JP6339921B2 - Short circuit element and compensation circuit using the same - Google Patents
Short circuit element and compensation circuit using the same Download PDFInfo
- Publication number
- JP6339921B2 JP6339921B2 JP2014223363A JP2014223363A JP6339921B2 JP 6339921 B2 JP6339921 B2 JP 6339921B2 JP 2014223363 A JP2014223363 A JP 2014223363A JP 2014223363 A JP2014223363 A JP 2014223363A JP 6339921 B2 JP6339921 B2 JP 6339921B2
- Authority
- JP
- Japan
- Prior art keywords
- short
- heating
- circuit
- electrode
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 claims description 163
- 239000004020 conductor Substances 0.000 claims description 119
- 239000000758 substrate Substances 0.000 claims description 28
- 230000020169 heat generation Effects 0.000 claims description 20
- 230000005856 abnormality Effects 0.000 claims description 14
- 239000000155 melt Substances 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 238000002844 melting Methods 0.000 description 23
- 230000008018 melting Effects 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Fuses (AREA)
Description
本発明は、基板上に発熱抵抗体とヒューズエレメントを設けた短絡素子、及び、これを用いて電子機器内の異常部品のみを排除する補償回路に関する。 The present invention relates to a short-circuit element in which a heating resistor and a fuse element are provided on a substrate, and a compensation circuit that eliminates only abnormal parts in an electronic device using the short-circuit element.
従来より、多数の発光ダイオード(LED:Light Emitting Diode)を光源として使用するLED照明装置では、一部の発光ダイオードが故障しても、照明装置として支障なく使用できるようにするために、直列接続されたLED素子の個々に短絡素子を並列に接続し、LEDの異常時に所定の電圧で短絡素子が短絡して、故障した発光ダイオード以外の発光ダイオードは継続して発光するようにしている(例えば、特許文献1参照)。 Conventionally, in LED lighting devices that use a large number of light emitting diodes (LEDs) as light sources, even if some of the light emitting diodes fail, they are connected in series so that they can be used without any problem as a lighting device. A short-circuit element is connected in parallel to each of the LED elements, and when the LED is abnormal, the short-circuit element is short-circuited at a predetermined voltage, and light-emitting diodes other than the failed light-emitting diode continuously emit light (for example, , See Patent Document 1).
上記特許文献1の開示技術では、電極の間に金属層と絶縁障壁層とを交互に多数積層させてなるトンネル接合素子が短絡素子として用いられている。 In the technique disclosed in Patent Document 1, a tunnel junction element in which a large number of metal layers and insulating barrier layers are alternately stacked between electrodes is used as a short-circuit element.
また、充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。 Many secondary batteries that can be charged and used repeatedly are processed into battery packs and provided to users. Particularly in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, in general, a battery pack incorporates a number of protection circuits such as overcharge protection and overdischarge protection, It has a function of shutting off the output of the battery pack in a predetermined case.
この種の保護素子には、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行うものがある。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大な異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。 This type of protection element includes an overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack. However, when the FET switch is short-circuited for some reason, a lightning surge or the like is applied and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell, or excessively abnormal Even when the voltage is output, the battery pack and the electronic device must be protected from accidents such as ignition.
そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられている。 Therefore, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used. .
このようなリチウムイオン二次電池等向けの保護回路の保護素子としては、電流経路上の第1の電極、発熱体引出電極、第2の電極間に亘って可溶導体を接続して電流経路の一部をなし、この電流経路上の可溶導体を、過電流による自己発熱、あるいは保護素子内部に設けた発熱体によって溶断するものがある。このような保護素子では、溶融した液体状の可溶導体を発熱体に繋がる導体層上に集めることにより電流経路を遮断する(例えば、特許文献2参照)。 As a protection element of a protection circuit for such a lithium ion secondary battery or the like, a soluble conductor is connected between the first electrode, the heating element extraction electrode, and the second electrode on the current path, and the current path Some of the fusible conductors on the current path are fused by self-heating due to overcurrent or by a heating element provided inside the protection element. In such a protective element, the current path is interrupted by collecting the molten liquid soluble conductor on the conductor layer connected to the heating element (see, for example, Patent Document 2).
また、例えば電機自動車等の駆動用電源として用いられる複数の電池セルを収納してなるバッテリパックでは、当該バッテリパック内において複数接続された電池セルを電流ライン上から切り離して、この切り離した電池セルに相当する回路部分を短絡させる際に、電流遮断素子や電池セル短絡素子が使用されている(例えば、特許文献3参照)。 For example, in a battery pack containing a plurality of battery cells used as a driving power source for an electric vehicle or the like, a plurality of connected battery cells in the battery pack are separated from the current line, and the separated battery cells are separated. When a circuit portion corresponding to is short-circuited, a current interruption element or a battery cell short-circuit element is used (see, for example, Patent Document 3).
ところで、本件出願人は、上記特許文献1に開示されているLED照明装置に対応することが可能な短絡素子にとして、外部からの信号により発熱体を動作させ、可溶導体を溶融させることにより、電流経路を遮断する機能と、回路を短絡する機能を有するヒューズ素子からなる短絡素子を先に提案している(例えば、特願2013−20756、特願2013−23171、特願2013−24643参照)。 By the way, the applicant of the present invention operates a heating element by a signal from the outside as a short-circuit element that can correspond to the LED lighting device disclosed in Patent Document 1, and melts a soluble conductor. Have previously proposed a short-circuit element composed of a fuse element having a function of interrupting a current path and a function of short-circuiting a circuit (see, for example, Japanese Patent Application Nos. 2013-20756, 2013-23171, and 2013-24643). ).
上記短絡素子は、基本的に、通電により発熱する発熱体と、上記発熱体の発熱により溶融される可溶導体と、上記可溶導体の溶融により短絡される短絡部と、上記可溶導体の溶融により電流経路を遮断して上記発熱体の通電を停止させるヒューズ部を備える。 The short-circuit element basically includes a heating element that generates heat when energized, a soluble conductor that is melted by heat generation of the heating element, a short-circuit part that is short-circuited by melting of the soluble conductor, and the soluble conductor. A fuse portion for interrupting the current path by melting and stopping energization of the heating element is provided.
そして、この短絡素子は、異常検知機能を有する回路に搭載され、原理的に、次のように動作する。
(1)異常検知時に外部からの信号により動作し、通電により発熱体が発熱する。
(2)上記発熱体の発熱により可溶導体が溶融し、短絡部が短絡する。
(3)上記発熱体の発熱により可溶導体が溶融してヒューズ部の電流経路を遮断し、上記発熱体の通電を停止する。
(4)動作完了
このような動作を行う短絡素子では、(3)の遮断動作により発熱体の通電を停止すると、発熱体の温度は下がってしまうので、(2)の短絡動作よりも早く(3)の遮断動作が行われてしまうと、正常に(2)の短絡動作を行うことができなくなってしまう。したがって、(2)、(3)の動作順序を必ず守る必要がある。
This short-circuit element is mounted on a circuit having an abnormality detection function, and in principle operates as follows.
(1) It operates by an external signal when an abnormality is detected, and the heating element generates heat when energized.
(2) The soluble conductor is melted by the heat generated by the heating element, and the short circuit portion is short-circuited.
(3) The fusible conductor melts due to the heat generated by the heating element, interrupts the current path of the fuse portion, and stops energization of the heating element.
(4) Completion of operation In the short-circuit element that performs such an operation, when the energization of the heating element is stopped by the interruption operation of (3), the temperature of the heating element is lowered, so that the temperature of the heating element is lowered earlier than the short-circuit operation of (2) If the blocking operation of 3) is performed, the short circuit operation of (2) cannot be performed normally. Therefore, it is necessary to always observe the operation order of (2) and (3).
しかしながら、1つの発熱体により短絡部とヒューズ部が同じように加熱されるので、短絡部とヒューズ部の可溶導体が同時に溶融してしまい、遮断動作と短絡動作に時間的な差が少ないために、短絡後の導通抵抗が不安定になる等、(2)の短絡動作に失敗する虞がある。 However, since the short-circuit part and the fuse part are heated in the same way by one heating element, the fusible conductors of the short-circuit part and the fuse part melt at the same time, and there is little time difference between the shut-off operation and the short-circuit operation. In addition, the short circuit operation of (2) may fail, for example, the conduction resistance after the short circuit becomes unstable.
