JP6339918B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP6339918B2
JP6339918B2 JP2014201231A JP2014201231A JP6339918B2 JP 6339918 B2 JP6339918 B2 JP 6339918B2 JP 2014201231 A JP2014201231 A JP 2014201231A JP 2014201231 A JP2014201231 A JP 2014201231A JP 6339918 B2 JP6339918 B2 JP 6339918B2
Authority
JP
Japan
Prior art keywords
mass
catalyst
parts
exhaust gas
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014201231A
Other languages
Japanese (ja)
Other versions
JP2016068039A (en
Inventor
千尋 松田
千尋 松田
谷口 昌司
昌司 谷口
一哉 内藤
一哉 内藤
上西 真里
真里 上西
田中 裕久
裕久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2014201231A priority Critical patent/JP6339918B2/en
Publication of JP2016068039A publication Critical patent/JP2016068039A/en
Application granted granted Critical
Publication of JP6339918B2 publication Critical patent/JP6339918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、排ガス浄化用触媒に関し、詳しくは、内燃機関などから排出される排気ガスを浄化するための排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purification catalyst, and more particularly to an exhaust gas purification catalyst for purifying exhaust gas discharged from an internal combustion engine or the like.

排気ガス中に含まれる一酸化炭素(CO)、炭化水素(HC)および窒素酸化物(NO)を同時に浄化できる三元触媒からなる排ガス浄化用触媒は、Pt、Rh、Pdなどの貴金属を活性物質としている。 An exhaust gas purifying catalyst comprising a three-way catalyst capable of simultaneously purifying carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) contained in exhaust gas is a precious metal such as Pt, Rh and Pd. Active substance.

このような貴金属、とりわけ、PtやRhは高価であり、また、価格変動が激しいため、貴金属を用いることなく、低コストで製造することができる触媒が、種々検討されている。   Since such noble metals, especially Pt and Rh, are expensive and the price fluctuates severely, various catalysts that can be produced at low cost without using noble metals have been studied.

そこで、貴金属元素に代えて、例えば、遷移金属であるCuが活性成分として、触媒担体(アルミナ)に担持された触媒が提案されている(例えば、特許文献1参照。)。   Thus, a catalyst is proposed in which, for example, Cu, which is a transition metal, is used as an active component instead of a noble metal element, and is supported on a catalyst carrier (alumina) (see, for example, Patent Document 1).

特開平5−329369号公報JP-A-5-329369

一方、近年の環境負荷低減の観点から、排ガス浄化用触媒の浄化性能の向上がますます望まれている。   On the other hand, from the viewpoint of reducing environmental burdens in recent years, it is increasingly desired to improve the purification performance of exhaust gas purification catalysts.

そこで、本発明は、白金の使用を低減することができながら、排ガス浄化性能の向上を図ることができる排ガス浄化用触媒を提供することにある。   Then, this invention is providing the catalyst for exhaust gas purification which can aim at the improvement of exhaust gas purification performance, being able to reduce use of platinum.

本発明の排ガス浄化用触媒は、セリウム含有酸化物に銅が担持される第1触媒と、アルミナに白金が担持される第2触媒とを備え、前記白金の担持割合が、前記第1触媒と前記第2触媒との総和に対して、1質量%未満であり、前記第1触媒の配合割合が、前記第1触媒と前記第2触媒との総和に対して、10質量%以上90質量%以下であることを特徴としている。   The exhaust gas purifying catalyst of the present invention comprises a first catalyst in which copper is supported on a cerium-containing oxide, and a second catalyst in which platinum is supported on alumina, and the supported ratio of platinum is the same as that of the first catalyst. It is less than 1 mass% with respect to the sum total with the said 2nd catalyst, and the compounding ratio of the said 1st catalyst is 10 mass% or more and 90 mass% with respect to the sum total with the said 1st catalyst and the said 2nd catalyst. It is characterized by the following.

本発明の排ガス浄化用触媒によれば、第1触媒の配合割合が、第1触媒と第2触媒との総和に対して、10質量%以上90質量%以下であるので、白金の担持割合を第1触媒と第2触媒との総和に対して1質量%未満となるように低減しても、排ガス浄化性能の向上を図ることができる。従って、白金の使用を低減することができながら、排ガス浄化性能の向上を図ることができる。   According to the exhaust gas purifying catalyst of the present invention, the mixing ratio of the first catalyst is 10% by mass or more and 90% by mass or less with respect to the total of the first catalyst and the second catalyst. Even if it reduces so that it may become less than 1 mass% with respect to the sum total of a 1st catalyst and a 2nd catalyst, the improvement of exhaust gas purification performance can be aimed at. Therefore, the exhaust gas purification performance can be improved while the use of platinum can be reduced.

図1は、各実施例および各比較例の排ガス浄化用触媒における、第1触媒の配合割合に対する、COの50%浄化温度を示すグラフである。FIG. 1 is a graph showing the 50% purification temperature of CO with respect to the blending ratio of the first catalyst in the exhaust gas purification catalysts of each Example and each Comparative Example.

本発明の排ガス浄化用触媒は、セリウム含有酸化物に銅が担持される第1触媒と、アルミナに白金が担持される第2触媒とを備えている。   The exhaust gas purifying catalyst of the present invention includes a first catalyst in which copper is supported on a cerium-containing oxide, and a second catalyst in which platinum is supported on alumina.

1.第1触媒について
セリウム含有酸化物としては、例えば、酸化セリウム(CeO)、下記一般式(1)で示されるセリア系複合酸化物などが挙げられる。
一般式(1)
Ce1−(a+b)Zr2−c (1)
(式中、Lは、希土類元素(ただし、Ceを除く。)および/またはアルカリ土類金属を示し、aは、Zrの原子割合を示し、bは、Lの原子割合を示し、1−(a+b)は、Ceの原子割合を示し、cは、酸素欠陥量を示す。)
一般式(1)において、Lで示される希土類元素としては、例えば、Sc(スカンジウム)、Y(イットリウム)、La(ランタン)、Pr(プラセオジム)、Nd(ネオジム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)などが挙げられる。
1. Regarding the first catalyst Examples of the cerium-containing oxide include cerium oxide (CeO 2 ) and ceria-based composite oxides represented by the following general formula (1).
General formula (1)
Ce 1- (a + b) Zr a L b O 2-c (1)
(Wherein L represents a rare earth element (excluding Ce) and / or alkaline earth metal, a represents the atomic ratio of Zr, b represents the atomic ratio of L, and 1- ( a + b) indicates the atomic ratio of Ce, and c indicates the amount of oxygen defects.)
In the general formula (1), examples of the rare earth element represented by L include Sc (scandium), Y (yttrium), La (lanthanum), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm ( Samarium), Eu (europium), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), Lu (lutetium) and the like It is done.

一般式(1)において、Lで示されるアルカリ土類金属としては、例えば、Be(ベリリウム)、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、Ra(ラジウム)などが挙げられる。   In the general formula (1), examples of the alkaline earth metal represented by L include Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), Ra (radium), and the like. Is mentioned.

