoven fabric becomes too small. Therefore, the gradient of the average pore diameter of the entire filtration layer composed of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C becomes small, and it becomes difficult to achieve both the filtration accuracy and the filtration life of the cylindrical filter. Moreover, since the average hole diameter of a fine fiber diameter nonwoven fabric is large, there exists a possibility that the filtration accuracy of a cylindrical filter may fall. When the average pore diameter of the fine fiber diameter nonwoven fabric is smaller than 0.37 times the average pore diameter of the nonwoven fabric layer A, the gradient of the average pore diameter between the nonwoven fabric layer A and the fine fiber diameter nonwoven fabric becomes too large. Therefore, the non-woven fabric layer A and / or the non-woven fabric layer B does not function sufficiently as a pre-filtration layer for the non-woven fabric layer C, and the non-woven fabric layer C is blocked at an earlier stage than the non-woven fabric layer A and / or the non-woven fabric layer B. The filtration life of the cylindrical filter may be reduced.

不織布層Aが異なる2種類以上の不織布で構成されていて、不織布の平均孔径がそれぞれ異なる場合、最も平均孔径の小さい不織布の平均孔径の値に基づいて、不織布層Cに含まれる細繊維径不織布の平均孔径が決定される。例えば、不織布層Aを平均孔径が12μm、14μm、16μmの不織布を用いて構成している場合、細繊維径不織布の平均孔径の範囲は、最も値が小さい不織布の平均孔径に基づいて決定され、4.4μm以上、10.3μm以下となる。なお、不織布層Cに含まれる細繊維径不織布は、上記平均孔径の範囲を満たす不織布を1種類用いて構成してもよいし、上記平均孔径の範囲を満たす不織布を2種類以上用いて構成してもよい。   When the nonwoven fabric layer A is composed of two or more types of nonwoven fabrics and the nonwoven fabrics have different average pore diameters, the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C based on the average pore diameter value of the nonwoven fabric having the smallest average pore diameter. The average pore diameter is determined. For example, when the nonwoven fabric layer A is constituted using a nonwoven fabric having an average pore diameter of 12 μm, 14 μm, and 16 μm, the average pore diameter range of the fine fiber diameter nonwoven fabric is determined based on the average pore diameter of the nonwoven fabric having the smallest value, 4.4 μm or more and 10.3 μm or less. In addition, the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C may be configured using one type of nonwoven fabric satisfying the above average pore diameter range, or may be configured using two or more types of nonwoven fabric satisfying the above average pore diameter range. May be.

本発明の筒状フィルターでは、不織布層Cに含まれる細繊維径不織布の平均孔径が、不織布層Aの平均孔径の0.37倍以上、0.86倍以下であればよいが、細繊維径不織布の平均孔径が、この倍率を満たしつつ、不織布層Bの平均孔径の0.4倍以上、0.9倍以下であることが好ましい。細繊維径不織布の平均孔径は、不織布層Bの平均孔径の0.45倍以上、0.8倍以下であることがより好ましく、0.5倍以上、0.75倍以下であることがさらに好ましい。細繊維径不織布の平均孔径が不織布層Bの平均孔径の0.4倍以上、0.9倍以下であると、不織布層Bと細繊維径不織布の間における平均孔径の勾配も適度なものとなり、筒状フィルターのろ過精度とろ過寿命の向上に寄与すると考えられる。細繊維径不織布の平均孔径が不織布層Bの平均孔径の0.9倍よりも大きいと、不織布層Bと細繊維径不織布の間における平均孔径の勾配が小さくなりすぎるため、細繊維径不織布が不織布層Bを通過した固形物の大部分を捕集できなくなり、筒状フィルターのろ過精度が低下するおそれがある。細繊維径不織布の平均孔径が不織布層Bの平均孔径の0.4倍よりも小さいと、不織布層Bと細繊維径不織布の間における平均孔径の勾配が大きくなりすぎるため、細繊維径不織布にサイズが大きすぎる固形物が流れ込むようになり、細繊維径不織布を含む不織布層Cが不織布層A及び/又は不織布層Bよりも早い段階で閉塞しやすくなり、筒状フィルターのろ過寿命が低下するおそれがある。不織布層Bが異なる2種類以上の不織布で構成されていて、不織布の平均孔径がそれぞれ異なる場合、最も平均孔径の小さい不織布の平均孔径の値に基づいて、不織布層Cに含まれる細繊維径不織布の平均孔径が決定される。例えば、不織布層Bが、平均孔径がそれぞれ8μm、10μmの不織布で構成されている場合、細繊維径不織布の平均孔径の範囲は、不織布層Aの平均孔径に対し0.37倍以上、0.86倍以下という範囲を満たしつつ、不織布層Bを構成する平均孔径8μmの不織布の平均孔径の値に基づいて決定される、3.2μm以上、7.2μm以下の範囲を満たすことが好ましい。   In the cylindrical filter of the present invention, the average pore size of the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C may be not less than 0.37 times and not more than 0.86 times the average pore size of the nonwoven fabric layer A. The average pore diameter of the nonwoven fabric is preferably 0.4 to 0.9 times the average pore diameter of the nonwoven fabric layer B while satisfying this magnification. The average pore diameter of the fine fiber diameter nonwoven fabric is more preferably 0.45 times or more and 0.8 times or less, and more preferably 0.5 times or more and 0.75 times or less that of the nonwoven fabric layer B. preferable. When the average pore diameter of the fine fiber diameter nonwoven fabric is 0.4 to 0.9 times the average pore diameter of the nonwoven fabric layer B, the gradient of the average pore diameter between the nonwoven fabric layer B and the fine fiber diameter nonwoven fabric becomes appropriate. It is thought that it contributes to the improvement of the filtration accuracy and filtration life of the cylindrical filter. When the average pore diameter of the fine fiber diameter nonwoven fabric is larger than 0.9 times the average pore diameter of the nonwoven fabric layer B, the gradient of the average pore diameter between the nonwoven fabric layer B and the fine fiber diameter nonwoven fabric becomes too small. Most of the solid matter that has passed through the nonwoven fabric layer B cannot be collected, and the filtration accuracy of the cylindrical filter may be reduced. When the average pore diameter of the fine fiber diameter nonwoven fabric is smaller than 0.4 times the average pore diameter of the nonwoven fabric layer B, the gradient of the average pore diameter between the nonwoven fabric layer B and the fine fiber diameter nonwoven fabric becomes too large. Solids having a size that is too large will flow, and the non-woven fabric layer C containing the non-woven fabric having a fine fiber diameter is likely to be blocked earlier than the non-woven fabric layer A and / or the non-woven fabric layer B, and the filtration life of the cylindrical filter is reduced. There is a fear. When the nonwoven fabric layer B is composed of two or more types of nonwoven fabrics and the nonwoven fabrics have different average pore diameters, the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C based on the average pore diameter value of the nonwoven fabric with the smallest average pore diameter. The average pore diameter is determined. For example, when the nonwoven fabric layer B is composed of nonwoven fabrics having an average pore diameter of 8 μm and 10 μm, respectively, the average pore diameter range of the fine fiber diameter nonwoven fabric is 0.37 times the average pore diameter of the nonwoven fabric layer A, 0. While satisfying the range of 86 times or less, it is preferable to satisfy the range of 3.2 μm or more and 7.2 μm or less determined based on the value of the average pore size of the nonwoven fabric having an average pore size of 8 μm constituting the nonwoven fabric layer B.

本発明の筒状フィルターにおいて、不織布層A、不織布層B及び不織布層Cの合計質量に対して、細繊維径不織布の含有量は、7.8質量%以上、25質量%以下である。より好ましい細繊維径不織布の含有量は、不織布層A、不織布層B及び不織布層Cの合計質量に対して、8質量%以上、20質量%以下であり、特に好ましい細繊維径不織布の含有量は、不織布層A、不織布層B及び不織布層Cの合計質量に対して、8.5質量%以上、18質量%以下であり、最も好ましい細繊維径不織布の含有量は、不織布層A、不織布層B及び不織布層Cの合計質量に対して、9質量%以上、17質量%以下である。細繊維径不織布の含有量が7.8質量%よりも少ないと、細繊維径不織布を含む不織布層Cが不織布層A及び/又は不織布層Bよりも早い段階で閉塞してしまい、筒状フィルターのろ過寿命が低下するおそれがある。また、不織布層Cにおいて、細繊維径不織布の巻き回数(細繊維径不織布を巻き回し、重ね合わせた積層回数)が減少することで、筒状フィルターのろ過精度が低下するおそれもある。細繊維径不織布の含有量が27質量%を超えると、筒状フィルターのろ過精度は高められるが、不織布層A及び/又は不織布層Bの割合が少なくなり、筒状フィルターのろ過寿命が低下するおそれがある。細繊維径不織布として、平均繊維径が2μm以下であって平均孔径の異なる2種類以上の不織布を不織布層Cが含んでいる場合、細繊維径不織布の含有量は、これらの平均孔径の異なる不織布の含有量の合計であり、前記の不織布層Aの含有量を求めた方法と同じ計算方法で求める。   In the cylindrical filter of the present invention, the content of the fine fiber diameter nonwoven fabric is 7.8% by mass or more and 25% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. The content of the fine fiber diameter non-woven fabric is more preferably 8% by mass or more and 20% by mass or less with respect to the total mass of the non-woven fabric layer A, the non-woven fabric layer B, and the non-woven fabric layer C. Is 8.5 mass% or more and 18 mass% or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, and the most preferable fine fiber diameter nonwoven fabric content is the nonwoven fabric layer A and the nonwoven fabric. It is 9 mass% or more and 17 mass% or less with respect to the total mass of the layer B and the nonwoven fabric layer C. When the content of the fine fiber diameter nonwoven fabric is less than 7.8% by mass, the nonwoven fabric layer C containing the fine fiber diameter nonwoven fabric is blocked at an earlier stage than the nonwoven fabric layer A and / or the nonwoven fabric layer B, and the cylindrical filter There is a risk that the filtration life of the product may be reduced. Moreover, in the nonwoven fabric layer C, the number of windings of the fine fiber diameter nonwoven fabric (the number of times of laminating and stacking the thin fiber diameter nonwoven fabrics) is reduced, which may reduce the filtration accuracy of the cylindrical filter. When the content of the fine fiber non-woven fabric exceeds 27% by mass, the filtration accuracy of the cylindrical filter is improved, but the ratio of the non-woven fabric layer A and / or the non-woven fabric layer B decreases, and the filtration life of the cylindrical filter is reduced. There is a fear. When the nonwoven fabric layer C includes two or more types of nonwoven fabrics having an average fiber diameter of 2 μm or less and different average pore diameters as the fine fiber diameter nonwoven fabric, the content of the fine fiber diameter nonwoven fabrics is a nonwoven fabric having different average pore diameters. It is the sum total of content of No., and it calculates | requires with the same calculation method as the method of calculating | requiring content of the said nonwoven fabric layer A.

細繊維径不織布の平均繊維径は、2μm以下であれば特に限定されないが、0.05μm以上、2μm以下であることが好ましい。より好ましくは0.2μm以上、1.8μm以下であり、さらに好ましくは0.5μm以上、1.75μm以下であり、最も好ましくは0.6μm以上、1.7μm以下である。細繊維径不織布の平均繊維径がこの範囲を満たすことで、ろ過精度が高い筒状フィルターが得られるようになる。細繊維径不織布の平均繊維径が2μmよりも大きいと、筒状フィルターのろ過精度が低下するおそれがある。   The average fiber diameter of the fine fiber diameter nonwoven fabric is not particularly limited as long as it is 2 μm or less, but is preferably 0.05 μm or more and 2 μm or less. More preferably, they are 0.2 micrometer or more and 1.8 micrometers or less, More preferably, they are 0.5 micrometer or more and 1.75 micrometers or less, Most preferably, they are 0.6 micrometer or more and 1.7 micrometers or less. When the average fiber diameter of the fine fiber diameter nonwoven fabric satisfies this range, a cylindrical filter with high filtration accuracy can be obtained. When the average fiber diameter of the fine fiber diameter nonwoven fabric is larger than 2 μm, the filtration accuracy of the tubular filter may be lowered.

細繊維径不織布の目付は、平均繊維径及び平均孔径が上記範囲を満たすものになるような目付であればよく、特に限定されないが、5g/m2以上、120g/m2以下であることが好ましい。より好ましくは8g/m2以上、80g/m2以下であり、さらに好ましくは10g/m2以上、50g/m2以下であり、12g/m2以上、40g/m2以下であると特に好ましい。細繊維径不織布の目付がこの範囲を満たすことで、平均孔径が上記範囲を満たしやすくなるだけでなく、筒状フィルターの生産性も向上すると考えられる。細繊維径不織布の目付が5g/m2よりも小さいと、細繊維径不織布が薄い不織布となり、孔径分布のバラつきが大きくなりやすく、細繊維径不織布の最大孔径が極端に大きくなることで筒状フィルターのろ過精度が低下するおそれがある。また、目付が小さくなりすぎることで、筒状フィルターを形成するために必要な細繊維径不織布の巻き回数が多くなり、筒状フィルターの生産性が低下するおそれもある。細繊維径不織布の目付が120g/m2よりも大きいと、細繊維径不織布の孔径分布のバラつきは小さくなるが、厚い不織布になり、筒状フィルターの外径が規格を超えるおそれや、筒状フィルターのろ過性能が低下するおそれがある。 The basis weight of the fine fiber diameter non-woven fabric is not particularly limited as long as the average fiber diameter and the average pore diameter satisfy the above ranges, and are 5 g / m 2 or more and 120 g / m 2 or less. preferable. More preferably 8 g / m 2 or more and 80 g / m 2 or less, more preferably 10 g / m 2 or more and 50 g / m 2 or less, 12 g / m 2 or more, and particularly preferably 40 g / m 2 or less . It is considered that when the basis weight of the fine fiber diameter nonwoven fabric satisfies this range, not only the average pore diameter easily satisfies the above range, but also the productivity of the cylindrical filter is improved. If the basis weight of the fine fiber diameter non-woven fabric is less than 5 g / m 2 , the fine fiber diameter non-woven fabric becomes a thin non-woven fabric, the pore size distribution tends to vary widely, and the maximum pore size of the fine fiber diameter non-woven fabric becomes extremely large, resulting in a tubular shape. The filtration accuracy of the filter may be reduced. In addition, when the basis weight is too small, the number of windings of the fine fiber diameter nonwoven fabric required for forming the cylindrical filter increases, and the productivity of the cylindrical filter may be reduced. If the basis weight of the fine fiber diameter nonwoven fabric is larger than 120 g / m 2, the variation in the pore size distribution of the fine fiber diameter nonwoven fabric will be small, but it will be a thick nonwoven fabric and the outer diameter of the tubular filter may exceed the standard, The filtration performance of the filter may be reduced.

細繊維径不織布の厚さは、平均繊維径及び平均孔径が上記範囲を満たすものになるような厚さであればよく、特に限定されないが、0.01mm以上、0.5mm以下であることが好ましい。より好ましくは0.03mm以上、0.3mm以下であり、さらに好ましくは0.05mm、0.2mm以下である。細繊維径不織布は、少なくとも一部を太繊維径不織布と重ね合わせた状態で巻き回すため、平均繊維径、及び平均孔径の条件を満たしながら、比較的薄い不織布を選ぶことで、太繊維径不織布と重ね合わせても厚さが小さくなる。厚さが小さくなるため、細繊維径不織布の巻き数が増加しても筒状フィルターの直径が大きくなりにくく、筒状フィルターの外径が抑えられるため好ましい。細繊維径不織布の厚さが0.01mmよりも小さくなると、不織布の地合にムラが発生しやすくなり、平均孔径の要件が外れるおそれがあるだけでなく、ろ過精度が低下するおそれがある。細繊維径不織布の厚さが0.5mmを超えると、不織布層Cの厚さが大きくなり、得られる筒状フィルターの直径が製品規格から外れたりするおそれがある。本発明において、各不織布の厚さの測定方法は後述する。   The thickness of the fine fiber diameter non-woven fabric is not particularly limited as long as the average fiber diameter and the average pore diameter satisfy the above ranges, and may be 0.01 mm or more and 0.5 mm or less. preferable. More preferably, they are 0.03 mm or more and 0.3 mm or less, More preferably, they are 0.05 mm or less and 0.2 mm or less. Since the fine fiber diameter non-woven fabric is wound in a state where at least a part thereof is overlapped with the large fiber diameter non-woven fabric, a relatively thin non-woven fabric is selected while satisfying the conditions of the average fiber diameter and average pore diameter. And the thickness is reduced even if they are overlapped. Since the thickness is reduced, the diameter of the cylindrical filter is not easily increased even when the number of turns of the fine fiber non-woven fabric is increased, and the outer diameter of the cylindrical filter is suppressed, which is preferable. When the thickness of the fine fiber diameter non-woven fabric is smaller than 0.01 mm, unevenness of the non-woven fabric is likely to occur, and not only the average pore diameter requirement may be removed, but also the filtration accuracy may be reduced. If the thickness of the non-woven fabric having a fine fiber diameter exceeds 0.5 mm, the thickness of the non-woven fabric layer C increases, and the diameter of the obtained cylindrical filter may be out of product specifications. In this invention, the measuring method of the thickness of each nonwoven fabric is mentioned later.

細繊維径不織布の最大孔径は、6μm以上、15μm以下であることが好ましい。より好ましくは8μm以上、14μm以下であり、さらに好ましくは8.5μm以上、12μm以下である。細繊維径不織布の最大孔径がこの範囲を満たすことで、本発明の筒状フィルターは高いろ過精度を発揮することができる。細繊維径不織布の最大孔径が15μmよりも大きいと、細繊維径不織布を通過しうる固形物のサイズが大きくなり、筒状フィルターのろ過精度が低下するおそれがある。細繊維径不織布の最大孔径が6μmよりも小さいと、細繊維径不織布が不織布層A及び不織布層Bと比較して、極端に最大孔径の小さい層になり、細繊維径不織布を含む不織布層Cが他の不織布層よりも早く閉塞することで、筒状フィルターのろ過寿命が低下するおそれがある。   The maximum pore diameter of the fine fiber diameter nonwoven fabric is preferably 6 μm or more and 15 μm or less. More preferably, they are 8 micrometers or more and 14 micrometers or less, More preferably, they are 8.5 micrometers or more and 12 micrometers or less. When the maximum pore diameter of the fine fiber diameter nonwoven fabric satisfies this range, the cylindrical filter of the present invention can exhibit high filtration accuracy. If the maximum pore diameter of the fine fiber diameter nonwoven fabric is larger than 15 μm, the size of the solid material that can pass through the fine fiber diameter nonwoven fabric increases, and the filtration accuracy of the cylindrical filter may be reduced. When the maximum pore diameter of the fine fiber diameter nonwoven fabric is smaller than 6 μm, the fine fiber diameter nonwoven fabric becomes a layer having an extremely small maximum pore diameter as compared with the nonwoven fabric layer A and the nonwoven fabric layer B, and the nonwoven fabric layer C includes the fine fiber diameter nonwoven fabric. However, the filter life of the cylindrical filter may be reduced due to the blockage occurring earlier than the other nonwoven fabric layers.

細繊維径不織布の最多孔径は1μm以上、9μm以下であることが好ましい。より好ましくは2μm以上、8μm以下であり、さらに好ましくは3.5μm以上、7μm以下である。細繊維径不織布の最多孔径がこの範囲を満たすことで、本発明の筒状フィルターは高いろ過精度を発揮することができる。細繊維径不織布の最多孔径が9μmよりも大きいと、細繊維径不織布を通過しうる固形物のサイズが大きくなり、筒状フィルターのろ過精度が低下するおそれがある。細繊維径不織布の最多孔径が1μmよりも小さいと、細繊維径不織布が不織布層A及び不織布層Bと比較して、極端に最多孔径の小さい層になり、細繊維径不織布を含む不織布層Cが他の不織布層よりも早く閉塞することで、筒状フィルターのろ過寿命が低下するおそれがある。   The most porous diameter of the fine fiber diameter nonwoven fabric is preferably 1 μm or more and 9 μm or less. More preferably, they are 2 micrometers or more and 8 micrometers or less, More preferably, they are 3.5 micrometers or more and 7 micrometers or less. The cylindrical filter of this invention can exhibit high filtration precision because the most porous diameter of a fine fiber diameter nonwoven fabric satisfy | fills this range. If the finest pore diameter of the fine fiber diameter nonwoven fabric is larger than 9 μm, the size of the solid material that can pass through the fine fiber diameter nonwoven fabric increases, and the filtration accuracy of the cylindrical filter may decrease. If the finest pore diameter of the fine fiber diameter nonwoven fabric is smaller than 1 μm, the fine fiber diameter nonwoven fabric becomes an extremely small pore diameter layer as compared with the nonwoven fabric layer A and the nonwoven fabric layer B, and the nonwoven fabric layer C contains the fine fiber diameter nonwoven fabric. However, the filter life of the cylindrical filter may be reduced due to the blockage occurring earlier than the other nonwoven fabric layers.