また、上記特許文献3の開示技術では、遮断動作と短絡動作を一つの電源を用いてスイッチで2つのヒーターを同時に通電して行っている。各動作が完了するまでの時間的な差について言及されていないが、2つのヒーターは動作完了後も電流は流れるままとなり、別の検出回路で動作の完了を検出してスイッチを改めて切る必要がある。 In the technique disclosed in Patent Document 3, the interruption operation and the short-circuit operation are performed by simultaneously energizing two heaters with a switch using a single power source. Although there is no mention of the time difference until each operation is completed, the currents of the two heaters continue to flow after the operation is completed, and it is necessary to detect the completion of the operation with another detection circuit and switch it off again. is there.
そこで、本発明の目的は、上述の如き実状に鑑み、より確実な短絡動作と短絡後の導通抵抗の安定化を実現し、確実にバイパス経路を形成することができるようにした短絡素子、およびこれを用いた補償回路を提供することにある。 Therefore, in view of the actual situation as described above, the object of the present invention is to realize a more reliable short circuit operation and stabilization of the conduction resistance after a short circuit, and to reliably form a bypass path, and An object of the present invention is to provide a compensation circuit using this.
本発明の他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。 Other objects of the present invention and specific advantages obtained by the present invention will become more apparent from the description of embodiments described below.
本発明では、信号経路における短絡部を短絡するための可溶導体とヒーター経路におけるヒューズ部の可溶導体を分離する構造とし、かつヒーター通電による加熱の作用において短絡部とヒューズ部の各可溶導体間で加熱量に差を生じさせる構造を持たせ、短絡部の可溶導体の溶融の動作時間がヒューズ部の可溶導体の溶断の動作時間より常に早くなるという関係を構造によって担保することで、短絡素子としての安定した短絡動作を保証する。 In the present invention, the fusible conductor for short-circuiting the short-circuit portion in the signal path and the fusible conductor of the fuse portion in the heater path are separated from each other, and each fusible portion of the short-circuit portion and the fuse portion is subjected to heating by heater energization. Provide a structure that causes a difference in the amount of heating between conductors, and ensure that the melting operation time of the fusible conductor in the short circuit part is always faster than the fusing operation time of the fusible conductor in the fuse part. Thus, stable short circuit operation as a short circuit element is ensured.
すなわち、ヒーター通電時に、短絡部、ヒューズ部それぞれの可溶導体溶融の事象を独立にし、かつ短絡部の可溶導体が溶融してからヒューズ部の可溶導体が溶融するまでの時間差、すなわち短絡動作とヒューズ溶断動作の時間差を常に一定に確保することにより、短絡と溶断の機能発現(短絡後ヒーター切断)が安定化し、短絡素子としての確実な短絡動作を実現する。 That is, when the heater is energized, the meltable conductor melting events of the short circuit part and the fuse part are made independent, and the time difference from the melting of the fusible conductor of the short circuit part to the melting of the fusible conductor of the fuse part, that is, the short circuit By ensuring a constant time difference between the operation and the fuse blowing operation, the short-circuiting and fusing function expression (heater cutting after short-circuiting) is stabilized, and a reliable short-circuit operation as a short-circuiting element is realized.
本発明は、短絡素子であって、絶縁基板と、上記絶縁基板に設けられた発熱抵抗体からなる発熱部と、上記絶縁基板に互いに隣接して設けられた第1の電極および第2の電極と、上記発熱抵抗体の発熱により加熱されることによって溶融して上記第1の電極と上記第2の電極とを短絡する第1の可溶導体とからなる短絡部と、上記絶縁基板に上記第1の電極と隣接して設けられるとともに、上記発熱抵抗体に電気的に接続された第3の電極と、上記第1の電極と上記第3の電極の間に上記発熱抵抗体と直列接続された状態で設けられることにより上記発熱抵抗体に流す電流の電流経路を構成し、上記発熱抵抗体の発熱により加熱されることによって溶融して上記電流経路を遮断する第2の可溶導体とからなるヒューズ部とを備え、上記発熱部は、上記発熱抵抗体の発熱により、上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有することを特徴とする。 The present invention is a short-circuit element, and includes an insulating substrate, a heat generating portion formed of a heating resistor provided on the insulating substrate, and a first electrode and a second electrode provided adjacent to each other on the insulating substrate. And a short-circuit portion comprising a first soluble conductor that melts and short-circuits the first electrode and the second electrode by being heated by the heat generated by the heat-generating resistor, and the insulating substrate has the above-mentioned A third electrode provided adjacent to the first electrode and electrically connected to the heating resistor, and connected in series with the heating resistor between the first electrode and the third electrode A second soluble conductor that forms a current path for a current that flows through the heating resistor by being provided in a heated state and that melts by being heated by the heat generated by the heating resistor and blocks the current path; And the heat generating part. By heating of the heating resistor, characterized by having a a heating amount was made different structure such that the first fusible conductor melts faster than the second fusible conductor.
本発明に係る短絡素子において、上記発熱部は、例えば、発熱量の異なる2つの発熱抵抗体を用いて上記加熱量に差を持たせた構造を有するものとすることができる。 In the short-circuit element according to the present invention, the heat generating portion may have, for example, a structure in which the heating amount is made different using two heat generating resistors having different heat generation amounts.
例えば、上記発熱部は、互いに抵抗値が異なる2つの発熱抵抗体を用いることにより、上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造とすることができる。上記互いに抵抗値が異なる2つの発熱抵抗体は、異なるパターン幅にすることにより形成することができる。また、上記発熱量の異なる2つの発熱抵抗体は、比抵抗が異なる抵抗材料で形成することができる。 For example, the heat generating part has a difference in heating amount so as to melt the first soluble conductor faster than the second soluble conductor by using two heat generating resistors having different resistance values. It can be set as the structure. The two heating resistors having different resistance values can be formed by using different pattern widths. The two heat generating resistors having different heat generation amounts can be formed of resistance materials having different specific resistances.
また、本発明に係る短絡素子において、上記発熱部は、例えば、上記加熱量の異なる短絡部用発熱領域とヒューズ部用発熱領域を有する1つの発熱抵抗体を用いて上記加熱量に差を持たせた構造を有するものとすることができる。 Further, in the short-circuit element according to the present invention, the heating unit has a difference in the heating amount by using, for example, one heating resistor having a short-circuiting heating region and a fuse heating region having different heating amounts. It is possible to have a structured.
例えば、上記発熱抵抗体は、上記短絡部用発熱領域と上記ヒューズ部用発熱領域の発熱量が異なるものとすることができる。例えば、上記発熱抵抗体は、上記短絡部用発熱領域は上記短絡部の直下に配置され、上記ヒューズ部用発熱領域は上記ヒューズ部の直下からずらして配置されることにより、上記加熱量に差を持たせた構造とすることができる。また、上記発熱抵抗体は、上記短絡部用発熱領域から上記短絡部までの距離を上記ヒューズ部用発熱領域から上記ヒューズ部までの距離よりも短くすることにより上記加熱量に差を持たせた構造とすることができる。 For example, the heat generating resistor may have different heat generation amounts in the heat generating area for the short circuit portion and the heat generating area for the fuse portion. For example, in the heating resistor, the heating area for the short-circuit portion is disposed immediately below the short-circuit portion, and the heating area for the fuse portion is shifted from directly below the fuse portion, so that the heating amount is different. It can be set as the structure which gave. Further, the heating resistor has a difference in the heating amount by making the distance from the short-circuit heating region to the short-circuit portion shorter than the distance from the fuse heating region to the fuse portion. It can be a structure.
また、本発明に係る短絡素子において、上記発熱部は、例えば、上記短絡部に近接して設けられた1つの発熱抵抗体からなり、上記発熱抵抗体に近接している上記短絡部の上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有するものとすることができる。 Further, in the short-circuit element according to the present invention, the heat-generating part is composed of, for example, one heat-generating resistor provided close to the short-circuit part, and the first of the short-circuit parts close to the heat-generating resistor. It is possible to have a structure in which the amount of heating is different so that one soluble conductor is melted faster than the second soluble conductor.