このようなLで示される希土類元素およびアルカリ土類金属のなかでは、好ましくは、希土類元素、さらに好ましくは、Y(イットリウム)が挙げられる。これら希土類元素およびアルカリ土類金属は、単独使用または2種以上併用することができる。   Among such rare earth elements and alkaline earth metals represented by L, rare earth elements are preferable, and Y (yttrium) is more preferable. These rare earth elements and alkaline earth metals can be used alone or in combination of two or more.

また、一般式(1)において、aで示されるZrの原子割合は、0.2〜0.7の範囲であり、好ましくは、0.2〜0.5(好ましくは、0.5未満)の範囲である。   In the general formula (1), the atomic ratio of Zr represented by a is in the range of 0.2 to 0.7, preferably 0.2 to 0.5 (preferably less than 0.5). Range.

また、一般式(1)において、bで示されるLの原子割合は、0〜0.2の範囲であり、好ましくは、0.01〜0.1の範囲である。すなわち、Lは、必須成分ではなく任意成分であり、含まれる場合には、0.2以下の原子割合である。bで示されるLの原子割合が0.2を超えると、相分離や他の複合酸化物相を生成する場合がある。   Moreover, in General formula (1), the atomic ratio of L shown by b is the range of 0-0.2, Preferably, it is the range of 0.01-0.1. That is, L is not an essential component but an optional component, and when included, has an atomic ratio of 0.2 or less. When the atomic ratio of L indicated by b exceeds 0.2, phase separation or other complex oxide phases may be generated.

また、一般式(1)において、1−(a+b)で示されるCeの原子割合は、好ましくは、aより多く、具体的には、0.3〜0.8の範囲であり、好ましくは、0.5〜0.6の範囲である。   In the general formula (1), the atomic ratio of Ce represented by 1- (a + b) is preferably more than a, specifically in the range of 0.3 to 0.8, preferably It is in the range of 0.5 to 0.6.

さらに、一般式(1)において、cは酸素欠陥量を示し、これは、Ce、ZrおよびLの酸化物が通常形成するホタル石型の結晶格子において、その結晶格子にできる空孔の割合を意味する。   Further, in the general formula (1), c represents the amount of oxygen defects, and this is the ratio of vacancies that can be formed in the crystal lattice of the fluorite-type crystal lattice that is usually formed by the oxides of Ce, Zr, and L. means.

セリア系複合酸化物は、特に制限されることなく、例えば、特開2004−243305号公報の段落番号[0090]〜[0102]の記載に準拠して、複合酸化物を調製するための適宜の方法、例えば、共沈法、クエン酸錯体法、アルコキシド法などの製造方法によって、製造することができる。   The ceria-based composite oxide is not particularly limited. For example, according to the description of paragraph numbers [0090] to [0102] of JP-A-2004-243305, a suitable ceria-based composite oxide for preparing the composite oxide can be used. It can be produced by a method such as a coprecipitation method, a citric acid complex method, or an alkoxide method.

このようなセリウム含有酸化物のなかでは、好ましくは、上記一般式(1)で示されるセリア系複合酸化物が挙げられ、さらに好ましくは、Ce1−(a+b)Zr2−cで示されるセリア−ジルコニア系複合酸化物が挙げられる。 Among such cerium-containing oxides, a ceria-based composite oxide represented by the general formula (1) is preferable, and Ce 1- (a + b) Zr a Y b O 2-c is more preferable. The ceria-zirconia type complex oxide shown by these is mentioned.

セリウム含有酸化物に銅を担持させる方法としては、特に制限されず、公知の方法を用いることができる。   The method for supporting copper on the cerium-containing oxide is not particularly limited, and a known method can be used.

より具体的には、例えば、まず、銅を含む塩の溶液を調製し、この銅を含む塩の溶液をセリウム含有酸化物に含浸させた後、必要により乾燥させ、焼成する。   More specifically, for example, first, a salt solution containing copper is prepared, the cerium-containing oxide is impregnated with the salt solution containing copper, and then dried and fired as necessary.

銅を含む塩としては、例えば、銅の無機酸塩(例えば、硫酸塩、硝酸塩、塩化物、りん酸塩など)、銅の有機酸塩(例えば、酢酸塩、しゅう酸塩など)などが挙げられる。   Examples of the salt containing copper include copper inorganic acid salts (for example, sulfate, nitrate, chloride, phosphate, etc.), copper organic acid salts (for example, acetate, oxalate, etc.) and the like. It is done.

また、銅を含む塩の溶液は、例えば、上記の塩を、所定の化学量論比となるような割合で水に加えて、攪拌混合することにより調製することができる。   Moreover, the solution of the salt containing copper can be prepared, for example, by adding the above-mentioned salt to water at a ratio that gives a predetermined stoichiometric ratio and stirring and mixing.

また、銅を含む塩の溶液として、実用的には、例えば、硝酸銅(II)水溶液(硝酸銅(II)・3水和物塩の水溶液など)などが挙げられる。   Moreover, practical examples of the salt solution containing copper include an aqueous copper (II) nitrate solution (such as an aqueous solution of copper (II) nitrate trihydrate).

そして、このような銅を含む塩の溶液の、銅濃度(銅含有量)を調整することにより、排ガス浄化用触媒における銅の担持割合を、調整することができる。   And the copper loading ratio in the exhaust gas purifying catalyst can be adjusted by adjusting the copper concentration (copper content) of the salt solution containing copper.

また、セリウム含有酸化物に、銅を含む塩の溶液を含浸させた後の焼成温度は、例えば、350〜1000℃、好ましくは、400〜800℃であり、焼成時間が、例えば、0.5〜5時間、好ましくは、0.5〜3時間である。   The firing temperature after impregnating the cerium-containing oxide with a salt solution containing copper is, for example, 350 to 1000 ° C., preferably 400 to 800 ° C., and the firing time is, for example, 0.5 -5 hours, preferably 0.5-3 hours.

これによって、セリウム含有酸化物に銅(より具体的には銅酸化物)が担持され、第1触媒が調製される。   Thereby, copper (more specifically, copper oxide) is supported on the cerium-containing oxide, and the first catalyst is prepared.

第1触媒において、銅(金属換算)の担持割合は、例えば、0.33質量%以上、好ましくは、0.83質量%以上、さらに好ましくは、1.5質量%以上、とりわけ好ましくは、2.0質量%以上、例えば、27.0質量%以下、好ましくは、21.0質量%以下、さらに好ましくは、10質量%以下、とりわけ好ましくは、4.0質量%以下である。   In the first catalyst, the loading ratio of copper (in metal conversion) is, for example, 0.33% by mass or more, preferably 0.83% by mass or more, more preferably 1.5% by mass or more, and particularly preferably 2%. 0.0 mass% or more, for example, 27.0 mass% or less, preferably 21.0 mass% or less, more preferably 10 mass% or less, and particularly preferably 4.0 mass% or less.

2.第2触媒について
アルミナとしては、例えば、αアルミナ、θアルミナ、γアルミナなどが挙げられ、好ましくは、θアルミナが挙げられる。
2. Regarding the second catalyst As the alumina, for example, α-alumina, θ-alumina, γ-alumina and the like are mentioned, and preferably θ-alumina is mentioned.