次に不織布層Cに含まれる太繊維径不織布について説明する。太繊維径不織布は平均繊維径が2μmよりも大きい不織布であり、細繊維径不織布と重ね合わせて積層した状態で巻き回されることで不織布層Cを形成している。太繊維径不織布は、細繊維径不織布と重ねて巻き回すことで細繊維径不織布と細繊維径不織布の間に位置するにスペーサー層となり、細繊維径不織布同士の貼り付きを防ぐ。また、細繊維径不織布と太繊維径不織布が交互に重ね合わされるため、ろ過の対象物も、これらの不織布を交互に通過するようになる。これにより、不織布層A、不織布層Bで捕集しきれなかった、サイズの比較的大きい固形物は太繊維径不織布が捕集し、不織布層A、不織布層B、及び太繊維径不織布では捕集できない、サイズの比較的小さい固形物は細繊維径不織布が捕集するようなる。加えて、太繊維径不織布と細繊維径不織布が重ね合わせた状態で巻き回されているため、上記の固形物のサイズに適したろ過が、重ね合わせて巻き回した回数だけ繰り返し行われるので、筒状フィルターのろ過精度、及びろ過寿命が向上する。   Next, the thick fiber diameter nonwoven fabric contained in the nonwoven fabric layer C will be described. The thick fiber diameter non-woven fabric is a non-woven fabric having an average fiber diameter larger than 2 μm, and the non-woven fabric layer C is formed by being wound in a state of being laminated and laminated with the thin fiber diameter non-woven fabric. The thick fiber diameter non-woven fabric is a spacer layer located between the fine fiber diameter non-woven fabric and the fine fiber diameter non-woven fabric by being wound around the fine fiber diameter non-woven fabric, and prevents the thin fiber diameter non-woven fabric from sticking to each other. Moreover, since the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric are alternately overlapped, the filtration object also passes through these nonwoven fabrics alternately. As a result, solid fibers having a relatively large size, which could not be collected by the nonwoven fabric layer A and the nonwoven fabric layer B, were collected by the thick fiber diameter nonwoven fabric, and were captured by the nonwoven fabric layer A, the nonwoven fabric layer B, and the thick fiber diameter nonwoven fabric. Solid fibers having a relatively small size that cannot be collected are collected by the non-woven fabric having a small fiber diameter. In addition, since the thick fiber diameter nonwoven fabric and the thin fiber diameter nonwoven fabric are wound in a state of being overlapped, the filtration suitable for the size of the solid matter is repeatedly performed as many times as overlapped and wound. The filtration accuracy and filtration life of the cylindrical filter are improved.

太繊維径不織布の平均繊維径は、2μmよりも大きければ特に限定されない。しかし、太繊維径不織布の平均繊維径は、2μmより大きく、2.75μm以下であることが好ましく、2.1μm以上、2.7μm以下であるとより好ましく、2.2μm以上、2.6μm以下であるとさらに好ましい。太繊維径不織布の平均繊維径がこの範囲を満たすことで、ろ過寿命が高い筒状フィルターが得られるようになる。太繊維径不織布の平均繊維径が2μm以下であると太繊維径不織布が細繊維径不織布と大差のない不織布となり不織布層Cが他の不織布層よりも早く閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。   The average fiber diameter of the thick fiber diameter nonwoven fabric is not particularly limited as long as it is larger than 2 μm. However, the average fiber diameter of the thick fiber diameter nonwoven fabric is preferably larger than 2 μm and not larger than 2.75 μm, more preferably not smaller than 2.1 μm and not larger than 2.7 μm, and is not smaller than 2.2 μm and not larger than 2.6 μm. Is more preferable. When the average fiber diameter of the thick fiber diameter nonwoven fabric satisfies this range, a cylindrical filter having a high filtration life can be obtained. When the average fiber diameter of the thick fiber diameter nonwoven fabric is 2 μm or less, the thick fiber diameter nonwoven fabric becomes a nonwoven fabric that is not much different from the thin fiber diameter nonwoven fabric, and the nonwoven fabric layer C is blocked earlier than other nonwoven fabric layers, and the filtration life of the cylindrical filter is increased. May decrease.

太繊維径不織布の平均孔径は、細繊維径不織布の平均孔径の1.25倍以上、2.7倍以下であると好ましい。より好ましくは、細繊維径不織布の平均孔径の1.4倍以上、2.5倍以下であり、1.6倍以上、2.4倍以下であることが特に好ましく、1.8倍以上、2.3倍以下であることが最も好ましい。本発明の筒状フィルターにおいて、太繊維径不織布の平均孔径は、細繊維径不織布の平均孔径に対し、一定の範囲を満たす倍率であることが好ましい。太繊維径不織布の平均孔径と、細繊維径不織布の平均孔径の比が一定の範囲を満たすことで細繊維径不織布と太繊維径不織布の平均孔径の勾配が適度なものとなり、細繊維径不織布と太繊維径不織布を重ね合わせて巻き回した部分において、固形物のサイズに応じたろ過が行われ、筒状フィルターのろ過寿命の向上に寄与すると考えられる。太繊維径不織布の平均孔径が細繊維径不織布の平均孔径の2.7倍より大きいと、太繊維径不織布の平均孔径が大きすぎるため、ろ過対象物に含まれる固形物の大部分が太繊維径不織布を通過し、細繊維径不織布で捕集されるようになり、筒状フィルターのろ過寿命が低下するおそれがある。太繊維径不織布の平均孔径が細繊維径不織布の平均孔径の1.25倍より小さいと、太繊維径不織布の平均孔径が小さすぎるため、太繊維径不織布が細繊維径不織布と大差のない不織布となる。これにより、不織布層Cが他の不織布層よりも早く閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。   The average pore diameter of the thick fiber diameter nonwoven fabric is preferably 1.25 times or more and 2.7 times or less of the average pore diameter of the fine fiber diameter nonwoven fabric. More preferably, the average pore diameter of the fine fiber diameter nonwoven fabric is 1.4 times or more and 2.5 times or less, particularly preferably 1.6 times or more and 2.4 times or less, 1.8 times or more, Most preferably, it is 2.3 times or less. In the cylindrical filter of the present invention, the average pore diameter of the thick fiber diameter nonwoven fabric is preferably a magnification satisfying a certain range with respect to the average pore diameter of the thin fiber diameter nonwoven fabric. The ratio of the average pore diameter of the thick fiber diameter nonwoven fabric and the average pore diameter of the fine fiber diameter nonwoven fabric satisfies a certain range, so that the gradient of the average pore diameter of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric becomes appropriate, and the fine fiber diameter nonwoven fabric. It is considered that the filtration according to the size of the solid material is performed in a portion where the thick fiber diameter nonwoven fabric is overlapped and wound, which contributes to the improvement of the filtration life of the cylindrical filter. If the average pore diameter of the thick fiber diameter nonwoven fabric is larger than 2.7 times the average pore diameter of the thin fiber diameter nonwoven fabric, the average pore diameter of the thick fiber diameter nonwoven fabric is too large. Passing through the non-woven fabric and being collected by the non-woven fabric with a fine fiber diameter, there is a risk that the filtration life of the cylindrical filter may be reduced. If the average pore diameter of the thick fiber diameter nonwoven fabric is less than 1.25 times the average pore diameter of the thin fiber diameter nonwoven fabric, the average pore diameter of the thick fiber diameter nonwoven fabric is too small. It becomes. Thereby, there exists a possibility that the nonwoven fabric layer C may block | close earlier than another nonwoven fabric layer, and the filtration life of a cylindrical filter may fall.

細繊維径不織布として、平均孔径の異なる2種類以上の不織布を使用する場合、太繊維径不織布の平均孔径の範囲は、当該太繊維径不織布よりも流出側に位置する細繊維径不織布であって、最も近い細繊維径不織布の平均孔径の値に基づいて決定される。例えば、太繊維径不織布と細繊維径不織布が重ね合わせられた状態で交互に巻き回されている場合、当該太繊維径不織布の平均孔径の範囲は、隣接し、接触している細繊維径不織布(太繊維径不織布と重ね合わせた状態で巻き回され、太繊維径不織布に接触している細繊維径不織布)のうち、当該太繊維径不織布よりも流出側に位置している細繊維径不織布の平均孔径の値に基づいて決定される。   When using two or more types of nonwoven fabrics having different average pore diameters as the fine fiber diameter nonwoven fabric, the average pore diameter range of the thick fiber diameter nonwoven fabric is a fine fiber diameter nonwoven fabric positioned on the outflow side of the thick fiber diameter nonwoven fabric. It is determined based on the average pore diameter value of the closest fine fiber diameter nonwoven fabric. For example, when the thick fiber diameter nonwoven fabric and the thin fiber diameter nonwoven fabric are alternately wound in an overlapped state, the average pore diameter range of the thick fiber diameter nonwoven fabric is adjacent and in contact with the fine fiber diameter nonwoven fabric. Among the fine fiber diameter nonwoven fabrics wound in a state of being overlapped with the thick fiber diameter nonwoven fabric and in contact with the thick fiber diameter nonwoven fabric, the fine fiber diameter nonwoven fabric located on the outflow side of the thick fiber diameter nonwoven fabric It is determined based on the value of the average pore diameter.

例えば、細繊維径不織布として、平均孔径が5μm、7μmの細繊維径不織布を使用して不織布層Cを構成する場合、これらの細繊維径不織布と重ね合わせた状態で巻き回される太繊維径不織布の平均孔径の範囲は、平均孔径が5μmの細繊維径不織布と重ね合わされる太繊維径不織布は、その範囲が6.24μm以上、13.5μm以下であり、平均孔径が7μmの細繊維径不織布と重ね合わされる太繊維径不織布は、その範囲が8.75μm以上、18.9μm以下である。なお、不織布層Cに含まれる細繊維径不織布の少なくとも一部と重ね合わせられて巻き回される太繊維径不織布は、平均繊維径が2μmより大きい不織布であって、上記の方法で求められる平均孔径の範囲を満たす不織布を1種類用いて構成してもよいし、2種類以上用いて構成してもよい。即ち、細繊維径不織布として平均孔径が5μmの不織布を用い、太繊維径不織布として、平均孔径が8μmの不織布と10μmの不織布を用い、重ね合わせた状態で巻き回して不織布層Cを構成してもよい。   For example, when the non-woven fabric layer C is constituted by using a fine fiber diameter nonwoven fabric having an average pore diameter of 5 μm and 7 μm as the fine fiber diameter nonwoven fabric, the diameter of the thick fiber wound in a state of being overlapped with these fine fiber diameter nonwoven fabrics The range of the average pore diameter of the nonwoven fabric is such that the thick fiber diameter nonwoven fabric overlapped with the fine fiber diameter nonwoven fabric having an average pore diameter of 5 μm has a range of 6.24 μm or more and 13.5 μm or less, and a fine fiber diameter of 7 μm in average pore diameter. The thick fiber diameter nonwoven fabric overlapped with the nonwoven fabric has a range of 8.75 μm to 18.9 μm. In addition, the thick fiber diameter non-woven fabric which is overlapped and wound with at least a part of the fine fiber diameter non-woven fabric included in the non-woven fabric layer C is a non-woven fabric having an average fiber diameter of more than 2 μm, and the average obtained by the above method One type of non-woven fabric satisfying the pore diameter range may be used, or two or more types may be used. That is, a nonwoven fabric layer C is formed by using a nonwoven fabric having an average pore diameter of 5 μm as the fine fiber diameter nonwoven fabric and using a nonwoven fabric having an average pore diameter of 8 μm and a nonwoven fabric having a mean pore diameter of 10 μm as the thick fiber diameter nonwoven fabric and winding them in an overlapped state. Also good.

太繊維径不織布の目付は、平均繊維径が上記範囲を満たすものになるような目付であればよく、特に限定されないが、5g/m2以上、120g/m2以下であることが好ましい。より好ましくは8g/m2以上、80g/m2以下であり、さらに好ましくは10g/m2以上、50g/m2以下であり、12g/m2以上、40g/m2以下であると特に好ましい。太繊維径不織布の目付がこの範囲を満たすことで、平均孔径が上記範囲を満たしやすくなる上、筒状フィルターの生産性も向上すると考えられる。太繊維径不織布の目付が5g/m2よりも小さいと、太繊維径不織布が薄い不織布となり、孔径分布のバラつきが大きくなりやすく、太繊維径不織布の最大孔径が極端に大きくなることで筒状フィルターのろ過精度が低下するおそれがある。また、目付が小さくなりすぎることで、細繊維径不織布の貼り付きが抑えられなくなり、細繊維径不織布同士が密着したような状態となり、ろ過寿命が低下するおそれがある。太繊維径不織布の目付が120g/m2よりも大きくなると、目付に比例して、太繊維径不織布の厚さが大きくなり、筒状フィルターの生産性が低下したり、得られる筒状フィルターの直径が製品規格から外れたりするおそれがあるだけでなく、ろ過寿命が低下するおそれもある。 The basis weight of the thick fiber diameter nonwoven fabric is not particularly limited as long as the average fiber diameter satisfies the above range, and is preferably 5 g / m 2 or more and 120 g / m 2 or less. More preferably 8 g / m 2 or more and 80 g / m 2 or less, more preferably 10 g / m 2 or more and 50 g / m 2 or less, 12 g / m 2 or more, and particularly preferably 40 g / m 2 or less . It is considered that when the basis weight of the thick fiber diameter nonwoven fabric satisfies this range, the average pore diameter easily satisfies the above range, and the productivity of the cylindrical filter is improved. If the basis weight of the thick fiber diameter non-woven fabric is less than 5 g / m 2 , the thick fiber diameter non-woven fabric becomes a thin non-woven fabric, the pore size distribution tends to vary widely, and the maximum pore size of the thick fiber diameter non-woven fabric becomes extremely large, resulting in a tubular shape. The filtration accuracy of the filter may be reduced. Moreover, when a fabric weight becomes too small, sticking of a fine fiber diameter nonwoven fabric will not be suppressed, it will be in the state where the fine fiber diameter nonwoven fabric contact | adhered, and there exists a possibility that a filtration life may fall. When the basis weight of the thick fiber diameter nonwoven fabric is larger than 120 g / m 2 , the thickness of the thick fiber diameter nonwoven fabric increases in proportion to the basis weight, and the productivity of the tubular filter decreases. Not only can the diameter deviate from product specifications, but also the filter life may be reduced.

太繊維径不織布の厚さは、特に限定されないが、0.01mm以上、0.5mm以下であることが好ましい。より好ましくは0.03mm以上、0.3mm以下であり、さらに好ましくは0.05mm、0.2mm以下である。太繊維径不織布は、細繊維径不織布と重ね合わせた状態で巻き回すため、平均繊維径の条件を満たしながら、比較的薄い不織布を選ぶことで、細繊維径不織布と重ね合わせても厚さが抑えられる。厚さが抑えられるため、細繊維径不織布と太繊維径不織布を重ね合わせて巻き回しても筒状フィルターの直径が大きくなりにくく、筒状フィルターの外径が抑えられるため好ましい。太繊維径不織布の厚さが0.01mmよりも小さくなると、不織布の地合にムラが発生しやすくなり、平均孔径の要件が外れるおそれがあるだけでなく、太繊維径不織布が細繊維径不織布同士の貼り付きを抑える働きが弱くなり、通液圧損が増加したり、ろ過寿命が低下したりするおそれがある。太繊維径不織布の厚さが0.5mmを超えると、巻き長さの増加に伴い不織布層Cの厚さが急激に増加し、得られる筒状フィルターの直径が製品規格から外れたりするおそれがある。   The thickness of the thick fiber diameter nonwoven fabric is not particularly limited, but is preferably 0.01 mm or more and 0.5 mm or less. More preferably, they are 0.03 mm or more and 0.3 mm or less, More preferably, they are 0.05 mm or less and 0.2 mm or less. The thick fiber diameter non-woven fabric is wound in a state of being overlapped with the thin fiber diameter non-woven fabric. It can be suppressed. Since the thickness can be suppressed, the diameter of the cylindrical filter is not easily increased even when the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric are overlapped and wound, and the outer diameter of the cylindrical filter is suppressed, which is preferable. If the thickness of the thick fiber diameter nonwoven fabric is smaller than 0.01 mm, unevenness of the nonwoven fabric is likely to occur, and the requirement for the average pore diameter may be removed. There is a possibility that the function of suppressing the sticking between each other is weakened, the loss of liquid passing pressure is increased, and the filtration life is shortened. If the thickness of the thick fiber diameter non-woven fabric exceeds 0.5 mm, the thickness of the non-woven fabric layer C increases rapidly as the winding length increases, and the diameter of the resulting cylindrical filter may deviate from the product standard. is there.

太繊維径不織布の最大孔径は、15μm以上、25μm以下であることが好ましい。より好ましくは16μm以上、23μm以下であり、さらに好ましくは17μm以上、21μm以下である。太繊維径不織布の最大孔径が25μmよりも大きいと、不織布層Cに流れ込んだ固形物の大部分が細繊維径不織布に流れ込むため、細繊維径不織布の閉塞、即ち不織布層Cの閉塞が急速に進み、筒状フィルターのろ過寿命が低下するおそれがある。太繊維径不織布の最大孔径が15μmよりも小さいと太繊維径不織布の最大孔径が小さすぎるため、太繊維径不織布が細繊維径不織布と大差のない不織布となる。これにより、不織布層Cが他の不織布層よりも早く閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。   The maximum pore diameter of the thick fiber diameter nonwoven fabric is preferably 15 μm or more and 25 μm or less. More preferably, they are 16 micrometers or more and 23 micrometers or less, More preferably, they are 17 micrometers or more and 21 micrometers or less. If the maximum pore diameter of the thick fiber diameter nonwoven fabric is larger than 25 μm, most of the solids flowing into the nonwoven fabric layer C will flow into the fine fiber diameter nonwoven fabric. This may lead to a decrease in the filtration life of the cylindrical filter. If the maximum pore diameter of the thick fiber diameter nonwoven fabric is smaller than 15 μm, the maximum pore diameter of the thick fiber diameter nonwoven fabric is too small, so that the thick fiber diameter nonwoven fabric is a nonwoven fabric that is not significantly different from the fine fiber diameter nonwoven fabric. Thereby, there exists a possibility that the nonwoven fabric layer C may block | close earlier than another nonwoven fabric layer, and the filtration life of a cylindrical filter may fall.

太繊維径不織布の最多孔径は9.8μm以上、16.5μm以下であることが好ましい。より好ましくは10μm以上、15μm以下であり、さらに好ましくは10.5μm以上、14μm以下である。太繊維径不織布の最多孔径が16.5μmよりも大きいと、不織布層Cに流れ込んだ固形物の大部分が細繊維径不織布に流れ込むため、細繊維径不織布の閉塞、即ち不織布層Cの閉塞が急速に進み、筒状フィルターのろ過寿命が低下するおそれがある。太繊維径不織布の最多孔径が9.8μmよりも小さいと太繊維径不織布の最多孔径が小さすぎるため、太繊維径不織布が細繊維径不織布と大差のない不織布となる。これにより、不織布層Cが他の不織布層よりも早く閉塞し、筒状フィルターのろ過寿命が低下するおそれがある。   The most porous diameter of the thick fiber diameter nonwoven fabric is preferably 9.8 μm or more and 16.5 μm or less. More preferably, they are 10 micrometers or more and 15 micrometers or less, More preferably, they are 10.5 micrometers or more and 14 micrometers or less. When the most porous diameter of the thick fiber diameter nonwoven fabric is larger than 16.5 μm, most of the solids flowing into the nonwoven fabric layer C flow into the thin fiber diameter nonwoven fabric. Proceeding rapidly, the filtration life of the cylindrical filter may be reduced. When the most porous diameter of the thick fiber diameter nonwoven fabric is smaller than 9.8 μm, the most porous diameter of the thick fiber diameter nonwoven fabric is too small, so that the thick fiber diameter nonwoven fabric is a nonwoven fabric that is not significantly different from the fine fiber diameter nonwoven fabric. Thereby, there exists a possibility that the nonwoven fabric layer C may block | close earlier than another nonwoven fabric layer, and the filtration life of a cylindrical filter may fall.