さらに、本発明に係る短絡素子において、上記第1の電極と上記第2の電極とを短絡する上記第1の可溶導体は、上記第1の電極と上記第2の電極の少なくとも一方の電極上に設けられているものとすることができる。 Furthermore, in the short-circuit element according to the present invention, the first soluble conductor that short-circuits the first electrode and the second electrode is at least one electrode of the first electrode and the second electrode. It can be provided above.
本発明は、異常検知機能を有する回路に搭載された電子部品の異常時に上記電子部品を迂回するバイパス電流経路を短絡素子により形成する補償回路であって、上記短絡素子は、絶縁基板と、上記絶縁基板に設けられた発熱抵抗体からなる発熱部と、上記絶縁基板に互いに隣接して設けられた第1、第2の電極と、上記発熱抵抗体の発熱により加熱されることによって溶融して上記第1の電極と上記第2の電極とを短絡する第1の可溶導体とからなる短絡部と、上記絶縁基板に上記第1の電極と隣接して設けられるとともに、上記発熱抵抗体に電気的に接続された第3の電極と、上記第1の電極と上記第3の電極の間に上記発熱抵抗体と直列接続された状態で設けられることにより上記発熱抵抗体に流す電流の電流経路を構成し、上記発熱抵抗体の発熱により加熱されることによって溶融して上記電流経路を遮断する第2の可溶導体とからなるヒューズ部とを備え、上記発熱部は、上記発熱抵抗体の発熱により、上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有し、上記電子部品に上記短絡部が並列接続されていることを特徴とする。 The present invention is a compensation circuit for forming a bypass current path that bypasses the electronic component in the event of an abnormality of the electronic component mounted on the circuit having an abnormality detection function, the shorting element comprising an insulating substrate, The heat generating portion formed of the heat generating resistor provided on the insulating substrate, the first and second electrodes provided adjacent to each other on the insulating substrate, and the heat generated by the heat generating resistor are melted to be melted. The first electrode and the second electrode are short-circuited by a first soluble conductor that short-circuits the first electrode, and the insulating substrate is provided adjacent to the first electrode. A third electrode that is electrically connected; and a current that flows through the heating resistor by being provided in series with the heating resistor between the first electrode and the third electrode. Path, and A fuse part composed of a second fusible conductor that melts by being heated by the heat of the body and interrupts the current path, and the heat generating part is caused by the heat generated by the heating resistor. It has a structure in which the amount of heating is different so that the soluble conductor is melted faster than the second soluble conductor, and the short-circuit portion is connected in parallel to the electronic component.
本発明に係る補償回路において、上記バイパス電流経路は、上記短絡素子に直列接続された上記電子部品の内部抵抗相当のバイパス抵抗と上記短絡素子にて形成されるものとすることができる。 In the compensation circuit according to the present invention, the bypass current path may be formed by a bypass resistor corresponding to an internal resistance of the electronic component connected in series to the short-circuit element and the short-circuit element.
本発明では、信号経路における短絡部を短絡するための可溶導体とヒーター経路におけるヒューズ部の可溶導体を分離する構造とし、かつヒーター通電による加熱の作用において短絡部とヒューズ部の各可溶導体間で加熱量に差を生じさせる構造を持たせることにより、短絡部の可溶導体の溶融の動作時間がヒューズ部の可溶導体の溶断の動作時間より常に早くなるという関係を構造によって担保し、短絡素子としての安定した短絡動作を保証することができる。 In the present invention, the fusible conductor for short-circuiting the short-circuit portion in the signal path and the fusible conductor of the fuse portion in the heater path are separated from each other, and each fusible portion of the short-circuit portion and the fuse portion is subjected to heating by heater energization. By providing a structure that causes a difference in the amount of heat between conductors, the structure ensures that the melting operation time of the fusible conductor in the short circuit part is always faster than the fusing operation time of the fusible conductor in the fuse part. In addition, a stable short-circuit operation as a short-circuit element can be ensured.
したがって、本発明によれば、より確実な短絡動作と短絡後の導通抵抗の安定化を実現し、確実にバイパス経路を形成することができるようにした短絡素子、およびこれを用いた補償回路を提供することができる。 Therefore, according to the present invention, a short-circuit element that realizes more reliable short-circuit operation and stabilization of the conduction resistance after the short-circuit, and can reliably form a bypass path, and a compensation circuit using the short-circuit element Can be provided.
以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることはもちろんである。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
本発明は、例えば、図1の(A)、(B)に示すような構造の短絡素子100に適用される。図1の(A)は、短絡素子100の平面図を示し、図1の(B)は、(A)における短絡素子100のA−A線断面矢視図を示す。 The present invention is applied, for example, to a short-circuit element 100 having a structure as shown in FIGS. 1A shows a plan view of the short-circuit element 100, and FIG. 1B shows a cross-sectional view taken along the line AA of the short-circuit element 100 in FIG.
この短絡素子100は、異常検知機能を有する回路に搭載される短絡素子であって、異常検知時に外部から通電されることにより発熱する発熱部10と、上記発熱部10の発熱により可溶導体が溶融してバイパス電流経路を形成する短絡部20と、上記発熱部10の発熱により可溶導体が溶融して上記発熱部10の電流経路を遮断するヒューズ部30を備える。 The short-circuit element 100 is a short-circuit element mounted on a circuit having an abnormality detection function, and a heat-generating part 10 that generates heat when energized from the outside at the time of abnormality detection, and a soluble conductor is generated by the heat generation of the heat-generation part 10. A short-circuit unit 20 that melts to form a bypass current path and a fuse unit 30 that melts a soluble conductor by heat generated by the heat generating unit 10 and interrupts the current path of the heat generating unit 10 are provided.
上記発熱部10は、絶縁基板1上に設けられた発熱抵抗体2からなる。 The heat generating portion 10 includes a heat generating resistor 2 provided on the insulating substrate 1.
上記絶縁基板1は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板1は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。 The insulating substrate 1 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like. In addition, the insulating substrate 1 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature at which the fuse is blown.
上記発熱抵抗体2は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板1上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって上記発熱抵抗体2は形成される。 上記発熱抵抗体2は、上記絶縁基板1上において絶縁層3により被覆されている。上記絶縁層3は、発熱抵抗体2の熱を効率よく伝える例えばガラス層からなる。 The heating resistor 2 has a relatively high resistance value and is a conductive member that generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. The heating resistance is obtained by mixing a powder of these alloys, compositions, or compounds with a resin binder or the like, forming a paste on the insulating substrate 1 using a screen printing technique, and firing the pattern. The body 2 is formed. The heating resistor 2 is covered with an insulating layer 3 on the insulating substrate 1. The insulating layer 3 is made of, for example, a glass layer that efficiently transfers the heat of the heating resistor 2.
また、上記短絡部20は、上記絶縁層3上に互いに隣接して設けられた第1の電極4Aおよび第2の電極4Bと、上記発熱部10の発熱により加熱されることによって溶融して上記第1の電極4Aと上記第2の電極4Bとを短絡する第1の可溶導体5とからなる。 Further, the short-circuit portion 20 is melted by being heated by the heat generated by the first electrode 4A and the second electrode 4B provided adjacent to each other on the insulating layer 3 and the heat-generating portion 10. It consists of the 1st soluble conductor 5 which short-circuits 4 A of 1st electrodes, and the said 2nd electrode 4B.
さらに、上記ヒューズ部30は、上記絶縁基板1上に設けられ、上記第2の電極4Bと所定の間隔をもって形成された第3の電極4Cと上記第2の電極4Bとの間を電気的に接続しており、上記第2の電極4Bと第4の電極4Dの間に上記発熱抵抗体2と直列接続された状態で設けられることにより上記発熱抵抗体2に流す電流の電流経路を構成し、上記発熱抵抗体2の発熱により加熱されることによって溶融して上記電流経路を遮断する第2の可溶導体6からなる。 Further, the fuse portion 30 is provided on the insulating substrate 1 and electrically connects between the second electrode 4B and the third electrode 4C formed at a predetermined interval and the second electrode 4B. Are connected in series and connected in series with the heating resistor 2 between the second electrode 4B and the fourth electrode 4D, thereby forming a current path for the current flowing through the heating resistor 2. The second fusible conductor 6 is melted by being heated by the heat generated by the heating resistor 2 and interrupts the current path.