αアルミナは、結晶相としてα相を有し、例えば、AKP−53(商品名、高純度アルミナ、住友化学社製)などが挙げられる。このようなαアルミナは、例えば、アルコキシド法、ゾルゲル法、共沈法などの方法によって得ることができる。   α-alumina has an α-phase as a crystal phase, and examples thereof include AKP-53 (trade name, high-purity alumina, manufactured by Sumitomo Chemical Co., Ltd.). Such α-alumina can be obtained by a method such as an alkoxide method, a sol-gel method, or a coprecipitation method.

θアルミナは、結晶相としてθ相を有し、αアルミナに遷移するまでの中間(遷移)アルミナの一種であって、例えば、SPHERALITE 531P(商品名、γアルミナ、プロキャタリゼ社製)などの活性アルミナ(γアルミナ)を、大気中にて、900〜1100℃で、1〜10時間熱処理することによって得ることができる。   θ Alumina is a kind of intermediate (transition) alumina that has a θ phase as a crystal phase and transitions to α alumina. For example, activated alumina such as SPHERALITE 531P (trade name, γ alumina, manufactured by Procatalyze) (Γ-alumina) can be obtained by heat treatment at 900 to 1100 ° C. for 1 to 10 hours in the air.

γアルミナは、結晶相としてγ相を有し、特に限定されず、例えば、排ガス浄化用触媒などに用いられている公知のものが挙げられる。   γ-alumina has a γ-phase as a crystal phase and is not particularly limited, and examples thereof include known ones used for exhaust gas purification catalysts.

また、これらのアルミナにLaおよび/またはBaが含まれるアルミナを用いることもできる。Laおよび/またはBaを含むアルミナは、特開2004−243305号の段落番号[0073]の記載に準拠して、製造することができる。   In addition, alumina containing La and / or Ba can also be used. Alumina containing La and / or Ba can be produced according to the description of paragraph number [0073] of JP-A No. 2004-243305.

アルミナに白金を担持させる方法としては、特に制限されず、公知の方法を用いることができる。   The method for supporting platinum on alumina is not particularly limited, and a known method can be used.

より具体的には、例えば、まず、白金を含む塩の溶液を調製し、この白金を含む塩の溶液をアルミナに含浸させた後、必要により乾燥させ、焼成する。   More specifically, for example, first, a solution of a salt containing platinum is prepared, and after impregnating alumina with the solution of the salt containing platinum, if necessary, the solution is dried and fired.

白金を含む塩としては、例えば、ジニトロジアンミン白金、塩化白金などが挙げられる。   Examples of the salt containing platinum include dinitrodiammine platinum and platinum chloride.

また、白金を含む塩の溶液は、例えば、上記の塩を、所定の化学量論比となるような割合で無機酸に加えて、攪拌混合することにより調製することができる。無機酸としては、例えば、塩酸、硫酸、硝酸などが挙げられる。   Moreover, the solution of the salt containing platinum can be prepared, for example, by adding the above-mentioned salt to the inorganic acid at a ratio that gives a predetermined stoichiometric ratio and stirring and mixing. Examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid and the like.

白金を含む塩の溶液として、実用的には、例えば、ジニトロジアンミン白金硝酸溶液(いわゆるPt−Pソルト硝酸溶液)などが挙げられる。   As a salt solution containing platinum, practically, for example, a dinitrodiammine platinum nitric acid solution (so-called Pt-P salt nitric acid solution) and the like can be mentioned.

そして、このような白金を含む塩の溶液の、白金濃度(白金含有量)を調整することにより、排ガス浄化用触媒における白金の担持割合を、調整することができる。   And the carrying | support ratio of the platinum in the exhaust gas purification catalyst can be adjusted by adjusting the platinum concentration (platinum content) of such a salt solution containing platinum.

また、アルミナに白金を含む塩の溶液を含浸させた後の焼成温度は、例えば、350〜1000℃、好ましくは、400〜800℃であり、焼成時間が、例えば、0.5〜5時間、好ましくは、0.5〜3時間である。   Moreover, the calcination temperature after impregnating the salt solution containing platinum in alumina is, for example, 350 to 1000 ° C., preferably 400 to 800 ° C., and the calcination time is, for example, 0.5 to 5 hours, Preferably, it is 0.5 to 3 hours.

これによって、アルミナに白金が担持され、第2触媒が調製される。   As a result, platinum is supported on alumina, and the second catalyst is prepared.

第2触媒において、白金(金属換算)の担持割合は、例えば、0.011質量%以上、好ましくは、0.016質量%以上、さらに好ましくは、0.03質量%以上、とりわけ好ましくは、0.04質量%以上、例えば、10質量%未満、好ましくは、0.50質量%以下、さらに好ましくは、0.20質量%以下、とりわけ好ましくは、0.15質量%以下である。
3.排ガス浄化触媒
そして、排ガス浄化用触媒は、第1触媒と第2触媒とを粉砕混合することにより調製される。
In the second catalyst, the loading ratio of platinum (in metal conversion) is, for example, 0.011% by mass or more, preferably 0.016% by mass or more, more preferably 0.03% by mass or more, and particularly preferably 0%. 0.04% by mass or more, for example, less than 10% by mass, preferably 0.50% by mass or less, more preferably 0.20% by mass or less, and particularly preferably 0.15% by mass or less.
3. Exhaust gas purification catalyst The exhaust gas purification catalyst is prepared by pulverizing and mixing the first catalyst and the second catalyst.

第1触媒の配合割合は、第1触媒および第2触媒の総和に対して、10質量%以上、好ましくは、40質量%以上、さらに好ましくは、50質量%以上、90質量%以下、好ましくは、80質量%以下、さらに好ましくは、75質量%以下である。   The blending ratio of the first catalyst is 10% by mass or more, preferably 40% by mass or more, more preferably 50% by mass or more and 90% by mass or less, preferably with respect to the total of the first catalyst and the second catalyst. 80 mass% or less, more preferably 75 mass% or less.

第2触媒の配合割合は、第1触媒および第2触媒の総和に対して、例えば、10質量%以上、好ましくは、20質量%以上、例えば、90質量%以下、好ましくは、60質量%以下、さらに好ましくは、50質量%以下である。   The blending ratio of the second catalyst is, for example, 10% by mass or more, preferably 20% by mass or more, for example, 90% by mass or less, preferably 60% by mass or less, with respect to the total of the first catalyst and the second catalyst. More preferably, it is 50 mass% or less.

第1触媒および第2触媒のそれぞれの配合割合が上記の範囲であれば、排ガス浄化性能の向上を確実に図ることができる。   If the blending ratio of each of the first catalyst and the second catalyst is within the above range, the exhaust gas purification performance can be reliably improved.

また、銅(金属換算)の担持割合は、第1触媒および第2触媒の総和に対して、例えば、0.3質量%以上、好ましくは、0.75質量%以上、さらに好ましくは、1.0質量%以上、例えば、12質量%以下、好ましくは、10質量%以下、さらに好ましくは、4質量%以下、とりわけ好ましくは、2.5質量%以下である。   Moreover, the loading ratio of copper (in metal conversion) is, for example, 0.3% by mass or more, preferably 0.75% by mass or more, more preferably 1.% by mass relative to the sum of the first catalyst and the second catalyst. It is 0 mass% or more, for example, 12 mass% or less, preferably 10 mass% or less, more preferably 4 mass% or less, and particularly preferably 2.5 mass% or less.