太繊維径不織布は、不織布層Cに含まれる細繊維径不織布の少なくとも一部と重ね合わせられ積層した状態で巻き回され、不織布層Cを構成する。細繊維径不織布と太繊維径不織布を重ね合わせて巻き回す部分は、例えば、細繊維径不織布と太繊維径不織布を重ね合わせて2m巻き回し、1mだけ細繊維径不織布を単独で巻き回した後、再度、重ね合わせた状態で2m巻き回すというように部分的に設けてもよいが、筒状フィルターの生産性が低下するため、細繊維径不織布と太繊維径不織布が重ね合わされて巻き回されている部分は連続して設けられていることが好ましい。細繊維径不織布に対し、少なくとも一部において太繊維径不織布が重ね合わされていればよいが、細繊維径不織布が巻き回されている長さに対して50%以上の部分において、太繊維径不織布と細繊維径不織布が重ね合わされた状態で巻き回されていることが好ましい。太繊維径不織布と細繊維径不織布が重ね合わされた状態で巻き回されている部分が、細繊維径不織布の巻き長の50%以上であることで、細繊維径不織布同士の貼り付きが十分に抑えられ、通液時の圧力損失が低下し、ろ過寿命が向上すると考えられる。太繊維径不織布と細繊維径不織布が重ね合わされた状態で巻き回されている部分は、細繊維径不織布の巻き長に対し、75%以上であることがより好ましく、80%以上であることが特に好ましく、90%以上であることが最も好ましい。細繊維径不織布と太繊維径不織布が重ね合わされて巻き回されている部分の割合は特に上限がなく、細繊維径不織布がその巻き長全ての部分において、太繊維径不織布と重ね合わされて巻き回され、不織布層Cを形成していてもよい。   The thick fiber diameter nonwoven fabric is wound in a state where it is overlapped and laminated with at least a part of the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C to constitute the nonwoven fabric layer C. For example, the portion where the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric are overlapped and wound is, for example, after the thin fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric are overlapped and wound 2 m, and the fine fiber diameter nonwoven fabric is wound alone by 1 m. However, it may be partially provided such that it is wound 2 m in the overlapped state, but the productivity of the cylindrical filter is lowered, so the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric are overlapped and wound. It is preferable that the part which is provided is provided continuously. The thick fiber diameter nonwoven fabric may be overlapped at least partially with respect to the fine fiber diameter nonwoven fabric, but the thick fiber diameter nonwoven fabric is at least 50% of the length of the wound thin fiber diameter nonwoven fabric. It is preferable that the fine fiber diameter non-woven fabric is wound in a superposed state. The portion wound in a state where the thick fiber diameter nonwoven fabric and the thin fiber diameter nonwoven fabric are overlapped is 50% or more of the winding length of the thin fiber diameter nonwoven fabric, so that the thin fiber diameter nonwoven fabrics are sufficiently adhered to each other. It is considered that the pressure loss at the time of liquid passing is reduced and the filtration life is improved. The portion wound in a state in which the thick fiber diameter nonwoven fabric and the thin fiber diameter nonwoven fabric are overlapped is more preferably 75% or more, and more preferably 80% or more with respect to the winding length of the fine fiber diameter nonwoven fabric. Particularly preferred is 90% or more. There is no particular upper limit on the ratio of the portion in which the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric are overlapped and wound, and the thin fiber diameter nonwoven fabric is overlapped with the thick fiber diameter nonwoven fabric and wound in all portions of the winding length. The nonwoven fabric layer C may be formed.

不織布層Cにおいて、細繊維径不織布と太繊維径不織布を重ね合わせて巻き回している不織布層は、不織布層Cのどの部分に形成されてもよく、最も流入側に近い部分(即ち、不織布層Bに接しているか、不織布層Bに最も近い部分)にのみ形成されていてもよいし、不織布層Cの中程に形成されていてもよいし、最も流出側に近い部分に形成されていてもよい。本発明の筒状フィルターを構成する不織布層Cにおいて、細繊維径不織布と太繊維径不織布を重ね合わせて巻き回している不織布層が、少なくとも最も流入側に近い部分、即ち不織布層Bに最も近いか不織布層Bに接している部分に形成されていることが好ましい。最も流入側に近い部分には、細かい固形物が多く含まれる状態でろ過の対象物が流れ込むため、この部分が細繊維径不織布のみで構成された不織布層であると、この部分が他の不織布層と比較して極端に早く閉塞してしまい筒状フィルターのろ過寿命が低下するおそれがある。   In the nonwoven fabric layer C, the nonwoven fabric layer in which the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric are overlapped and wound may be formed in any portion of the nonwoven fabric layer C, and the portion closest to the inflow side (that is, the nonwoven fabric layer) B may be formed only on the portion closest to the nonwoven fabric layer B), may be formed in the middle of the nonwoven fabric layer C, or may be formed on the portion closest to the outflow side. Also good. In the nonwoven fabric layer C constituting the tubular filter of the present invention, the nonwoven fabric layer in which the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric are overlapped and wound is at least the portion closest to the inflow side, that is, the closest to the nonwoven fabric layer B It is preferably formed in a portion in contact with the nonwoven fabric layer B. Since the object to be filtered flows into the portion closest to the inflow side in a state containing a large amount of fine solids, if this portion is a nonwoven fabric layer composed only of nonwoven fabrics of fine fiber diameter, this portion is another nonwoven fabric. There is a possibility that the filtration life of the cylindrical filter may be shortened due to clogging extremely early compared to the layer.

細繊維径不織布として異なる不織布を複数種類巻き回している場合、細繊維径不織布の巻き長は、それぞれの細繊維径不織布の巻き長の総和とする。例えば、平均孔径が5μmの不織布を2m、平均孔径が7μmの不織布を3m用いて細繊維径不織布とする場合、細繊維径不織布の巻き長は5mである。従って、太繊維径不織布と重ね合わされた状態で巻き回されている部分が2.5m以上であると好ましく、3.75m以上であるとより好ましく、4m以上であると特に好ましく、4.5m以上であると最も好ましい。   When multiple types of different nonwoven fabrics are wound as the fine fiber diameter nonwoven fabric, the winding length of the fine fiber diameter nonwoven fabric is the sum of the winding lengths of the respective fine fiber diameter nonwoven fabrics. For example, when a nonwoven fabric having an average pore diameter of 5 μm is 2 m and a nonwoven fabric having an average pore diameter of 7 μm is used as a fine fiber diameter nonwoven fabric, the winding length of the fine fiber diameter nonwoven fabric is 5 m. Accordingly, the portion wound in a state of being overlapped with the thick fiber diameter nonwoven fabric is preferably 2.5 m or more, more preferably 3.75 m or more, particularly preferably 4 m or more, 4.5 m or more. Is most preferable.

不織布層A、不織布層B及び細繊維径不織布について、それぞれが上述した好ましい平均繊維径、目付、最大孔径、最多孔径を満たしていることが好ましいが、筒状フィルターの高いろ過精度と長いろ過寿命を両立するという観点から、平均繊維径は不織布層A、不織布層B、細繊維径不織布の順で小さくなっていることがより好ましい。不織布層A、不織布層B及び細繊維径不織布において、それぞれが好ましい平均繊維径の範囲を満たし、かつ平均繊維径が不織布層A、不織布層B、細繊維径不織布の順で小さくなっていることで、各不織布層が、その層に適したサイズの固形物を確実に捕集し、適したサイズよりも大きいサイズの固形物は通過させ、高いろ過精度と長いろ過寿命が両立される。不織布層A、不織布層B及び細繊維径不織布から選ばれる少なくとも1つの不織布層が、平均繊維径が異なる2種類以上の不織布を含む場合、その不織布層自体も流入側から流出側にむけて順に平均繊維径が小さくなっていることが好ましい。各不織布層においても平均繊維径が異なる不織布を流入側から流出側にむけて順に平均繊維径が小さくなるように巻き回することで、高いろ過精度と長いろ過寿命が両立しやすくなる。   About the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric, each preferably satisfies the above-mentioned preferable average fiber diameter, basis weight, maximum pore diameter, and maximum pore diameter, but the high filtration accuracy and long filtration life of the cylindrical filter From the viewpoint of achieving both, the average fiber diameter is more preferably smaller in the order of the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric. In the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric, each satisfies a preferable average fiber diameter range, and the average fiber diameter decreases in the order of the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric. Thus, each nonwoven fabric layer reliably collects solids having a size suitable for the layer, and allows solids having a size larger than the suitable size to pass therethrough, so that both high filtration accuracy and a long filtration life are achieved. When at least one nonwoven fabric layer selected from the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric includes two or more types of nonwoven fabrics having different average fiber diameters, the nonwoven fabric layer itself is also in order from the inflow side to the outflow side. It is preferable that the average fiber diameter is small. Even in each nonwoven fabric layer, by winding a nonwoven fabric having a different average fiber diameter from the inflow side to the outflow side so that the average fiber diameter becomes smaller in order, it becomes easy to achieve both high filtration accuracy and a long filtration life.

不織布層A、不織布層B、細繊維径不織布について、それぞれが上述した好ましい平均繊維径、目付、最大孔径、最多孔径を満たしていることが好ましいが、筒状フィルターの高いろ過精度と長いろ過寿命を両立するという観点から、不織布の最大孔径は、不織布層A、不織布層B、細繊維径不織布の順で小さくなっていることがより好ましい。不織布層A、不織布層B及び細繊維径不織布において、それぞれが好ましい最大孔径の範囲を満たし、かつ最大孔径が不織布層A、不織布層B、細繊維径不織布の順で小さくなっていることで、各不織布層が、その層に適したサイズの固形物を確実に捕集し、適したサイズよりも小さいサイズの固体物は通過させ、高いろ過精度と長いろ過寿命が両立される。不織布層A、不織布層B及び細繊維径不織布から選ばれる少なくとも1つの不織布層が、最大孔径の異なる2種類以上の不織布を含む場合、その不織布層自体も流入側から流出側にむけて順に最大孔径が小さくなっていることが好ましい。各不織布層においても最大孔径が異なる不織布を流入側から流出側にむけて順に最大孔径が小さくなるように巻き回することで、高いろ過精度と長いろ過寿命が両立しやすくなる。   About the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric, it is preferable that each satisfies the above-mentioned preferable average fiber diameter, basis weight, maximum pore diameter, and maximum pore diameter, but the high filtration accuracy and long filtration life of the cylindrical filter From the viewpoint of achieving both, it is more preferable that the maximum pore diameter of the nonwoven fabric is smaller in the order of the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric. In the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric, each satisfies the preferable maximum pore diameter range, and the maximum pore diameter is reduced in the order of the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric, Each non-woven fabric layer reliably collects solids of a size suitable for the layer, and allows solids of a size smaller than the suitable size to pass through, thereby achieving both high filtration accuracy and a long filtration life. When at least one nonwoven fabric layer selected from the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric includes two or more types of nonwoven fabrics having different maximum pore diameters, the nonwoven fabric layer itself is also maximum in order from the inflow side to the outflow side. It is preferable that the pore diameter is small. In each non-woven fabric layer, by winding non-woven fabrics having different maximum pore sizes from the inflow side to the outflow side in order so that the maximum pore size becomes smaller, it is easy to achieve both high filtration accuracy and a long filtration life.

不織布層A、不織布層B及び細繊維径不織布について、それぞれが上述した好ましい平均繊維径、目付、最大孔径、最多孔径を満たしていることが好ましいが、筒状フィルターの高いろ過精度と長いろ過寿命を両立するという観点から、不織布の最多孔径は、不織布層A、不織布層B、細繊維径不織布の順で小さくなっていることがより好ましい。不織布層A、不織布層B及び細繊維径不織布において、それぞれが好ましい最多孔径の範囲を満たし、かつ最多孔径が不織布層A、不織布層B、細繊維径不織布の順で小さくなっていることで、各不織布層が、その層に適したサイズの固形物を確実に捕集し、適したサイズよりも小さいサイズの固体物は通過させ、高いろ過精度と長いろ過寿命が両立される。不織布層A、不織布層B及び細繊維径不織布から選ばれる少なくとも1つの不織布層が、最多孔径の異なる2種類以上の不織布を含む場合、その不織布層自体も流入側から流出側にむけて順に最多孔径が小さくなっていることが好ましい。各不織布層においても最多孔径が異なる不織布を流入側から流出側にむけて順に最多孔径が小さくなるように巻き回することで、高いろ過精度と長いろ過寿命が両立しやすくなるためである。   About the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric, each preferably satisfies the above-mentioned preferable average fiber diameter, basis weight, maximum pore diameter, and maximum pore diameter, but the high filtration accuracy and long filtration life of the cylindrical filter From the viewpoint of achieving both, the most porous diameter of the nonwoven fabric is more preferably smaller in the order of the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric. In the nonwoven fabric layer A, the nonwoven fabric layer B and the fine fiber diameter nonwoven fabric, each satisfies the preferred range of the most porous diameter, and the most porous diameter decreases in the order of the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric, Each non-woven fabric layer reliably collects solids of a size suitable for the layer, and allows solids of a size smaller than the suitable size to pass through, thereby achieving both high filtration accuracy and a long filtration life. When at least one nonwoven fabric layer selected from the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric includes two or more types of nonwoven fabrics having different maximum pore diameters, the nonwoven fabric layer itself is also the largest in order from the inflow side to the outflow side. It is preferable that the pore diameter is small. This is because, in each nonwoven fabric layer, by winding the nonwoven fabrics having different maximum pore diameters in order from the inflow side to the outflow side so that the maximum pore diameter becomes smaller in order, it is easy to achieve both high filtration accuracy and a long filtration life.

本発明の筒状フィルターにおいて、不織布層Cの含有量は、不織布層A、不織布層B及び不織布層Cの合計質量に対して、9質量%以上、54質量%以下であることが好ましい。不織布層Cの含有量が9質量%よりも少ないと、不織布層Cの割合が小さくなることから、不織布層Cが不織布層A及び/又は不織布層Bよりも早い段階で閉塞してしまい、筒状フィルターのろ過寿命が低下するおそれがある。また、不織布層Cにおいて、不織布層Cの巻き回数(不織布層Cを構成する不織布を重ね合わせる積層回数)が減少することで、筒状フィルターのろ過精度が低下するおそれもある。不織布層Cの含有量が54質量%を超えると、不織布層Cの割合が多くなりすぎることで、不織布層A及び/又は不織布層Bの割合が少なくなり、筒状フィルターのろ過寿命が低下するおそれがある。不織布層A、不織布層B及び不織布層Cの合計質量に対する不織布層Cの割合は11質量%以上、52質量%以下であると好ましく、13質量%以上、50質量%以下であるとより好ましい。不織布層Cが平均孔径の異なる2種類以上の不織布で構成されている場合、不織布層Cの含有量は、これらの平均孔径の異なる不織布の含有量の合計である。例えば、不織布層Cが、平均孔径が6.5μmの不織布(細繊維径不織布)と平均孔径が12.5μmの不織布(太繊維径不織布)で構成され、平均孔径が6.5μmの不織布及び平均孔径が12.5μmの不織布の含有量が、不織布層A、不織布層B、不織布層Cの合計質量に対して、それぞれ12質量%及び30質量%である場合、不織布層Cの含有量は不織布層A、不織布層B、不織布層Cの合計質量に対して42質量%である。   In the cylindrical filter of the present invention, the content of the nonwoven fabric layer C is preferably 9% by mass or more and 54% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. If the content of the non-woven fabric layer C is less than 9% by mass, the proportion of the non-woven fabric layer C becomes small, so the non-woven fabric layer C is blocked at an earlier stage than the non-woven fabric layer A and / or the non-woven fabric layer B. The filtration life of the filter may be reduced. Further, in the nonwoven fabric layer C, the number of windings of the nonwoven fabric layer C (the number of times of stacking the nonwoven fabrics constituting the nonwoven fabric layer C) decreases, which may reduce the filtration accuracy of the cylindrical filter. If the content of the non-woven fabric layer C exceeds 54% by mass, the proportion of the non-woven fabric layer C is excessively increased, so that the proportion of the non-woven fabric layer A and / or the non-woven fabric layer B is decreased and the filtration life of the cylindrical filter is reduced. There is a fear. The ratio of the nonwoven fabric layer C to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C is preferably 11% by mass or more and 52% by mass or less, and more preferably 13% by mass or more and 50% by mass or less. When the nonwoven fabric layer C is composed of two or more types of nonwoven fabrics having different average pore diameters, the content of the nonwoven fabric layer C is the sum of the contents of these nonwoven fabrics having different average pore diameters. For example, the nonwoven fabric layer C is composed of a nonwoven fabric having an average pore diameter of 6.5 μm (fine fiber diameter nonwoven fabric) and a nonwoven fabric having an average pore diameter of 12.5 μm (thick fiber diameter nonwoven fabric). When the content of the nonwoven fabric having a pore size of 12.5 μm is 12% by mass and 30% by mass with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, the content of the nonwoven fabric layer C is the nonwoven fabric. It is 42 mass% with respect to the total mass of the layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C.

不織布層A、不織布層Bは、上述したとおり、各不織布層が1種類の不織布で構成されていてもよく、各不織布層の平均孔径の範囲を満たす不織布を2種類以上用いて構成されていてもよい。各不織布層を、上記平均孔径の範囲を満たし、平均孔径が異なる2種類以上の不織布で構成する場合、各不織布間は、平均孔径が異なる不織布同士を接着して巻き回されていてもよく、異なる不織布の端部同士を5cmから15cmほど重ねて巻き回してもよいし、末端部を合わせた状態で次の不織布を巻き回し始めることで、つなぎ目がなく、かつ平均孔径が異なる不織布を連続するように巻き回してもよい。また、不織布層A、不織布層Bも不織布層Cと同様、巻き回す不織布の間に、スペーサー層を介在させてもよい。上記スペーサー層を設けることで、不織布同士の貼り付きを防ぎ、筒状フィルターのろ過寿命が長くなる可能性や、通水圧損が低下する可能性があるためである。上記スペーサー層は隣接する不織布層の平均孔径の範囲を満たさない不織布などで構成されていればよい。   As described above, the non-woven fabric layer A and the non-woven fabric layer B may be composed of one type of non-woven fabric, and are composed of two or more types of non-woven fabric satisfying the average pore diameter range of each non-woven fabric layer. Also good. When each nonwoven fabric layer is composed of two or more types of nonwoven fabrics that satisfy the above average pore diameter range and have different average pore diameters, each nonwoven fabric may be wound by bonding nonwoven fabrics having different average pore diameters, Ends of different non-woven fabrics may be overlapped and wound by about 5 cm to 15 cm, and the next non-woven fabric with different average pore diameters is continuous by starting to roll the next non-woven fabric with the end portions combined. It may be wound like this. In addition, similarly to the nonwoven fabric layer C, the nonwoven fabric layer A and the nonwoven fabric layer B may have a spacer layer interposed between the nonwoven fabrics to be wound. By providing the spacer layer, it is possible to prevent the nonwoven fabrics from sticking together, possibly extending the filtration life of the cylindrical filter, and reducing the water pressure loss. The said spacer layer should just be comprised with the nonwoven fabric etc. which do not satisfy | fill the range of the average hole diameter of an adjacent nonwoven fabric layer.

本発明において、不織布の平均孔径、最大孔径及び最多孔径の測定方法は後述する。   In the present invention, methods for measuring the average pore size, maximum pore size and maximum pore size of the nonwoven fabric will be described later.

不織布層A、及び不織布層B、並びに不織布層Cに含まれる細繊維径不織布及び太繊維径不織布について、不織布の種類は特に限定されず、例えば長繊維(例えば、110mmよりも長い繊維長を有する繊維や、実質的に連続している繊維)不織布であってもよく、短繊維(例えば、3mm以上、110mm以下の繊維長を有する繊維)不織布であってもよい。長繊維不織布としては、例えばスパンボンド不織布、メルトブロー法により得られるメルトブローン不織布、エレクトロスピニング法(静電紡糸法、電界紡糸法)を用いて得られる不織布などを用いることができる。短繊維不織布としては、繊維長が3mm以上、20mm以下の短繊維を用いた湿式抄紙法、繊維長が3mm以上、32mm以下の短繊維を用いたエアレイ法(エアーレイド法とも称す)、繊維長が24mm以上、110mm以下の短繊維を用い、カード機で繊維ウェブを製造するカード法などにより繊維ウェブを作製し、さらにウェブを一体化させることにより得られるものを用いることができる。カード法で繊維ウェブを作製する場合、その製造方法は限定されず、パラレルウェブ、セミランダムウェブ、ランダムウェブ、クロスウェブ及びクリスクロスウェブなどの公知の製造方法で繊維ウェブを作製することができる。繊維ウェブの一体化は、接着剤による接合、繊維を軟化又は溶融させることによる熱接着(サーマルボンド)、ニードルパンチ及び高圧水流処理(スパンレース)から選択される一つ又は複数の方法により実施される。   About the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric contained in the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, the kind of nonwoven fabric is not specifically limited, For example, it has a long fiber (for example, fiber length longer than 110 mm). Fiber or substantially continuous fiber) non-woven fabric, or short fiber (for example, fiber having a fiber length of 3 mm or more and 110 mm or less) non-woven fabric. As the long fiber nonwoven fabric, for example, a spunbond nonwoven fabric, a melt blown nonwoven fabric obtained by a melt blow method, a nonwoven fabric obtained by using an electrospinning method (electrostatic spinning method, electrospinning method), or the like can be used. As short fiber nonwoven fabrics, wet paper making using short fibers with a fiber length of 3 mm or more and 20 mm or less, air-laying method (also called air raid method) using short fibers with a fiber length of 3 mm or more and 32 mm or less, fiber length Can be obtained by using a short fiber having a diameter of 24 mm or more and 110 mm or less, producing a fiber web by a card method for producing a fiber web by a card machine, and further integrating the web. When producing a fiber web by a card method, the manufacturing method is not limited, A fiber web can be produced by well-known manufacturing methods, such as a parallel web, a semi-random web, a random web, a cross web, and a Chris cross web. The fiber web integration is performed by one or more methods selected from adhesive bonding, thermal bonding by softening or melting the fibers (thermal bonding), needle punching and high-pressure water treatment (spun lace). The

不織布層A、及び不織布層B、並びに不織布層Cに含まれる細繊維径不織布及び太繊維径不織布は、油剤を使わずに製造でき、繊維くずが少なく、使用中の繊維脱落の発生が少ないことから、長繊維不織布であることが好ましい。不織布層A、不織布層B、及び太繊維径不織布はメルトブローン不織布であることがより好ましい。メルトブローン不織布は、繊維径の分布が大きい不織布とすることができる。メルトブローン不織布において、繊維径の大きい繊維によって構成された繊維間空隙では固形物(粒子)が通過しやすく、繊維径の小さい繊維によって構成された繊維間空隙では微小粒子を捕捉するので、メルトブローン不織布からなる不織布を複数周巻き回しても、目詰まりし難い。また、メルトブロー法によれば、適度な厚さを有する不織布を得やすい。   The non-woven fabric layer A, the non-woven fabric layer B, and the non-woven fabric layer C can be manufactured without using a fine fiber diameter nonwoven fabric and a large fiber diameter non-woven fabric, and there is little fiber waste, and there is little occurrence of fiber dropout during use. Therefore, it is preferably a long fiber nonwoven fabric. The nonwoven fabric layer A, the nonwoven fabric layer B, and the thick fiber nonwoven fabric are more preferably meltblown nonwoven fabrics. The meltblown nonwoven fabric can be a nonwoven fabric with a large fiber diameter distribution. In melt blown nonwoven fabrics, solids (particles) can easily pass through interfiber spaces formed by fibers having a large fiber diameter, and microparticles are captured in interfiber spaces formed by fibers having a small fiber diameter. Even if the non-woven fabric is wound around a plurality of times, it is difficult to clog. Moreover, according to the melt blow method, it is easy to obtain a nonwoven fabric having an appropriate thickness.