第1、第2の可溶導体5,6は、発熱抵抗体2の発熱により速やかに溶融される低融点金属からなり、例えばSnを主成分とするPbフリーハンダを好適に用いることができる。また、第1、第2の可溶導体5,6は、低融点金属と、Ag、Cu又はこれらを主成分とする合金等の高融点金属との積層体であってもよい。高融点金属と低融点金属とを積層することによって、リフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、可溶導体が溶断するに至らない。かかる可溶導体は、低融点金属に高融点金属をメッキ技術を用いて成膜することによって形成してもよく、他の周知の積層技術、膜形成技術を用いることによって形成してもよい。 The first and second fusible conductors 5 and 6 are made of a low melting point metal that is rapidly melted by the heat generated by the heating resistor 2, and for example, Pb-free solder containing Sn as a main component can be suitably used. Moreover, the 1st, 2nd soluble conductors 5 and 6 may be a laminated body of a low melting point metal and a high melting point metal such as Ag, Cu or an alloy containing these as a main component. When reflow mounting is performed by laminating a high melting point metal and a low melting point metal, even if the reflow temperature exceeds the melting temperature of the low melting point metal layer and the low melting point metal melts, the soluble conductor will melt. It does n’t come. Such a soluble conductor may be formed by depositing a high melting point metal on a low melting point metal by using a plating technique, or may be formed by using another known lamination technique or film forming technique.
なお、第1、第2の可溶導体5,6の酸化防止、及び第1、第2の可溶導体5,6の溶融時における濡れ性を向上させるために、第1、第2の可溶導体5,6の上にはフラックス7が塗布されている。この短絡素子100では、上記短絡部20の第1の電極4Aと上記第2の電極4Bとを短絡するための上記第1の可溶導体5は、2分割された可溶導体5A、5Bとして上記第1の電極4Aと第2の電極4Bの両電極上に設けられているが、上記第1の電極4Aと上記第2の電極4Bの少なくとも一方の電極上に設けられていればよい。 In order to prevent oxidation of the first and second soluble conductors 5 and 6 and to improve the wettability when the first and second soluble conductors 5 and 6 are melted, the first and second possible conductors 5 and 6 are used. A flux 7 is applied on the molten conductors 5 and 6. In the short-circuit element 100, the first soluble conductor 5 for short-circuiting the first electrode 4A and the second electrode 4B of the short-circuit portion 20 is divided into two soluble conductors 5A and 5B. Although it is provided on both the first electrode 4A and the second electrode 4B, it may be provided on at least one of the first electrode 4A and the second electrode 4B.
以上のように、この短絡素子100は、上記絶縁基板1上に設けられた上記発熱部10、短絡部20及びヒューズ部30を備える。 As described above, the short-circuit element 100 includes the heat generating unit 10, the short-circuit unit 20, and the fuse unit 30 provided on the insulating substrate 1.
そして、この短絡素子100における上記発熱部10は、上記発熱抵抗体2に電流を流すことにより発生するジュール熱によって、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造を有している。 The heating unit 10 in the short-circuit element 100 causes the first soluble conductor 5 to move faster than the second soluble conductor 6 by Joule heat generated by passing a current through the heating resistor 2. It has a structure that gives a difference in heating amount so as to melt.
上記発熱部10、短絡部20及びヒューズ部30は、図2の(A)、(B)の回路図に示すように、上記短絡部20の第2の電極4Bと上記ヒューズ部30の第3の電極4Cの間に上記ヒューズ部30の第2の可溶導体6が接続され、第2の電極4Bと第4の電極4Dの間に上記第2の可溶導体6と上記発熱抵抗体2が直列接続された短絡素子100を構成している。上記第1の電極4Aには第1の外部接続端子T1が設けられ、上記第2の電極4Bには第2の外部接続端子T2が設けられ、上記第4の電極4Dには第3の外部接続端子T3が設けられており、上記第1の外部接続端子T1と第2の電極4Bに上記短絡部20が接続され、上記第2の外部接続端子T2と第3の外部接続端子T3に上記発熱抵抗体2と上記ヒューズ部30の第1の可溶導体5とが直列接続されている。 As shown in the circuit diagrams of FIGS. 2A and 2B, the heat generating unit 10, the short-circuit unit 20, and the fuse unit 30 include the second electrode 4 </ b> B of the short-circuit unit 20 and the third of the fuse unit 30. The second fusible conductor 6 of the fuse portion 30 is connected between the second electrode 4C and the second fusible conductor 6 and the heating resistor 2 between the second electrode 4B and the fourth electrode 4D. Constitutes a short-circuit element 100 connected in series. The first electrode 4A is provided with a first external connection terminal T1, the second electrode 4B is provided with a second external connection terminal T2, and the fourth electrode 4D is provided with a third external connection terminal. A connection terminal T3 is provided, the short-circuit portion 20 is connected to the first external connection terminal T1 and the second electrode 4B, and the second external connection terminal T2 and the third external connection terminal T3 are The heating resistor 2 and the first fusible conductor 5 of the fuse portion 30 are connected in series.
上記短絡部20は、この短絡素子100の非作動時における回路状態を図2の(A)に示すように、第1の外部接続端子T1と第2の外部接続端子T2の間、すなわち、第1の電極4Aと第2の電極4Bの間が通常は絶縁状態になっており、また、この短絡素子100の作動時における回路状態を図2の(B)に示すように、第3の外部接続端子T3から通電されて発熱部10の発熱抵抗体2が発熱することにより、まず、第1の可溶導体5が加熱されて溶融し、上記第1の電極4Aと上記第2の電極4Bの間、すなわち、第1の外部接続端子T1と第2の外部接続端子T2の間が短絡されるようになっている。 As shown in FIG. 2A, the short-circuit portion 20 is configured between the first external connection terminal T1 and the second external connection terminal T2 as shown in FIG. The first electrode 4A and the second electrode 4B are normally in an insulated state, and the circuit state during operation of the short-circuit element 100 is shown in FIG. When the heating resistor 2 of the heat generating portion 10 is heated by being energized from the connection terminal T3, first, the first soluble conductor 5 is heated and melted, and the first electrode 4A and the second electrode 4B. In other words, the first external connection terminal T1 and the second external connection terminal T2 are short-circuited.
そして、上記ヒューズ部30は、図2の(A)に示すように、この短絡素子100の非作動時には、発熱抵抗体2と直列接続された第2の可溶導体6を介して上記発熱抵抗体2に流す電流の電流経路を第2の外部接続端子T2と第3の外部接続端子T3の間、すなわち、上記第2の電極4Bと上記第4の電極4Dの間に構成しており、図2の(B)に示すように、この短絡素子100の作動時に、上記発熱部10の発熱抵抗体2が発熱することにより、上記第1の可溶導体5よりも遅れて加熱されて第2の可溶導体6が溶融し、上記電流経路を遮断するようになっている。 As shown in FIG. 2A, when the short-circuit element 100 is not in operation, the fuse portion 30 is connected to the heating resistor via the second fusible conductor 6 connected in series with the heating resistor 2. A current path of a current flowing through the body 2 is configured between the second external connection terminal T2 and the third external connection terminal T3, that is, between the second electrode 4B and the fourth electrode 4D. As shown in FIG. 2B, when the short-circuit element 100 is operated, the heating resistor 2 of the heat generating portion 10 generates heat, so that it is heated later than the first soluble conductor 5 and is heated first. The two soluble conductors 6 are melted to interrupt the current path.
ここで、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造は、例えば、図3に示すように、上記発熱抵抗体2として発熱量の異なる2つの発熱抵抗体2A,2Bを用いて構築することができる。 Here, as shown in FIG. 3, for example, as shown in FIG. 3, the heating resistor has a structure in which the first soluble conductor 5 is melted faster than the second soluble conductor 6. 2 can be constructed using two heat generating resistors 2A and 2B having different heat generation amounts.