銅の担持割合が上記の範囲であれば、排ガス浄化性能の向上を確実に図ることができる。   When the copper loading ratio is in the above range, the exhaust gas purification performance can be reliably improved.

また、白金(金属換算)の担持割合は、第1触媒および第2触媒の総和に対して、例えば、0.01質量%以上、好ましくは、0.015質量%以上、さらに好ましくは、0.02質量%以上、1質量%未満、好ましくは、0.05質量%以下、さらに好ましくは、0.03質量%以下である。   The platinum (metal conversion) loading ratio is, for example, 0.01% by mass or more, preferably 0.015% by mass or more, and more preferably 0.8% by mass with respect to the sum of the first catalyst and the second catalyst. It is 02 mass% or more and less than 1 mass%, Preferably it is 0.05 mass% or less, More preferably, it is 0.03 mass% or less.

白金の担持割合が上記下限値以上であれば、排ガス浄化性能の向上を確実に図ることができ、白金の担持割合が上記上限値未満であれば、白金の使用量の低減を図ることができる。   If the platinum loading ratio is equal to or higher than the lower limit value, the exhaust gas purification performance can be reliably improved, and if the platinum loading ratio is less than the upper limit value, the amount of platinum used can be reduced. .

また、排ガス浄化用触媒における、白金と銅との質量比率(白金:銅)は、例えば、1:3〜1:700、好ましくは、1:5〜1:600、さらに好ましくは、1:50〜1:200、とりわけ好ましくは、1:50〜1:70である。   The mass ratio of platinum to copper (platinum: copper) in the exhaust gas purifying catalyst is, for example, 1: 3 to 1: 700, preferably 1: 5 to 1: 600, and more preferably 1:50. ˜1: 200, particularly preferably 1:50 to 1:70.

また、排ガス浄化用触媒の比表面積(BET比表面積)は、例えば、65m/g以上、好ましくは、70m/g以上、さらに好ましくは、71m/g以上、例えば、80m/g以下、好ましくは、75m/g以下、さらに好ましくは、73m/g以下である。 The specific surface area (BET specific surface area) of the exhaust gas purifying catalyst is, for example, 65 m 2 / g or more, preferably 70 m 2 / g or more, more preferably 71 m 2 / g or more, for example, 80 m 2 / g or less. It is preferably 75 m 2 / g or less, more preferably 73 m 2 / g or less.

排ガス浄化用触媒の比表面積が上記の範囲であれば、排ガス浄化性能の向上を確実に図ることができるとともに、優れた加工性を得ることができる。また、排ガス浄化用触媒を後述するようにコート層として形成した場合の剥離を抑制することができる。   If the specific surface area of the exhaust gas purification catalyst is in the above range, the exhaust gas purification performance can be reliably improved and excellent processability can be obtained. Moreover, peeling when the exhaust gas purifying catalyst is formed as a coat layer as described later can be suppressed.

そして、このようにして得られる排ガス浄化用触媒は、そのまま用いることもできるが、例えば、触媒担体上に担持(コート)させることもできる。   The exhaust gas-purifying catalyst thus obtained can be used as it is, but for example, can be supported (coated) on a catalyst carrier.

触媒担体としては、特に限定されず、例えば、コージェライトなどからなるハニカム状のモノリス担体など、公知の触媒担体が挙げられる。   The catalyst carrier is not particularly limited, and examples thereof include known catalyst carriers such as a honeycomb monolith carrier made of cordierite.

触媒担体上に担持(コート)させるには、例えば、まず、得られた排ガス浄化用触媒に、水を加えてスラリーとした後、触媒担体上にコーティングし、乾燥させ、その後、約300〜800℃、好ましくは、約300〜600℃で熱処理する。   For carrying (coating) on the catalyst carrier, for example, first, water is added to the obtained exhaust gas-purifying catalyst to form a slurry, which is then coated on the catalyst carrier, dried, and then about 300-800. The heat treatment is performed at a temperature of about 300 to 600 ° C.

なお、このような場合には、本発明の排ガス浄化用触媒は、必要により、アルミナや複合酸化物(例えば、ペロブスカイト型複合酸化物、蛍石型複合酸化物など)などの公知の耐熱性酸化物と併用することができる。   In such a case, the catalyst for purification of exhaust gas of the present invention is a known heat-resistant oxidation such as alumina or complex oxide (for example, perovskite complex oxide, fluorite complex oxide) if necessary. Can be used in combination with food.

このような排ガス浄化用触媒は、セリウム含有酸化物に銅が担持される第1触媒、および、アルミナに白金が担持される第2触媒を備えている(のみからなる)。   Such an exhaust gas purifying catalyst includes a first catalyst in which copper is supported on a cerium-containing oxide, and a second catalyst in which platinum is supported on alumina.

そして、第1触媒の配合割合が、第1触媒と第2触媒との総和に対して、10質量%以上90質量%以下であるので、白金の担持割合を第1触媒と第2触媒との総和に対して1質量%未満となるように低減しても、内燃機関(例えば、ガソリンエンジン、ディーゼルエンジンなど)から排出される排ガス(一酸化炭素(CO)、炭化水素(HC)および窒素酸化物(NO)など、とりわけ、CO)を良好に浄化することができる。そのため、白金の使用を低減することができながら、排ガス浄化性能の向上を図ることができる。 And since the mixture ratio of a 1st catalyst is 10 mass% or more and 90 mass% or less with respect to the sum total of a 1st catalyst and a 2nd catalyst, platinum loading ratio of a 1st catalyst and a 2nd catalyst is made. Exhaust gas (carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxidation) emitted from internal combustion engines (for example, gasoline engines, diesel engines, etc.) even if reduced to less than 1% by mass with respect to the total Goods (NO x ), especially CO) can be purified well. Therefore, it is possible to improve the exhaust gas purification performance while reducing the use of platinum.

このような排ガス浄化用触媒は、エンジンから排出される排ガスを浄化するための触媒、とりわけ、ディーゼルエンジンから排出される排ガスを浄化するための触媒として、好適に用いることができる。   Such an exhaust gas purifying catalyst can be suitably used as a catalyst for purifying exhaust gas discharged from an engine, particularly as a catalyst for purifying exhaust gas discharged from a diesel engine.

次に、本発明を実施例および比較例に基づいて説明するが、本発明は、下記の実施例によって限定されるものではない。また、以下の説明において特に言及がない限り、「部」および「%」は質量基準である。なお、以下に示す実施例の数値は、実施形態において記載される対応する数値(すなわち、上限値または下限値)に代替することができる。   Next, although this invention is demonstrated based on an Example and a comparative example, this invention is not limited by the following Example. In the following description, “part” and “%” are based on mass unless otherwise specified. In addition, the numerical value of the Example shown below can be substituted to the corresponding numerical value (namely, upper limit value or lower limit value) described in embodiment.