細繊維径不織布はメルトブローン不織布、またはエレクトロスピニング法で得られた不織布であることがより好ましい。これは細繊維径不織布が本発明の筒状フィルターにおいて、ろ過精度を決定する不織布であるため、より平均繊維径の細い不織布であることを求められるためである。細繊維径不織布として、メルトブローン不織布を用いるとより好ましい理由は上記の理由と同様である。細繊維径不織布に対し、特に高いろ過精度が求められる場合、メルトブローン不織布よりも平均繊維径が小さい不織布が得られるエレクトロスピニング法で製造された不織布を使用することが好ましい。エレクトロスピニング法は静電紡糸法、電界紡糸法とも呼ばれる不織布製造方法であり、一般的なメルトブローン不織布では平均繊維径が0.8μm未満の不織布を得ることが難しいが、エレクトロスピニング法であれば平均繊維径が0.8μm未満の不織布を容易に得ることができる。なお、エレクトロスピニング法としては、原料となる合成樹脂を溶媒に溶解させて紡糸、不織布とする溶液法と、原料となる合成樹脂を加熱、溶融して紡糸、不織布とする溶融法があるが、特に限定されず、どちらの方法で製造した不織布であっても使用することができる。   The fine fiber non-woven fabric is more preferably a melt blown non-woven fabric or a non-woven fabric obtained by electrospinning. This is because the fine fiber diameter non-woven fabric is a non-woven fabric that determines the filtration accuracy in the cylindrical filter of the present invention, and therefore is required to be a non-woven fabric with a smaller average fiber diameter. The reason why it is more preferable to use a melt blown nonwoven fabric as the fine fiber diameter nonwoven fabric is the same as the above reason. When a high filtration accuracy is required for the fine fiber diameter nonwoven fabric, it is preferable to use a nonwoven fabric produced by an electrospinning method in which a nonwoven fabric having an average fiber diameter smaller than that of a melt blown nonwoven fabric is obtained. The electrospinning method is a non-woven fabric manufacturing method also called an electrospinning method or an electrospinning method, and it is difficult to obtain a non-woven fabric having an average fiber diameter of less than 0.8 μm with a general melt-blown non-woven fabric. A nonwoven fabric having a fiber diameter of less than 0.8 μm can be easily obtained. In addition, as the electrospinning method, there are a solution method in which a synthetic resin as a raw material is dissolved in a solvent to be spun and nonwoven fabric, and a melting method in which the synthetic resin as a raw material is heated and melted to be spun into a nonwoven fabric, It is not specifically limited, Even if it is the nonwoven fabric manufactured by which method, it can be used.

不織布層A、及び不織布層B、並びに不織布層Cに含まれる細繊維径不織布及び太繊維径不織布を構成する材料は特に限定されず、例えば熱可塑性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリブチレンサクシネートなどのポリエステル系樹脂;低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレンなどのポリエチレン樹脂、アイソタクチック、アタクチック、シンジオタクチックなどのポリプロピレン樹脂、ポリメチルペンテン樹脂、ポリブテン−1樹脂、エチレン−ビニルアルコール共重合樹脂、エチレン−プロピレン共重合樹脂などのポリオレフィン系樹脂;ナイロン6、ナイロン66、ナイロン11、ナイロン12などのポリアミド系樹脂;ポリカーボネート、ポリアセタール、ポリスチレン、環状ポリオレフィン、ポリフェニレンサルファイド(ポリフェニレンスルフィド)などのエンジニアリング・プラスチックなどが挙げられる。   The material which comprises the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric contained in the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C is not specifically limited, For example, a thermoplastic resin can be used. Examples of the thermoplastic resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate; low density polyethylene, medium density polyethylene, high density polyethylene, Polyethylene resins such as linear low density polyethylene and ultra high molecular weight polyethylene, polypropylene resins such as isotactic, atactic and syndiotactic, polymethylpentene resin, polybutene-1 resin, ethylene-vinyl alcohol copolymer resin, ethylene-propylene Polyolefin resins such as copolymer resins; Polyamide resins such as nylon 6, nylon 66, nylon 11, and nylon 12; polycarbonate, polyacetal, poly Styrene, cyclic polyolefin, such as engineering plastics such as polyphenylene sulfide (polyphenylene sulfide) and the like.

上述した熱可塑性樹脂、或いは例挙していないが、公知の熱可塑性樹脂の中から選択して不織布を作製し、不織布層A、不織布層B、不織布層Cを形成し、本発明の筒状フィルターに用いることができる。不織布及び筒状フィルターの生産性、筒状フィルターを使用する際の耐薬品性(耐酸性、耐塩基性、各種有機溶剤に対する耐性)が高いという観点から、不織布層A、不織布層B及び不織布層Cは、ポリプロピレン樹脂、ポリメチルペンテン樹脂、ポリブテン−1樹脂、エチレン−ビニルアルコール共重合樹脂、エチレン−プロピレン共重合樹脂などのポリオレフィン系樹脂で構成されることが好ましく、少なくともポリプロピレン樹脂を含んでいることがさらに好ましい。ポリプロピレン樹脂はポリオレフィン系樹脂の中では比較的高融点の樹脂であることから、ある程度高い温度の液体をろ過できるほか、耐薬品性も良好であり、低コストである。なお、不織布層A、不織布層B及び不織布層Cを構成する熱可塑性樹脂は、ポリオレフィン系樹脂に限定されず、本発明の筒状フィルターに求められる性能によってポリオレフィン系樹脂以外の熱可塑性樹脂を適宜選択して使用することができる。筒状フィルターに対し、耐熱性が求められる用途であれば、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート、ポリフェニレンサルファイドで不織布層A、不織布層B及び不織布層Cを構成することが好ましく、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ナイロン6、ナイロン66、ポリカーボネート、ポリフェニレンサルファイドで構成することがより好ましい。   The above-described thermoplastic resin, or not exemplified, is selected from known thermoplastic resins to produce a nonwoven fabric, and a nonwoven fabric layer A, a nonwoven fabric layer B, and a nonwoven fabric layer C are formed, and the cylindrical shape of the present invention Can be used for filters. Non-woven fabric layer A, non-woven fabric layer B, and non-woven fabric layer from the viewpoint of high productivity of non-woven fabric and tubular filter and high chemical resistance (acid resistance, base resistance, resistance to various organic solvents) when using the tubular filter C is preferably composed of polyolefin resin such as polypropylene resin, polymethylpentene resin, polybutene-1 resin, ethylene-vinyl alcohol copolymer resin, ethylene-propylene copolymer resin, and contains at least polypropylene resin. More preferably. Since the polypropylene resin is a resin having a relatively high melting point among polyolefin resins, it can filter a liquid at a certain high temperature, has good chemical resistance, and is low in cost. In addition, the thermoplastic resin which comprises the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C is not limited to polyolefin resin, According to the performance calculated | required by the cylindrical filter of this invention, thermoplastic resins other than polyolefin resin are suitably used. You can select and use. If the heat resistance is required for the cylindrical filter, it is preferable that the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C are composed of polyester resin, polyamide resin, polycarbonate, polyphenylene sulfide, polyethylene terephthalate, More preferably, it is composed of polybutylene terephthalate, polytrimethylene terephthalate, nylon 6, nylon 66, polycarbonate, polyphenylene sulfide.

不織布層A及び不織布層B、並びに不織布層Cに含まれる細繊維径不織布及び太繊維径不織布を構成する繊維は、単一繊維であってもよく、複合繊維であってもよい。単一繊維は、分割型複合繊維の割繊により形成される繊維や、いわゆる海島型複合繊維から海成分を溶脱させ、島成分を極細繊維とした繊維も含む。複合繊維としては、同心芯鞘型、偏心芯鞘型、サイドバイサイド型、分割型などのいずれの複合繊維であってもよい。不織布層A、及び不織布層B、並びに不織布層Cに含まれる細繊維径不織布及び太繊維径不織布は、単一繊維で構成されることが好ましい。不織布層A、及び不織布層B、並びに不織布層Cに含まれる細繊維径不織布及び太繊維径不織布を構成する繊維が複合繊維、例えば、芯成分がポリプロピレン、鞘成分がポリエチレンの芯鞘型複合繊維であると、筒状フィルターを使用できる温度が、ポリエチレンの融点に依存するようになるため、ポリプロピレンの単一繊維を使用したときよりも耐用温度が低下する場合があるなど、組み合わせた樹脂によって使用できる条件が変わるだけでなく、使用状況の変化によって筒状フィルターの性能が変わりやすくなるおそれがある。これらの点から、不織布層A、及び不織布層B、並びに不織布層Cに含まれる細繊維径不織布及び太繊維径不織布はポリプロピレン樹脂からなる単一繊維であることが特に好ましい。なお、不織布層A、及び不織布層B、並びに不織布層Cに含まれる細繊維径不織布及び太繊維径不織布を構成する繊維は、ポリプロピレン樹脂からなる単一繊維に限定されず、本発明の筒状フィルターに求められる性能によってポリプロピレン樹脂以外の熱可塑性樹脂を使用した繊維を適宜選択して使用できる。   The fibers constituting the non-woven fabric layer A and the non-woven fabric layer B and the non-woven fabric layer C and the fine fiber diameter non-woven fabric and the thick fiber diameter non-woven fabric may be a single fiber or a composite fiber. The single fiber includes fibers formed by splitting split-type composite fibers, and fibers in which sea components are leached from so-called sea-island type composite fibers and the island components are ultrafine fibers. The conjugate fiber may be any conjugate fiber such as a concentric core-sheath type, an eccentric core-sheath type, a side-by-side type, or a split type. The non-woven fabric layer A, the non-woven fabric layer B, and the non-woven fabric layer C are preferably composed of a single fiber. The fibers constituting the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric contained in the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C are composite fibers, for example, a core-sheath type composite fiber in which the core component is polypropylene and the sheath component is polyethylene. Because the temperature at which the cylindrical filter can be used depends on the melting point of polyethylene, the service temperature may be lower than when a single fiber of polypropylene is used. Not only the conditions that can be changed, but also the performance of the cylindrical filter may easily change due to changes in usage conditions. From these points, it is particularly preferable that the non-woven fabric layer A, the non-woven fabric layer B, and the non-woven fabric layer C include a single fiber made of polypropylene resin. In addition, the fiber which comprises the non-woven fabric layer A, the non-woven fabric layer B, and the non-woven fabric layer C and the fine fiber diameter non-woven fabric and the large fiber diameter non-woven fabric are not limited to a single fiber made of polypropylene resin, but the cylindrical shape of the present invention. A fiber using a thermoplastic resin other than polypropylene resin can be appropriately selected and used depending on the performance required for the filter.

<他の部材>
ろ過層3は、本発明の効果を阻害しない範囲において、不織布層A、不織布層B及び不織布層Cに加えて、他の部材を含んでもよい。他の部材は、不織布層Aの外側(流入側)及び/又は不織布層Cの内側(流出側)に配置することができる。まず、他の部材が不織布層Aよりも流入側に配置される場合を説明する。他の部材が不織布層Aよりも流入側に配置される場合、他の部材は、その平均孔径が不織布層Aの平均孔径より大きいことが好ましい。このような構造とすることで、本発明の筒状フィルターのろ過寿命がより長いものとなりうる。次に、他の部材が不織布層Cよりも流出側に配置される場合を説明する。他の部材が不織布層Cよりも流出側に配置される場合、他の部材は、その平均孔径が不織布層Cの平均孔径より小さいことが好ましい。このような構造とすることで、本発明の筒状フィルターのろ過精度がより高いものとなりうる。
<Other members>
The filtration layer 3 may include other members in addition to the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C as long as the effects of the present invention are not impaired. Another member can be arrange | positioned on the outer side (inflow side) of the nonwoven fabric layer A and / or the inner side (outflow side) of the nonwoven fabric layer C. First, the case where another member is arrange | positioned rather than the nonwoven fabric layer A at the inflow side is demonstrated. When the other member is disposed on the inflow side from the nonwoven fabric layer A, the other member preferably has an average pore diameter larger than that of the nonwoven fabric layer A. By setting it as such a structure, the filtration life of the cylindrical filter of this invention can become a longer thing. Next, the case where another member is arrange | positioned rather than the nonwoven fabric layer C at the outflow side is demonstrated. When the other member is disposed on the outflow side of the nonwoven fabric layer C, the average pore diameter of the other member is preferably smaller than the average pore size of the nonwoven fabric layer C. By setting it as such a structure, the filtration accuracy of the cylindrical filter of this invention can become a higher thing.

また、上述したとおり、他の部材がろ過性能に影響を与えないものであれば、不織布層A、不織布層B及び不織布層Cの層間にスペーサー層として配置してもよく、各不織布層が、その層の平均孔径の条件を満たす2種類以上の不織布を含む場合は、その不織布の間にスペーサー層として配置されることもある。この場合、他の部材の平均孔径はろ過機能に影響を与えないような十分に大きい平均孔径であることが好ましい。上記不織布層の層間に挿入する他の部材や、上記各不織布の間に挿入する他の部材の平均孔径が十分に大きくない(例えば平均孔径が18μmの場合が挙げられる)と、他の部材と不織布層Aの平均孔径が近いことにより他の部材の閉塞が起きやすい。また、他の部材の巻き回数が1周から10周程度であると、その量が不織布層A、不織布層B及び不織布層Cと比較して少ないことから、他の部材の閉塞が起きやすい。他の部材が閉塞してしまうと、不織布層A、不織布層B、不織布層Cを十分にろ過に使用する前に他の部材の閉塞に伴い筒状フィルターのろ過寿命に達してしまうおそれがある。他の部材としては、巻き回数が少なくても閉塞しにくい十分に粗い不織布やネット、具体的には平均孔径が20μm以上、より好ましくは30μm以上、さらに好ましくは40μm以上の不織布やネットが用いられる。この場合において、他の部材の巻き回数は、10周よりも多くなると、不織布層A、不織布層B及び不織布層Cの割合が低下することから1周以上10周以下が好ましく、1周以上5周以下がより好ましい。平均孔径が異なる不織布の間にスペーサー層を設ける具体例としては、不織布層Aを平均孔径12μmの不織布と平均孔径14μmの不織布で構成する場合、平均孔径が14μmの不織布を巻き回して不織布層を形成し、そこに平均孔径が42μmの不織布を1周以上5周以下巻き回した後、平均孔径が12μmの不織布を巻き回する構成が挙げられる。不織布層A、不織布層B及び不織布層Cの層間、或いは各不織布層の平均孔径が異なる不織布の間にスペーサー層を設ける場合、スペーサー層は不織布層A、不織布層B及び不織布層Cの合計質量に対し10質量%以下であることが好ましく、より好ましくは5質量%以下である。或いは、スペーサー層を構成する材料、例えば不織布、ネットといった布帛やシートの巻き回数が1周以上10周以下であることが好ましく、より好ましくは1周以上、5周以下である。   Further, as described above, as long as other members do not affect the filtration performance, they may be arranged as a spacer layer between the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. When two or more types of nonwoven fabric satisfying the condition of the average pore diameter of the layer are included, it may be disposed as a spacer layer between the nonwoven fabrics. In this case, the average pore diameter of the other members is preferably a sufficiently large average pore diameter that does not affect the filtration function. Other members inserted between the nonwoven fabric layers and other members inserted between the nonwoven fabrics are not sufficiently large in average pore diameter (for example, the average pore diameter is 18 μm), and other members Since the average pore diameter of the nonwoven fabric layer A is close, other members are likely to be blocked. Further, when the number of windings of the other member is about 1 to 10 times, the amount thereof is less than that of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, so that the other members are likely to be blocked. If the other member is blocked, the filtration life of the cylindrical filter may be reached with the blocking of the other member before the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C are sufficiently used for filtration. . As other members, a sufficiently coarse nonwoven fabric or net that is difficult to close even when the number of windings is small, specifically, a nonwoven fabric or net having an average pore diameter of 20 μm or more, more preferably 30 μm or more, and even more preferably 40 μm or more is used. . In this case, since the ratio of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C decreases when the number of windings of other members is more than 10 times, it is preferably 1 round or more and 10 rounds or less. The circumference is more preferable. As a specific example of providing a spacer layer between nonwoven fabrics having different average pore diameters, when the nonwoven fabric layer A is composed of a nonwoven fabric having an average pore diameter of 12 μm and a nonwoven fabric having an average pore diameter of 14 μm, the nonwoven fabric layer is formed by winding a nonwoven fabric having an average pore diameter of 14 μm. An example is a structure in which a non-woven fabric having an average pore diameter of 42 μm is wound therearound, and a non-woven fabric having an average pore diameter of 12 μm is wound around the non-woven fabric having an average pore diameter of 42 μm. When a spacer layer is provided between the nonwoven fabric layer A, the nonwoven fabric layer B and the nonwoven fabric layer C, or between nonwoven fabrics having different average pore diameters, the spacer layer is the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B and the nonwoven fabric layer C. The content is preferably 10% by mass or less, more preferably 5% by mass or less. Or it is preferable that the frequency | count of winding of the materials which comprise a spacer layer, for example, fabrics and sheets, such as a nonwoven fabric and a net | network, is 1 to 10 rounds, More preferably, it is 1 to 5 rounds.

(芯材)
一般に、筒状フィルターは、ろ過対象物が通過する孔を有する管状芯材の周囲にろ過不織布が巻き回されている構成を有する。本発明において、芯材2は、その外周側から内周側、又は外周側から内周側に向かって流れる液体の通過を実質的に妨げないものであればよく、特に限定されない。例えば、熱可塑性樹脂製の孔あき筒状体、金属製の孔あき筒状体、セラミックス製の孔あき筒状体などを用いることができるほか、円筒状の繊維成形品を用いることができる。芯材2としては、耐薬品性や製造コストの面から、熱可塑性樹脂製の孔あき筒状体、円筒状の繊維成形品を用いることが好ましい。上記熱可塑性樹脂製の孔あき筒状体は、溶融した熱可塑性樹脂を押出成形すること又は射出成形することにより得られる。上記円筒状の繊維成形品としては、その製造方法は限定されず、熱接着性繊維を含む繊維ウェブを加熱しながら芯棒に巻き取ることにより得られる繊維成形体、熱接着性繊維を含む繊維ウェブを円筒状容器に充填して加熱することにより得られる繊維成形体などを用いることができる。上記繊維ウェブの目付は、好ましくは5g/m2以上、100g/m2以下、より好ましくは10g/m2以上、80g/m2、さらに好ましくは20g/m2以上、60g/m2以下である。或いは、上記円筒状の繊維成形品としては、メルトブロー法などで溶融した熱可塑性樹脂を空気中に吐出して不織布を得る製造方法において、表面が軟らかい、或いは表面が溶融状態の繊維を金属製の円柱状の芯棒に直接巻き付けて冷却することで得られる繊維成形品などを用いることもできる。芯材2のサイズや形状は、ろ過装置のサイズや形式に合わせて適宜決めればよい。芯材2が孔あき筒状体である場合、孔のサイズは、例えば一辺が1mmから10mm角の多角形形状や、直径が1mmから10mmの円形にすることができる。
(Core material)
Generally, a cylindrical filter has the structure by which the filtration nonwoven fabric is wound around the tubular core material which has the hole through which the filtration target object passes. In the present invention, the core material 2 is not particularly limited as long as it does not substantially obstruct the passage of the liquid flowing from the outer peripheral side to the inner peripheral side or from the outer peripheral side to the inner peripheral side. For example, a perforated tubular body made of thermoplastic resin, a perforated tubular body made of metal, a perforated tubular body made of ceramics, and the like, and a cylindrical fiber molded product can be used. As the core material 2, it is preferable to use a perforated cylindrical body made of thermoplastic resin or a cylindrical fiber molded product from the viewpoint of chemical resistance and manufacturing cost. The perforated cylindrical body made of the thermoplastic resin can be obtained by extrusion molding or injection molding of a molten thermoplastic resin. The manufacturing method of the cylindrical fiber molded product is not limited, and a fiber molded body obtained by winding a fiber web containing a heat-adhesive fiber around a core rod while heating, a fiber containing a heat-adhesive fiber A fiber molded body obtained by filling a web in a cylindrical container and heating can be used. The basis weight of the fiber web is preferably 5 g / m 2 or more and 100 g / m 2 or less, more preferably 10 g / m 2 or more, 80 g / m 2 , and still more preferably 20 g / m 2 or more and 60 g / m 2 or less. is there. Alternatively, as the above-mentioned cylindrical fiber molded article, in a manufacturing method for obtaining a nonwoven fabric by discharging a thermoplastic resin melted by a melt blow method or the like into the air, a fiber having a soft surface or a melted surface is made of metal. It is also possible to use a fiber molded article obtained by directly wrapping around a cylindrical core rod and cooling. The size and shape of the core material 2 may be appropriately determined according to the size and type of the filtration device. When the core material 2 is a perforated cylindrical body, the size of the hole can be, for example, a polygonal shape with a side of 1 mm to 10 mm square or a circle with a diameter of 1 mm to 10 mm.