すなわち、上記短絡部10の第1の可溶導体5(5A,5B)の直下に設けられる発熱抵抗体2Aは、上記ヒューズ部30の第2の可溶導体6の直下に設けられる発熱抵抗体2Bよりも大きな発熱量としておくことにより、上記2つの発熱抵抗体2A,2Bを同時に通電して発熱させても、上記発熱抵抗体2Bよりも発熱量の大きな発熱抵抗体2Aが直下に設けられた上記短絡部20の第1の可溶導体5(5A,5B)は、上記発熱抵抗体2Bが直下に設けられた上記ヒューズ部30の第2の可溶導体6よりも早く溶融され、図4の(A)に示すように、上記短絡部20の第1の可溶導体5(5A,5B)の溶融により上記第1の電極4Aと上記第2の電極4Bとが短絡されてから、図4の(B)に示すように、上記ヒューズ部30の第2の可溶導体6が溶融して上記電流経路を遮断することになる。 That is, the heating resistor 2A provided immediately below the first soluble conductor 5 (5A, 5B) of the short-circuit portion 10 is the heating resistor provided immediately below the second soluble conductor 6 of the fuse portion 30. By setting the heat generation amount larger than 2B, even if the two heat generation resistors 2A and 2B are energized simultaneously to generate heat, the heat generation resistor 2A having a larger heat generation amount than the heat generation resistor 2B is provided immediately below. Further, the first fusible conductor 5 (5A, 5B) of the short-circuit portion 20 is melted earlier than the second fusible conductor 6 of the fuse portion 30 in which the heating resistor 2B is provided immediately below. 4 (A), after the first electrode 4A and the second electrode 4B are short-circuited by melting the first soluble conductor 5 (5A, 5B) of the short-circuit portion 20, As shown in FIG. 4B, the second fuse section 30 It will cut off the current path 溶導 body 6 is melted.
上記2つの発熱抵抗体2A,2Bは、印加電圧が一定、すなわち、並列接続された状態では、抵抗値に発熱量が反比例するので、互いに抵抗値が異なるものとことするにより、発熱量の異なるものとすることができる。 In the two heating resistors 2A and 2B, the applied voltage is constant, that is, in a state where they are connected in parallel, the amount of heat generation is inversely proportional to the resistance value. Can be.
そして、同じ抵抗材料で上記2つの発熱抵抗体2A,2Bを形成する場合、抵抗値は、発熱抵抗体のパターンの断面積が一定であれば長さに比例し、また、長さが一定であれば断面積に反比例するので、発熱抵抗体のパターンの断面積又は長さを異なることなるものとすることにより、発熱抵抗体2A,2Bは、互いに抵抗値が異なるものとすることができる。 When the two heating resistors 2A and 2B are formed of the same resistance material, the resistance value is proportional to the length if the cross-sectional area of the pattern of the heating resistors is constant, and the length is constant. If there is, it is inversely proportional to the cross-sectional area, so that the resistance values of the heating resistors 2A and 2B can be different from each other by changing the cross-sectional area or length of the pattern of the heating resistors.
例えば、図5の(A)に示すように、発熱抵抗体2A,2Bは、異なるパターン幅で形成され、発熱抵抗体2Aのパタ−ン幅を発熱抵抗体2Bのパタ−ン幅よりも広くしておくことにより、図5の(B)の等価回路図に示すように、発熱抵抗体2Aの抵抗値R1を発熱抵抗体2Bの抵抗値R2よりも小さくした並列接続回路を構成し、発熱抵抗体2Aの発熱量を発熱抵抗体2Bの発熱量よりも大きくすることができる。 For example, as shown in FIG. 5A, the heating resistors 2A and 2B are formed with different pattern widths, and the pattern width of the heating resistor 2A is wider than the pattern width of the heating resistor 2B. As shown in the equivalent circuit diagram of FIG. 5B, a parallel connection circuit in which the resistance value R1 of the heating resistor 2A is made smaller than the resistance value R2 of the heating resistor 2B is formed. The heating value of the resistor 2A can be made larger than the heating value of the heating resistor 2B.
ここで、図5の(A),(B)に示す異なるパターン幅で形成された発熱抵抗体2A,2Bを備える発熱部10を設けた短絡素子100の実施例サンプルと従来構造の発熱部を設けた短絡素子の従来例サンプルについて、発熱部の印加電力は同じにしてそれぞれの短絡時間とヒューズ切断時間を測定した結果を、次の表1に示す。 Here, an example sample of the short-circuit element 100 provided with the heat generating portion 10 including the heat generating resistors 2A and 2B formed with different pattern widths shown in FIGS. Table 1 below shows the results of measuring the short-circuiting time and the fuse-cutting time of the conventional short-circuit sample provided with the same power applied to the heat generating portion.
この表1より、実施例サンプルは、従来例サンプルよりも短絡時間とヒューズ切断時間との時間差が大きく、平均で4.5倍ほど長くなっており、短絡素子としての動作が安定していることがわかる。 From Table 1, the example sample has a larger time difference between the short circuit time and the fuse cutting time than the conventional sample, and is about 4.5 times longer on average, and the operation as a short circuit element is stable. I understand.
また、上記2つの発熱抵抗体2A,2Bは、比抵抗の異なる抵抗材料で形成することにより互いに抵抗値が異なるものとすることもできる。例えば、銀を含有させることにより抵抗材料の比抵抗を調整することができる。 Further, the two heating resistors 2A and 2B may be formed of resistance materials having different specific resistances so as to have different resistance values. For example, the specific resistance of the resistive material can be adjusted by containing silver.
そして、例えば、図6の(A)に示すように、発熱抵抗体2A,2Bは、同形状のものであっても、発熱抵抗体2Aを発熱抵抗体2Bより比抵抗が小さい抵抗材料で形成することにより、図6の(B)の等価回路図に示すように、発熱抵抗体2Aの抵抗値R1を発熱抵抗体2Bの抵抗値R2よりも小さくした並列接続回路を構成し、発熱抵抗体2Aの発熱量を発熱抵抗体2Bの発熱量よりも大きくすることができる。 For example, as shown in FIG. 6A, even if the heating resistors 2A and 2B have the same shape, the heating resistor 2A is formed of a resistance material having a smaller specific resistance than the heating resistor 2B. Thus, as shown in the equivalent circuit diagram of FIG. 6B, a parallel connection circuit is formed in which the resistance value R1 of the heating resistor 2A is smaller than the resistance value R2 of the heating resistor 2B. The heating value of 2A can be made larger than the heating value of the heating resistor 2B.
このように、上記発熱抵抗体2として発熱量の異なる2つの発熱抵抗体2A,2Bを用いて、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造を構築することにより、短絡素子100は、短絡時間とヒューズ切断時間に確実に時間差を設けることができ、より確実な短絡動作を実現させることができる。 As described above, the two heat generating resistors 2A and 2B having different heat generation amounts are used as the heat generating resistor 2 so that the first soluble conductor 5 is melted earlier than the second soluble conductor 6. By constructing a structure that gives a difference in the amount of heating, the short-circuit element 100 can reliably provide a time difference between the short-circuit time and the fuse cutting time, and can realize a more reliable short-circuit operation.
以上の説明では、上記2つの発熱抵抗体2A,2Bは、印加電圧が一定、すなわち、並列接続されるものとして説明したが、直列接続され一定電流が流されるものであってもよい。すなわち、一定電流が流される構成の場合には発熱抵抗体の抵抗値が大きい程、発熱量が多くなるので、発熱抵抗体2Aの抵抗値を大きくすることにより、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造を構築することができる。 In the above description, the two heating resistors 2A and 2B have been described as having a constant applied voltage, that is, connected in parallel, but may be connected in series and allow a constant current to flow. That is, in the configuration in which a constant current flows, the larger the resistance value of the heating resistor, the greater the amount of heat generated. Therefore, by increasing the resistance value of the heating resistor 2A, the first soluble conductor 5 is increased. It is possible to construct a structure that gives a difference in the amount of heating so as to be melted faster than the second soluble conductor 6.