製造例1
セリウムメトキシプロピレート[Ce(OCH(CH)CHOCH]をCe換算で0.1molと、ジルコニウムメトキシプロピレート[Zr(OCH(CH)CHOCH]をZr換算で0.09molと、イットリウムメトキシプロピレート[Y(OCH(CH)CHOCH]をY換算で0.01molと、トルエン200mLとを配合して、攪拌して溶解させることにより、混合アルコキシド溶液を調製した。
Production Example 1
Cerium methoxypropylate [Ce (OCH (CH 3 ) CH 2 OCH 3 ) 3 ] is 0.1 mol in terms of Ce and zirconium methoxypropylate [Zr (OCH (CH 3 ) CH 2 OCH 3 ) 3 ] is in terms of Zr 0.09 mol, yttrium methoxypropylate [Y (OCH (CH 3 ) CH 2 OCH 3 ) 3 ] in 0.01 mol in terms of Y and 200 mL of toluene were mixed and stirred to dissolve, A mixed alkoxide solution was prepared.

さらに、この混合アルコキシド溶液に、脱イオン水80mLを滴下して、加水分解した。加水分解された溶液から、トルエンおよび脱イオン水を留去・蒸発させ、乾固した固体を得た。この得られた固体を、60℃で24時間通風乾燥させた後、電気炉にて、450℃で3時間熱処理(焼成)することにより、Ce0.50Zr0.450.05で示されるセリア−ジルコニア系複合酸化物(以下、CZYとする。)の粉末を得た。 Further, 80 mL of deionized water was added dropwise to the mixed alkoxide solution for hydrolysis. From the hydrolyzed solution, toluene and deionized water were distilled off and evaporated to obtain a dry solid. The obtained solid was air-dried at 60 ° C. for 24 hours and then heat-treated (fired) at 450 ° C. for 3 hours in an electric furnace, whereby Ce 0.50 Zr 0.45 Y 0.05 O 2. A powder of a ceria-zirconia-based composite oxide (hereinafter referred to as CZY) shown in FIG.

製造例2
CZYの粉末21.25質量部に、硝酸銅(II)水溶液(詳しくは、銅含有量26.04質量%の硝酸銅(II)・3水和物塩14.4質量部を水30質量部に溶解して調製した水溶液)44.4質量部を含浸させ、110℃で1昼夜乾燥後、電気炉にて、大気中において650℃で1時間熱処理(焼成)することにより、銅を担持するCZY粉末(第1触媒、以下、Cu担持CZYと略する。)25質量部を得た。Cu担持CZYにおいて、銅(金属換算)の担持割合は、15.0質量%であった。
Production Example 2
To 21.25 parts by mass of CZY powder, an aqueous copper (II) nitrate solution (specifically, 14.4 parts by mass of copper (II) nitrate trihydrate having a copper content of 26.04 mass% was added to 30 parts by mass of water). 44.4 parts by mass of an aqueous solution prepared by dissolving in copper, dried at 110 ° C for one day and night, and then heat-treated (fired) at 650 ° C for 1 hour in the air in an electric furnace to support copper. 25 parts by mass of CZY powder (first catalyst, hereinafter abbreviated as Cu-supported CZY) was obtained. In the Cu-supported CZY, the support ratio of copper (in metal conversion) was 15.0% by mass.

製造例3
CZYの粉末23.5質量部に、硝酸銅(II)水溶液(詳しくは、銅含有量26.04質量%の硝酸銅(II)・3水和物塩5.8質量部を水30質量部に溶解して調製した水溶液)35.8質量部を含浸させた点以外は、製造例2と同様にして、銅(金属換算)の担持割合が6.0質量%であるCu担持CZYを得た。
Production Example 3
To 23.5 parts by mass of CZY powder, an aqueous copper (II) nitrate solution (specifically, 5.8 parts by mass of copper (II) nitrate trihydrate salt having a copper content of 26.04 mass% was added to 30 parts by mass of water). A Cu-supported CZY having a copper (metal equivalent) support ratio of 6.0% by mass is obtained in the same manner as in Production Example 2 except that 35.8 parts by mass of the aqueous solution prepared by dissolving in) is impregnated. It was.

製造例4
CZYの粉末24.25質量部に、硝酸銅(II)水溶液(詳しくは、銅含有量26.04質量%の硝酸銅(II)・3水和物塩2.9質量部を水30質量部に溶解して調製した水溶液)32.9質量部を含浸させた点以外は、製造例2と同様にして、銅(金属換算)の担持割合が3.0質量%であるCu担持CZYを得た。
Production Example 4
To 24.25 parts by mass of CZY powder, an aqueous copper (II) nitrate solution (specifically, 2.9 parts by mass of copper (II) nitrate trihydrate salt having a copper content of 26.04 mass% was added to 30 parts by mass of water). Cu-supported CZY having a copper (metal equivalent) loading ratio of 3.0% by mass is obtained in the same manner as in Production Example 2 except that 32.9 parts by mass of the aqueous solution prepared by dissolving in copper is impregnated. It was.

製造例5
CZYの粉末24.5質量部に、硝酸銅(II)水溶液(詳しくは、銅含有量26.04質量%の硝酸銅(II)・3水和物塩1.9質量部を水30質量部に溶解して調製した水溶液)31.9質量部を含浸させた点以外は、製造例2と同様にして、銅(金属換算)の担持割合が2.0質量%であるCu担持CZYを得た。
Production Example 5
To 24.5 parts by mass of CZY powder, an aqueous copper (II) nitrate solution (specifically, 1.9 parts by mass of copper (II) nitrate trihydrate salt having a copper content of 26.04 mass% was added to 30 parts by mass of water). A Cu-supported CZY having a copper (metal equivalent) loading ratio of 2.0 mass% is obtained in the same manner as in Production Example 2 except that 31.9 parts by mass of the aqueous solution prepared by dissolving in copper is impregnated. It was.

製造例6
CZYの粉末24.58質量部に、硝酸銅(II)水溶液(詳しくは、銅含有量26.04質量%の硝酸銅(II)・3水和物塩1.6質量部を水30質量部に溶解して調製した水溶液)31.6質量部を含浸させた点以外は、製造例2と同様にして、銅(金属換算)の担持割合が1.67質量%であるCu担持CZYを得た。
Production Example 6
To 24.58 parts by mass of CZY powder, an aqueous solution of copper (II) nitrate (specifically, 1.6 parts by mass of copper (II) nitrate trihydrate salt having a copper content of 26.04 mass% was added to 30 parts by mass of water). A Cu-supported CZY having a copper (metal equivalent) support ratio of 1.67% by mass is obtained in the same manner as in Production Example 2 except that 31.6 parts by mass of the aqueous solution prepared by dissolving in 1) is impregnated. It was.