芯材2としては、繊維成形体を用いることが好ましい。溶融した熱可塑性樹脂を押出成形したり射出成形したりすることで得られる樹脂成形品を使用した芯材2には固体物を捕集する効果がほとんどない。一方、繊維成形体を芯材2として用いる場合、ろ過時に加わる圧力によって芯材2が変形したり破壊されたりしないようにするため、繊維同士が強固に熱接着された圧縮強度の高い繊維成形体にする必要がある。繊維同士が強固に熱接着された繊維成形体は密度が大きく、繊維間の間隔が狭くなっているため、固体物をある程度捕集できる。さらに、フィルターとしてろ過対象物の拡散効果にも優れ、厚さがあることから深層ろ過機構としての効果も発揮しうる。これらの作用・効果により、芯材2が繊維成形体の筒状フィルターは、芯材2が樹脂成形品である筒状フィルターよりもろ過精度が高められたり、ろ過精度が安定したりすると考えられる。芯材2に含まれる熱接着性繊維の原料としては、溶融紡糸性を有する熱可塑性樹脂であればよく、特に限定されない。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリブチレンサクシネートなどのポリエステル系樹脂;低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレンなどのポリエチレン樹脂、アイソタクチック、アタクチック、シンジオタクチックなどのポリプロピレン樹脂、ポリメチルペンテン樹脂、ポリブテン−1樹脂、エチレン−ビニルアルコール共重合樹脂、エチレン−プロピレン共重合樹脂などのポリオレフィン系樹脂;ナイロン6、ナイロン66、ナイロン11、ナイロン12などのポリアミド系樹脂;ポリカーボネート、ポリアセタール、ポリスチレン、環状ポリオレフィン、ポリフェニレンサルファイドなどのエンジニアリング・プラスチックなどが挙げられる。また、熱接着性繊維の断面形状は特に限定はなく、円形、楕円形、三角形、多角形、多葉形状などのいずれであってもよい。繊維の構成についても単一繊維、複合繊維のいずれであってよい。また、複合繊維の場合、その繊維断面形状は特に限定はされず、芯鞘型、偏心芯鞘型、分割型、並列型(サイドバイサイド型)、海島型などのいずれであってもよい。上記熱接着性繊維としては、繊維強力、生産性及び得られる芯材の耐薬品性の観点から、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメチルペンテン樹脂、ポリブテン−1樹脂、エチレン−ビニルアルコール共重合樹脂、エチレン−プロピレン共重合樹脂などのポリオレフィン系樹脂からなるポリオレフィン系繊維を使用することが好ましい。また、繊維の構成については、熱接着性繊維の生産性と生産コストから、芯成分と鞘成分のいずれもポリオレフィン系樹脂からなるポリオレフィン系芯鞘型複合繊維を使用することが好ましい。なお、上記熱接着性繊維は、ポリオレフィン系芯鞘型複合繊維に限定されず、本発明の筒状フィルターに求められる性能によってポリオレフィン系芯鞘型複合繊維以外の複合繊維を適宜選択して使用できる。   As the core material 2, it is preferable to use a fiber molded body. The core material 2 using a resin molded product obtained by extrusion molding or injection molding of a molten thermoplastic resin has little effect of collecting a solid material. On the other hand, when a fiber molded body is used as the core material 2, the fiber molded body with high compressive strength in which the fibers are strongly heat-bonded to prevent the core material 2 from being deformed or destroyed by pressure applied during filtration. It is necessary to. Since the fiber molded body in which the fibers are firmly heat-bonded has a high density and the interval between the fibers is narrow, solid matter can be collected to some extent. Furthermore, since it is excellent in the diffusion effect of the filtration object as a filter and has a thickness, the effect as a deep layer filtration mechanism can be exhibited. With these actions and effects, it is considered that the cylindrical filter whose core material 2 is a fiber molded body has higher filtration accuracy or more stable filtration than the cylindrical filter whose core material 2 is a resin molded product. . The raw material of the thermoadhesive fiber contained in the core material 2 is not particularly limited as long as it is a thermoplastic resin having melt spinnability. For example, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate; low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, Polyethylene resins such as ultrahigh molecular weight polyethylene, polypropylene resins such as isotactic, atactic, and syndiotactic, polyolefins such as polymethylpentene resin, polybutene-1 resin, ethylene-vinyl alcohol copolymer resin, and ethylene-propylene copolymer resin Polyamide resin: Polyamide resin such as nylon 6, nylon 66, nylon 11, nylon 12; polycarbonate, polyacetal, polystyrene, cyclic polyolefin Fin, such as engineering plastics such as polyphenylene sulfide, and the like. Moreover, the cross-sectional shape of the heat-adhesive fiber is not particularly limited, and may be any of a circular shape, an elliptical shape, a triangular shape, a polygonal shape, a multileaf shape, and the like. The fiber configuration may be either a single fiber or a composite fiber. In the case of a composite fiber, the fiber cross-sectional shape is not particularly limited, and may be any of a core-sheath type, an eccentric core-sheath type, a split type, a parallel type (side-by-side type), a sea-island type, and the like. From the viewpoint of fiber strength, productivity, and chemical resistance of the resulting core material, the above heat-adhesive fibers include polyethylene resins, polypropylene resins, polymethylpentene resins, polybutene-1 resins, ethylene-vinyl alcohol copolymer resins, It is preferable to use a polyolefin fiber made of a polyolefin resin such as an ethylene-propylene copolymer resin. As for the fiber configuration, it is preferable to use a polyolefin core-sheath type composite fiber in which both the core component and the sheath component are made of a polyolefin resin, from the viewpoint of the productivity and production cost of the heat-bondable fiber. The heat-adhesive fiber is not limited to the polyolefin core-sheath composite fiber, and can be used by appropriately selecting a composite fiber other than the polyolefin core-sheath composite fiber according to the performance required for the cylindrical filter of the present invention. .

上記熱接着性繊維が芯鞘型複合繊維の場合、鞘成分は芯成分よりもその融点が少なくとも20℃低い樹脂を選ぶと熱接着加工上都合がよい。鞘成分と芯成分の好ましい組み合わせとしては、例えば、ポリエチレン樹脂とポリプロピレン樹脂、エチレン−プロピレン共重合樹脂とポリプロピレン樹脂、ポリブテン−1樹脂とポリプロピレン樹脂、ポリエチレン樹脂とポリメチルペンテン樹脂、ポリプロピレン樹脂とポリメチルペンテン樹脂、エチレン−プロピレン共重合樹脂とポリメチルペンテン樹脂、ポリエチレン樹脂とポリエチレンテレフタレート、ポリプロピレン樹脂とポリエチレンテレフタレート、エチレン−プロピレン共重合樹脂とポリエチレンテレフタレート、低融点ポリエステルと高融点ポリエステル、ポリエチレンテレフタレートとナイロン6,6、ポリエチレンテレフタレートとナイロン6、ポリエチレン樹脂とナイロン6などが挙げられる。繊維強力、生産性及び耐薬品性の面から、少なくともその一成分にポリオレフィン系樹脂成分を有する組み合わせからなるものが好ましく、より好ましくは芯成分、鞘成分共にポリオレフィン系樹脂の組み合わせであり、さらに好ましくは芯成分がポリプロピレン樹脂、鞘成分がポリエチレン樹脂の組み合わせである。   In the case where the heat-adhesive fiber is a core-sheath type composite fiber, it is convenient for heat-bonding processing to select a resin whose melting point is at least 20 ° C. lower than that of the core component. Preferred combinations of the sheath component and the core component include, for example, polyethylene resin and polypropylene resin, ethylene-propylene copolymer resin and polypropylene resin, polybutene-1 resin and polypropylene resin, polyethylene resin and polymethylpentene resin, polypropylene resin and polymethyl. Penten resin, ethylene-propylene copolymer resin and polymethylpentene resin, polyethylene resin and polyethylene terephthalate, polypropylene resin and polyethylene terephthalate, ethylene-propylene copolymer resin and polyethylene terephthalate, low melting point polyester and high melting point polyester, polyethylene terephthalate and nylon 6 6, polyethylene terephthalate and nylon 6, polyethylene resin and nylon 6, and the like. From the viewpoint of fiber strength, productivity and chemical resistance, those comprising a combination having a polyolefin resin component as at least one component thereof are preferred, more preferably a core component and a sheath component are a combination of polyolefin resins, and even more preferred. Is a combination of polypropylene resin as the core component and polyethylene resin as the sheath component.

上記繊維ウェブ(繊維成形体)は、熱接着性繊維を少なくとも50質量%含有することが好ましく、より好ましくは80質量%以上含有し、さらに好ましくは繊維ウェブが熱接着性繊維のみからなる。熱接着性繊維の含有量が50質量%以上であると、筒状フィルターの耐圧強度が高くなるうえ、使用中に繊維が脱落するおそれもない。また、熱接着性繊維以外の他の繊維としては特に限定はなく、例えば、レーヨンなどの再生繊維、アセテートなどの半合成繊維、ポリオレフィン系繊維、ポリエステル系繊維、ポリアミド系繊維、アクリル系繊維などの合成繊維などを使用することができる。上記繊維ウェブに含まれる熱接着性繊維の平均繊維径は、特に限定されないが、5μm以上、50μm以下であることが好ましい。熱接着性繊維の平均繊維径が上記範囲を満たすことで、得られる繊維成形体(芯材2)が充分な強度を有し、かつ固体物を捕集する能力を有するようになるからである。熱接着性繊維の平均繊維径が50μmを超えると熱接着性繊維の平均繊維径が大きくなりすぎるため、熱接着性繊維同士を強く熱接着しても繊維間の間隔が狭くならず、固体物を捕集する効果が得られないおそれがあるほか、均一な繊維ウェブが得られにくいため、繊維成形体の構造も均一なものになりにくくなるおそれがある。熱接着性繊維の平均繊維径が5μmよりも小さくなると、繊維間の間隔が狭くなりすぎることで、筒状フィルターのろ過寿命が短くなるおそれや、通水圧損といった圧力損失が大きくなるおそれがある。熱接着性繊維の平均繊維径は10μm以上、32μm以下であることがより好ましく、15μm以上、28μm以下であることがさらに好ましい。   The fiber web (fiber shaped body) preferably contains at least 50% by mass of heat-adhesive fibers, more preferably contains 80% by mass or more, and more preferably the fiber web consists only of heat-adhesive fibers. When the content of the heat-adhesive fiber is 50% by mass or more, the pressure resistance of the cylindrical filter is increased, and the fiber is not likely to fall off during use. The fibers other than the heat-adhesive fibers are not particularly limited, and examples thereof include regenerated fibers such as rayon, semi-synthetic fibers such as acetate, polyolefin fibers, polyester fibers, polyamide fibers, and acrylic fibers. Synthetic fibers and the like can be used. The average fiber diameter of the heat-bondable fibers contained in the fiber web is not particularly limited, but is preferably 5 μm or more and 50 μm or less. This is because when the average fiber diameter of the heat-adhesive fibers satisfies the above range, the obtained fiber molded body (core material 2) has sufficient strength and has the ability to collect solid matter. . If the average fiber diameter of the heat-adhesive fibers exceeds 50 μm, the average fiber diameter of the heat-adhesive fibers becomes too large. In addition to the possibility of obtaining the effect of collecting the fiber, it is difficult to obtain a uniform fiber web, so that the structure of the fiber molded body may not be uniform. When the average fiber diameter of the heat-adhesive fiber is smaller than 5 μm, the interval between the fibers becomes too narrow, which may shorten the filtration life of the cylindrical filter and may increase pressure loss such as water pressure loss. . The average fiber diameter of the heat-adhesive fiber is more preferably 10 μm or more and 32 μm or less, and further preferably 15 μm or more and 28 μm or less.

繊維成形体を芯材2として使用する場合、繊維成形体の密度は0.1g/cm3以上、0.6g/cm3以下であることが好ましい。繊維成形体の密度が上記範囲を満たすことで、芯材2に対して充分な強度が付与され、ろ過処理時に変形、歪みが生じることや、破損することがない。また、芯材となる繊維成形体の密度が上記範囲を満たすことで、固体物を捕集しうるようになるためである。繊維成形体の密度が0.1g/cm3よりも小さいと、繊維成形体の強度が不足し、ろ過処理中に変形や歪み、筒状フィルターの破損が生じるおそれがある。繊維成形体の密度が0.6g/cm3を超えると繊維成形体の構造が密になりすぎるため、筒状フィルターのろ過寿命が短くなるおそれや、通水圧損といった圧力損失が大きくなるおそれがある。繊維成形体の密度は0.15g/cm3以上、0.5g/cm3以下であることがより好ましく、0.2g/cm3以上、0.45g/cm3以下であることがさらに好ましい。 When a fiber molded body is used as the core material 2, the density of the fiber molded body is preferably 0.1 g / cm 3 or more and 0.6 g / cm 3 or less. When the density of the fiber molded body satisfies the above range, sufficient strength is imparted to the core material 2, and deformation or distortion does not occur or breakage during the filtration process. Moreover, it is because a solid thing can be collected now because the density of the fiber molded object used as a core material satisfy | fills the said range. If the density of the fiber molded body is less than 0.1 g / cm 3 , the strength of the fiber molded body may be insufficient, and deformation or distortion may occur during the filtration process, and the cylindrical filter may be damaged. If the density of the fiber molded body exceeds 0.6 g / cm 3 , the structure of the fiber molded body becomes too dense, which may shorten the filtration life of the cylindrical filter and increase the pressure loss such as water pressure loss. is there. Density of the fiber molded article 0.15 g / cm 3 or more, more preferably 0.5 g / cm 3 or less, 0.2 g / cm 3 or more, more preferably 0.45 g / cm 3 or less.

(支持不織布)
本発明の筒状フィルターは、図1に示しているように、好ましくはろ過層3の外側に巻き回されている支持不織布4を含む。支持不織布4は、ろ過層3を構成する不織布の損傷及び/又は脱落を防止するとともに、筒状フィルター表面に意匠性を持たせるために好ましく用いられる。
(Support nonwoven fabric)
As shown in FIG. 1, the cylindrical filter of the present invention preferably includes a support nonwoven 4 wound around the outer side of the filtration layer 3. The supporting nonwoven fabric 4 is preferably used for preventing damage and / or dropping off of the nonwoven fabric constituting the filtration layer 3 and for providing a design property to the surface of the cylindrical filter.

支持不織布4は、特に限定されないが、強度の観点から、熱接着性繊維を含む熱接着不織布を用いることが好ましい。熱接着性繊維としては、上述した芯材2に用いられるものと同一のものを用いることができる。例えば、支持不織布4に含まれる熱接着性繊維は、平均繊維径が5μm以上、50μm以下のものを使用することができ、好ましい平均繊維径は10μm以上、32μm以下であり、より好ましい平均繊維径は15μm以上、28μm以下である。支持不織布4に含まれる熱接着性繊維の平均繊維径が上記範囲を満たすことで、支持不織布4が不織布層Aの前ろ過層として働き、筒状フィルターのろ過寿命が高められる。上記熱接着性繊維の平均繊維径が5μm以下であると、支持不織布4を構成する繊維の間隔が狭くなり、支持不織布4の層が短時間で閉塞して、筒状フィルターのろ過寿命が低下するおそれがある。熱接着性繊維の平均繊維径が50μmを超えると前ろ過層としての働きが低下し、筒状フィルターのろ過寿命を向上させる効果は得られにくくなる。また、上記熱接着性繊維は、鞘成分がポリエチレン樹脂であり、芯成分がポリプロピレン樹脂である芯鞘型複合繊維を含み、繊維同士がポリエチレン樹脂によって熱接着している熱接着不織布であることが好ましい。   Although the support nonwoven fabric 4 is not specifically limited, From a viewpoint of intensity | strength, it is preferable to use the heat bond nonwoven fabric containing a heat bondable fiber. As the heat-adhesive fiber, the same fiber as that used for the core material 2 described above can be used. For example, the heat-bondable fibers contained in the support nonwoven 4 can use those having an average fiber diameter of 5 μm or more and 50 μm or less, and a preferable average fiber diameter is 10 μm or more and 32 μm or less, and a more preferable average fiber diameter. Is 15 μm or more and 28 μm or less. When the average fiber diameter of the heat-bondable fibers contained in the support nonwoven fabric 4 satisfies the above range, the support nonwoven fabric 4 functions as a pre-filtration layer of the nonwoven fabric layer A, and the filtration life of the cylindrical filter is increased. When the average fiber diameter of the heat-adhesive fibers is 5 μm or less, the interval between the fibers constituting the support nonwoven fabric 4 is narrowed, the layer of the support nonwoven fabric 4 is closed in a short time, and the filtration life of the cylindrical filter is reduced. There is a risk. When the average fiber diameter of the heat-adhesive fiber exceeds 50 μm, the function as the prefiltration layer is lowered, and the effect of improving the filtration life of the cylindrical filter is hardly obtained. The heat-adhesive fiber may be a heat-bonded nonwoven fabric including a core-sheath type composite fiber in which the sheath component is a polyethylene resin and the core component is a polypropylene resin, and the fibers are thermally bonded to each other by the polyethylene resin. preferable.

支持不織布4は、メルトブローン不織布、スパンボンド不織布といった長繊維不織布であってもよいし、短繊維不織布であってもよいが、短繊維不織布である方が好ましい。短繊維不織布は構成繊維間の空隙が多く、筒状フィルターにおける前ろ過層に適した不織布を得られやすいためである。短繊維不織布としては、短繊維を用い、湿式抄紙法、カード機を用いたカード法及びエアレイ法などによりウェブを作製し、さらにウェブを一体化させることにより得られるものを用いることができる。カード法によると、パラレルウェブ、セミランダムウェブ、ランダムウェブ、クロスウェブ及びクリスクロスウェブなどのウェブを作製することができる。ウェブの一体化は、接着剤による接合、繊維を軟化又は溶融させることによる熱接着(サーマルボンド)、ニードルパンチ及び高圧水流処理(スパンレース)から選択される一つ又は複数の方法により実施されるが、熱接着及び/または高圧水流処理を行った不織布であることが好ましい。上記支持不織布の目付は、特に限定されないが、5g/m2以上、100g/m2以下であることが好ましい。支持不織布の目付が上記範囲を満たすことで、支持不織布が不織布層Aの前ろ過層として働き、筒状フィルターのろ過寿命が高められる。上記支持不織布の目付が5g/m2よりも小さいと前ろ過層としての働きは低下し、筒状フィルターのろ過寿命を向上させる効果は得られにくくなる。支持不織布の目付が100g/m2を超えると支持不織布の層が短時間で閉塞して、筒状フィルターのろ過寿命が低下してしまうおそれがある。支持不織布の目付は10g/m2以上、70g/m2以下であると好ましく、20g/m2以上、60g/m2以下であるとさらに好ましい。 The supporting nonwoven fabric 4 may be a long-fiber nonwoven fabric such as a meltblown nonwoven fabric or a spunbond nonwoven fabric, or a short-fiber nonwoven fabric, but is preferably a short-fiber nonwoven fabric. This is because a short fiber nonwoven fabric has many voids between constituent fibers, and it is easy to obtain a nonwoven fabric suitable for a prefiltration layer in a cylindrical filter. As the short fiber nonwoven fabric, a short fiber can be used that is obtained by preparing a web by a wet papermaking method, a card method using a card machine, an air array method, and the like, and further integrating the web. According to the card method, webs such as a parallel web, a semi-random web, a random web, a cross web, and a Chris cross web can be produced. Web integration is performed by one or more methods selected from bonding with adhesives, thermal bonding by softening or melting the fibers (thermal bonding), needle punching and high-pressure water flow treatment (spun lace). However, it is preferable that the nonwoven fabric has been subjected to thermal bonding and / or high-pressure water flow treatment. The basis weight of the supporting nonwoven fabric is not particularly limited, but is preferably 5 g / m 2 or more and 100 g / m 2 or less. When the basis weight of the support nonwoven fabric satisfies the above range, the support nonwoven fabric functions as a prefiltration layer of the nonwoven fabric layer A, and the filtration life of the cylindrical filter is increased. When the basis weight of the supporting nonwoven fabric is less than 5 g / m 2 , the function as the prefiltration layer is lowered, and the effect of improving the filtration life of the cylindrical filter is hardly obtained. If the basis weight of the supporting nonwoven fabric exceeds 100 g / m 2 , the supporting nonwoven layer may be clogged in a short time and the filtration life of the cylindrical filter may be reduced. The basis weight of the supporting nonwoven fabric is preferably 10 g / m 2 or more and 70 g / m 2 or less, more preferably 20 g / m 2 or more and 60 g / m 2 or less.