ここで、上記発熱部10は、上記加熱量の異なる上記短絡部用発熱領域と上記ヒューズ部用発熱領域を有する1つの発熱抵抗体を用いて上記加熱量に差を持たせた構造を有するものとすることもできる。 Here, the heating unit 10 has a structure in which the heating amount is made different by using one heating resistor having the heating region for the short circuit portion and the heating region for the fuse portion having different heating amounts. It can also be.
すなわち、上記発熱部10は、例えば図7の(A)に示すように、上記第1の可溶導体5を溶融させるための加熱を行う短絡部用発熱領域2Cと、上記第2の可溶導体6を溶融させるための加熱を行うヒューズ部用発熱領域2Dを有する1つの発熱抵抗体2を台形状のパターンに形成し、上記ヒューズ部用発熱領域2Dよりも短絡部用発熱領域2Cの抵抗値を小さくして、上記短絡部用発熱領域2C側に多くの電流を流すようにすることによって、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造とすることができる。 That is, the heat generating part 10 includes, for example, as shown in FIG. 7A, a short-circuit heat generating area 2C for heating to melt the first soluble conductor 5, and the second soluble part. One heating resistor 2 having a fuse portion heat generating region 2D for heating to melt the conductor 6 is formed in a trapezoidal pattern, and the resistance of the short portion heat generating region 2C is more than that of the fuse portion heat generating region 2D. The first soluble conductor 5 is melted faster than the second soluble conductor 6 by reducing the value so that a large amount of current flows through the short-circuit heating region 2C. It can be set as the structure which gives a difference in the amount of heating.
また、例えば図7の(B)に示すように、上記第1の可溶導体5を溶融させるための加熱を行う短絡部用発熱領域2Cと、上記第2の可溶導体6を溶融させるための加熱を行うヒューズ部用発熱領域2Dを有する1つの発熱抵抗体2をT字形状のパターンを形成し、上記ヒューズ部用発熱領域2Dよりも短絡部用発熱領域2Cの長さを短くすることにより抵抗値を小さくして、上記短絡部用発熱領域2C側に多くの電流を流すようにすることによって、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造とすることができる。 Further, for example, as shown in FIG. 7B, in order to melt the second soluble conductor 6 and the short-circuit heat generating area 2 </ b> C for heating to melt the first soluble conductor 5. One heating resistor 2 having a fuse portion heat generating region 2D that performs heating is formed in a T-shaped pattern, and the length of the short circuit portion heat generating region 2C is made shorter than that of the fuse portion heat generating region 2D. The first fusible conductor 5 is melted faster than the second fusible conductor 6 by reducing the resistance value so that a large amount of current flows through the short-circuit heating region 2C. Thus, it can be set as the structure which gives a difference in heating amount.
さらに、例えば図7の(C)に示すように、上記第1の可溶導体5を溶融させるための加熱を行う短絡部用発熱領域2Cと、上記第2の可溶導体6を溶融させるための加熱を行うヒューズ部用発熱領域2Dを有する1つの発熱抵抗体2をL字形状のパターンを形成し、上記短絡部用発熱領域2Cは上記短絡部20の直下に配置され、上記ヒューズ部用発熱領域2Dは上記ヒューズ部30の直下からずらして配置されることによって、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造とすることができる。 Further, for example, as shown in FIG. 7C, the short-circuit heating region 2C for heating to melt the first soluble conductor 5 and the second soluble conductor 6 are melted. An L-shaped pattern is formed on one heat generating resistor 2 having a heat generating area 2D for the fuse portion that performs heating, and the heat generating area 2C for the short-circuit portion is disposed immediately below the short-circuit portion 20 for the fuse portion. The heat generating region 2D is arranged so as to be shifted from directly below the fuse portion 30, thereby providing a difference in heating amount so that the first soluble conductor 5 is melted earlier than the second soluble conductor 6. It can be a structure.
また、上記発熱部10は、例えば図8の(A)に示すように、短絡部用発熱領域2Cと第1の可溶導体5との間隔をヒューズ部用発熱領域2Dを第2の可溶導体6との間隔よりも狭くした段差を有する絶縁層3の構造を採用することにより、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造とすることもできる。 Further, for example, as shown in FIG. 8A, the heat generating part 10 is configured such that the distance between the heat generating area 2C for the short circuit part and the first fusible conductor 5 is changed to the heat generating area 2D for the fuse part. By adopting the structure of the insulating layer 3 having a step that is narrower than the distance from the conductor 6, the heating amount is adjusted so that the first soluble conductor 5 is melted faster than the second soluble conductor 6. It can also be set as the structure which gives a difference.
また、上記発熱部10は、例えば図8の(B)に示すように、第1の可溶導体5を溶融させるための発熱抵抗体2Aを絶縁基板1の上面に配置し、第2の可溶導体6を溶融させるための発熱抵抗体2Bを絶縁基板1の下面に配置した構造とすることにより、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造とすることができる。 Further, as shown in FIG. 8B, for example, the heat generating portion 10 has a heat generating resistor 2A for melting the first soluble conductor 5 disposed on the upper surface of the insulating substrate 1, and the second possible By adopting a structure in which the heating resistor 2B for melting the molten conductor 6 is disposed on the lower surface of the insulating substrate 1, the first soluble conductor 5 is melted faster than the second soluble conductor 6. It can be set as the structure which gives a difference in heating amount.
さらに、上記発熱部10は、例えば図9に示すように、上記短絡部20に近接して設けられた1つの発熱抵抗体2からなり、上記発熱抵抗体2に近接している上記短絡部20の上記第1の可溶導体5を上記ヒューズ部30の第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせた構造を有するものとすることもできる。 Furthermore, the heat generating part 10 is composed of one heat generating resistor 2 provided close to the short circuit part 20 as shown in FIG. 9, for example, and the short circuit part 20 close to the heat generating resistor 2. It is also possible to have a structure in which the heating amount is varied so that the first fusible conductor 5 is melted faster than the second fusible conductor 6 of the fuse portion 30.
上述の如き構成の短絡素子100では、上記発熱抵抗体2の発熱により、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせた構造を上記発熱部10が有しているので、短絡時間とヒューズ切断時間に確実に時間差を設けることができ、より確実な短絡動作を実現させることができる。 In the short-circuit element 100 having the above-described configuration, a difference in heating amount is provided so that the first soluble conductor 5 is melted faster than the second soluble conductor 6 due to the heat generated by the heating resistor 2. Since the heat generating part 10 has the above structure, a time difference can be provided between the short circuit time and the fuse cutting time with certainty, and a more reliable short circuit operation can be realized.
なお、上記短絡素子100では、上記短絡部20の第1の電極4Aと上記第2の電極4Bとを短絡するための上記第1の可溶導体5は、上記第1の電極4Aと第2の電極4Bの両電極上に設けられているが、上記第1の電極4Aと上記第2の電極4Bの少なくとも一方の電極上に設けられていればよい。 In the short-circuit element 100, the first fusible conductor 5 for short-circuiting the first electrode 4A and the second electrode 4B of the short-circuit portion 20 includes the first electrode 4A and the second electrode 4B. Are provided on both electrodes of the first electrode 4B, but may be provided on at least one of the first electrode 4A and the second electrode 4B.
このような構成の短絡素子100は、異常検知機能を有する回路に搭載された電子部品の異常時に上記電子部品を迂回するバイパス電流経路を形成する短絡素子として用いられる。 The short-circuit element 100 having such a configuration is used as a short-circuit element that forms a bypass current path that bypasses the electronic component when an electronic component mounted in a circuit having an abnormality detection function is abnormal.
すなわち、短絡素子100は、例えば、図10に示すように、LED照明装置200に組み込まれ、一つの発光ダイオード201に異常が起きた場合にも、当該発光ダイオード201を迂回するバイパス電流経路を形成する補償回路250を構成する。 That is, for example, as illustrated in FIG. 10, the short-circuit element 100 is incorporated in the LED lighting device 200 and forms a bypass current path that bypasses the light emitting diode 201 even when an abnormality occurs in one light emitting diode 201. The compensation circuit 250 is configured.