製造例7
θアルミナ25.0質量部に、ジニトロジアンミン白金硝酸溶液(詳しくは、白金含有量4.511質量%のジニトロジアンミン白金硝酸溶液0.155質量部を、水30質量部に溶解して調製した硝酸水溶液)30.155質量部を含浸させ、110℃で1昼夜乾燥後、電気炉にて、大気中において650℃で1時間熱処理(焼成)することにより、白金を担持するθアルミナ粉末(第2触媒、以下、Pt担持アルミナと略する。)25質量部を得た。Pt担持アルミナにおいて、白金(金属換算)の担持割合は、0.028質量%であった。
Production Example 7
Dinitrodiammine platinum nitric acid solution (specifically, nitric acid prepared by dissolving 0.155 parts by mass of a dinitrodiammine platinum nitric acid solution with a platinum content of 4.511% by mass in 30 parts by mass of water in 25.0 parts by mass of alumina. (Aqueous solution) impregnated with 30.155 parts by mass, dried at 110 ° C. for one day and night, and then heat-treated (fired) in the atmosphere at 650 ° C. for 1 hour in an electric furnace, thereby supporting the θ-alumina powder carrying the platinum (second Catalyst, hereinafter abbreviated as Pt-supported alumina.) 25 parts by mass were obtained. In the Pt-supported alumina, the support ratio of platinum (in metal conversion) was 0.028% by mass.

製造例8
θアルミナ25.0質量部に、ジニトロジアンミン白金硝酸溶液(詳しくは、白金含有量4.511質量%のジニトロジアンミン白金硝酸溶液0.183質量部を、水30質量部に溶解して調製した硝酸水溶液)30.183質量部を含浸させた点以外は、製造例7と同様にして、白金(金属換算)の担持割合が0.033質量%であるPt担持アルミナを得た。
Production Example 8
Dinitrodiammine platinum nitric acid solution (specifically, nitric acid prepared by dissolving 0.183 parts by mass of dinitrodiammine platinum nitric acid solution having a platinum content of 4.511% by mass in 30 parts by mass of water in 25.0 parts by mass of alumina. Pt-supported alumina having a platinum (metal conversion) support ratio of 0.033% by mass was obtained in the same manner as in Production Example 7, except that 30.183 parts by mass of the aqueous solution was impregnated.

製造例9
θアルミナ25.0質量部に、ジニトロジアンミン白金硝酸溶液(詳しくは、白金含有量4.511質量%のジニトロジアンミン白金硝酸溶液0.277質量部を、水30質量部に溶解して調製した硝酸水溶液)30.277質量部を含浸させた点以外は、製造例7と同様にして、白金(金属換算)の担持割合が0.05質量%であるPt担持アルミナを得た。
Production Example 9
Dinitrodiammine platinum nitric acid solution (specifically, nitric acid prepared by dissolving 0.277 parts by mass of dinitrodiammine platinum nitric acid solution having a platinum content of 4.511% by mass in 30 parts by mass of water in 25.0 parts by mass of alumina. Except that 30.277 parts by mass of the aqueous solution was impregnated, Pt-supported alumina having a platinum (metal conversion) support ratio of 0.05% by mass was obtained in the same manner as in Production Example 7.

製造例10
θアルミナ25.0質量部に、ジニトロジアンミン白金硝酸溶液(詳しくは、白金含有量4.511質量%のジニトロジアンミン白金硝酸溶液0.554質量部を、水30質量部に溶解して調製した硝酸水溶液)30.554質量部を含浸させた点以外は、製造例7と同様にして、白金(金属換算)の担持割合が0.1質量%であるPt担持アルミナを得た。
Production Example 10
Dinitrodiammine platinum nitric acid solution (specifically, nitric acid prepared by dissolving 0.554 parts by mass of dinitrodiammine platinum nitric acid solution with a platinum content of 4.511% by mass in 30 parts by mass of water in 25.0 parts by mass of alumina. Except for the point of impregnation with 30.554 parts by mass of an aqueous solution, Pt-supported alumina having a platinum (metal conversion) support ratio of 0.1% by mass was obtained in the same manner as in Production Example 7.

製造例11
θアルミナ24.9質量部に、ジニトロジアンミン白金硝酸溶液(詳しくは、白金含有量4.511質量%のジニトロジアンミン白金硝酸溶液1.39質量部を、水30質量部に溶解して調製した硝酸水溶液)31.39質量部を含浸させた点以外は、製造例7と同様にして、白金(金属換算)の担持割合が0.25質量%であるPt担持アルミナを得た。
Production Example 11
To 24.9 parts by mass of θ alumina, dinitrodiammine platinum nitric acid solution (specifically, nitric acid prepared by dissolving 1.39 parts by mass of dinitrodiammine platinum nitric acid solution having a platinum content of 4.511% by mass in 30 parts by mass of water) Except that 31.39 parts by mass of the aqueous solution was impregnated, Pt-supported alumina having a platinum (metal conversion) support ratio of 0.25% by mass was obtained in the same manner as in Production Example 7.

製造例12
CZYの粉末24.6質量部に、ジニトロジアンミン白金硝酸溶液(詳しくは、白金含有量4.511質量%のジニトロジアンミン白金硝酸溶液0.139質量部を、水30質量部に溶解して調製した硝酸水溶液)30.139質量部、および、硝酸銅(II)水溶液(詳しくは、銅含有量26.04質量%の硝酸銅(II)・3水和物塩1.4質量部を水30質量部に溶解して調製した水溶液)31.4質量部を含浸させた点以外は、製造例2と同様にして、銅および白金を担持するCZY粉末(以下、Cu・Pt担持CZYと略する。)を得た。Cu・Pt担持CZYにおいて、銅(金属換算)の担持割合は、1.5質量%であり、白金(金属換算)の担持割合は、0.025質量%であった。
Production Example 12
A dinitrodiammine platinum nitric acid solution (specifically, 0.139 parts by mass of a dinitrodiammine platinum nitric acid solution having a platinum content of 4.511% by mass) was dissolved in 30 parts by mass of water in 24.6 parts by mass of CZY powder. 30.139 parts by mass of nitric acid aqueous solution (30.139 parts by mass) and copper nitrate (II) aqueous solution (specifically, 1.4 parts by mass of copper nitrate (II) trihydrate salt having a copper content of 26.04 mass%) CZY powder carrying copper and platinum (hereinafter abbreviated as Cu · Pt carrying CZY) in the same manner as in Production Example 2 except that 31.4 parts by mass of an aqueous solution prepared by dissolving in part) was impregnated. ) In the Cu / Pt-supported CZY, the supporting ratio of copper (metal conversion) was 1.5 mass%, and the supporting ratio of platinum (metal conversion) was 0.025 mass%.

製造例13
θアルミナ24.6質量部に、ジニトロジアンミン白金硝酸溶液(詳しくは、白金含有量4.511質量%のジニトロジアンミン白金硝酸溶液0.139質量部を、水30質量部に溶解して調製した硝酸水溶液)30.139質量部、および、硝酸銅(II)水溶液(詳しくは、銅含有量26.04質量%の硝酸銅(II)・3水和物塩1.4質量部を水30質量部に溶解して調製した水溶液)31.4質量部を含浸させた点以外は、製造例2と同様にして、銅および白金を担持するθアルミナ粉末(以下、Cu・Pt担持アルミナと略する。)を得た。Cu・Pt担持アルミナにおいて、銅(金属換算)の担持割合は、1.5質量%であり、白金(金属換算)の担持割合は、0.025質量%であった。
Production Example 13
Dinitrodiammine platinum nitric acid solution (specifically, nitric acid prepared by dissolving 0.139 parts by mass of a dinitrodiammine platinum nitric acid solution having a platinum content of 4.511% by mass in 30 parts by mass of water in 24.6 parts by mass of alumina. Aqueous solution) 30.139 parts by mass and copper nitrate (II) aqueous solution (specifically, 1.4 parts by mass of copper (II) nitrate trihydrate salt having a copper content of 26.04% by mass is added 30 parts by mass of water). The aqueous solution prepared by dissolving in 31.4 parts by mass, except that it was impregnated with 31.4 parts by mass, was abbreviated as θ alumina powder carrying copper and platinum (hereinafter abbreviated as Cu · Pt carrying alumina) in the same manner as in Production Example 2. ) In the Cu / Pt-supported alumina, the supporting ratio of copper (converted to metal) was 1.5% by mass, and the supporting ratio of platinum (converted to metal) was 0.025% by mass.