本発明の筒状フィルターは、下記に示す条件(a)、条件(b)、及び条件(c)の三つの条件のいずれかを満たすことが好ましい。
条件(a):ろ過寿命が380リットル以上であり、かつ直径0.2μmの粒子のろ過効率が80%以上である。
条件(b):ろ過寿命が480リットル以上であり、かつ直径0.3μmの粒子のろ過効率が80%以上である。
条件(c):ろ過寿命が680リットル以上であり、かつ直径0.45μmの粒子のろ過効率が80%以上である。
The cylindrical filter of the present invention preferably satisfies any of the following three conditions (a), (b), and (c).
Condition (a): The filtration life is 380 liters or more, and the filtration efficiency of particles having a diameter of 0.2 μm is 80% or more.
Condition (b): The filtration life is 480 liters or more, and the filtration efficiency of particles having a diameter of 0.3 μm is 80% or more.
Condition (c): The filtration life is 680 liters or more, and the filtration efficiency of particles having a diameter of 0.45 μm is 80% or more.

本発明において、上記条件(a)を満たす筒状フィルターは、下記に示す条件(a1)を満たすことが好ましく、条件(a2)を満たすことがより好ましく、条件(a3)を満たすことがさらに好ましく、条件(a4)を満たすことが特に好ましい。
条件(a1):ろ過寿命が400リットル以上であり、かつ直径0.2μmの粒子のろ過効率が80%以上である。
条件(a2):ろ過寿命が400リットル以上であり、かつ直径0.2μmの粒子のろ過効率が82%以上である。
条件(a3):ろ過寿命が430リットル以上であり、かつ直径0.2μmの粒子のろ過効率が82%以上である。
条件(a4):ろ過寿命が450リットル以上であり、かつ直径0.2μmの粒子のろ過効率が85%以上である。
In the present invention, the cylindrical filter satisfying the condition (a) preferably satisfies the following condition (a1), more preferably satisfies the condition (a2), and more preferably satisfies the condition (a3). It is particularly preferable that the condition (a4) is satisfied.
Condition (a1): The filtration life is 400 liters or more, and the filtration efficiency of particles having a diameter of 0.2 μm is 80% or more.
Condition (a2): The filtration life is 400 liters or more, and the filtration efficiency of particles having a diameter of 0.2 μm is 82% or more.
Condition (a3): The filtration life is 430 liters or more, and the filtration efficiency of particles having a diameter of 0.2 μm is 82% or more.
Condition (a4): The filtration life is 450 liters or more, and the filtration efficiency of particles having a diameter of 0.2 μm is 85% or more.

本発明の筒状フィルターにおいて、上記条件(a)を満たすには、細繊維径不織布の含有量が比較的多くなるように不織布層A、不織布層B及び不織布層Cを構成する方が好ましい。上記条件(a)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が8質量%以上、25質量%以下であり、不織布層Bの含有量が38.5質量%以上、60質量%以下であり、細繊維径不織布の含有量が12.5質量%以上、25質量%以下であることが好ましい。また、上記条件(a1)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が9質量%以上、20質量%以下であり、不織布層Bの含有量が40質量%以上、60質量%以下であり、細繊維径不織布の含有量が12.5質量%以上、23質量%以下であることが好ましい。また、上記条件(a2)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が9質量%以上、18質量%以下であり、不織布層Bの含有量が40質量%以上、55質量%以下であり、細繊維径不織布の含有量が12.5質量%以上、20質量%以下であることが好ましい。また、上記条件(a3)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が10質量%以上、15質量%以下であり、不織布層Bの含有量が42質量%以上、52質量%以下であり、細繊維径不織布の含有量が13質量%以上、18質量%以下であることが好ましい。また、上記条件(a4)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が10質量%以上、13質量%以下であり、不織布層Bの含有量が42.5質量%以上、50質量%以下であり、細繊維径不織布の含有量が13質量%以上、16質量%以下であることが好ましい。   In the cylindrical filter of the present invention, in order to satisfy the above condition (a), it is preferable to configure the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C so that the content of the fine fiber diameter nonwoven fabric is relatively large. In order to satisfy the condition (a), the content of the nonwoven fabric layer A is 8% by mass or more and 25% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. Is preferably 38.5% by mass or more and 60% by mass or less, and the content of the fine fiber non-woven fabric is preferably 12.5% by mass or more and 25% by mass or less. In order to satisfy the condition (a1), the content of the nonwoven fabric layer A is 9% by mass or more and 20% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the layer B is 40% by mass or more and 60% by mass or less, and the content of the fine fiber diameter nonwoven fabric is 12.5% by mass or more and 23% by mass or less. In order to satisfy the above condition (a2), the content of the nonwoven fabric layer A is 9% by mass or more and 18% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the layer B is 40% by mass or more and 55% by mass or less, and the content of the fine fiber diameter nonwoven fabric is 12.5% by mass or more and 20% by mass or less. In order to satisfy the condition (a3), the content of the nonwoven fabric layer A is 10% by mass or more and 15% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the layer B is 42% by mass or more and 52% by mass or less, and the content of the fine fiber diameter nonwoven fabric is 13% by mass or more and 18% by mass or less. In order to satisfy the condition (a4), the content of the nonwoven fabric layer A is 10% by mass or more and 13% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the layer B is 42.5% by mass or more and 50% by mass or less, and the content of the fine fiber diameter nonwoven fabric is 13% by mass or more and 16% by mass or less.

本発明において、上記条件(b)を満たす筒状フィルターは、下記に示す条件(b1)を満たすことが好ましく、条件(b2)を満たすことがより好ましく、条件(b3)を満たすことがさらに好ましく、条件(b4)を満たすことが特に好ましい。
条件(b1):ろ過寿命が500リットル以上であり、かつ直径0.3μmの粒子のろ過効率が80%以上である。
条件(b2):ろ過寿命が500リットル以上であり、かつ直径0.3μmの粒子のろ過効率が82%以上である。
条件(b3):ろ過寿命が520リットル以上であり、かつ直径0.3μmの粒子のろ過効率が82%以上である。
条件(b4):ろ過寿命が530リットル以上であり、かつ直径0.3μmの粒子のろ過効率が85%以上である。
In the present invention, the cylindrical filter that satisfies the condition (b) preferably satisfies the following condition (b1), more preferably satisfies the condition (b2), and more preferably satisfies the condition (b3). It is particularly preferable that the condition (b4) is satisfied.
Condition (b1): The filtration life is 500 liters or more, and the filtration efficiency of particles having a diameter of 0.3 μm is 80% or more.
Condition (b2): The filtration life is 500 liters or more, and the filtration efficiency of particles having a diameter of 0.3 μm is 82% or more.
Condition (b3): The filtration life is 520 liters or more, and the filtration efficiency of particles having a diameter of 0.3 μm is 82% or more.
Condition (b4): The filtration life is 530 liters or more, and the filtration efficiency of particles having a diameter of 0.3 μm is 85% or more.

本発明の筒状フィルターにおいて、上記条件(b)を満たすには不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が8質量%以上、25質量%以下であり、不織布層Bの含有量が40質量%以上、64質量%以下であり、細繊維径不織布の含有量が10.5質量%以上、15.5質量%以下であることが好ましい。また、上記条件(b1)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が10質量%以上、25質量%以下であり、不織布層Bの含有量が42質量%以上、62質量%以下であり、細繊維径不織布の含有量が10.5質量%以上、14質量%以下であることが好ましい。また、上記条件(b2)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が10質量%以上、20質量%以下であり、不織布層Bの含有量が45質量%以上、60質量%以下であり、細繊維径不織布の含有量が10.8質量%以上、13.8質量%以下であることが好ましい。また、上記条件(b3)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が10.5質量%以上、16質量%以下であり、不織布層Bの含有量が46質量%以上、58質量%以下であり、細繊維径不織布の含有量が11質量%以上、13.5質量%以下であることが好ましい。また、上記条件(b4)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が10.8質量%以上、13.8質量%以下であり、不織布層Bの含有量が46.5質量%以上、52質量%以下であり、細繊維径不織布の含有量が11.5質量%以上、13.5質量%以下であることが好ましい。   In the cylindrical filter of the present invention, in order to satisfy the condition (b), the content of the nonwoven fabric layer A is 8% by mass or more and 25% by mass with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. The content of the nonwoven fabric layer B is preferably 40% by mass or more and 64% by mass or less, and the content of the fine fiber diameter nonwoven fabric is preferably 10.5% by mass or more and 15.5% by mass or less. In order to satisfy the condition (b1), the content of the nonwoven fabric layer A is 10% by mass or more and 25% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the layer B is 42% by mass or more and 62% by mass or less, and the content of the fine fiber diameter nonwoven fabric is 10.5% by mass or more and 14% by mass or less. In order to satisfy the condition (b2), the content of the nonwoven fabric layer A is 10% by mass or more and 20% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the layer B is 45% by mass or more and 60% by mass or less, and the content of the fine fiber diameter nonwoven fabric is 10.8% by mass or more and 13.8% by mass or less. In order to satisfy the above condition (b3), the content of the nonwoven fabric layer A is 10.5 mass% or more and 16 mass% or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. The content of the nonwoven fabric layer B is preferably 46% by mass or more and 58% by mass or less, and the content of the fine fiber diameter nonwoven fabric is preferably 11% by mass or more and 13.5% by mass or less. In order to satisfy the condition (b4), the content of the nonwoven fabric layer A is 10.8 mass% or more and 13.8 mass% or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the nonwoven fabric layer B is 46.5 mass% or more and 52 mass% or less, and the content of the fine fiber diameter nonwoven fabric is 11.5 mass% or more and 13.5 mass% or less. .

本発明において、上記条件(c)を満たす筒状フィルターは、下記に示す条件(c1)を満たすことが好ましく、条件(c2)を満たすことがより好ましく、条件(c3)を満たすことがさらに好ましく、条件(c4)を満たすことが特に好ましい。
条件(c1):ろ過寿命が700リットル以上であり、かつ直径0.45μmの粒子のろ過効率が80%以上である。
条件(c2):ろ過寿命が720リットル以上であり、かつ直径0.45μmの粒子のろ過効率が80%以上である。
条件(c3):ろ過寿命が720リットル以上であり、かつ直径0.45μmの粒子のろ過効率が82%以上である。
条件(c4):ろ過寿命が730リットル以上であり、かつ直径0.45μmの粒子のろ過効率が85%以上である。
In the present invention, the cylindrical filter that satisfies the condition (c) preferably satisfies the following condition (c1), more preferably satisfies the condition (c2), and more preferably satisfies the condition (c3). It is particularly preferable that the condition (c4) is satisfied.
Condition (c1): The filtration life is 700 liters or more, and the filtration efficiency of particles having a diameter of 0.45 μm is 80% or more.
Condition (c2): The filtration life is 720 liters or more, and the filtration efficiency of particles having a diameter of 0.45 μm is 80% or more.
Condition (c3): The filtration life is 720 liters or more, and the filtration efficiency of particles having a diameter of 0.45 μm is 82% or more.
Condition (c4): The filtration life is 730 liters or more, and the filtration efficiency of particles having a diameter of 0.45 μm is 85% or more.

本発明の筒状フィルターにおいて、上記条件(c)を満たすには、不織布層A及び/または不織布層Bの含有量が比較的多くなるように不織布層A、不織布層B及び不織布層Cを構成する方が好ましい。上記条件(c)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が8質量%以上、27質量%以下であり、不織布層Bの含有量が40質量%以上、64質量%以下であり、細繊維径不織布の含有量が7.8質量%以上、12質量%以下であることが好ましい。また、上記条件(c1)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が8質量%以上、26質量%以下であり、不織布層Bの含有量が42質量%以上、63.5質量%以下であり、細繊維径不織布の含有量が8質量%以上、12質量%以下であることが好ましい。また、上記条件(c2)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が10質量%以上、26質量%以下であり、不織布層Bの含有量が44質量%以上、63質量%以下であり、細繊維径不織布の含有量が8.2質量%以上、11.8質量%以下であることが好ましい。また、上記条件(c3)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が10.5質量%以上、26質量%以下であり、不織布層Bの含有量が45質量%以上、62.5質量%以下であり、細繊維径不織布の含有量が8.2質量%以上、11.5質量%以下であることが好ましい。また、上記条件(c4)を満たすには、不織布層A、不織布層B及び不織布層Cの合計質量に対して、不織布層Aの含有量が11質量%以上、25質量%以下であり、不織布層Bの含有量が46.5質量%以上、62質量%以下であり、細繊維径不織布の含有量が8.4質量%以上、11.3質量%以下であることが好ましい。   In the cylindrical filter of the present invention, in order to satisfy the above condition (c), the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C are configured so that the content of the nonwoven fabric layer A and / or the nonwoven fabric layer B is relatively large. Is preferred. In order to satisfy the above condition (c), the content of the nonwoven fabric layer A is 8% by mass or more and 27% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. Is preferably 40% by mass or more and 64% by mass or less, and the content of the fine fiber non-woven fabric is preferably 7.8% by mass or more and 12% by mass or less. In order to satisfy the above condition (c1), the content of the nonwoven fabric layer A is 8 mass% or more and 26 mass% or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the layer B is 42% by mass or more and 63.5% by mass or less, and the content of the fine fiber diameter nonwoven fabric is 8% by mass or more and 12% by mass or less. In order to satisfy the condition (c2), the content of the nonwoven fabric layer A is 10% by mass or more and 26% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the layer B is 44% by mass or more and 63% by mass or less, and the content of the fine fiber diameter nonwoven fabric is 8.2% by mass or more and 11.8% by mass or less. In order to satisfy the condition (c3), the content of the nonwoven fabric layer A is 10.5 mass% or more and 26 mass% or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the nonwoven fabric layer B is 45% by mass or more and 62.5% by mass or less, and the content of the fine fiber diameter nonwoven fabric is 8.2% by mass or more and 11.5% by mass or less. In order to satisfy the above condition (c4), the content of the nonwoven fabric layer A is 11% by mass or more and 25% by mass or less with respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It is preferable that the content of the layer B is 46.5% by mass or more and 62% by mass or less, and the content of the fine fiber diameter nonwoven fabric is 8.4% by mass or more and 11.3% by mass or less.

本発明において、筒状フィルターのろ過寿命、ろ過効率及びろ過精度の測定方法は後述する。   In the present invention, methods for measuring the filtration life, filtration efficiency and filtration accuracy of the cylindrical filter will be described later.

本発明の筒状フィルターは、筒状フィルターのろ過精度及び筒状フィルター使用時の効率(ろ過を行う際に必要となる圧力の大きさ)の観点から、通水圧損が0.2MPa以下であることが好ましく、より好ましくは0.05MPa以上、0.18MPa以下である。本発明において、通水圧損の測定方法は後述する。   The tubular filter of the present invention has a water passage pressure loss of 0.2 MPa or less from the viewpoint of the filtration accuracy of the tubular filter and the efficiency at the time of using the tubular filter (the magnitude of pressure required for filtration). More preferably, it is 0.05 MPa or more and 0.18 MPa or less. In the present invention, a method for measuring water passage pressure loss will be described later.

本発明の筒状フィルター1は、例えば、図1に示すように、芯材2の外側に、ろ過層3を構成する不織布層A、不織布層B及び不織布層C並びに支持不織布4が形成されている。本発明の筒状フィルター1において、上記の各不織布層は、ろ過の対象物が流れ込む流入側から順に支持不織布4、不織布層A31、不織布層B32、不織布層C33が配置されている。ろ過層3を構成する不織布層A31、不織布層B32及び不織布層C33、並びに支持不織布4は、前の不織布の巻き回しが終了したのと、次の不織布の巻き回しの開始がほぼ同時に行われるように配置されていることが好ましい。支持不織布4の巻き終わりにおいて端部を例えば120〜180℃で5〜40秒間処理することで熱接着させることが好ましい。   For example, as shown in FIG. 1, the tubular filter 1 of the present invention has a nonwoven fabric layer A, a nonwoven fabric layer B, a nonwoven fabric layer C, and a supporting nonwoven fabric 4 constituting the filtration layer 3 formed outside the core material 2. Yes. In the tubular filter 1 of the present invention, each of the nonwoven fabric layers is provided with a supporting nonwoven fabric 4, a nonwoven fabric layer A31, a nonwoven fabric layer B32, and a nonwoven fabric layer C33 in this order from the inflow side into which the object to be filtered flows. The nonwoven fabric layer A31, the nonwoven fabric layer B32, the nonwoven fabric layer C33, and the support nonwoven fabric 4 constituting the filtration layer 3 are such that the winding of the preceding nonwoven fabric is completed and the winding of the next nonwoven fabric is started almost simultaneously. It is preferable to arrange | position. It is preferable to thermally bond the end portion at the end of winding of the supporting nonwoven fabric 4 at 120 to 180 ° C. for 5 to 40 seconds, for example.

本発明の筒状フィルターは、高いろ過精度と長いろ過寿命を実現したものであり、液体から固形物を取り除く種々の用途に適しており、例えば、純水、飲料水、薬液、各種油脂、めっき液、塗料溶液及び電子工業用洗浄水などの液体をろ過するのに適している。   The cylindrical filter of the present invention realizes high filtration accuracy and a long filtration life, and is suitable for various uses for removing solids from a liquid. For example, pure water, drinking water, chemicals, various oils and fats, plating Suitable for filtering liquids, paint solutions and liquids such as electronics industry wash water.

以下、実施例を用いて本発明をさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the following Example.

実施例及び比較例で用いた測定方法及び評価方法は以下のとおりである。   Measurement methods and evaluation methods used in Examples and Comparative Examples are as follows.

(通水圧損)
30リットル/分の流量で水を通水した際の筒状フィルターの入口と出口の圧力差を測定し、通水圧損(MPa)とした。
(Water pressure loss)
The pressure difference between the inlet and the outlet of the cylindrical filter when water was passed at a flow rate of 30 liters / minute was measured as water passage pressure loss (MPa).

(ろ過効率)
JIS Z 8901に準ずる試験用粉体(JIS11種)を水に分散させて濃度20ppmの試験用懸濁液を作製する。次に試験用懸濁液を均一に攪拌しながら筒状フィルターの外周側から内周側中空部へ向かって、20リットル/分の流量で通過させる。ろ過を開始してから1分後に、筒状フィルター通過した試験用懸濁液を採取する。筒状フィルターを通過する前の試験用懸濁液と、ろ過処理後の試験用懸濁液について、レーザー回折/散乱式粒度分布計(商品名LA−910、株式会社 堀場製作所 製)にて粒度分布を測定し、粒子径が0.2μm、0.3μm及び0.45μmの粒子に対するろ過効率を、ろ過前後の試験懸濁液の粒度分布から計算した。
(Filtration efficiency)
A test powder according to JIS Z 8901 (JIS 11 species) is dispersed in water to prepare a test suspension having a concentration of 20 ppm. Next, the test suspension is passed at a flow rate of 20 liters / minute from the outer peripheral side of the cylindrical filter toward the inner peripheral side hollow portion while stirring uniformly. One minute after the start of filtration, the test suspension that has passed through the cylindrical filter is collected. About the test suspension before passing through the cylindrical filter and the test suspension after the filtration treatment, the particle size is measured by a laser diffraction / scattering particle size distribution analyzer (trade name LA-910, manufactured by Horiba, Ltd.). The distribution was measured, and the filtration efficiency for particles having a particle size of 0.2 μm, 0.3 μm and 0.45 μm was calculated from the particle size distribution of the test suspension before and after filtration.

(ろ過寿命)
JIS Z 8901に準ずる試験用粉体(JIS11種)を水に分散させて濃度20ppmの試験用懸濁液を作製した。次に試験用懸濁液を均一に攪拌しながら筒状フィルターの外周側から内周側中空部へ向かって、20リットル/分の流量で通過させ、この流量を維持するための通水圧力が0.2MPaになったときの総通水量(リットル)を筒状フィルターのろ過寿命とした。
(Filtration life)
A test powder (JIS 11 type) according to JIS Z 8901 was dispersed in water to prepare a test suspension having a concentration of 20 ppm. Next, the test suspension is allowed to pass at a flow rate of 20 liters / minute from the outer peripheral side of the cylindrical filter toward the inner peripheral side hollow portion while stirring uniformly, and the water flow pressure for maintaining this flow rate is The total water flow (liter) at 0.2 MPa was taken as the filtration life of the cylindrical filter.