このLED照明装置200は、 電流経路上に直列接続された複数の発光ダイオード201を備え、発光ダイオード201と、短絡素子100の第1の外部接続端子T1がバイパス抵抗202を介して発光ダイオード201のアノードに接続され、第2の外部接続端子T2が上記発光ダイオード201のカソードに接続され、第3の外部接続端子T3が上記発光ダイオード201のアノードに接続されることにより、発光ダイオード201と短絡素子100によりLEDユニット210を構成している。そして、このLED照明装置200は、複数のLEDユニット210が直列に接続されて構成されている。 This LED lighting device 200 includes a plurality of light emitting diodes 201 connected in series on a current path, and the light emitting diode 201 and the first external connection terminal T1 of the short-circuiting element 100 are connected to the light emitting diode 201 via a bypass resistor 202. Connected to the anode, the second external connection terminal T2 is connected to the cathode of the light emitting diode 201, and the third external connection terminal T3 is connected to the anode of the light emitting diode 201, whereby the light emitting diode 201 and the short-circuit element are connected. 100 constitutes the LED unit 210. The LED lighting apparatus 200 is configured by connecting a plurality of LED units 210 in series.
バイパス抵抗202は、発光ダイオード201の内部抵抗相当の抵抗値を有する。また、短絡素子100の発熱部10の発熱抵抗体2の抵抗値は、発光ダイオード201の内部抵抗よりも大きい。したがって、発光ダイオード201が正常に作動している場合、このLED照明装置200では、図11の(A)に示すように、電流Iは短絡素子100側へは流れず、発光ダイオード201側に流れる。 The bypass resistor 202 has a resistance value corresponding to the internal resistance of the light emitting diode 201. Further, the resistance value of the heating resistor 2 of the heat generating part 10 of the short-circuit element 100 is larger than the internal resistance of the light emitting diode 201. Therefore, when the light emitting diode 201 is operating normally, in the LED lighting device 200, as shown in FIG. 11A, the current I does not flow to the short circuit element 100 side, but flows to the light emitting diode 201 side. .
しかし、発光ダイオード201に異常が現れて、電気的に開放されてしまうと、図11(B)に示すように、このLED照明装置200では、電流Iが短絡素子100のヒューズ部30側へ流れる。これにより、短絡素子100は、発熱部10の発熱抵抗体2が発熱し、第1の可溶導体5が溶融することによって、図11の(C)に示すように、第1の外部接続端子T1と第2の外部接続端子T2の間、すなわち、短絡部10の両電極4A、4Bが短絡され、バイパス電流経路が形成される。そして、上記発熱部10の発熱抵抗体2の発熱により、上記短絡部10の両電極4A、4Bが短絡されてから、第2の可溶導体6が溶断することにより、発熱部10の発熱抵抗体2への給電は停止される。 However, when an abnormality appears in the light emitting diode 201 and the LED 201 is electrically opened, the current I flows to the fuse part 30 side of the short-circuit element 100 in the LED lighting device 200 as shown in FIG. . As a result, the short-circuit element 100 has the first external connection terminal as shown in FIG. 11C when the heating resistor 2 of the heat generating portion 10 generates heat and the first soluble conductor 5 melts. Between T1 and 2nd external connection terminal T2, ie, both electrodes 4A and 4B of the short circuit part 10 are short-circuited, and a bypass current path is formed. And after both electrodes 4A and 4B of the said short circuit part 10 are short-circuited by the heat_generation | fever of the heat generating resistor 2 of the said heat generating part 10, the 2nd soluble conductor 6 melts | fuses, thereby generating heat resistance of the heat generating part 10 The power supply to the body 2 is stopped.
上記短絡素子100は、上記発熱抵抗体2の発熱により、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせた構造を上記発熱部10が有しており、短絡時間とヒューズ切断時間に確実に時間差を設け、より確実な短絡動作を行うことができ、このLED照明装置200において、一つの発光ダイオード201に異常が起きた場合にも、当該発光ダイオード201を迂回するバイパス電流経路を確実に形成する補償回路250を構成している。 The short-circuit element 100 has a structure in which the heating amount is different so that the first soluble conductor 5 is melted faster than the second soluble conductor 6 due to heat generated by the heating resistor 2. The heating unit 10 has a time difference between the short-circuiting time and the fuse cutting time, so that a more reliable short-circuiting operation can be performed. In this LED lighting device 200, an abnormality has occurred in one light-emitting diode 201. Even in this case, the compensation circuit 250 that reliably forms a bypass current path that bypasses the light emitting diode 201 is configured.
この照明装置200では、上記補償回路250が動作することにより、故障した発光ダイオード201を迂回するバイパス電流経路が形成され、他の発光ダイオード201に電流を流して発光を継続することができる。すなわち、バイパス抵抗202を介して他の発光ダイオード201が直列接続された状態となり、故障した発光ダイオード201以外の発光ダイオード201は継続して発光することができる。上記バイパス抵抗202は、発光ダイオード201の内部抵抗相当の抵抗値を有するので、直列接続された複数の発光ダイオード201の電流経路の抵抗値は、上記補償回路250の動作前と動作後で同じ状態を維持することになり、故障した発光ダイオード201以外の発光ダイオード201の駆動状態が変化することはない。 In the illuminating device 200, the compensation circuit 250 operates to form a bypass current path that bypasses the failed light emitting diode 201, and the current can be passed through the other light emitting diodes 201 to continue light emission. In other words, the other light emitting diodes 201 are connected in series via the bypass resistor 202, and the light emitting diodes 201 other than the failed light emitting diode 201 can continue to emit light. Since the bypass resistor 202 has a resistance value corresponding to the internal resistance of the light emitting diode 201, the resistance value of the current path of the plurality of light emitting diodes 201 connected in series is the same before and after the operation of the compensation circuit 250. Therefore, the driving state of the light emitting diodes 201 other than the failed light emitting diode 201 does not change.
なお、LED照明装置200において、一つの発光ダイオード201に異常が起きた場合にも、当該発光ダイオード201を迂回するバイパス電流経路を形成する補償回路250について説明したが、上記短絡素子100は、LED照明装置200への適用のみに限定されることなく、例えば電機自動車等の駆動用電源として用いられる複数の電池セルを収納してなるバッテリパック内において複数接続された電池セルを電流ライン上から切り離して、この切り離した電池セルに相当する回路部分を短絡させるなど、異常検知機能を有する回路に搭載された電子部品の異常時に上記電子部品を迂回するバイパス電流経路を形成する各種補償回路に適用することができる。 In the LED lighting device 200, the compensation circuit 250 that forms a bypass current path that bypasses the light emitting diode 201 even when an abnormality occurs in one light emitting diode 201 has been described. Without being limited to the application to the lighting device 200, for example, a plurality of connected battery cells are separated from the current line in a battery pack containing a plurality of battery cells used as a driving power source for an electric vehicle or the like. Thus, the present invention is applied to various compensation circuits that form a bypass current path that bypasses the electronic component when the electronic component mounted on the circuit having the abnormality detection function is abnormal, such as short-circuiting a circuit portion corresponding to the separated battery cell. be able to.