実施例1
製造例2のCu担持CZY1.00質量部と、製造例7のPt担持アルミナ9.00質量部とを、乳鉢で10分間粉砕混合することで、Cu担持CZYおよびPt担持アルミナの混合粉末である排ガス浄化触媒10.00質量部を得た。つまり、Cu担持CZYの配合割合は、Cu担持CZYとPt担持アルミナとの総和に対して、10質量%であった。
Example 1
A mixed powder of Cu-supported CZY and Pt-supported alumina is obtained by grinding and mixing 1.00 parts by mass of Cu-supported CZY of Production Example 2 and 9.00 parts by mass of Pt-supported alumina of Production Example 7 in a mortar for 10 minutes. An exhaust gas purification catalyst (10.00 parts by mass) was obtained. That is, the mixing ratio of the Cu-supported CZY was 10% by mass with respect to the sum of the Cu-supported CZY and the Pt-supported alumina.

なお、排ガス浄化触媒において、銅(金属換算)の担持割合は、1.5質量%であり、白金(金属換算)の担持割合は、0.025質量%であった。   In the exhaust gas purification catalyst, the loading ratio of copper (converted to metal) was 1.5% by mass, and the supporting ratio of platinum (converted to metal) was 0.025% by mass.

実施例2
製造例3のCu担持CZY2.50質量部と、製造例8のPt担持アルミナ7.50質量部とを、乳鉢で10分間粉砕混合することで、Cu担持CZYおよびPt担持アルミナの混合粉末である排ガス浄化触媒10.00質量部を得た。つまり、Cu担持CZYの配合割合は、Cu担持CZYとPt担持アルミナとの総和に対して、25質量%であった。
Example 2
Cu mixed CZY 2.50 parts by mass of Production Example 3 and 7.50 parts by mass of Pt supported alumina of Production Example 8 are pulverized and mixed in a mortar for 10 minutes to obtain a mixed powder of Cu supported CZY and Pt supported alumina. An exhaust gas purification catalyst (10.00 parts by mass) was obtained. That is, the mixing ratio of the Cu-supported CZY was 25% by mass with respect to the sum of the Cu-supported CZY and the Pt-supported alumina.

なお、排ガス浄化触媒において、銅(金属換算)の担持割合は、1.5質量%であり、白金(金属換算)の担持割合は、0.025質量%であった。   In the exhaust gas purification catalyst, the loading ratio of copper (converted to metal) was 1.5% by mass, and the supporting ratio of platinum (converted to metal) was 0.025% by mass.

実施例3
製造例4のCu担持CZY5.0質量部と、製造例9のPt担持アルミナ5.0質量部とを、乳鉢で10分間粉砕混合することで、Cu担持CZYおよびPt担持アルミナの混合粉末である排ガス浄化触媒10.00質量部を得た。つまり、Cu担持CZYの配合割合は、Cu担持CZYとPt担持アルミナとの総和に対して、50質量%であった。
Example 3
Cu-supported CZY 5.0 parts by mass of Production Example 4 and 5.0 parts by mass of Pt-supported alumina of Production Example 9 are pulverized and mixed in a mortar for 10 minutes to obtain a mixed powder of Cu-supported CZY and Pt-supported alumina. An exhaust gas purification catalyst (10.00 parts by mass) was obtained. That is, the mixing ratio of the Cu-supported CZY was 50% by mass with respect to the sum of the Cu-supported CZY and the Pt-supported alumina.

なお、排ガス浄化触媒において、銅(金属換算)の担持割合は、1.50質量%であり、白金(金属換算)の担持割合は、0.025質量%であった。   In the exhaust gas purifying catalyst, the supporting ratio of copper (metal conversion) was 1.50 mass%, and the supporting ratio of platinum (metal conversion) was 0.025 mass%.

実施例4
製造例5のCu担持CZY7.5質量部と、製造例10のPt担持アルミナ2.5質量部とを、乳鉢で10分間粉砕混合することで、Cu担持CZYおよびPt担持アルミナの混合粉末である排ガス浄化触媒10.00質量部を得た。つまり、Cu担持CZYの配合割合は、Cu担持CZYとPt担持アルミナとの総和に対して、75質量%であった。
Example 4
The mixed powder of Cu-supported CZY and Pt-supported alumina is obtained by grinding and mixing 10 parts of Cu-supported CZY of Production Example 5 and 2.5 parts by weight of Pt-supported alumina of Production Example 10 in a mortar for 10 minutes. An exhaust gas purification catalyst (10.00 parts by mass) was obtained. That is, the mixing ratio of the Cu-supported CZY was 75% by mass with respect to the sum of the Cu-supported CZY and the Pt-supported alumina.

なお、排ガス浄化触媒において、銅(金属換算)の担持割合は、1.50質量%であり、白金(金属換算)の担持割合は、0.025質量%であった。   In the exhaust gas purifying catalyst, the supporting ratio of copper (metal conversion) was 1.50 mass%, and the supporting ratio of platinum (metal conversion) was 0.025 mass%.

実施例5
製造例6のCu担持CZY9.0質量部と、製造例11のPt担持アルミナ1.0質量部とを、乳鉢で10分間粉砕混合することで、Cu担持CZYおよびPt担持アルミナの混合粉末である排ガス浄化触媒10.00質量部を得た。つまり、Cu担持CZYの配合割合は、Cu担持CZYとPt担持アルミナとの総和に対して、90質量%であった。
Example 5
Cu-supported CZY 9.0 parts by mass of Production Example 6 and 1.0 part by mass of Pt-supported alumina of Production Example 11 are pulverized and mixed in a mortar for 10 minutes to obtain a mixed powder of Cu-supported CZY and Pt-supported alumina. An exhaust gas purification catalyst (10.00 parts by mass) was obtained. That is, the mixing ratio of the Cu-supported CZY was 90% by mass with respect to the sum of the Cu-supported CZY and the Pt-supported alumina.

なお、排ガス浄化触媒において、銅(金属換算)の担持割合は、1.50質量%であり、白金(金属換算)の担持割合は、0.025質量%であった。   In the exhaust gas purifying catalyst, the supporting ratio of copper (metal conversion) was 1.50 mass%, and the supporting ratio of platinum (metal conversion) was 0.025 mass%.

比較例1
製造例12のCu・Pt担持CZY10質量部のみを排ガス浄化触媒とした。つまり、アルミナを混合しなかった。
Comparative Example 1
Only 10 parts by mass of Cu / Pt-supported CZY of Production Example 12 was used as an exhaust gas purification catalyst. That is, alumina was not mixed.

比較例2
製造例13のCu・Pt担持アルミナ10質量部のみを排ガス浄化触媒とした。つまり、CZYを混合しなかった。
Comparative Example 2
Only 10 parts by mass of the Cu / Pt-supported alumina of Production Example 13 was used as an exhaust gas purification catalyst. That is, CZY was not mixed.

評価
1)耐久処理(Air750℃・5h)
各実施例および各比較例において得られた排ガス浄化触媒を、次の条件で高温耐久処理した。
Evaluation 1) Endurance treatment (Air 750 ° C., 5 hours)
The exhaust gas purification catalysts obtained in each Example and each Comparative Example were subjected to high temperature durability treatment under the following conditions.

この高温耐久処理では、各実施例および各比較例において得られた排ガス浄化用触媒を、水10%含有空気(O:20%、HO:10%、N:Balance)の雰囲気条件に、750℃で5時間曝露し、室温まで冷却した。
2)浄化率評価(T50)
上記耐久処理後の各実施例および各比較例の排ガス浄化用触媒を、0.5mm〜1.0mmのサイズのペレットに成型して試験片を調製した。
In this high-temperature endurance treatment, the exhaust gas purifying catalyst obtained in each example and each comparative example was subjected to an atmospheric condition of 10% water-containing air (O 2 : 20%, H 2 O: 10%, N 2 : Balance). For 5 hours at 750 ° C. and cooled to room temperature.
2) Purification rate evaluation (T50)
The exhaust gas purifying catalysts of the respective examples and comparative examples after the durability treatment were molded into pellets having a size of 0.5 mm to 1.0 mm to prepare test pieces.

ディーゼルエンジンから排出される排ガスのモデルガスとして、下記表1に示す組成のガスを用いた。そして、このモデルガスの燃焼によって排出される排気ガスの温度を、室温から750℃まで、30℃/分の割合で上昇させつつ、モデルガスを各試験片に供給し、排ガス中のCOが、50%浄化されるときの温度(50%浄化温度(T50):℃)を測定した。   As a model gas of exhaust gas discharged from a diesel engine, a gas having a composition shown in Table 1 below was used. And while increasing the temperature of the exhaust gas discharged by the combustion of the model gas from room temperature to 750 ° C. at a rate of 30 ° C./min, the model gas is supplied to each test piece, and the CO in the exhaust gas is The temperature at which 50% purification was performed (50% purification temperature (T50): ° C.) was measured.

Figure 0006339918
Figure 0006339918

その結果を、表2および図1に示す。   The results are shown in Table 2 and FIG.

Figure 0006339918
Figure 0006339918

考察
図1に示すように、第1触媒の担持割合が10質量%以上90質量%以下である排ガス浄化用触媒(実施例1〜5)は、第1触媒のみからなる触媒(比較例1)および第2触媒のみからなる触媒(比較例2)のそれぞれと比較して、優れた排ガス浄化率を有していた。
Discussion As shown in FIG. 1, the exhaust gas purifying catalyst (Examples 1 to 5) in which the loading ratio of the first catalyst is 10% by mass or more and 90% by mass or less is a catalyst composed only of the first catalyst (Comparative Example 1). Compared with each of the catalyst (comparative example 2) consisting only of the second catalyst, the exhaust gas purification rate was excellent.

Claims (1)

セリウム含有酸化物に銅が担持される第1触媒と、
アルミナに白金が担持される第2触媒とを備え、
前記白金の担持割合が、前記第1触媒と前記第2触媒との総和に対して、1質量%未満であり、
前記第1触媒の配合割合が、前記第1触媒と前記第2触媒との総和に対して、10質量%以上90質量%以下であることを特徴とする、排ガス浄化用触媒。
A first catalyst in which copper is supported on a cerium-containing oxide;
A second catalyst in which platinum is supported on alumina;
The platinum loading ratio is less than 1% by mass with respect to the total of the first catalyst and the second catalyst,
The exhaust gas purifying catalyst, wherein a mixing ratio of the first catalyst is 10% by mass or more and 90% by mass or less with respect to a total of the first catalyst and the second catalyst.
JP2014201231A 2014-09-30 2014-09-30 Exhaust gas purification catalyst Active JP6339918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201231A JP6339918B2 (en) 2014-09-30 2014-09-30 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201231A JP6339918B2 (en) 2014-09-30 2014-09-30 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2016068039A JP2016068039A (en) 2016-05-09
JP6339918B2 true JP6339918B2 (en) 2018-06-06

Family

ID=55865534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201231A Active JP6339918B2 (en) 2014-09-30 2014-09-30 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP6339918B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254399B2 (en) 2018-03-08 2022-02-22 Etme: Peppas Kai Synergates E.E. Floating platform for maritime surveillance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1009531B (en) * 2018-03-20 2019-05-23 Μονολιθος Καταλυτες & Ανακυκλωση Επε Catalysts comprising copper and noble metals for treating engine exhaust gases

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272614A (en) * 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd Co removing catalyst, fuel reforming apparatus, fuel cell system and co removing method
JP5574222B2 (en) * 2010-03-05 2014-08-20 株式会社豊田中央研究所 CO oxidation catalyst and exhaust gas purification method using the same
JP5715518B2 (en) * 2011-07-25 2015-05-07 ダイハツ工業株式会社 Exhaust gas purification catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254399B2 (en) 2018-03-08 2022-02-22 Etme: Peppas Kai Synergates E.E. Floating platform for maritime surveillance

Also Published As

Publication number Publication date
JP2016068039A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
CA2562556C (en) Process for producing metal oxide particle and exhaust gas purifying catalyst
JP7248616B2 (en) Exhaust gas purification catalyst
JP7184743B2 (en) Exhaust gas purification catalyst
JP2007326001A (en) Catalyst composition
JP6339918B2 (en) Exhaust gas purification catalyst
JP5715518B2 (en) Exhaust gas purification catalyst
JP3688945B2 (en) Exhaust gas purification catalyst
JPWO2014175349A1 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JP2010069380A (en) Catalyst for cleaning exhaust gas
JP2010022892A (en) Catalyst for cleaning exhaust gas
JP6335087B2 (en) Exhaust gas purification catalyst
JP7173708B2 (en) Exhaust gas purification catalyst
JP2016140809A (en) Catalyst for purifying exhaust gas
JP5506286B2 (en) Exhaust gas purification catalyst
JP5621109B2 (en) Exhaust gas purification catalyst
JP5607901B2 (en) Exhaust gas purification catalyst
JP2016032795A (en) Exhaust-gas purification catalyst
JP2016140799A (en) Catalyst for purifying exhaust gas
JP2015160207A (en) Exhaust gas-cleaning catalyst
JP2015142895A (en) Exhaust gas purification catalyst
WO2014050630A1 (en) Exhaust gas purifying catalyst
JP2015047543A (en) Nox occlusion emission material, exhaust gas purifying system and exhaust gas purifying method
JP2014147877A (en) Exhaust emission control catalyst
JP6059491B2 (en) Oxygen storage / release material
JP2017131828A (en) Catalyst for exhaust gas purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180511

R150 Certificate of patent or registration of utility model

Ref document number: 6339918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250