(孔径分布)
ASTM F 316−86(バブルポイント法)に準じ、不織布の平均孔径、最大孔径、最多孔径及び最小孔径を測定した。
(Pore size distribution)
According to ASTM F 316-86 (bubble point method), the average pore diameter, maximum pore diameter, maximum pore diameter, and minimum pore diameter of the nonwoven fabric were measured.

(平均繊維径)
電子顕微鏡を用いて、不織布表面を100〜1000倍に拡大して観察し、任意の100本の繊維側面の幅を計測し、計測した値の平均値を算出することにより求めた。なお、複数の繊維が融着し、その境界が不明である場合は、融着した状態の繊維群を1本の繊維とみなして計測した。
(Average fiber diameter)
Using an electron microscope, the surface of the nonwoven fabric was magnified 100 to 1000 times, observed, the widths of arbitrary 100 fiber side surfaces were measured, and the average value of the measured values was calculated. When a plurality of fibers were fused and the boundary between them was unknown, measurement was performed by regarding the fused fiber group as one fiber.

(不織布の厚さ)
使用した不織布の厚さは、厚さ測定機(商品名 THICKNESS GAUGE モデル CR−60A (株)大栄科学精器製作所製)を用い、試料1cm2あたり3gの荷重を加えた状態で測定した。
(Thickness of nonwoven fabric)
The thickness of the used nonwoven fabric was measured using a thickness measuring device (trade name: THICKNESS GAUGE model CR-60A, manufactured by Daiei Kagaku Seisakusho Co., Ltd.) with a load of 3 g per 1 cm 2 of the sample.

<芯材>
鞘成分が高密度ポリエチレン、芯成分がポリプロピレン樹脂であり、繊度が2.2dtex、平均繊維径が18μm、繊維長が51mmである芯鞘型複合繊維(商品名「NBF(H)」、ダイワボウポリテック株式会社製)を用い、上記芯鞘型複合繊維からなる目付40g/m2のパラレルカードウェブを作製した。このウェブを、温度130℃に設定した熱風吹き付け装置で約30秒間加熱し、高密度ポリエチレンを溶融又は軟化させ、高密度ポリエチレンが溶融又は軟化した状態で、外径32mmの鉄棒の周囲に巻き回した。この不織布を巻き回す間、鉄棒及び巻き回したウェブの自重による圧力を加え続けた。不織布の巻き回しを、外径が42mmになるまで行って、上記芯鞘型複合繊維からなる長さ110cmの芯材を得た。得られた芯材は、外径が42mm、内径が32mmの円筒状であり、質量は50gであった。
<Core>
High-density polyethylene sheath component, polypropylene resin core component, core-sheath type composite fiber with a fineness of 2.2 dtex, an average fiber diameter of 18 μm, and a fiber length of 51 mm (trade name “NBF (H)”, Daiwabo Polytech) A parallel card web having a basis weight of 40 g / m 2 made of the above-described core-sheath composite fiber was produced. This web is heated for about 30 seconds with a hot air spraying device set at a temperature of 130 ° C. to melt or soften the high-density polyethylene, and in a state where the high-density polyethylene is melted or softened, it is wound around a steel bar having an outer diameter of 32 mm. did. While the nonwoven fabric was wound, the pressure due to the weight of the iron bar and the wound web was kept applied. The nonwoven fabric was wound until the outer diameter became 42 mm, and a core material having a length of 110 cm made of the core-sheath composite fiber was obtained. The obtained core was cylindrical with an outer diameter of 42 mm and an inner diameter of 32 mm, and the mass was 50 g.

<支持不織布>
鞘成分が高密度ポリエチレン、芯成分がポリプロピレン樹脂であり、繊度が2.2dtex、平均繊維径が18μm、繊維長が51mmである芯鞘型複合繊維(商品名「NBF(H)」、ダイワボウポリテック株式会社製)を用い、上記芯鞘型複合繊維からなる目付40g/m2のパラレルカードウェブを作製した。このウェブを、温度130℃に設定した熱風吹き付け装置で約30秒間加熱し、繊維同士を鞘成分により熱接着させて上記芯鞘型複合繊維からなる熱接着不織布を得た。この熱接着不織布を支持不織布として用いた。
<Supporting nonwoven fabric>
High-density polyethylene sheath component, polypropylene resin core component, core-sheath type composite fiber with a fineness of 2.2 dtex, an average fiber diameter of 18 μm, and a fiber length of 51 mm (trade name “NBF (H)”, Daiwabo Polytech) A parallel card web having a basis weight of 40 g / m 2 made of the above-described core-sheath composite fiber was produced. This web was heated for about 30 seconds with a hot air spraying device set at a temperature of 130 ° C., and the fibers were thermally bonded to each other by a sheath component to obtain a heat-bonded nonwoven fabric composed of the core-sheath type composite fiber. This heat bonding nonwoven fabric was used as a supporting nonwoven fabric.

<ろ過層用不織布>
ろ過層用不織布としては、ポリプロピレン樹脂の単一繊維で構成されたメルトブローン不織布を用意し、その中から細繊維径不織布及び太繊維径不織布として、下記の不織布を準備した。
<Nonwoven fabric for filtration layer>
As the non-woven fabric for the filtration layer, a melt-blown non-woven fabric composed of a single fiber of polypropylene resin was prepared, and the following non-woven fabric was prepared as a fine fiber diameter non-woven fabric and a large fiber diameter non-woven fabric.

<不織布1>
ポリプロピレンからなる、目付30g/m2のメルトブローン不織布
<不織布2>
ポリプロピレンからなる、目付60g/m2のメルトブローン不織布
<不織布3>
ポリプロピレンからなる、目付15g/m2のメルトブローン不織布
<不織布4>
ポリプロピレンからなる、目付30g/m2のメルトブローン不織布
上記のメルトブローン不織布について、その平均繊維径を考慮して細繊維径不織布または太繊維径不織布として選定し、平均孔径を考慮して、不織布層A、不織布層B、及び不織布層Cのどの不織布層に使用するか決定した。下記表1に各メルトブローン不織布の目付、平均繊維径、平均孔径、最多孔径、最大孔径、最小孔径、及び不織布の厚さを示す。
<Nonwoven fabric 1>
Melt-blown nonwoven fabric made of polypropylene with a basis weight of 30 g / m 2 <Nonwoven fabric 2>
Melt-blown nonwoven fabric made of polypropylene with a basis weight of 60 g / m 2 <Nonwoven fabric 3>
A melt blown nonwoven fabric made of polypropylene with a basis weight of 15 g / m 2 <Nonwoven fabric 4>
A melt-blown nonwoven fabric made of polypropylene with a basis weight of 30 g / m 2
The above melt blown nonwoven fabric is selected as a fine fiber diameter nonwoven fabric or a thick fiber diameter nonwoven fabric in consideration of the average fiber diameter, and any nonwoven fabric layer A, nonwoven fabric layer B, and nonwoven fabric layer C is selected in consideration of the average pore diameter. I decided to use it. Table 1 below shows the basis weight, average fiber diameter, average pore diameter, maximum pore diameter, maximum pore diameter, minimum pore diameter, and nonwoven fabric thickness of each meltblown nonwoven fabric.

Figure 0006340186
Figure 0006340186

(実施例1)
得られた上記芯材に対し、まず不織布層Cを形成する。細繊維径不織布として不織布3を、太繊維径不織布として不織布1を用意した。不織布1と不織布3を幅110cm、長さ600cmに切断し、不織布3が上になるように不織布1と不織布3を重ね合わせた。この状態で、図3に示すように不織布3、即ち細繊維径不織布を太繊維径不織布の内側に配置し、細繊維径不織布及び太繊維径不織布の巻き回しを同時に開始し、巻き回した長さが600cmとなるように両者を巻き回し、不織布層Cを形成した。この不織布層Cは、細繊維径不織布として不織布3、太繊維径不織布として不織布1を含み、細繊維径不織布がその巻き長さの全長で太繊維径不織布と重ね合わされている、言い換えるならば、細繊維径不織布の全長に対して、細繊維径不織布と太繊維径不織布の重ね合わされた部分が100%となった不織布層である。
Example 1
First, a nonwoven fabric layer C is formed on the obtained core material. Nonwoven fabric 3 was prepared as a fine fiber diameter nonwoven fabric and Nonwoven fabric 1 was prepared as a thick fiber diameter nonwoven fabric. The nonwoven fabric 1 and the nonwoven fabric 3 were cut into a width of 110 cm and a length of 600 cm, and the nonwoven fabric 1 and the nonwoven fabric 3 were overlapped so that the nonwoven fabric 3 was on top. In this state, as shown in FIG. 3, the nonwoven fabric 3, that is, the fine fiber diameter nonwoven fabric is arranged inside the thick fiber diameter nonwoven fabric, and the winding of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric is started at the same time. Both were wound so that thickness might be set to 600 cm, and the nonwoven fabric layer C was formed. This nonwoven fabric layer C includes a nonwoven fabric 3 as a fine fiber diameter nonwoven fabric and a nonwoven fabric 1 as a thick fiber diameter nonwoven fabric, and the fine fiber diameter nonwoven fabric is overlapped with the thick fiber diameter nonwoven fabric over the entire length of its winding length. This is a nonwoven fabric layer in which the overlapped portion of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric is 100% of the entire length of the fine fiber diameter nonwoven fabric.

上記の方法により不織布層Cを形成し、次いで不織布層Bを形成した。不織布層Bに使用する不織布として不織布2を選択した。不織布2を幅110cm、長さ400cmに切断し、不織布層Cの巻き終わりから連続するように切断した不織布2を400cm巻き回し、不織布層Bを形成した。次いで不織布層Aを形成した。不織布層Aに使用する不織布として不織布1を選択した。不織布1を幅110cm、長さ200cmに切断し、不織布層Bの巻き終わりから連続するように切断した不織布1を200cm巻き回し、不織布層Aを形成した。不織布層Aとして不織布1の巻き回しが終わった後、不織布層Aの周囲に、幅110cmに切断した支持不織布を巻き径(筒状フィルターの外径)が約62mmから68mmになるまで巻き回し、巻き終わりにおいて端部を軽く熱接着させた。得られた筒状フィルター(長さ110cm)の両端部をそれぞれ5cm切除した後、25cm毎に切断して本発明の筒状フィルターを得た。   The nonwoven fabric layer C was formed by the above method, and then the nonwoven fabric layer B was formed. Nonwoven fabric 2 was selected as the nonwoven fabric used for nonwoven fabric layer B. The nonwoven fabric 2 was cut into a width of 110 cm and a length of 400 cm, and the nonwoven fabric 2 cut so as to be continuous from the end of winding of the nonwoven fabric layer C was wound around 400 cm to form a nonwoven fabric layer B. Subsequently, the nonwoven fabric layer A was formed. The nonwoven fabric 1 was selected as the nonwoven fabric used for the nonwoven fabric layer A. The nonwoven fabric 1 was cut into a width of 110 cm and a length of 200 cm, and the nonwoven fabric 1 cut so as to be continuous from the end of the winding of the nonwoven fabric layer B was wound by 200 cm to form the nonwoven fabric layer A. After the winding of the nonwoven fabric 1 as the nonwoven fabric layer A, the supporting nonwoven fabric cut to a width of 110 cm is wound around the nonwoven fabric layer A until the winding diameter (outer diameter of the tubular filter) is about 62 mm to 68 mm. The ends were lightly heat-bonded at the end of winding. Both ends of the obtained cylindrical filter (length: 110 cm) were cut by 5 cm, and then cut every 25 cm to obtain the cylindrical filter of the present invention.

(実施例2)
細繊維径不織布及び太繊維径不織布の長さを500cmにした以外は、実施例1と同様にして筒状フィルターを得た。
(Example 2)
A cylindrical filter was obtained in the same manner as in Example 1 except that the lengths of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric were 500 cm.

(実施例3)
細繊維径不織布及び太繊維径不織布の長さを400cmにした以外は、実施例1と同様にして筒状フィルターを得た。
(Example 3)
A cylindrical filter was obtained in the same manner as in Example 1 except that the lengths of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric were 400 cm.

(実施例4)
細繊維径不織布及び太繊維径不織布の長さを300cmにした以外は、実施例1と同様にして筒状フィルターを得た。
Example 4
A cylindrical filter was obtained in the same manner as in Example 1 except that the lengths of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric were changed to 300 cm.

(実施例5)
細繊維径不織布及び太繊維径不織布の長さを300cmにし、不織布層Aに使用する不織布1の長さを300cmにした以外は、実施例1と同様にして筒状フィルターを得た。
(Example 5)
A cylindrical filter was obtained in the same manner as in Example 1 except that the lengths of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric were 300 cm and the length of the nonwoven fabric 1 used for the nonwoven fabric layer A was 300 cm.

(実施例6)
細繊維径不織布及び太繊維径不織布の長さを300cmにし、不織布層Aに使用する不織布1の長さを400cmにした以外は、実施例1と同様にして筒状フィルターを得た。
(Example 6)
A cylindrical filter was obtained in the same manner as in Example 1 except that the lengths of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric were 300 cm and the length of the nonwoven fabric 1 used for the nonwoven fabric layer A was 400 cm.

(実施例7)
細繊維径不織布及び太繊維径不織布の長さを300cmにし、不織布層Bに使用する不織布2の長さを500cmにした以外は、実施例1と同様にして筒状フィルターを得た。
(Example 7)
A cylindrical filter was obtained in the same manner as in Example 1 except that the lengths of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric were 300 cm, and the length of the nonwoven fabric 2 used for the nonwoven fabric layer B was 500 cm.

(比較例1)
細繊維径不織布及び太繊維径不織布の長さを200cmにした以外は、実施例1と同様にして筒状フィルターを得た。
(Comparative Example 1)
A cylindrical filter was obtained in the same manner as in Example 1 except that the lengths of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric were 200 cm.

(比較例2)
細繊維径不織布及び太繊維径不織布の長さを100cmにした以外は、実施例1と同様にして筒状フィルターを得た。
(Comparative Example 2)
A cylindrical filter was obtained in the same manner as in Example 1 except that the lengths of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric were 100 cm.

(比較例3)
細繊維径不織布及び太繊維径不織布の長さを300cmにし、不織布層Bに使用する不織布2の長さを200cmにした以外は、実施例1と同様にして筒状フィルターを得た。
(Comparative Example 3)
A cylindrical filter was obtained in the same manner as in Example 1 except that the lengths of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric were 300 cm and the length of the nonwoven fabric 2 used for the nonwoven fabric layer B was 200 cm.

(比較例4)
細繊維径不織布及び太繊維径不織布の長さを300cmにし、不織布層Aに使用する不織布1の長さを100cmにした以外は、実施例1と同様にして筒状フィルターを得た。
(Comparative Example 4)
A cylindrical filter was obtained in the same manner as in Example 1 except that the lengths of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric were 300 cm and the length of the nonwoven fabric 1 used for the nonwoven fabric layer A was 100 cm.

(比較例5)
太繊維径不織布を使用せず、不織布層Cを細繊維径不織布のみ、即ち不織布3のみで構成した。そして、不織布3の長さを300cmとした以外は、実施例1と同様にして筒状フィルターを得た。
(Comparative Example 5)
The thick fiber diameter nonwoven fabric was not used, and the nonwoven fabric layer C was composed of only the fine fiber diameter nonwoven fabric, that is, the nonwoven fabric 3 alone. And the cylindrical filter was obtained like Example 1 except the length of the nonwoven fabric 3 having been 300 cm.

(比較例6)
実施例1の筒状フィルターの構成から、太繊維径不織布、及び不織布層Aを構成している不織布1を不織布4に変更した。そして細繊維径不織布と、太繊維径不織布(不織布4)の長さを300cmとし、不織布層Aとして不織布4を200cm巻き回した以外は実施例1と同様にして筒状フィルターを得た。
(Comparative Example 6)
From the configuration of the tubular filter of Example 1, the nonwoven fabric 1 constituting the thick fiber diameter nonwoven fabric and the nonwoven fabric layer A was changed to the nonwoven fabric 4. A cylindrical filter was obtained in the same manner as in Example 1 except that the length of the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric (nonwoven fabric 4) was 300 cm, and the nonwoven fabric 4 was wound 200 cm as the nonwoven fabric layer A.

(比較例7)
上記芯材に対し、不織布2のみを500cm巻き回し、不織布層Cを形成した。不織布2を巻き終わりから、連続するように不織布1を200cm巻き回した。さらに、不織布1の巻き終わりから連続するように不織布4を75cm巻き回した。不織布4を巻き回した後は実施例1と同様の手順で支持不織布の巻き回し、筒状フィルターの切断を行い、筒状フィルター(長さ25cm)を得た。
(Comparative Example 7)
A nonwoven fabric layer C was formed by winding only the nonwoven fabric 2 on the core material by 500 cm. The nonwoven fabric 1 was wound 200 cm from the end of winding the nonwoven fabric 2 continuously. Further, the nonwoven fabric 4 was wound by 75 cm so as to be continuous from the end of winding of the nonwoven fabric 1. After the nonwoven fabric 4 was wound, the supporting nonwoven fabric was wound in the same procedure as in Example 1, and the tubular filter was cut to obtain a tubular filter (length: 25 cm).

下記表2に、実施例及び比較例の筒状フィルターにおける各ろ過層用不織布の長さ及びその巻き長さを示した。   Table 2 below shows the length of each nonwoven fabric for filtration layers and the winding length thereof in the cylindrical filters of Examples and Comparative Examples.

Figure 0006340186
Figure 0006340186

実施例及び比較例の筒状フィルターについてろ過寿命、ろ過効率を上述した測定方法に基づいて測定し、その結果を下記表3及び表4に示した。また、下記表3及び表4には、不織布層A、不織布層B及び不織布層Cの合計質量に対する不織布層A、不織布層B、細繊維径不織布、及び不織布層Cの割合、並びに筒状フィルター全体の質量に対する不織布層A、不織布層B及び不織布層Cの合計質量の割合も示した。   About the cylindrical filter of an Example and a comparative example, the filtration lifetime and the filtration efficiency were measured based on the measuring method mentioned above, and the result was shown in the following Table 3 and Table 4. In Tables 3 and 4 below, the ratio of the nonwoven fabric layer A, the nonwoven fabric layer B, the fine fiber diameter nonwoven fabric, and the nonwoven fabric layer C to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, and the cylindrical filter The ratio of the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C to the total mass is also shown.

Figure 0006340186
Figure 0006340186

Figure 0006340186
Figure 0006340186

上記表3から分かるように、実施例の筒状フィルターは、高いろ過効率と長いろ過寿命を有しており、高いろ過精度を有しながら、ろ過処理時の通液圧損も十分に小さいものとなっている。そして、実施例1〜7の筒状フィルターでは、不織布層A、不織布層B、不織布層Cの合計質量に占める不織布層A、不織布層B、及び細繊維径不織布の各割合を変化させることで、所望のろ過効率及びろ過寿命を有する筒状フィルターが得られることがわかる。例えば、不織布層A、不織布層B、不織布層Cの合計質量に占める細繊維径不織布の割合を多く(12.5質量%以上)した実施例1及び実施例2の筒状フィルターでは、固形物のサイズが0.2μmの粒子に対するろ過効率が80%以上であり、ろ過寿命が400リットルを超える筒状フィルターが得られている。逆に、不織布層A、不織布層B、不織布層Cの合計質量に占める細繊維径不織布の割合を比較的少なめにし、不織布層A及び/または不織布層Bの割合を多く(不織布層Aと不織布層Bの質量%の和が88%以上)した実施例4〜7の筒状フィルターでは、固形物のサイズが0.45μmの粒子に対するろ過効率が80%以上であり、ろ過寿命が700リットルを超える筒状フィルターが得られている。   As can be seen from Table 3 above, the cylindrical filter of the example has a high filtration efficiency and a long filtration life, and has a high filtration accuracy and a sufficiently low pressure loss during filtration. It has become. And in the cylindrical filter of Examples 1-7, by changing each ratio of the nonwoven fabric layer A, the nonwoven fabric layer B, and the fine fiber diameter nonwoven fabric which occupy for the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C. It can be seen that a cylindrical filter having the desired filtration efficiency and filtration life can be obtained. For example, in the cylindrical filters of Example 1 and Example 2 in which the proportion of the fine fiber diameter nonwoven fabric occupies the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C (12.5 mass% or more), A cylindrical filter having a filtration efficiency of 80% or more for particles having a size of 0.2 μm and a filtration life exceeding 400 liters is obtained. On the contrary, the proportion of the fine fiber diameter nonwoven fabric in the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C is made relatively small, and the proportion of the nonwoven fabric layer A and / or the nonwoven fabric layer B is increased (the nonwoven fabric layer A and the nonwoven fabric layer). In the cylindrical filters of Examples 4 to 7 in which the sum of the mass% of the layer B is 88% or more), the filtration efficiency for particles having a solid size of 0.45 μm is 80% or more, and the filtration life is 700 liters. A cylindrical filter exceeding that is obtained.

一方、比較例1〜7の筒状フィルターでは実施例の筒状フィルターと同様の性能を示す筒状フィルターが得られていない。比較例1、2の筒状フィルターでは、実施例1〜7と同様、太繊維径不織布と細繊維径不織布を重ねて巻き回して不織布層Cを形成しているがろ過精度(ろ過精度)が不十分となっている。これは不織布層A、不織布層B、不織布層Cの合計質量に占める細繊維径不織布の割合が少なすぎたため、不織布層A及び不織布層Bを通過した固形物の大部分が不織布層Cを通過したためだと考えられる。比較例4、及び比較例5の筒状フィルターはサイズが0.45μmの粒子に対するろ過効率(ろ過精度)は十分であるが、不織布層Aが少なすぎたり、不織布層Bが多すぎたりした結果、他の不織布層に不足が生じ、ろ過寿命が不十分になったこと、比較例5については細繊維径不織布に対し太繊維径不織布を重ね合わせないで細繊維径不織布を巻き回したため、不織布層Cが急激に閉塞したことでろ過寿命が不十分になったと推測される。   On the other hand, in the cylindrical filter of Comparative Examples 1-7, the cylindrical filter which shows the performance similar to the cylindrical filter of an Example is not obtained. In the cylindrical filters of Comparative Examples 1 and 2, as in Examples 1 to 7, the nonwoven fabric layer C is formed by overlapping and winding the thick fiber diameter nonwoven fabric and the thin fiber diameter nonwoven fabric, but the filtration accuracy (filtration accuracy) is high. It is insufficient. This is because the proportion of the fine fiber diameter nonwoven fabric in the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C was too small, so that most of the solids that passed through the nonwoven fabric layer A and the nonwoven fabric layer B passed through the nonwoven fabric layer C. It is thought that it was because of. The cylindrical filters of Comparative Example 4 and Comparative Example 5 have sufficient filtration efficiency (filtration accuracy) for particles having a size of 0.45 μm, but the result is that the nonwoven fabric layer A is too little or the nonwoven fabric layer B is too much. The other non-woven fabric layer was deficient and the filtration life was insufficient. In Comparative Example 5, the non-woven fabric was wound with the fine fiber diameter non-woven fabric on the fine fiber diameter non-woven fabric without overlapping the non-woven fabric. It is presumed that the filtration life was insufficient due to the sudden blockage of layer C.

比較例6の筒状フィルターは、3種類の不織布層を有し、実施例1〜7の筒状フィルターと同じ細繊維径不織布を使用しているが、不織布層Aを構成する不織布の平均孔径が大きすぎるため、不織布層Aを通過して不織布層B及び/または不織布層Cに流入する固形物が多くなり、ろ過寿命が不十分になったと考えられる。また比較例7の筒状フィルターは、不織布層Cが極端に多いことから不織布層A及び不織布層Bの占める割合が少なすぎたこと、また、太繊維径不織布を使用していないことからろ過が十分に行われなくなり、ろ過効率が不十分になったと考えられる。   The tubular filter of Comparative Example 6 has three types of nonwoven fabric layers, and uses the same fine fiber diameter nonwoven fabric as the tubular filters of Examples 1 to 7, but the average pore diameter of the nonwoven fabric constituting the nonwoven fabric layer A Therefore, it is considered that the solid matter flowing through the nonwoven fabric layer A and flowing into the nonwoven fabric layer B and / or the nonwoven fabric layer C is increased, and the filtration life is insufficient. In addition, the cylindrical filter of Comparative Example 7 has an excessively large number of nonwoven fabric layers C, so that the proportion of nonwoven fabric layer A and nonwoven fabric layer B is too small, and filtration is not performed because a thick fiber diameter nonwoven fabric is not used. It is considered that the filtration efficiency has become insufficient due to insufficient performance.

更に、実施例4〜7と、比較例5、6を比較すると、どちらも同じ不織布(不織布3)を細繊維径不織布として使用し、同じ巻き長さで巻き回しているにも関わらず、実施例4〜7の筒状フィルターのほうがろ過効率(ろ過精度)及びろ過寿命が高いだけでなく、通水圧損が0.1〜0.2MPa低くなっている。比較例5の筒状フィルターは太繊維径不織布を用いていないため、ろ過寿命及びろ過効率が実施例4〜7の筒状フィルターに比べて低いものになったと考えられる。比較例6の筒状フィルターは、細繊維径不織布の平均孔径が、不織布層Aの平均孔径の0.36倍であることから、不織布層Aの平均孔径と細繊維径不織布の平均孔径の勾配が大きくなりすぎたことで不織布層Aでは捕捉されないが、不織布層B及び/又は不織布層Cで捕捉するにはサイズが大きい固形物が不織布層B及び/又は不織布層Cに流れ込み、不織布層B及び/又は不織布層Cが急速に閉塞したと推測される。これらの結果から、平均孔径の条件を満たす不織布層A、太繊維径不織布、及び細繊維径不織布を用いることで、高いろ過効率と長いろ過寿命が両立されていると考えられる。   Furthermore, when Examples 4 to 7 and Comparative Examples 5 and 6 are compared, the same nonwoven fabric (nonwoven fabric 3) is used as the fine fiber diameter nonwoven fabric, and it is carried out despite being wound with the same winding length. The cylindrical filters of Examples 4 to 7 have not only higher filtration efficiency (filtration accuracy) and filtration life, but also lower water passage pressure loss by 0.1 to 0.2 MPa. Since the cylindrical filter of the comparative example 5 does not use the thick fiber diameter nonwoven fabric, it is thought that the filtration life and the filtration efficiency became low compared with the cylindrical filter of Examples 4-7. In the cylindrical filter of Comparative Example 6, since the average pore diameter of the fine fiber diameter nonwoven fabric is 0.36 times the average pore diameter of the nonwoven fabric layer A, the gradient of the average pore diameter of the nonwoven fabric layer A and the average pore diameter of the fine fiber diameter nonwoven fabric. Is not captured by the non-woven fabric layer A, but a solid having a large size flows into the non-woven fabric layer B and / or the non-woven fabric layer C to be captured by the non-woven fabric layer B and / or the non-woven fabric layer C. And / or it is estimated that the nonwoven fabric layer C closed rapidly. From these results, it is considered that the high filtration efficiency and the long filtration life are compatible by using the nonwoven fabric layer A, the thick fiber diameter nonwoven fabric, and the fine fiber diameter nonwoven fabric that satisfy the condition of the average pore diameter.

本発明の筒状フィルターは、高いろ過精度と長いろ過寿命を実現したものであり、液体から固形物を取り除く種々の用途に適しており、例えば、純水、飲料水、薬液、各種油脂、めっき液、塗料溶液及び電子工業用洗浄水などの液体をろ過するのに適している。   The cylindrical filter of the present invention realizes high filtration accuracy and a long filtration life, and is suitable for various uses for removing solids from a liquid. For example, pure water, drinking water, chemicals, various oils and fats, plating Suitable for filtering liquids, paint solutions and liquids such as electronics industry wash water.

1 筒状フィルター
2 芯材
3 ろ過層
31 不織布層A
32 不織布層B
33 不織布層C
4 支持不織布
51 細繊維径不織布
52 太繊維径不織布
6 不織布層Aを形成する不織布
7 不織布層Bを形成する不織布
DESCRIPTION OF SYMBOLS 1 Tubular filter 2 Core material 3 Filtration layer 31 Nonwoven fabric layer A
32 Nonwoven fabric layer B
33 Nonwoven fabric layer C
4 Nonwoven Fabric 51 Nonwoven Fabric Forming Nonwoven Fabric Layer A 7 Nonwoven Fabric Forming Nonwoven Fabric Layer B

Claims (9)

芯材に巻き回されているろ過層を含む筒状フィルターであって、
前記ろ過層は、ろ過対象物の流入側から順番に連続して巻き回されている不織布層A、不織布層B、不織布層Cの少なくとも3種類の不織布層で構成されており、
前記不織布層A、前記不織布層B及び前記不織布層Cの合計質量は、筒状フィルター全体の質量の20質量%以上であり、
前記不織布層Aの平均孔径は、10.5μm以上、17.5μm以下であり、
前記不織布層Bの平均孔径は、不織布層Aの平均孔径の0.6倍以上、0.95倍以下であり、
前記不織布層Cは、平均繊維径が2μm以下で、平均孔径が不織布層Aの平均孔径の0.37倍以上、0.86倍以下であり、かつ平均孔径が不織布層Bの平均孔径の0.4倍以上、0.9倍以下である細繊維径不織布を含む不織布層であり、前記細繊維径不織布は、少なくともその一部が、平均繊維径が2μmよりも大きい太繊維径不織布と重ね合わせて積層した状態で巻き回され、
不織布層A、不織布層B及び不織布層Cの合計質量に対して、前記不織布層Aの含有量は7.8質量%以上、27質量%以下であり、前記不織布層Bの含有量は38.2質量%以上、64質量%以下であり、前記細繊維径不織布の含有量は7.8質量%以上、25質量%以下である筒状フィルター。
A cylindrical filter including a filtration layer wound around a core material,
The filtration layer is composed of at least three types of nonwoven fabric layers, a nonwoven fabric layer A, a nonwoven fabric layer B, and a nonwoven fabric layer C, which are continuously wound in order from the inflow side of the filtration object.
The total mass of the nonwoven fabric layer A, the nonwoven fabric layer B and the nonwoven fabric layer C is 20% by mass or more of the mass of the entire cylindrical filter,
The average pore diameter of the nonwoven fabric layer A is 10.5 μm or more and 17.5 μm or less,
The average pore diameter of the nonwoven fabric layer B is 0.6 times or more and 0.95 times or less of the average pore diameter of the nonwoven fabric layer A,
The nonwoven fabric layer C has an average fiber diameter of 2 μm or less, an average pore diameter of 0.37 to 0.86 times the average pore diameter of the nonwoven fabric layer A , and an average pore diameter of 0 to the average pore diameter of the nonwoven fabric layer B. .4 times or more, a nonwoven layer comprising a 0.9 times or less der Ru fine fiber diameter nonwoven, the fine fiber diameter nonwoven fabric, at least partially, an average fiber diameter of the large diameter fiber diameter nonwoven than 2μm It is wound in a state of being stacked and stacked,
With respect to the total mass of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C, the content of the nonwoven fabric layer A is 7.8 mass% or more and 27 mass% or less, and the content of the nonwoven fabric layer B is 38. The cylindrical filter which is 2 mass% or more and 64 mass% or less, and content of the said fine fiber diameter nonwoven fabric is 7.8 mass% or more and 25 mass% or less.
不織布層Cに含まれる細繊維径不織布の平均繊維径が0.05μm以上、2μm以下であり、前記太繊維径不織布の平均孔径が、前記細繊維径不織布の平均孔径の1.25倍以上、2.7倍以下である請求項1に記載の筒状フィルター。 The average fiber diameter of the fine fiber diameter nonwoven fabric contained in the nonwoven fabric layer C is 0.05μm or more and 2μm or less, before the average pore diameter of KiFutoshi fiber diameter nonwoven, or 1.25 times the average pore diameter of the fine fiber diameter nonwoven The cylindrical filter according to claim 1, which is 2.7 times or less. 不織布層Cに含まれる細繊維径不織布が、巻き回した長さの50%以上の部分で、太繊維径不織布と重ね合わせて積層した状態で巻き回されている請求項1又は2に記載の筒状フィルター。   The thin fiber diameter non-woven fabric contained in the non-woven fabric layer C is wound in a state where 50% or more of the wound length is overlapped and laminated with the thick fiber diameter non-woven fabric. Tubular filter. 不織布層Cにおいて、最も流入側に位置する細繊維径不織布が、太繊維径不織布を重ねた状態で巻き回された不織布層となっている請求項1〜3のいずれか1項に記載の筒状フィルター。   The tube according to any one of claims 1 to 3, wherein the non-woven fabric layer C is a non-woven fabric layer wound in a state where the fine fiber-diameter non-woven fabric located closest to the inflow side is piled up with the large-fiber-diameter non-woven fabric. Filter. 不織布層Cが不織布層Bに接しており、不織布層Cにおいて不織布層Bに接している部分が、細繊維径不織布と太繊維径不織布を重ね合わせた状態で巻き回した不織布層である請求項4に記載の筒状フィルター。   The nonwoven fabric layer C is in contact with the nonwoven fabric layer B, and the portion of the nonwoven fabric layer C that is in contact with the nonwoven fabric layer B is a nonwoven fabric layer wound in a state where the fine fiber diameter nonwoven fabric and the thick fiber diameter nonwoven fabric are overlapped. 4. The cylindrical filter according to 4. 不織布層A、不織布層B及び不織布層Cを構成する不織布が、いずれもポリプロピレン樹脂からなる単一繊維で構成された不織布である請求項1〜5のいずれか1項に記載の筒状フィルター。   The tubular filter according to any one of claims 1 to 5, wherein each of the nonwoven fabrics constituting the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C is a nonwoven fabric composed of a single fiber made of polypropylene resin. 不織布層A、不織布層Bを構成する不織布、及び太繊維径不織布が、いずれもメルトブローン不織布であり、細繊維径不織布が、メルトブローン不織布、又はエレクトロスピニング法で得られた不織布である請求項1〜6のいずれか1項に記載の筒状フィルター。   The nonwoven fabric layer A, the nonwoven fabric constituting the nonwoven fabric layer B, and the thick fiber diameter nonwoven fabric are all meltblown nonwoven fabrics, and the thin fiber diameter nonwoven fabric is a meltblown nonwoven fabric or a nonwoven fabric obtained by an electrospinning method. The cylindrical filter according to any one of 6. 不織布層A、及び不織布層Bがそれぞれ1種類のメルトブローン不織布で構成され、不織布層Cが、1種類の細繊維径不織布及び1種類の太繊維径不織布のみで構成されている請求項7に記載の筒状フィルター。   The nonwoven fabric layer A and the nonwoven fabric layer B are each composed of one type of melt blown nonwoven fabric, and the nonwoven fabric layer C is composed of only one type of fine fiber diameter nonwoven fabric and one type of thick fiber diameter nonwoven fabric. Cylindrical filter. 前記筒状フィルターにおいて、下記の測定方法で測定したろ過寿命と、ろ過効率が下記の条件(a)、(b)、(c)のうち、いずれかの条件を満たす請求項1〜8のいずれか1項に記載の筒状フィルター。
条件(a):ろ過寿命が380リットル以上、かつ直径0.2μmの粒子のろ過効率が80%以上。
条件(b):ろ過寿命が480リットル以上、かつ直径0.3μmの粒子のろ過効率が80%以上。
条件(c):ろ過寿命が680リットル以上、かつ直径0.45μmの粒子のろ過効率が80%以上。
[ろ過寿命]
JIS Z 8901に準ずる試験用粉体(JIS11種)を水に分散させて濃度20ppmの試験用懸濁液を作製する。次に試験用懸濁液を均一に攪拌しながら筒状フィルターの外周側から内周側中空部へ向かって、20リットル/分の流量で通過させ、この流量を維持するための通水圧力が0.2MPaになったときの総通水量(リットル)を筒状フィルターのろ過寿命とする。
[ろ過効率]
JIS Z 8901に準ずる試験用粉体(JIS11種)を水に分散させて濃度20ppmの試験用懸濁液を作製する。次に試験用懸濁液を均一に攪拌しながら筒状フィルターの外周側から内周側中空部へ向かって、20リットル/分の流量で通過させる。ろ過を開始してから1分後に、筒状フィルター通過した試験用懸濁液を採取する。筒状フィルターを採取する前の試験用懸濁液と、ろ過処理後の試験用懸濁液について、レーザー回折/散乱式粒度分布計(商品名LA−910、株式会社
堀場製作所製)にて粒度分布を測定し、粒子径が0.2μm、0.3μm及び0.45μmの粒子に対するろ過効率を、ろ過前、ろ過後の粒度分布から計算した。
The cylindrical filter according to any one of claims 1 to 8, wherein the filtration life measured by the following measurement method and the filtration efficiency satisfy any one of the following conditions (a), (b), and (c): The cylindrical filter of Claim 1.
Condition (a): Filtration life is 380 liters or more, and the filtration efficiency of particles having a diameter of 0.2 μm is 80% or more.
Condition (b): Filtration life is 480 liters or more, and filtration efficiency of particles having a diameter of 0.3 μm is 80% or more.
Condition (c): The filtration life is 680 liters or more, and the filtration efficiency of particles having a diameter of 0.45 μm is 80% or more.
[Filtration life]
A test powder according to JIS Z 8901 (JIS 11 species) is dispersed in water to prepare a test suspension having a concentration of 20 ppm. Next, the test suspension is allowed to pass at a flow rate of 20 liters / minute from the outer peripheral side of the cylindrical filter toward the inner peripheral side hollow portion while stirring uniformly, and the water flow pressure for maintaining this flow rate is The total water flow (liter) at 0.2 MPa is defined as the filtration life of the cylindrical filter.
[Filtration efficiency]
A test powder according to JIS Z 8901 (JIS 11 species) is dispersed in water to prepare a test suspension having a concentration of 20 ppm. Next, the test suspension is passed at a flow rate of 20 liters / minute from the outer peripheral side of the cylindrical filter toward the inner peripheral side hollow portion while stirring uniformly. One minute after the start of filtration, the test suspension that has passed through the cylindrical filter is collected. About the suspension for test before collecting the cylindrical filter and the suspension for test after the filtration treatment, the particle size is measured with a laser diffraction / scattering particle size distribution meter (trade name LA-910, manufactured by Horiba, Ltd.). The distribution was measured, and the filtration efficiency for particles having a particle size of 0.2 μm, 0.3 μm, and 0.45 μm was calculated from the particle size distribution before and after filtration.
JP2013235405A 2013-11-13 2013-11-13 Cylindrical filter Active JP6340186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013235405A JP6340186B2 (en) 2013-11-13 2013-11-13 Cylindrical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013235405A JP6340186B2 (en) 2013-11-13 2013-11-13 Cylindrical filter

Publications (2)

Publication Number Publication Date
JP2015093259A JP2015093259A (en) 2015-05-18
JP6340186B2 true JP6340186B2 (en) 2018-06-06

Family

ID=53196044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235405A Active JP6340186B2 (en) 2013-11-13 2013-11-13 Cylindrical filter

Country Status (1)

Country Link
JP (1) JP6340186B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6917065B2 (en) * 2018-11-27 2021-08-11 株式会社田中 Drainage port combined with weed control members
TW202142302A (en) * 2020-04-30 2021-11-16 日商捷恩智股份有限公司 Depth filter
WO2024202381A1 (en) * 2023-03-24 2024-10-03 Jnc株式会社 Depth filter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791775B2 (en) * 1988-05-23 1998-08-27 東洋濾紙株式会社 Nonwoven fabric wound type cartridge filter
JPH0427403A (en) * 1990-05-18 1992-01-30 Japan Vilene Co Ltd Cartridge filter
JP3373877B2 (en) * 1993-01-22 2003-02-04 日本バイリーン株式会社 Nonwoven fabric having pore diameter gradient and method for producing the same
DE69729936T2 (en) * 1996-09-25 2005-07-28 Chisso Corp. HIGH PRECISION FILTER
JPH11156125A (en) * 1997-12-01 1999-06-15 Roki Techno Co Ltd Depth type filter
JP4139141B2 (en) * 2002-05-31 2008-08-27 大和紡績株式会社 Cylindrical filter and manufacturing method thereof
JP5823205B2 (en) * 2011-08-04 2015-11-25 ダイワボウホールディングス株式会社 Cartridge filter

Also Published As

Publication number Publication date
JP2015093259A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP6050752B2 (en) Cartridge filter including combination of depth filter and submicron filter and RO pretreatment method
US20160256805A1 (en) Filter Medium, Method for Producing a Filter Medium and a Filter Element Having a Filter Medium
JP6138812B2 (en) Filter material
JP5823205B2 (en) Cartridge filter
KR100875842B1 (en) Filter cartridge
JP6220242B2 (en) filter
CN105828903A (en) Filter media with fine staple fibers
JP7248401B2 (en) depth filter
JP6340186B2 (en) Cylindrical filter
JP7368452B2 (en) depth filter
JP5836190B2 (en) Cylindrical filter
JP5836191B2 (en) Cylindrical filter
TWI685370B (en) filter
JP2009112887A (en) Filter medium, its manufacturing method, and cartridge filter
JP6927710B2 (en) filter
JP3580252B2 (en) Filter cartridge
JP5385524B2 (en) Cartridge filter
TW585947B (en) Filter cartridge and process for producing the same
JP2001321619A (en) Filter cartridge
JP4604351B2 (en) Filter cartridge
JP3436178B2 (en) Filter cartridge
JP6560101B2 (en) Pleated filter
JP2020157297A (en) Cartridge filter
JP2004000851A (en) Cylindrical filter and its production method
JP3712464B2 (en) Cartridge filter and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180330

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180514

R150 Certificate of patent or registration of utility model

Ref document number: 6340186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250