1 絶縁基板、2 発熱抵抗体、2A,2B 発熱抵抗体、2C 短絡部用発熱領域、2D ヒューズ部用発熱領域、3 絶縁層、4A 第1の電極、4B 第2の電極、4C 第3の電極、4D 第4の電極、5 第1の可溶導体、6 第2の可溶導体、7 フラックス、10 発熱部、20 短絡部、30 ヒューズ部、100 短絡素子、200 LED照明装置、201 発光ダイオード、202 バイパス抵抗、250 補償回路、T1 第1の外部接続端子、T2 第2の外部接続端子、T3 第3の外部接続端子 DESCRIPTION OF SYMBOLS 1 Insulation board | substrate, 2 Heating resistor, 2A, 2B Heating resistor, 2C Heating area for short circuit part, 2D Heating area for fuse part, 3 Insulating layer, 4A 1st electrode, 4B 2nd electrode, 4C 3rd Electrode, 4D fourth electrode, 5 first fusible conductor, 6 second fusible conductor, 7 flux, 10 heat generating part, 20 short circuit part, 30 fuse part, 100 short circuit element, 200 LED lighting device, 201 light emission Diode, 202 bypass resistor, 250 compensation circuit, T1 first external connection terminal, T2 second external connection terminal, T3 third external connection terminal
Claims (13)
上記絶縁基板に設けられた発熱抵抗体からなる発熱部と、
上記絶縁基板上に互いに隣接して設けられた第1の電極および第2の電極と、上記発熱抵抗体の発熱により加熱されることによって溶融して上記第1の電極と上記第2の電極とを短絡する第1の可溶導体とからなる短絡部と、
上記絶縁基板に設けられ、上記発熱抵抗体に電気的に接続された第3の電極と、上記第2の電極と上記第3の電極の間に上記発熱抵抗体と直列接続された状態で設けられることにより上記発熱抵抗体に流す電流の電流経路を構成し、上記発熱抵抗体の発熱により加熱されることによって溶融して上記電流経路を遮断する第2の可溶導体とからなるヒューズ部とを備え、
上記発熱部は、上記発熱抵抗体の発熱により、上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有することを特徴とする短絡素子。 An insulating substrate;
A heat generating portion made of a heat generating resistor provided on the insulating substrate;
A first electrode and a second electrode provided adjacent to each other on the insulating substrate; and the first electrode and the second electrode which are melted by being heated by heat generated by the heating resistor; A short-circuit portion made of a first soluble conductor that short-circuits,
A third electrode provided on the insulating substrate and electrically connected to the heating resistor, and provided in a state connected in series with the heating resistor between the second electrode and the third electrode. A fuse portion comprising a second fusible conductor that forms a current path of a current that flows through the heating resistor and is melted by being heated by the heat generation of the heating resistor to cut off the current path; With
The heat generating part has a structure in which a difference in heating amount is provided so that the first soluble conductor is melted faster than the second soluble conductor due to heat generated by the heating resistor. Short circuit element to be used.
上記短絡素子は、絶縁基板と、上記絶縁基板に設けられた発熱抵抗体からなる発熱部と、上記絶縁基板上に互いに隣接して設けられた第1の電極および第2の電極と、上記発熱抵抗体の発熱により加熱されることによって溶融して上記第1の電極と上記第2の電極とを短絡する第1の可溶導体とからなる短絡部と、上記絶縁基板に設けられ、上記発熱抵抗体に電気的に接続された第3の電極と、上記第2の電極と上記第3の電極の間に上記発熱抵抗体と直列接続された状態で設けられることにより上記発熱抵抗体に流す電流の電流経路を構成し、上記発熱抵抗体の発熱により加熱されることによって溶融して上記電流経路を遮断する第2の可溶導体とからなるヒューズ部とを備え、上記発熱部は、上記発熱抵抗体の発熱により、上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有する
ことを特徴とする補償回路。 A compensation circuit that forms a bypass current path that bypasses the electronic component when an abnormality occurs in the electronic component mounted on a circuit having an abnormality detection function by a short-circuit element,
The short-circuit element includes an insulating substrate, a heat generating portion formed of a heating resistor provided on the insulating substrate, a first electrode and a second electrode provided adjacent to each other on the insulating substrate, and the heat generation. A short-circuit portion comprising a first fusible conductor that is melted by being heated by the heat generated by the resistor and short-circuits the first electrode and the second electrode; A third electrode electrically connected to the resistor, and a current connected to the heating resistor between the second electrode and the third electrode are connected to the resistor to flow through the heating resistor. A current path of a current, and a fuse portion including a second fusible conductor that melts and cuts off the current path by being heated by the heat generated by the heating resistor, Due to the heat generated by the heating resistor, the first possible Compensation circuit, characterized in that it comprises an on heating amount was made different structures so as to melt sooner than the second fusible conductor conductor.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014223363A JP6339921B2 (en) | 2014-10-31 | 2014-10-31 | Short circuit element and compensation circuit using the same |
PCT/JP2015/079602 WO2016067977A1 (en) | 2014-10-31 | 2015-10-20 | Short circuit element and compensation circuit using same |
CN201580055637.3A CN107077992B (en) | 2014-10-31 | 2015-10-20 | Short-circuit component and the compensation circuit for using it |
KR1020167036230A KR102418683B1 (en) | 2014-10-31 | 2015-10-20 | Short circuit element and compensation circuit using same |
TW104135021A TWI652713B (en) | 2014-10-31 | 2015-10-26 | Short circuit component and compensation circuit using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014223363A JP6339921B2 (en) | 2014-10-31 | 2014-10-31 | Short circuit element and compensation circuit using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016091722A JP2016091722A (en) | 2016-05-23 |
JP6339921B2 true JP6339921B2 (en) | 2018-06-06 |
Family
ID=55857318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014223363A Active JP6339921B2 (en) | 2014-10-31 | 2014-10-31 | Short circuit element and compensation circuit using the same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6339921B2 (en) |
KR (1) | KR102418683B1 (en) |
CN (1) | CN107077992B (en) |
TW (1) | TWI652713B (en) |
WO (1) | WO2016067977A1 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1032094A (en) * | 1996-07-16 | 1998-02-03 | Iwasaki Electric Co Ltd | Lighting system |
JP4244452B2 (en) | 1999-07-19 | 2009-03-25 | ソニー株式会社 | Battery pack |
JP4464554B2 (en) | 2000-12-14 | 2010-05-19 | 北陸電気工業株式会社 | Fuse element and chip type fuse |
JP2007012381A (en) | 2005-06-29 | 2007-01-18 | Sony Corp | Led lighting system |
JP5072796B2 (en) | 2008-05-23 | 2012-11-14 | ソニーケミカル&インフォメーションデバイス株式会社 | Protection element and secondary battery device |
JP5489749B2 (en) * | 2010-01-27 | 2014-05-14 | 京セラ株式会社 | Resistance thermal fuse |
JP2012164756A (en) * | 2011-02-04 | 2012-08-30 | Denso Corp | Electronic control device |
JP6246503B2 (en) * | 2013-02-08 | 2017-12-13 | デクセリアルズ株式会社 | Short circuit element and circuit using the same |
JP2014044955A (en) | 2013-10-01 | 2014-03-13 | Dexerials Corp | Protection element, and battery pack |
-
2014
- 2014-10-31 JP JP2014223363A patent/JP6339921B2/en active Active
-
2015
- 2015-10-20 KR KR1020167036230A patent/KR102418683B1/en active IP Right Grant
- 2015-10-20 WO PCT/JP2015/079602 patent/WO2016067977A1/en active Application Filing
- 2015-10-20 CN CN201580055637.3A patent/CN107077992B/en active Active
- 2015-10-26 TW TW104135021A patent/TWI652713B/en active
Also Published As
Publication number | Publication date |
---|---|
JP2016091722A (en) | 2016-05-23 |
CN107077992A (en) | 2017-08-18 |
TW201621956A (en) | 2016-06-16 |
KR20170077062A (en) | 2017-07-05 |
TWI652713B (en) | 2019-03-01 |
WO2016067977A1 (en) | 2016-05-06 |
CN107077992B (en) | 2019-03-15 |
KR102418683B1 (en) | 2022-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9899179B2 (en) | Short-circuit element and a circuit using the same | |
JP5656466B2 (en) | Protective element and method of manufacturing protective element | |
JP6576618B2 (en) | Protective element | |
JP6371118B2 (en) | Protective element and battery pack | |
KR20210089766A (en) | Protection element and battery pack | |
JP6173859B2 (en) | Short circuit element | |
JP7523890B2 (en) | Protection elements and battery packs | |
JP6161967B2 (en) | Short circuit element and circuit using the same | |
CN109585218B (en) | Short-circuit element | |
JP6184238B2 (en) | Short circuit element and short circuit | |
JP6254859B2 (en) | Breaking element, breaking element circuit, | |
JP2018156959A (en) | Protection element and battery pack | |
KR20160046762A (en) | Shutoff element and shutoff element circuit | |
JP6381980B2 (en) | Switch element and switch circuit | |
JP6254777B2 (en) | Short circuit element and circuit using the same | |
KR102527559B1 (en) | Short circuit element | |
JP6339921B2 (en) | Short circuit element and compensation circuit using the same | |
KR102370805B1 (en) | Short-circuiting element | |
JP2016021299A (en) | Short circuit element, and led circuit, battery protection circuit and short circuit using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180424 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180511 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6339921 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |