JP6338442B2 - Solid-state imaging device, distance measuring device, and imaging device - Google Patents

Solid-state imaging device, distance measuring device, and imaging device Download PDF

Info

Publication number
JP6338442B2
JP6338442B2 JP2014097073A JP2014097073A JP6338442B2 JP 6338442 B2 JP6338442 B2 JP 6338442B2 JP 2014097073 A JP2014097073 A JP 2014097073A JP 2014097073 A JP2014097073 A JP 2014097073A JP 6338442 B2 JP6338442 B2 JP 6338442B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion unit
solid
region
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014097073A
Other languages
Japanese (ja)
Other versions
JP2015073071A (en
JP2015073071A5 (en
Inventor
愛彦 沼田
愛彦 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014097073A priority Critical patent/JP6338442B2/en
Priority to US14/327,937 priority patent/US9402041B2/en
Priority to US14/327,924 priority patent/US9160942B2/en
Publication of JP2015073071A publication Critical patent/JP2015073071A/en
Priority to US14/831,122 priority patent/US9319607B2/en
Publication of JP2015073071A5 publication Critical patent/JP2015073071A5/ja
Application granted granted Critical
Publication of JP6338442B2 publication Critical patent/JP6338442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、固体撮像素子に関し、特に測距装置において用いられる固体撮像素子に関するものである。   The present invention relates to a solid-state image sensor, and more particularly to a solid-state image sensor used in a distance measuring device.

デジタルスチルカメラやデジタルビデオカメラにおいて、AF用距離検出技術が知られている。このようなAF用距離検出技術に関連して、特許文献1では固体撮像素子の一部の画素に測距機能を持たせ、位相差方式で検出するようにした固体撮像素子が提案されている。この位相差方式とは、結像光学系の瞳上の異なる領域を通過した二つの像(以下、測距像と呼ぶ)を取得し、測距像のズレ量を元にステレオ画像による三角測量を用いて距離を検出する方法である。これによると、従来のコントラスト方式とは異なり、距離を測定するためにレンズを動かす必要が無いため、高速高精度なAFが可能となる。   AF distance detection technology is known for digital still cameras and digital video cameras. In relation to such AF distance detection technology, Patent Document 1 proposes a solid-state imaging device in which some pixels of the solid-state imaging device have a ranging function and are detected by a phase difference method. . This phase difference method acquires two images (hereinafter referred to as distance measurement images) that have passed through different areas on the pupil of the imaging optical system, and triangulation using stereo images based on the distance between the distance measurement images. This is a method of detecting a distance using. According to this, unlike the conventional contrast method, since it is not necessary to move the lens to measure the distance, high-speed and high-precision AF is possible.

特許第4835136号公報Japanese Patent No. 4835136

しかしながら、撮影条件によっては、測距像の画質が低下するため、測距精度が低下するという問題があった。一般に、ズームやフォーカス状態により、結像光学系の射出瞳位置は変化するため、撮像素子の設計瞳位置と結像光学系の射出瞳位置は必ずしも一致しない。撮像素子の設計瞳位置と結像光学系の射出瞳位置が異なる場合、撮像素子内の各測距画素の位置に応じて、各測距画素で受光する光束が通過する瞳領域の偏心量は変化する。偏心量が大きくなると、二つの測距像を形成する光束の瞳透過率分布の間で差が生じる。また、口径食(けられ)によっても、二つの測距像を形成する光束の瞳透過率分布の間で差が生じる。   However, depending on the shooting conditions, the image quality of the distance measurement image deteriorates, and there is a problem that the distance measurement accuracy decreases. In general, since the exit pupil position of the imaging optical system changes depending on the zoom or focus state, the design pupil position of the imaging element and the exit pupil position of the imaging optical system do not necessarily match. When the design pupil position of the image sensor and the exit pupil position of the imaging optical system are different, the amount of eccentricity of the pupil region through which the light beam received by each distance measurement pixel passes depends on the position of each distance measurement pixel in the image sensor. Change. As the amount of eccentricity increases, a difference occurs between the pupil transmittance distributions of the light beams forming the two distance measurement images. Also, due to vignetting, a difference occurs between the pupil transmittance distributions of the light beams forming the two distance measurement images.

測距像を形成する光束の瞳透過率が相対的に低い測距像に合わせて露光時間を決めれば、瞳透過率が相対的に高い測距像が飽和し易くなる。逆に、測距像を形成する光束の瞳透過率が相対的に高い測距像に合わせて露光時間を決めれば、瞳透過率が相対的に低い測距像の光量が不足し易くなる。以上により、測距像の品質が低下するため、測距精度が低下する。コントラスト比の大きな被写体を撮影した場合、特に、測距像の品質低下が問題となる。   If the exposure time is determined in accordance with a distance measurement image having a relatively low pupil transmittance of the light beam forming the distance measurement image, the distance measurement image having a relatively high pupil transmittance is likely to be saturated. Conversely, if the exposure time is determined in accordance with a distance measurement image having a relatively high pupil transmittance of the light beam forming the distance measurement image, the light amount of the distance measurement image having a relatively low pupil transmittance is likely to be insufficient. As described above, since the quality of the distance measurement image is degraded, the distance measurement accuracy is degraded. When a subject with a large contrast ratio is photographed, the degradation of the quality of the distance measurement image becomes a problem.

上記の課題を考慮して、本発明は、コントラスト比の大きな被写体を撮影した場合であっても測距像の品質低下を抑制することを目的とする。   In view of the above problems, an object of the present invention is to suppress degradation in the quality of a ranging image even when a subject having a large contrast ratio is photographed.

本発明の第一の態様は、
結像光学系により結像される被写体像を光電変換する複数の画素を備える固体撮像素子であって、
前記複数の画素のうち少なくとも一部は、第1の光電変換部と第2の光電変換部が第1の方向に沿って並んで設けられた測距画素であり、
前記固体撮像素子の中心を通り前記第1の方向と垂直な直線により前記固体撮像素子の領域を第1の領域および第2の領域に分けた場合に、
前記第1の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第1の光電変換部の容量が前記第2の光電変換部の容量よりも大きく、
前記第2の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から前記所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第2の光電変換部の容量が前記第1の光電変換部の容量よりも大きい、
固体撮像素子である。
本発明の第二の態様は、
前記第1の領域内の測距画素のうちの8割以上の測距画素は、前記第1の光電変換部の容量が前記第2の光電変換部の容量よりも大きく、
前記第2の領域内の測距画素のうちの8割以上の測距画素は、前記第2の光電変換部の容量が前記第1の光電変換部の容量よりも大きい、
固体撮像素子である。
本発明の第二の態様は、
結像光学系により結像される被写体像を光電変換する複数の画素を備える固体撮像素子であって、
前記複数の画素のうち少なくとも一部は、第1の光電変換部と第2の光電変換部が第1の方向に沿って並んで設けられた測距画素であり、
前記固体撮像素子の中心を通り前記第1の方向と垂直な直線により前記固体撮像素子の領域を第1の領域および第2の領域に分けた場合に、
前記第1の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第1の光電変換部の体積が前記第2の光電変換部の体積よりも大きく、
前記第2の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から前記所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第2の光電変換部の体積が前記第1の光電変換部の体積よりも大きい、
固体撮像素子である。
本発明の第三の態様は、
結像光学系により結像される被写体像を光電変換する複数の画素を備える固体撮像素子であって、
前記複数の画素のうち少なくとも一部は、第1の光電変換部と第2の光電変換部が第1の方向に沿って並んで設けられた測距画素であり、
前記固体撮像素子の中心を通り前記第1の方向と垂直な直線により前記固体撮像素子の領域を第1の領域および第2の領域に分けた場合に、
前記第1の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第1の光電変換部の不純物濃度が前記第2の光電変換部の不純物濃度よりも高く、
前記第2の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から前記所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第2の光電変換部の不純物濃度が前記第1の光電変換部の不純物濃度よりも高い、
固体撮像素子である。
本発明の第四の態様は、
結像光学系により結像される被写体像を光電変換する複数の画素を備える固体撮像素子であって、
前記複数の画素のうち少なくとも一部は、第1の光電変換部と第2の光電変換部が第1の方向に沿って並んで設けられた測距画素であり、
前記固体撮像素子の中心を通り前記第1の方向と垂直な直線により前記固体撮像素子の領域を第1の領域および第2の領域に分けた場合に、
前記第1の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から所定の距離以上離れた領域内の測距画素の半分より多くの測距画素は、前記第1の光電変換部の撮像面における面積が前記第2の光電変換部の撮像面における面積よりも大きく、
前記第2の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から前記所定の距離以上離れた領域内の測距画素の半分より多くの測距画素は、前記第2の光電変換部の撮像面における面積が前記第1の光電変換部の撮像面における面積よりも大きく、
前記測距画素は導波路を有しており、前記測距画素への入射角に応じて入射光を前記第1の光電変換部または第2の光電変換部に導く、
固体撮像素子である。
The first aspect of the present invention is:
A solid-state imaging device including a plurality of pixels that photoelectrically convert a subject image formed by an imaging optical system,
At least a part of the plurality of pixels is a ranging pixel in which a first photoelectric conversion unit and a second photoelectric conversion unit are provided side by side along a first direction,
When the region of the solid-state imaging device is divided into a first region and a second region by a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction,
More than 80% of the ranging pixels in the first region and within a region that is more than a predetermined distance away from a straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The capacity of the first photoelectric conversion unit is larger than the capacity of the second photoelectric conversion unit,
80% or more of the ranging pixels in the second region and within the region separated by the predetermined distance or more from the straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The capacity of the second photoelectric conversion unit is larger than the capacity of the first photoelectric conversion unit,
It is a solid-state image sensor.
The second aspect of the present invention is:
More than 80% of the ranging pixels in the first area have a capacitance of the first photoelectric conversion unit larger than that of the second photoelectric conversion unit,
80% or more of the ranging pixels in the second region have a capacity of the second photoelectric conversion unit larger than a capacity of the first photoelectric conversion unit.
It is a solid-state image sensor.
The second aspect of the present invention is:
A solid-state imaging device including a plurality of pixels that photoelectrically convert a subject image formed by an imaging optical system,
At least a part of the plurality of pixels is a ranging pixel in which a first photoelectric conversion unit and a second photoelectric conversion unit are provided side by side along a first direction,
When the region of the solid-state imaging device is divided into a first region and a second region by a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction,
More than 80% of the ranging pixels in the first region and within a region that is more than a predetermined distance away from a straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The volume of the first photoelectric conversion unit is larger than the volume of the second photoelectric conversion unit,
80% or more of the ranging pixels in the second region and within the region separated by the predetermined distance or more from the straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The volume of the second photoelectric conversion unit is larger than the volume of the first photoelectric conversion unit;
It is a solid-state image sensor.
The third aspect of the present invention is:
A solid-state imaging device including a plurality of pixels that photoelectrically convert a subject image formed by an imaging optical system,
At least a part of the plurality of pixels is a ranging pixel in which a first photoelectric conversion unit and a second photoelectric conversion unit are provided side by side along a first direction,
When the region of the solid-state imaging device is divided into a first region and a second region by a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction,
More than 80% of the ranging pixels in the first region and within a region that is more than a predetermined distance away from a straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The impurity concentration of the first photoelectric conversion unit is higher than the impurity concentration of the second photoelectric conversion unit,
80% or more of the ranging pixels in the second region and within the region separated by the predetermined distance or more from the straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The impurity concentration of the second photoelectric conversion unit is higher than the impurity concentration of the first photoelectric conversion unit;
It is a solid-state image sensor.
The fourth aspect of the present invention is:
A solid-state imaging device including a plurality of pixels that photoelectrically convert a subject image formed by an imaging optical system,
At least a part of the plurality of pixels is a ranging pixel in which a first photoelectric conversion unit and a second photoelectric conversion unit are provided side by side along a first direction,
When the region of the solid-state imaging device is divided into a first region and a second region by a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction,
More than half the distance measurement pixels in the first area and within the area that is more than a predetermined distance away from a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction, The area of the imaging surface of the first photoelectric conversion unit is larger than the area of the imaging surface of the second photoelectric conversion unit,
More than half the distance measurement pixels in the second area and within the area that is more than the predetermined distance from the straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The area of the imaging surface of the second photoelectric conversion unit is larger than the area of the imaging surface of the first photoelectric conversion unit;
The ranging pixel has a waveguide, and guides incident light to the first photoelectric conversion unit or the second photoelectric conversion unit according to an incident angle to the ranging pixel.
It is a solid-state image sensor.

本発明によれば、測距像の品質低下を抑制でき、したがって測距精度が向上する。特に、コントラスト比の大きな被写体を撮影した場合に効果が大きい。   According to the present invention, it is possible to suppress degradation in the quality of a distance measurement image, and therefore, distance measurement accuracy is improved. This is particularly effective when a subject with a large contrast ratio is photographed.

実施形態1に係るデジタルカメラの構成図1 is a configuration diagram of a digital camera according to a first embodiment. 実施形態1に係る固体撮像素子の配置および構造Arrangement and structure of solid-state imaging device according to embodiment 1 実施形態1に係る測距画素の感度特性Sensitivity characteristics of ranging pixels according to the first embodiment 実施形態1に係る光電変換部が受光する光束Light flux received by the photoelectric conversion unit according to the first embodiment 実施形態1に係る固体撮像素子の変形例Modification of solid-state imaging device according to Embodiment 1 実施形態2に係る固体撮像素子の配置および構造Arrangement and structure of solid-state imaging device according to embodiment 2 実施形態2に係る測距画素の感度特性Sensitivity characteristics of ranging pixels according to the second embodiment 実施形態2に係る光電変換部が受光する光束Light flux received by the photoelectric conversion unit according to the second embodiment 実施形態3に係る固体撮像素子の配置および構造Arrangement and structure of solid-state imaging device according to embodiment 3 実施形態3に係る固体撮像素子の変形例Modification of solid-state imaging device according to embodiment 3 実施形態4に係る固体撮像素子の配置および構造Arrangement and structure of solid-state imaging device according to embodiment 4 実施形態6に係る固体撮像素子の配置および構造Arrangement and structure of solid-state imaging device according to embodiment 6 実施形態6に係る測距画素の感度特性Sensitivity characteristics of ranging pixels according to Embodiment 6 実施形態7に示す固体撮像素子の配置および構造Arrangement and structure of solid-state imaging device shown in embodiment 7 導波路を用いた測距画素の構造Ranging Pixel Structure Using Waveguide

以下、図を用いて、本発明の実施形態における測距装置について説明する。その際、全ての図において同一の機能を有するものは同一の数字を付け、その繰り返しの説明は省略する。   Hereinafter, a distance measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings. In that case, the same number is attached to the same function in all the drawings, and the repeated explanation is omitted.

[実施形態1]
<カメラ>
本実施形態にかかるデジタルカメラ(撮像装置)100を図1に示す。図1において、デジタルカメラ100は、結像光学系101、固体撮像素子103、演算処理部104から構成される。固体撮像素子103は結像光学系101の光軸102上に配置され、結像光学系101は固体撮像素子103上に被写体像を結像する。
[Embodiment 1]
<Camera>
A digital camera (imaging device) 100 according to this embodiment is shown in FIG. In FIG. 1, the digital camera 100 includes an imaging optical system 101, a solid-state image sensor 103, and an arithmetic processing unit 104. The solid-state imaging device 103 is disposed on the optical axis 102 of the imaging optical system 101, and the imaging optical system 101 forms a subject image on the solid-state imaging device 103.

固体撮像素子103は、光を検出して電荷を発生させるフォトダイオードを光電変換素子(光電変換部)として備える。発生した電荷の転送方式は任意であってよい。すなわち、固体撮像素子103は、CCD(Charge Coupled Device: 電荷結合素子)であっても
よいし、CMOS(Complementary Metal Oxide Semiconductor: 相補型MOS)であっ
てもよい。
The solid-state image sensor 103 includes a photodiode that detects light and generates a charge as a photoelectric conversion element (photoelectric conversion unit). The method of transferring the generated charge may be arbitrary. That is, the solid-state imaging device 103 may be a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).

固体撮像素子103は、複数の画素を備え、その全てが測距画素である。測距画素は、2つの光電変換部を備え、それぞれ結像光学系101の異なる瞳領域からの光を選択的に受光するように構成される。測距画素の2つの光電変換部からは視差を持った被写体像信号が得られるので、被写体距離を算出できる。なお、上記複数の画素のうち一部の画素は
、通常の撮像用の画素であってもよい。撮像用画素は、光電変換部を1つのみ備え、結像光学系101の全瞳領域からの光を受光する。
The solid-state image sensor 103 includes a plurality of pixels, all of which are ranging pixels. The ranging pixel includes two photoelectric conversion units, and is configured to selectively receive light from different pupil regions of the imaging optical system 101, respectively. Since the subject image signal having parallax is obtained from the two photoelectric conversion units of the ranging pixel, the subject distance can be calculated. Note that some of the plurality of pixels may be normal imaging pixels. The imaging pixel includes only one photoelectric conversion unit and receives light from the entire pupil region of the imaging optical system 101.

演算処理部104は、CPUやDSPとプログラムを格納したメモリから構成され、プログラムを実行することにより被写体の距離を検出したり、被写体像を取得したりする。なお、演算処理部104はASICにより実装されても良い。結像光学系101と固体撮像素子103と演算処理部104の測距機能(距離算出部)から、測距装置が構成される。また、測距装置と演算処理部104の撮像機能(被写体像取得部)から、撮像装置が構成される。演算処理部104における被写体像取得機能については、公知の技術を採用可能であるので本明細書では詳しい説明は省略する。   The arithmetic processing unit 104 includes a CPU, a DSP, and a memory that stores a program. The arithmetic processing unit 104 detects the distance of a subject and acquires a subject image by executing the program. Note that the arithmetic processing unit 104 may be implemented by an ASIC. A distance measuring device is configured by the distance measuring function (distance calculating unit) of the imaging optical system 101, the solid-state imaging device 103, and the arithmetic processing unit 104. Further, the imaging device is configured by the ranging device and the imaging function (subject image acquisition unit) of the arithmetic processing unit 104. Regarding the subject image acquisition function in the arithmetic processing unit 104, a well-known technique can be adopted, and thus detailed description thereof is omitted in this specification.

<測距画素>
図2(a)は、固体撮像素子103内の測距画素の配置を示した図である。測距画素110は、固体撮像素子103の−X方向の周辺領域105内に配置された測距画素であり、測距画素111は、固体撮像素子103の+X方向の周辺領域106内に配置された測距画素である。周辺領域105は、固体撮像素子103の中心を通りX方向と垂直な方向(Y方向)に平行な直線107から、−X方向に所定の距離以上離れた領域である。一方、周辺領域106は、直線107から+X方向に所定距離以上離れた領域である。なお、図2(a)の例では、上記所定の距離は、固体撮像素子103のX方向長さの1/6倍である。X方向が本発明における第1の方向に該当する。ただし、上記所定の距離は、固体撮像素子103のX方向長さの0.40倍以上とすることが好ましく、0.25倍以上とすれば、更に好ましい。この理由については後述する。
<Distance pixel>
FIG. 2A is a diagram illustrating the arrangement of the distance measurement pixels in the solid-state image sensor 103. The ranging pixel 110 is a ranging pixel arranged in the peripheral region 105 in the −X direction of the solid-state imaging device 103, and the ranging pixel 111 is arranged in the peripheral region 106 in the + X direction of the solid-state imaging device 103. Ranging pixels. The peripheral region 105 is a region separated from the straight line 107 passing through the center of the solid-state image sensor 103 and parallel to the direction (Y direction) perpendicular to the X direction by a predetermined distance or more in the −X direction. On the other hand, the peripheral area 106 is an area separated from the straight line 107 in the + X direction by a predetermined distance or more. In the example of FIG. 2A, the predetermined distance is 1/6 times the length of the solid-state image sensor 103 in the X direction. The X direction corresponds to the first direction in the present invention. However, the predetermined distance is preferably 0.40 times or more, and more preferably 0.25 times or more the X-direction length of the solid-state imaging device 103. The reason for this will be described later.

図2(b)は、測距画素110及び測距画素111の構成を示した断面図である。測距画素110及び測距画素111は、光の入射側より、マイクロレンズ112、基板113を有している。マイクロレンズ112は、検出する波長帯域で透明な材料であるSiO2などで形成されており、基板113は、検出する波長帯域で吸収を有するSiなどの材料で形成されている。   FIG. 2B is a cross-sectional view illustrating the configuration of the ranging pixel 110 and the ranging pixel 111. The ranging pixel 110 and the ranging pixel 111 have a microlens 112 and a substrate 113 from the light incident side. The microlens 112 is made of SiO2 or the like that is transparent in the wavelength band to be detected, and the substrate 113 is made of a material such as Si that has absorption in the wavelength band to be detected.

基板113内には、マイクロレンズ112の光軸を中心として、X方向に対称な位置に配置された二つの光電変換部が形成されている。測距画素110の−X方向の光電変換部を光電変換部121、+X方向の光電変換部を光電変換部122と呼び、測距画素111の−X方向の光電変換部を光電変換部123、+X方向の光電変換部を光電変換部124と呼ぶ。X方向のマイナス側に配置された光電変換部121,123が第1の光電変換部に相当し、X方向のプラス側に配置された光電変換部122,124が第2の光電変換部に相当する。すなわち、第1の光電変換部と第2の光電変換部は、X方向に沿って並んで設けられる2つの光電変換部である。   In the substrate 113, two photoelectric conversion units are formed that are arranged symmetrically in the X direction with the optical axis of the microlens 112 as the center. The photoelectric conversion unit in the −X direction of the ranging pixel 110 is referred to as a photoelectric conversion unit 121, the photoelectric conversion unit in the + X direction is referred to as a photoelectric conversion unit 122, and the photoelectric conversion unit in the −X direction of the ranging pixel 111 is referred to as a photoelectric conversion unit 123. The + X direction photoelectric conversion unit is referred to as a photoelectric conversion unit 124. The photoelectric conversion units 121 and 123 arranged on the negative side in the X direction correspond to the first photoelectric conversion unit, and the photoelectric conversion units 122 and 124 arranged on the positive side in the X direction correspond to the second photoelectric conversion unit. To do. That is, the first photoelectric conversion unit and the second photoelectric conversion unit are two photoelectric conversion units provided side by side along the X direction.

基板113の撮像面内(XY面内)における光電変換部121と光電変換部122および、光電変換部123と光電変換部124の形状は等しい。また、光電変換部121は光電変換部122よりも、撮像面と垂直な方向(Z方向)の長さが長い。また、光電変換部124は光電変換部123よりも、撮像面と垂直な方向(Z方向)の長さが長い。以後、光電変換部のZ方向の長さのことを光電変換部の深さと呼ぶ。   The photoelectric conversion unit 121 and the photoelectric conversion unit 122, and the photoelectric conversion unit 123 and the photoelectric conversion unit 124 in the imaging plane (XY plane) of the substrate 113 have the same shape. Further, the photoelectric conversion unit 121 is longer than the photoelectric conversion unit 122 in the direction perpendicular to the imaging surface (Z direction). Further, the photoelectric conversion unit 124 is longer than the photoelectric conversion unit 123 in the direction perpendicular to the imaging surface (Z direction). Hereinafter, the length of the photoelectric conversion unit in the Z direction is referred to as the depth of the photoelectric conversion unit.

光電変換部の深さが深いほど、その光電変換部の容量は大きくなる。すなわち、固体撮像素子103の中心を通るY方向の直線107よりも−X方向に所定距離以上離れた領域(105)において、−X方向側の光電変換部121の容量が、+X方向側の光電変換部122の容量よりも大きい。一方、固体撮像素子103の中心を通るY方向の直線107よりも+X方向に所定距離以上離れた領域(106)において、+X方向側の光電変換部124の容量が、−X方向側の光電変換部123の容量よりも大きい。   The deeper the photoelectric conversion unit, the larger the capacity of the photoelectric conversion unit. That is, in the region (105) that is more than a predetermined distance in the −X direction from the Y-direction straight line 107 passing through the center of the solid-state imaging device 103, the capacitance of the photoelectric conversion unit 121 on the −X direction side is the photoelectric on the + X direction side. It is larger than the capacity of the converter 122. On the other hand, in a region (106) that is a predetermined distance or more away in the + X direction from the Y-direction straight line 107 passing through the center of the solid-state image sensor 103, the capacitance of the photoelectric conversion unit 124 on the + X direction side is photoelectric conversion on the −X direction side. It is larger than the capacity of the part 123.

光電変換部は、基板113に対してボロンなどのイオンを打ち込むことで形成する。また、基板113には図示しない配線が設けられており、光電変換部で発生した電荷は配線によって信号処理回路に転送される。   The photoelectric conversion portion is formed by implanting ions such as boron into the substrate 113. Further, a wiring (not shown) is provided on the substrate 113, and charges generated in the photoelectric conversion unit are transferred to the signal processing circuit by the wiring.

<光電変換部の感度特性>
このような構成を採用することで、光電変換部121と光電変換部122の感度及び、光電変換部123と光電変換部124の感度の、XZ断面における入射角依存性を互いに異ならせることができる。図3に、各光電変換部の感度の入射角依存性を示す。光電変換部122及び光電変換部124の感度特性(点線)は、マイナス方向(−X方向)からの入射光に対する感度が高く、プラス方向(+X方向)からの入射光に対する感度が低い。一方で、光電変換部121及び光電変換部123の感度特性(破線)は、マイナス方向(−X方向)からの入射光に対する感度が低く、プラス方向(+X方向)からの入射光に対する感度が高い。即ち、光電変換部121及び光電変換部123は、結像光学系の射出瞳130の一部である、+X方向の瞳領域131及び133(第1の瞳領域)を通過する光束を選択的に受光するようになっている。一方、光電変換部122及び光電変換部124は、結像光学系の射出瞳130の一部である、−X方向の瞳領域132及び134(第2の瞳領域)を通過する光束を選択的に受光するようになっている。
<Sensitivity characteristics of photoelectric converter>
By adopting such a configuration, the incident angle dependence in the XZ section of the sensitivity of the photoelectric conversion unit 121 and the photoelectric conversion unit 122 and the sensitivity of the photoelectric conversion unit 123 and the photoelectric conversion unit 124 can be made different from each other. . FIG. 3 shows the incident angle dependence of the sensitivity of each photoelectric conversion unit. The sensitivity characteristics (dotted lines) of the photoelectric conversion unit 122 and the photoelectric conversion unit 124 have high sensitivity to incident light from the minus direction (−X direction) and low sensitivity to incident light from the plus direction (+ X direction). On the other hand, the sensitivity characteristics (broken lines) of the photoelectric conversion unit 121 and the photoelectric conversion unit 123 have low sensitivity to incident light from the minus direction (−X direction) and high sensitivity to incident light from the plus direction (+ X direction). . That is, the photoelectric conversion unit 121 and the photoelectric conversion unit 123 selectively select the light flux that passes through the pupil regions 131 and 133 (first pupil region) in the + X direction, which is a part of the exit pupil 130 of the imaging optical system. It is designed to receive light. On the other hand, the photoelectric conversion unit 122 and the photoelectric conversion unit 124 selectively select a light beam that passes through the pupil regions 132 and 134 (second pupil region) in the −X direction, which is a part of the exit pupil 130 of the imaging optical system. It is designed to receive light.

<マイクロレンズ>
また、二つの光電変換部がマイクロレンズ111の光軸を中心軸として、互いに対称な位置に配置され、かつ開口部形状も等しいため、感度特性は、光入射角0度を軸として対称な形状になっている。そのため、結像光学系101の射出瞳130と固体撮像素子103の距離が無限大の時に、瞳領域131と瞳領域132、及び瞳領域133と瞳領域134は、射出瞳130上で中心対称となる。
<Micro lens>
In addition, since the two photoelectric conversion portions are arranged at symmetrical positions with the optical axis of the microlens 111 as the central axis and the opening shapes are the same, the sensitivity characteristic is a symmetrical shape with the light incident angle of 0 degree as an axis. It has become. Therefore, when the distance between the exit pupil 130 of the imaging optical system 101 and the solid-state imaging device 103 is infinite, the pupil region 131 and the pupil region 132, and the pupil region 133 and the pupil region 134 are centrosymmetric on the exit pupil 130. Become.

即ち、瞳領域131の瞳透過率分布と、瞳領域132の瞳透過率分布の重心位置は異なっている。同様に、瞳領域133の瞳透過率分布と、瞳領域134の瞳透過率分布の重心位置も異なっている。ここで、瞳領域131(133)の瞳透過率分布の重心と、瞳領域132(134)の透過率分布を結ぶ直線の方向はX方向である。   That is, the position of the center of gravity of the pupil transmittance distribution of the pupil region 131 and the pupil transmittance distribution of the pupil region 132 are different. Similarly, the position of the center of gravity of the pupil transmittance distribution of the pupil region 133 and the pupil transmittance distribution of the pupil region 134 are also different. Here, the direction of the straight line connecting the center of gravity of the pupil transmittance distribution of the pupil region 131 (133) and the transmittance distribution of the pupil region 132 (134) is the X direction.

<瞳透過率が相違する理由とその問題>
射出瞳130と固体撮像素子103の距離が常に無限大に保持されている場合、図3に示す感度特性により、理想的には瞳領域131と瞳領域132の瞳透過率は互いに等しい。従って、光電変換部121と光電変換部122に入射する光量は等しい。同様に、瞳領域133と瞳領域134の瞳透過率も互いに等しく、光電変換部123と光電変換部124に入射する光量は等しい。
<The reason why pupil transmittance is different and its problem>
When the distance between the exit pupil 130 and the solid-state image sensor 103 is always kept infinite, the pupil transmittances of the pupil region 131 and the pupil region 132 are ideally equal to each other due to the sensitivity characteristics shown in FIG. Accordingly, the amount of light incident on the photoelectric conversion unit 121 and the photoelectric conversion unit 122 is equal. Similarly, the pupil transmittances of the pupil region 133 and the pupil region 134 are also equal to each other, and the amounts of light incident on the photoelectric conversion unit 123 and the photoelectric conversion unit 124 are equal.

しかし、以下のように実際のデジタルカメラにおいては、瞳領域131と瞳領域132の瞳透過率および、瞳領域133と瞳領域134の瞳透過率は互いに等しくならない。その理由について説明する。   However, in an actual digital camera as described below, the pupil transmittances of the pupil region 131 and the pupil region 132 and the pupil transmittances of the pupil region 133 and the pupil region 134 are not equal to each other. The reason will be described.

デジタルカメラ100の小型化の要請から、結像光学系101の射出瞳位置は、ズーム状態によって変化する。一般的に、望遠側では、射出瞳130の位置は固体撮像素子から遠く、広角側では、射出瞳130の位置は固体撮像素子に近くなる。また、撮影レンズがインナーフォーカスやリアフォーカスの構成の場合は、フォーカス状態に応じても、射出瞳130の位置が変動する。そのため、固体撮像素子103の中心から、X方向に離れた周辺領域に位置する測距画素110においては、瞳領域131と瞳領域132の瞳透過率及び、瞳領域133と瞳領域134の瞳透過率が互いに等しくならない。   Due to the demand for miniaturization of the digital camera 100, the exit pupil position of the imaging optical system 101 changes depending on the zoom state. In general, on the telephoto side, the position of the exit pupil 130 is far from the solid-state image sensor, and on the wide-angle side, the position of the exit pupil 130 is closer to the solid-state image sensor. When the photographing lens has an inner focus or rear focus configuration, the position of the exit pupil 130 also varies depending on the focus state. Therefore, in the ranging pixel 110 located in the peripheral region away from the center of the solid-state image sensor 103 in the X direction, the pupil transmittance of the pupil region 131 and the pupil region 132 and the pupil transmission of the pupil region 133 and the pupil region 134 are transmitted. The rates are not equal to each other.

また、仮に射出瞳130と固体撮像素子103の距離が常に無限大に保持されていたとしても、結像光学系101内の口径食により、射出瞳130の周辺を通る光量が低下する場合がある。その場合、固体撮像素子の周辺領域に位置する測距画素においては、瞳領域131と瞳領域132の瞳透過率及び、瞳領域133と瞳領域134の瞳透過率が互いに等しくならない。   Even if the distance between the exit pupil 130 and the solid-state image sensor 103 is always kept infinite, the amount of light passing through the periphery of the exit pupil 130 may decrease due to vignetting in the imaging optical system 101. . In that case, in the ranging pixels located in the peripheral region of the solid-state imaging device, the pupil transmittances of the pupil region 131 and the pupil region 132 and the pupil transmittances of the pupil region 133 and the pupil region 134 are not equal to each other.

射出瞳130が、固体撮像素子103から有限な距離にある場合(例えば、ズームレンズの広角側で撮影した場合に相当)を図4(a)(b)に示す。   FIGS. 4A and 4B show a case where the exit pupil 130 is at a finite distance from the solid-state image sensor 103 (e.g., when the exit pupil 130 is photographed on the wide-angle side of the zoom lens).

図4(a)は、固体撮像素子103の中心よりも−X方向(第一の方向の負の方向)の周辺領域105における測距画素110で受光する光束の状態を示す。光電変換部121は、瞳領域131からの光束141を受光し、光電変換部122は、瞳領域132からの光束142を受光する。図4(a)からわかるように、光束141の拡がり角は光束142の拡がり角よりも大きい。従って、瞳領域131の瞳透過率は瞳領域132よりも高くなり、光電変換部121が受光する光量は光電変換部122が受光する光量よりも多い。   FIG. 4A shows the state of the light beam received by the ranging pixel 110 in the peripheral region 105 in the −X direction (the negative direction of the first direction) from the center of the solid-state image sensor 103. The photoelectric conversion unit 121 receives the light beam 141 from the pupil region 131, and the photoelectric conversion unit 122 receives the light beam 142 from the pupil region 132. As can be seen from FIG. 4A, the spread angle of the light beam 141 is larger than the spread angle of the light beam 142. Accordingly, the pupil transmittance of the pupil region 131 is higher than that of the pupil region 132, and the amount of light received by the photoelectric conversion unit 121 is greater than the amount of light received by the photoelectric conversion unit 122.

図4(b)は、固体撮像素子103の中心よりも+X方向(第一の方向の正の方向)の周辺領域106における測距画素111で受光する光束の状態を示す。光電変換部123は、瞳領域133からの光束143を受光し、光電変換部124は、瞳領域134からの光束144を受光する。図4(b)からわかるように、光束144の拡がり角は光束143の拡がり角よりも大きい。従って、瞳領域134の瞳透過率は瞳領域133よりも高くなるため、光電変換部124が受光する光量は光電変換部123が受光する光量よりも多い。   FIG. 4B shows a state of the light beam received by the ranging pixel 111 in the peripheral region 106 in the + X direction (positive direction of the first direction) from the center of the solid-state image sensor 103. The photoelectric conversion unit 123 receives the light beam 143 from the pupil region 133, and the photoelectric conversion unit 124 receives the light beam 144 from the pupil region 134. As can be seen from FIG. 4B, the divergence angle of the light beam 144 is larger than the divergence angle of the light beam 143. Accordingly, since the pupil transmittance of the pupil region 134 is higher than that of the pupil region 133, the amount of light received by the photoelectric conversion unit 124 is larger than the amount of light received by the photoelectric conversion unit 123.

特許文献1に開示されているような、2つの光電変換部の容量が等しい従来の固体撮像素子では、光量不足と飽和のトレードオフの問題が生じる。すなわち、受光する光量が相対的に少ない光電変換部122、123に合わせて露光時間を決定すると、受光する光量が多い光電変換部121、124において飽和しやすくなる。逆に、受光する光量が相対的に多い光電変換部121、124に合わせて露光時間を決定すると、受光する光量が少ない光電変換部122、123において光量不足が発生する。飽和や光量不足が発生すると測距画像の品質が低下し、測距精度が低下してしまう。特に、コントラスト比の大きな被写体を撮影した場合には、測距像の品質低下が問題となる。   In the conventional solid-state imaging device having the same capacity of the two photoelectric conversion units as disclosed in Patent Document 1, there is a tradeoff between insufficient light quantity and saturation. That is, when the exposure time is determined in accordance with the photoelectric conversion units 122 and 123 that receive a relatively small amount of light, the photoelectric conversion units 121 and 124 that receive a large amount of light are likely to be saturated. On the other hand, when the exposure time is determined in accordance with the photoelectric conversion units 121 and 124 that receive a relatively large amount of light, a shortage of light occurs in the photoelectric conversion units 122 and 123 that receive a small amount of light. If saturation or light quantity shortage occurs, the quality of the distance measurement image decreases, and the distance measurement accuracy decreases. In particular, when a subject having a large contrast ratio is photographed, the degradation of the quality of the distance measurement image becomes a problem.

<光電変換部の容量変化による効果>
本実施形態における固体撮像素子103では、受光する光量が相対的に多い光電変換部121、124の深さを、受光する光量が相対的に少ない光電変換部122、123の深さよりも深くしている。即ち、瞳透過率の低い瞳領域132、133からの光を受光する光電変換部122、123よりも、瞳透過率の高い瞳領域131、134の光を受光する光電変換部121、124の容量を大きくしている。これにより、光電変換部122、123における光量不足と、瞳領域131、134を通過した光を受光する光電変換部121、124における飽和を同時に解決することが可能となる。
<Effect due to change in capacitance of photoelectric conversion unit>
In the solid-state imaging device 103 according to the present embodiment, the depth of the photoelectric conversion units 121 and 124 that receive a relatively large amount of light is made deeper than the depth of the photoelectric conversion units 122 and 123 that receive a relatively small amount of light. Yes. That is, the capacitances of the photoelectric conversion units 121 and 124 that receive light in the pupil regions 131 and 134 having higher pupil transmittance than the photoelectric conversion units 122 and 123 that receive light from the pupil regions 132 and 133 having low pupil transmittance. Has increased. Accordingly, it is possible to simultaneously solve the shortage of light amount in the photoelectric conversion units 122 and 123 and the saturation in the photoelectric conversion units 121 and 124 that receive the light that has passed through the pupil regions 131 and 134.

光電変換部の深さを変えるには、イオン打ち込みの深さを変えればよい。また、光電変換部の中の不純物濃度を変えても良い。即ち、第一の光電変換部の中の不純物濃度よりも第二の光電変換部の中の不純物濃度を高くすればよい。不純物濃度が大きいほどポテンシャル勾配が強くなり、光電変換部の実効的な深さが深くなる。不純物濃度を高くするには、注入するイオンの濃度を上げればよい。   In order to change the depth of the photoelectric conversion portion, the depth of ion implantation may be changed. Further, the impurity concentration in the photoelectric conversion unit may be changed. That is, the impurity concentration in the second photoelectric conversion unit may be higher than the impurity concentration in the first photoelectric conversion unit. The higher the impurity concentration, the stronger the potential gradient and the deeper the effective depth of the photoelectric conversion unit. In order to increase the impurity concentration, the concentration of ions to be implanted may be increased.

<距離検出処理>
演算処理部104が行う被写体距離の算出処理について説明する。演算処理部104は
、測距画素110の光電変換部121および測距画素111の光電変換部123から得られる信号から第1の測距像を取得する。同様に、演算処理部104は、測距画素110の光電変換部122および測距画素111の光電変換部124から得られる信号から第2の測距像を取得する。演算処理部104は、これら2つの測距像の像ズレ量を求める。像ズレ量の算出は、相関値などを用いた公知の手法で行えばよい。2つの測距画像の像ズレ量が得られたら、三角測量の原理に基づいて被写体の距離を算出できる。
<Distance detection processing>
A subject distance calculation process performed by the arithmetic processing unit 104 will be described. The arithmetic processing unit 104 acquires a first ranging image from signals obtained from the photoelectric conversion unit 121 of the ranging pixel 110 and the photoelectric conversion unit 123 of the ranging pixel 111. Similarly, the arithmetic processing unit 104 acquires a second ranging image from signals obtained from the photoelectric conversion unit 122 of the ranging pixel 110 and the photoelectric conversion unit 124 of the ranging pixel 111. The arithmetic processing unit 104 obtains an image shift amount between these two ranging images. The image shift amount may be calculated by a known method using a correlation value or the like. When the image shift amount between the two distance measurement images is obtained, the distance of the subject can be calculated based on the principle of triangulation.

<まとめ>
このように、固体撮像素子103の設計瞳位置と結像光学系101の射出瞳位置が異なる場合、測距画素内の2つの光電変換部に対応する瞳領域の瞳透過率が異なる。図2および図4からわかるように、固体撮像素子103の中心を通り、X方向(第一の方向)に対して垂直な直線107を境界線に、二つの瞳領域の透過率の大小関係が逆転する。そのため、直線107を境界として、領域105と領域106で、受光量が多い光電変換部のX方向に沿った位置関係は反転している。即ち、実施形態1の場合、領域105では測距画素110内において、−X方向に位置する光電変換部121の方が、+X方向に位置する光電変換部122の受光量よりも多い。一方、領域106では測距画素111内において、+X方向に位置する光電変換部124の方が、+X方向に位置する光電変換部123の受光量よりも多い。
<Summary>
Thus, when the design pupil position of the solid-state image sensor 103 and the exit pupil position of the imaging optical system 101 are different, the pupil transmittances of the pupil regions corresponding to the two photoelectric conversion units in the ranging pixel are different. As can be seen from FIG. 2 and FIG. 4, there is a magnitude relationship between the transmittances of the two pupil regions, with a straight line 107 passing through the center of the solid-state imaging device 103 and perpendicular to the X direction (first direction) as a boundary line. Reverse. Therefore, the positional relationship along the X direction of the photoelectric conversion unit having a large amount of received light is reversed between the region 105 and the region 106 with the straight line 107 as a boundary. That is, in the first embodiment, in the area 105, the photoelectric conversion unit 121 positioned in the −X direction is larger than the received light amount of the photoelectric conversion unit 122 positioned in the + X direction in the ranging pixel 110. On the other hand, in the area 106, the photoelectric conversion unit 124 positioned in the + X direction in the distance measurement pixel 111 is larger than the received light amount of the photoelectric conversion unit 123 positioned in the + X direction.

本実施形態に示すように、瞳透過率の高い瞳領域からの光を受光する光電変換部の容量を、瞳透過率の低い瞳領域からの光を受光する光電変換部の容量よりも大きくすることで、光量低下と飽和の問題を回避できる。すなわち、瞳透過率の低い瞳領域から十分な光量を受光できるだけの露光時間に設定しても、もう一方の光電変換部の容量はそれよりも大きいため飽和を回避できる。したがって、コントラスト比が高い被写体を撮影した場合であっても、光量不足も飽和も発生せず、測距像の品質低下を抑制でき精度の良い測距が可能となる。   As shown in this embodiment, the capacity of the photoelectric conversion unit that receives light from the pupil region with high pupil transmittance is set larger than the capacity of the photoelectric conversion unit that receives light from the pupil region with low pupil transmittance. As a result, it is possible to avoid the problem of light quantity reduction and saturation. That is, even if the exposure time is set so that a sufficient amount of light can be received from a pupil region having a low pupil transmittance, saturation can be avoided because the capacity of the other photoelectric conversion unit is larger than that. Therefore, even when a subject having a high contrast ratio is photographed, neither light amount deficiency nor saturation occurs, and the degradation of the quality of the distance measurement image can be suppressed and accurate distance measurement can be performed.

以上で示したように、本実施形態を採用することにより、ズーム状態、フォーカス状態によらず、固体撮像素子全面において、測距精度の向上と撮像画像品質の向上が実現できる。   As described above, by adopting the present embodiment, it is possible to improve the ranging accuracy and the quality of the captured image over the entire surface of the solid-state imaging device regardless of the zoom state and the focus state.

なお、従来の固体撮像素子において、第一の光電変換部と第二の光電変換部の容量を共に大きくするという方法も考えられる。しかし、必要以上に光電変換部の容量を大きくすることは、消費電力の増大や、読み出し速度の低下につながるため好ましくない。本実施形態では、受光する光量が相対的に少ない光電変換部の容量を相対的に小さく、受光する光量が相対的に多い光電変換部の容量を相対的に大きくしているため、消費電力の増大や、読み出し速度の低下を抑制できている。   In addition, in the conventional solid-state imaging device, a method of increasing both the capacities of the first photoelectric conversion unit and the second photoelectric conversion unit is also conceivable. However, increasing the capacity of the photoelectric conversion unit more than necessary is not preferable because it leads to an increase in power consumption and a decrease in reading speed. In this embodiment, the capacity of the photoelectric conversion unit that receives a relatively small amount of light is relatively small, and the capacity of the photoelectric conversion unit that receives a relatively large amount of light is relatively large. An increase and a decrease in reading speed can be suppressed.

容量が相対的に大きい第二の光電変換部中の横方向のドリフト電界の大きさを、容量が相対的に小さい第一の光電変換部中のドリフト電界の大きさよりも大きくすると、更に好ましい。なぜならば、光電変換部の容量が大きいほど、電荷の転送速度が遅くなるためである。光電変換部の容量が相対的に大きい第二の光電変換部のドリフト電界の大きさを、光電変換部の容量が相対的に小さい第一の光電変換部のドリフト電界の大きさよりも大きくすることで、電荷の転送速度の相違を抑制することができる。具体的には、横方向にずらして複数回打ち込みを行うことで、横方向に不純物分布の傾斜を形成すればよい。   More preferably, the magnitude of the lateral drift electric field in the second photoelectric conversion part having a relatively large capacity is made larger than the magnitude of the drift electric field in the first photoelectric conversion part having a relatively small capacity. This is because the charge transfer rate is slower as the capacity of the photoelectric conversion unit is larger. The magnitude of the drift electric field of the second photoelectric converter having a relatively large capacity of the photoelectric converter is made larger than the magnitude of the drift electric field of the first photoelectric converter having a relatively small capacity of the photoelectric converter. Thus, the difference in charge transfer rate can be suppressed. Specifically, the impurity distribution may be inclined in the horizontal direction by performing multiple implantations while shifting in the horizontal direction.

<周辺領域までの距離の特定及び、第1の実施形態の変形例>
測距画素110の2つの光電変換部に対応する2つの瞳領域の瞳透過率の差は、測距画素110と固体撮像素子103の中心を通る直線107との距離が大きくなるほど大きい。特に、直線107から固体撮像素子103のX方向長さの0.25倍以上離れた領域(
固体撮像素子103のX方向の端部から全体の1/4以内の領域)では、瞳透過率の差が大きい。なお、直線107から固体撮像素子のX方向の長さの0.40倍以上離れた領域(固体撮像素子103のX方向の端部から全体の1/10以内の領域)では、瞳透過率の差が顕著になる。そのため、直線107と周辺領域105、106間の距離は、固体撮像素子103のX方向長さの0.40倍以上であることが好ましく、0.25倍以上であれば更に好ましい。
<Identification of distance to surrounding area and modification of first embodiment>
The difference in pupil transmittance between the two pupil regions corresponding to the two photoelectric conversion units of the ranging pixel 110 increases as the distance between the ranging pixel 110 and the straight line 107 passing through the center of the solid-state image sensor 103 increases. In particular, a region separated from the straight line 107 by at least 0.25 times the X-direction length of the solid-state image sensor 103 (
The difference in pupil transmittance is large in a region within 1/4 of the entire X direction end of the solid-state image sensor 103. It should be noted that in a region separated from the straight line 107 by 0.40 times or more of the length of the solid-state imaging device in the X direction (a region within 1/10 of the entire X-direction end of the solid-state imaging device 103), The difference becomes noticeable. Therefore, the distance between the straight line 107 and the peripheral regions 105 and 106 is preferably 0.40 times or more, and more preferably 0.25 or more times the length of the solid-state image sensor 103 in the X direction.

また、瞳透過率の差に応じて、固体撮像素子の中心(直線107)から遠くに配置されている測距画素ほど、2つの光電変換部の容量差を大きくすれば、更に好ましい。図5(a)は、測距画素の位置に応じて、2つの光電変換部の容量差を大きくした例である。図5(a)において、領域105は、直線107よりも−X方向側の領域であり、直線107からの距離が固体撮像素子103のX方向長さの1/6以上離れた領域である。同様に、領域106は、直線107よりも+X方向側の領域であり、直線107からの距離が固体撮像素子103のX方向長さの1/6以上離れた領域である。図5(a)の下側には、周辺領域105、106中の、鎖線で囲まれた4つの測距画素について、光電変換部の深さを示している。この例では、周辺部に行くほど、瞳透過率の大きい瞳領域に対応する光電変換部121,124の容量を大きくし、瞳透過率の小さい瞳領域に対応する光電変換部122,123の容量を小さくしている。ただし、周辺部に行くほど容量の差を大きくする方法として、他の方法も採用可能である。例えば、光電変換部121,124の容量は固定し、光電変換部122,123の容量を周辺部ほど小さくすることが考えられる。逆に、光電変換部122,123の容量は固定し、光電変換部121,124の容量を周辺部ほど大きくすることも考えられる。   In addition, it is more preferable that the capacitance difference between the two photoelectric conversion units is increased as the distance measurement pixels are arranged farther from the center (straight line 107) of the solid-state imaging device according to the difference in pupil transmittance. FIG. 5A is an example in which the capacitance difference between the two photoelectric conversion units is increased according to the position of the ranging pixel. In FIG. 5A, a region 105 is a region on the −X direction side with respect to the straight line 107, and is a region whose distance from the straight line 107 is 1/6 or more of the X direction length of the solid-state image sensor 103. Similarly, the region 106 is a region on the + X direction side of the straight line 107, and is a region whose distance from the straight line 107 is 1/6 or more of the X direction length of the solid-state imaging device 103. On the lower side of FIG. 5A, the depth of the photoelectric conversion unit is shown for four distance measuring pixels surrounded by a chain line in the peripheral regions 105 and 106. In this example, the capacity of the photoelectric conversion units 121 and 124 corresponding to the pupil region having a high pupil transmittance is increased toward the periphery, and the capacitance of the photoelectric conversion units 122 and 123 corresponding to the pupil region having a low pupil transmittance is increased. Is made smaller. However, other methods can be adopted as a method of increasing the difference in capacity as it goes to the periphery. For example, it is conceivable that the capacities of the photoelectric conversion units 121 and 124 are fixed and the capacities of the photoelectric conversion units 122 and 123 are made smaller toward the peripheral part. On the contrary, it is also conceivable that the capacities of the photoelectric conversion units 122 and 123 are fixed, and the capacities of the photoelectric conversion units 121 and 124 are increased toward the periphery.

あるいは、光電変換部121〜124の容量を全て変化させても良い。また、光電変換部122,123の方が光電変換部121,124と比較して減少率を大きくすることも考えられる。一般に、固体撮像素子の周辺領域に位置する画素ほど、入射光量が小さいため、光電変換部121〜124いずれも周辺ほど容量を小さくしつつ、光電変換部122、123の方が光電変換部121,124と比較してその減少率を大きくすることが好ましい。すなわち、中心からの距離が遠い画素ほど光電変換部の容量を少なくし、かつ、距離に応じた減少率を画素内の光電変換部の間で異ならせることにより、周辺部ほど光電変換部の容量差を大きくすることが好ましい。このようにすることで、異なる測距画素間においても、光量低下や飽和の問題が回避できる。   Alternatively, all the capacities of the photoelectric conversion units 121 to 124 may be changed. It is also conceivable that the photoelectric conversion units 122 and 123 have a larger reduction rate than the photoelectric conversion units 121 and 124. In general, the pixels located in the peripheral area of the solid-state imaging device have a smaller incident light amount. Therefore, the photoelectric conversion units 122 and 123 are smaller in the photoelectric conversion units 121 and 124 while the capacity of each of the photoelectric conversion units 121 to 124 is smaller. It is preferable to increase the reduction rate compared to 124. In other words, the capacity of the photoelectric conversion unit is reduced in the peripheral part by decreasing the capacity of the photoelectric conversion part as the pixel is far from the center and making the reduction rate according to the distance different among the photoelectric conversion parts in the pixel. It is preferable to increase the difference. By doing in this way, the problem of a light quantity fall and saturation can be avoided also between different ranging pixels.

(変形2.中心付近の測距画素)
上述とは逆に、固体撮像素子103の中心付近、すなわち固体撮像素子103の中心を通りX方向に垂直な直線107から所定の距離未満の領域では、2つの光電変換部に対応する2つの瞳領域の瞳透過率の差は小さい。具体的には、直線107からの距離が固体撮像素子103のX方向長さの0.25倍未満であれば、瞳透過率の差は小さい。そのため、固体撮像素子103の中心領域108においては、測距画素内の2つの光電変換部の容量に差を設けなくてもよいし、瞳透過率が相対的に高い瞳領域に対応する光電変換部の容量を相対的に小さくしてもよい。固体撮像素子103の中心付近では、このように瞳透過率の小さい瞳領域を透過する光を受光する光電変換部の容量が他方の光電変換部の容量以上であったとしても、測距画素の品質低下は小さく、あまり問題とならない。
(Modification 2. Distance measuring pixel near the center)
Contrary to the above, in the vicinity of the center of the solid-state image sensor 103, that is, in an area less than a predetermined distance from the straight line 107 passing through the center of the solid-state image sensor 103 and perpendicular to the X direction, two pupils corresponding to the two photoelectric conversion units. The difference in pupil transmittance between regions is small. Specifically, if the distance from the straight line 107 is less than 0.25 times the length of the solid-state image sensor 103 in the X direction, the difference in pupil transmittance is small. Therefore, in the central region 108 of the solid-state imaging device 103, there is no need to provide a difference in the capacity of the two photoelectric conversion units in the ranging pixel, or photoelectric conversion corresponding to a pupil region having a relatively high pupil transmittance. The capacity of the part may be relatively small. In the vicinity of the center of the solid-state image sensor 103, even if the capacity of the photoelectric conversion unit that receives light passing through the pupil region having a small pupil transmittance is greater than the capacity of the other photoelectric conversion unit, The quality degradation is small and is not a problem.

図5(b)は、本変形例の一例を説明する図である。図5(b)において、鎖線で囲った領域108は、直線107からの距離が固体撮像素子103のX方向長さの1/6以内の領域である。図5(b)の例では、領域108内においては、直線107の−X方向側にも測距画素111が設けられており、直線107の+X方向側にも測距画素110が設けられている。上述のように、領域108内の測距画素は2つの光電変換部の容量が同じであってもよい。あるいは、領域108内のうち直線107の−X方向側が全て測距画素
111であり、直線107の+方向側が全て測距画素110であってもよい。
FIG. 5B is a diagram illustrating an example of this modification. In FIG. 5B, a region 108 surrounded by a chain line is a region whose distance from the straight line 107 is within 1/6 of the X-direction length of the solid-state image sensor 103. In the example of FIG. 5B, in the area 108, the ranging pixel 111 is also provided on the −X direction side of the straight line 107, and the ranging pixel 110 is also provided on the + X direction side of the straight line 107. Yes. As described above, the distance measurement pixels in the area 108 may have the same capacity of the two photoelectric conversion units. Alternatively, in the area 108, the −X direction side of the straight line 107 may be all the ranging pixels 111, and the + direction side of the straight line 107 may be all the ranging pixels 110.

あるいは、中心領域を設けずに、2つの領域105,106を隣接させてもよい。すなわち、直線107よりも−X方向側の全ての領域を領域105とし、直線107よりも+X方向側の全ての領域を領域106としてもよい。この場合は、上記の所定の距離をゼロにした場合に相当する。   Alternatively, the two regions 105 and 106 may be adjacent to each other without providing the central region. That is, all regions on the −X direction side from the straight line 107 may be the region 105, and all regions on the + X direction side from the straight line 107 may be the region 106. This case corresponds to the case where the predetermined distance is zero.

(変形3.条件を満たさない測距画素の存在の許容)
上記の説明では、領域105および領域106においては、全ての測距画素について、瞳透過率の高い瞳領域に対応する光電変換部の容量を他方の光電変換部の容量よりも大きくしている。しかしながら、領域105および領域106内の一部の測距画素に、瞳透過率の低い瞳領域に対応する光電変換部の容量が、他方の光電変換部の容量以下のものが存在しても構わない。
(Modification 3. Tolerance of ranging pixels that do not satisfy the condition)
In the above description, in the region 105 and the region 106, the capacitance of the photoelectric conversion unit corresponding to the pupil region having a high pupil transmittance is set larger than that of the other photoelectric conversion unit for all the ranging pixels. However, some distance measurement pixels in the region 105 and the region 106 may have a capacitance of a photoelectric conversion unit corresponding to a pupil region having a low pupil transmittance that is equal to or less than the capacitance of the other photoelectric conversion unit. Absent.

少なくとも、固体撮像素子103の中心よりもX方向の負方向の側の領域内(領域105内)において、X方向の負方向側の光電変換部(121)の容量が、X方向の正方向の側の光電変換部(122)の容量よりも大きい測距画素が存在すればよい。また、同様に、固体撮像素子103の中心よりもX方向の正方向の側の領域内(領域106内)において、X方向の正方向側の光電変換部(124)の容量が、X方向の負方向の側の光電変換部(123)の容量よりも大きい測距画素が存在すればよい。このような構成を有する測距画素については、測距像の品質低下が抑制できる。   At least in the region on the negative side in the X direction from the center of the solid-state imaging device 103 (in the region 105), the capacitance of the photoelectric conversion unit (121) on the negative direction side in the X direction is in the positive direction in the X direction. It suffices if there is a ranging pixel larger than the capacity of the photoelectric conversion unit (122) on the side. Similarly, in the region on the positive side in the X direction from the center of the solid-state image sensor 103 (in the region 106), the capacitance of the photoelectric conversion unit (124) on the positive direction side in the X direction is It suffices if there is a ranging pixel larger than the capacity of the photoelectric conversion unit (123) on the negative direction side. About the ranging pixel which has such a structure, the quality fall of a ranging image can be suppressed.

ただし、測距像の品質低下を効果的に抑制するためには、各領域内の測距画素のうち、少なくとも所定割合以上の測距画素について、容量が上記の条件を満たすことが好ましい。すなわち、少なくとも所定割合(例えば、半分より多い)の測距画素において、瞳透過率の高い瞳領域に対応する光電変換部の容量を相対的に大きくすることが好ましい。ここで、少なくとも半分より多くの測距画素については上記条件を満たすことが好ましく、その割合が増えるほどより好ましい。例えば、所定割合が8割以上であれば更に好ましい。   However, in order to effectively suppress the degradation in the quality of the distance measurement image, it is preferable that the capacitance satisfies the above-described conditions for at least a predetermined ratio of the distance measurement pixels in each region. That is, it is preferable to relatively increase the capacity of the photoelectric conversion unit corresponding to a pupil region having a high pupil transmittance in at least a predetermined ratio (for example, more than half) of distance measurement pixels. Here, it is preferable that the above-mentioned conditions are satisfied for at least half of the ranging pixels, and it is more preferable that the ratio increases. For example, it is more preferable that the predetermined ratio is 80% or more.

(変形4.通常撮像画素の存在)
固体撮像素子103の全ての画素が測距画素であっても良いし、一部だけが測距画素であっても良い。全ての画素が測距画素の場合、2つの光電変換部で取得した測距像の和を取ることで、撮影画像を取得することが出来る。一部の画素が測距画素の場合は、その他の画素は結像光学系101の全瞳領域からの光を受光する1つの光電変換部を備える通常の撮像画素である。この場合、測距画素における撮影画像を上記と同様の手法で取得してもよいし、測距画素の周辺に設けられた通常の撮像画素で取得した撮影画像により補完して求めても良い。
(Deformation 4. Presence of normal imaging pixels)
All the pixels of the solid-state image sensor 103 may be distance measurement pixels, or only a part may be distance measurement pixels. When all the pixels are distance measurement pixels, a captured image can be acquired by calculating the sum of the distance measurement images acquired by the two photoelectric conversion units. When some of the pixels are distance measuring pixels, the other pixels are normal imaging pixels including one photoelectric conversion unit that receives light from the entire pupil region of the imaging optical system 101. In this case, a captured image at the distance measurement pixel may be acquired by the same method as described above, or may be obtained by complementing with a captured image acquired by a normal image pickup pixel provided around the distance measurement pixel.

[実施形態2]
<測距画素>
実施形態2における固体撮像素子203は、結像光学系101の射出瞳130が固体撮像素子203に近い位置にある場合に最適化されている。
[Embodiment 2]
<Distance pixel>
The solid-state image sensor 203 in the second embodiment is optimized when the exit pupil 130 of the imaging optical system 101 is in a position close to the solid-state image sensor 203.

図6(a)は、固体撮像素子203に含まれる測距画素210及び測距画素211の配置を示した図であり、図6(b)は各測距画素210,211の構成を示した断面図である。   6A is a diagram showing the arrangement of the ranging pixels 210 and the ranging pixels 211 included in the solid-state imaging device 203, and FIG. 6B shows the configuration of the ranging pixels 210 and 211. It is sectional drawing.

本実施形態にかかる測距画素210及び測距画素211は、実施形態1に係る測距画素110及び測距画素111と比較して、マイクロレンズの形状及び、光電変換部の深さが異なる。マイクロレンズ212は、固体撮像素子203から近い位置にある射出瞳130
の中心を通った主光線が、光電変換部221と光電変換部222の中間に入射するように偏心して配置されている。即ち、固体撮像素子203の中心に対してマイナス方向(−X方向)の周辺領域205内の測距画素210では、マイクロレンズ212はプラス方向(+X方向)に偏心して配置されている。一方、固体撮像素子203の中心に対してプラス方向(+X方向)の周辺領域206内の測距画素211では、マイクロレンズ212はマイナス方向(−X方向)に偏心して配置されている。
The distance measurement pixel 210 and the distance measurement pixel 211 according to the present embodiment are different from the distance measurement pixel 110 and the distance measurement pixel 111 according to the first embodiment in the shape of the microlens and the depth of the photoelectric conversion unit. The microlens 212 is an exit pupil 130 at a position close to the solid-state image sensor 203.
The principal ray passing through the center of the light is eccentrically arranged so as to be incident between the photoelectric conversion unit 221 and the photoelectric conversion unit 222. That is, in the ranging pixel 210 in the peripheral region 205 in the minus direction (−X direction) with respect to the center of the solid-state image sensor 203, the microlens 212 is arranged eccentrically in the plus direction (+ X direction). On the other hand, in the ranging pixels 211 in the peripheral region 206 in the plus direction (+ X direction) with respect to the center of the solid-state image sensor 203, the microlens 212 is arranged eccentrically in the minus direction (−X direction).

また、光電変換部222は光電変換部221よりも深く、光電変換部223は光電変換部224よりも深い。すなわち、固体撮像素子203の中心を通るY方向の直線107よりも−X方向に所定距離以上離れた領域(205)において、+X方向側の光電変換部222の容量が、−X方向側の光電変換部221の容量よりも大きい。一方、固体撮像素子203の中心を通るY方向の直線107よりも+X方向に所定距離以上離れた領域(206)において、−X方向側の光電変換部223の容量が、+X方向側の光電変換部224の容量よりも大きい。   Further, the photoelectric conversion unit 222 is deeper than the photoelectric conversion unit 221, and the photoelectric conversion unit 223 is deeper than the photoelectric conversion unit 224. That is, in the region (205) that is more than a predetermined distance in the −X direction from the Y-direction straight line 107 passing through the center of the solid-state imaging device 203, the capacitance of the photoelectric conversion unit 222 on the + X direction side is equal to the photoelectric on the −X direction side. It is larger than the capacity of the conversion unit 221. On the other hand, in a region (206) that is more than a predetermined distance away in the + X direction from the Y-direction straight line 107 passing through the center of the solid-state imaging device 203, the capacitance of the −X direction side photoelectric conversion unit 223 is + X direction side photoelectric conversion. It is larger than the capacity of the part 224.

<光電変換部の感度特性>
図7に、各々の光電変換部の感度の入射角依存性を示す。光電変換部222及び光電変換部224の感度特性(点線)は、マイナス方向(−X方向)からの入射光に対する感度が高く、プラス方向(+X方向)からの入射光に対する感度が低い。一方で、光電変換部221及び光電変換部223の感度特性(破線)は、マイナス方向(−X方向)からの入射光に対する感度が低く、プラス方向(+X方向)からの入射光に対する感度が高い。但し、光電変換部221及び光電変換部222の感度特性は、光電変換部121及び122の感度特性に対し、マイナス方向にシフトしている。同様に、光電変換部223の感度特性および、光電変換部224の感度特性は、光電変換部123、124の感度特性に対し、プラス方向にシフトしている。
<Sensitivity characteristics of photoelectric converter>
FIG. 7 shows the incident angle dependence of the sensitivity of each photoelectric conversion unit. The sensitivity characteristics (dotted lines) of the photoelectric conversion unit 222 and the photoelectric conversion unit 224 have high sensitivity to incident light from the minus direction (−X direction) and low sensitivity to incident light from the plus direction (+ X direction). On the other hand, the sensitivity characteristics (broken line) of the photoelectric conversion unit 221 and the photoelectric conversion unit 223 have low sensitivity to incident light from the minus direction (−X direction) and high sensitivity to incident light from the plus direction (+ X direction). . However, the sensitivity characteristics of the photoelectric conversion units 221 and 222 are shifted in the negative direction with respect to the sensitivity characteristics of the photoelectric conversion units 121 and 122. Similarly, the sensitivity characteristic of the photoelectric conversion unit 223 and the sensitivity characteristic of the photoelectric conversion unit 224 are shifted in the positive direction with respect to the sensitivity characteristics of the photoelectric conversion units 123 and 124.

<瞳透過率が相違する理由とその問題>
このような固体撮像素子203を用いた場合、結像光学系101の射出瞳130と固体撮像素子203の距離が近い時に、瞳領域131と瞳領域132は、射出瞳130上で中心対称となる(図8(a))。同様に、瞳領域133と瞳領域134も、射出瞳130上で中心対称となる(図8(b))。従って、射出瞳130と固体撮像素子203の距離が常にこの距離に保持されば、理想的には瞳領域131と瞳領域132の瞳透過率は互いに等しく、光電変換部221と光電変換部222に入射する光量は等しい。同様に、瞳領域133と瞳領域134の瞳透過率も互いに等しく、光電変換部223と光電変換部224に入射する光量は等しい。
<The reason why pupil transmittance is different and its problem>
When such a solid-state image sensor 203 is used, the pupil region 131 and the pupil region 132 are centrosymmetric on the exit pupil 130 when the distance between the exit pupil 130 of the imaging optical system 101 and the solid-state image sensor 203 is short. (FIG. 8 (a)). Similarly, the pupil region 133 and the pupil region 134 are also centrosymmetric on the exit pupil 130 (FIG. 8B). Therefore, if the distance between the exit pupil 130 and the solid-state image sensor 203 is always kept at this distance, the pupil transmittances of the pupil region 131 and the pupil region 132 are ideally equal to each other, and the photoelectric conversion unit 221 and the photoelectric conversion unit 222 The amount of incident light is equal. Similarly, the pupil transmittances of the pupil region 133 and the pupil region 134 are also equal to each other, and the amounts of light incident on the photoelectric conversion unit 223 and the photoelectric conversion unit 224 are equal.

しかし、前述したように、結像光学系の瞳位置は、ズーム状態やフォーカス状態などによって変動する。また、仮に射出瞳130と固体撮像素子203の距離が常に近い距離に保持されていたとしても、結像光学系の口径食による光量低下が生じる場合もある。以上の理由により、固体撮像素子の周辺領域に位置する測距画素においては、瞳領域131と瞳領域132の瞳透過率及び、瞳領域133と瞳領域134の瞳透過率が互いに等しくならない。   However, as described above, the pupil position of the imaging optical system varies depending on the zoom state, the focus state, and the like. Further, even if the distance between the exit pupil 130 and the solid-state image sensor 203 is always kept close, there may be a case where the amount of light is reduced due to vignetting of the imaging optical system. For the above reasons, in the ranging pixels located in the peripheral region of the solid-state imaging device, the pupil transmittances of the pupil region 131 and the pupil region 132 and the pupil transmittances of the pupil region 133 and the pupil region 134 are not equal to each other.

射出瞳130が、固体撮像素子203から遠い距離にある場合(例えば、ズームレンズの望遠側で撮影した場合に相当)を図8(c)、(d)に示す。   FIGS. 8C and 8D show the case where the exit pupil 130 is at a distance far from the solid-state imaging device 203 (e.g., when the image is taken on the telephoto side of the zoom lens).

図8(c)は、固体撮像素子203の−X方向(第一の方向の負側)の周辺領域205における測距画素210で受光する光束の状態を示す。光電変換部221は、瞳領域131からの光束141を受光し、光電変換部222は、瞳領域132からの光束142を受光する。図8(c)からわかるように、光束142の拡がり角は光束141の拡がり角よ
りも大きい。従って、瞳領域132の瞳透過率は瞳領域131よりも高くなるため、光電変換部222が受光する光量は光電変換部221が受光する光量よりも多い。
FIG. 8C shows the state of the light beam received by the ranging pixel 210 in the peripheral region 205 in the −X direction (negative side in the first direction) of the solid-state image sensor 203. The photoelectric conversion unit 221 receives the light beam 141 from the pupil region 131, and the photoelectric conversion unit 222 receives the light beam 142 from the pupil region 132. As can be seen from FIG. 8C, the divergence angle of the light beam 142 is larger than the divergence angle of the light beam 141. Accordingly, since the pupil transmittance of the pupil region 132 is higher than that of the pupil region 131, the amount of light received by the photoelectric conversion unit 222 is larger than the amount of light received by the photoelectric conversion unit 221.

図8(d)は、固体撮像素子203の+X方向(第一の方向の正側)の周辺領域206における測距画素211で受光する光束の状態を示す。光電変換部223は、瞳領域133からの光束143を受光し、光電変換部224は、瞳領域134からの光束144を受光する。図8(d)からわかるように、光束143の拡がり角は光束144の拡がり角よりも大きい。従って、瞳領域133の瞳透過率は瞳領域134よりも高くなるため、光電変換部223が受光する光量は光電変換部224が受光する光量よりも多い。   FIG. 8D shows the state of the light beam received by the ranging pixel 211 in the peripheral region 206 in the + X direction (positive side in the first direction) of the solid-state image sensor 203. The photoelectric conversion unit 223 receives the light beam 143 from the pupil region 133, and the photoelectric conversion unit 224 receives the light beam 144 from the pupil region 134. As can be seen from FIG. 8D, the divergence angle of the light beam 143 is larger than the divergence angle of the light beam 144. Accordingly, since the pupil transmittance of the pupil region 133 is higher than that of the pupil region 134, the amount of light received by the photoelectric conversion unit 223 is larger than the amount of light received by the photoelectric conversion unit 224.

受光量の多い光電変換部の位置は実施形態1とは反対になっているが、2つの光電変換部における受光量に差があると、実施形態1と同様に光量不足と飽和のトレードオフの問題が生じる。   The position of the photoelectric conversion unit with a large amount of received light is opposite to that of the first embodiment, but if there is a difference in the amount of light received between the two photoelectric conversion units, the trade-off between insufficient light quantity and saturation is the same as in the first embodiment. Problems arise.

<光電変換部の容量変化による効果>
本実施形態における固体撮像素子203では、受光する光量が相対的に多い光電変換部222、223の深さを、受光する光量が相対的に少ない光電変換部221、224の深さよりも深くしている。即ち、瞳透過率の低い瞳領域131,134からの光を受光する光電変換部221、224よりも、瞳透過率の高い瞳領域132、133の光を受光する光電変換部222、223の容量を大きくしている。これにより、瞳領域131、134を通過した光を受光する光電変換部221、224における光量不足と、瞳領域132、133を通過した光を受光する光電変換部222、223における飽和を、同時に解決することが可能となる。
<Effect due to change in capacitance of photoelectric conversion unit>
In the solid-state imaging device 203 according to the present embodiment, the depth of the photoelectric conversion units 222 and 223 that receive a relatively large amount of light is made deeper than the depth of the photoelectric conversion units 221 and 224 that receive a relatively small amount of light. Yes. That is, the capacitances of the photoelectric conversion units 222 and 223 that receive light in the pupil regions 132 and 133 having higher pupil transmittance than the photoelectric conversion units 221 and 224 that receive light from the pupil regions 131 and 134 having low pupil transmittance. Has increased. This solves simultaneously the shortage of light in the photoelectric conversion units 221 and 224 that receive the light that has passed through the pupil regions 131 and 134 and saturation in the photoelectric conversion units 222 and 223 that receive the light that has passed through the pupil regions 132 and 133. It becomes possible to do.

各光電変換部の深さを変える方法は、実施形態1で既に説明したのでここでの説明は省略する。   Since the method of changing the depth of each photoelectric conversion unit has already been described in the first embodiment, description thereof is omitted here.

<本実施形態の効果>
以上で示したように、本実施形態を採用することにより、実施形態1の場合と同様に、ズーム状態、フォーカス状態によらず、固体撮像素子全面において、測距精度の向上が実現できる。
<Effect of this embodiment>
As described above, by adopting the present embodiment, as in the case of the first embodiment, it is possible to improve the ranging accuracy over the entire surface of the solid-state imaging device irrespective of the zoom state and the focus state.

なお、本実施形態においても実施形態1に示した種々の変形を採用可能である。   In the present embodiment, various modifications shown in the first embodiment can be adopted.

[実施形態3]
実施形態1、2における固体撮像素子は光電変換部の深さによって容量を変えていたのに対し、実施形態3における固体撮像素子303中の測距画素は光電変換部の面内の大きさ(面積)を変えることによって容量を変えている。光電変換部の面内の大きさを変えるには、基板113にイオンを注入する領域の大きさを変えればよい。
[Embodiment 3]
In contrast to the solid-state imaging device according to the first and second embodiments, the capacitance is changed depending on the depth of the photoelectric conversion unit, whereas the distance measuring pixel in the solid-state imaging device 303 according to the third embodiment is the size within the plane of the photoelectric conversion unit ( The capacity is changed by changing the area. In order to change the in-plane size of the photoelectric conversion portion, the size of the region where ions are implanted into the substrate 113 may be changed.

以下では、実施形態1と同様に、結像光学系101の射出瞳130が固体撮像素子303から無限遠の位置にある場合に最適化されている場合を示す。射出瞳130が固体撮像素子から近い位置にある場合に最適化されている場合には、実施形態1と実施形態2の関係と同様に、光電変換部の位置関係を、第一の方向に沿って反転すればよい。   Hereinafter, as in the first embodiment, a case where the exit pupil 130 of the imaging optical system 101 is optimized when it is located at an infinite distance from the solid-state image sensor 303 will be described. When the exit pupil 130 is optimized when it is close to the solid-state imaging device, the positional relationship of the photoelectric conversion units is set along the first direction as in the relationship between the first and second embodiments. And invert it.

図9(a)は、固体撮像素子303内の測距画素の配置を示した図である。図9(b)(c)は、測距画素310,311の構成を示した断面図である。この図には、光電変換部のみを示したが、実施形態1と同様に、光電変換部の上部にはマイクロレンズ112が設けられている。測距画素310は、固体撮像素子303のマイナス方向(−X方向)の周辺領域305に位置する測距画素である。測距画素310では、光電変換部322より
も光電変換部321の、第一の方向とは垂直な第二の方向(Y方向)の長さが長い(図9(b))。一方、測距画素311は、固体撮像素子303のプラス方向(+X方向)の周辺領域306に位置する測距画素である。測距画素311では、光電変換部323よりも光電変換部324の、第一の方向とは垂直な第二の方向(Y方向)の長さが長い(図9(c))。即ち、相対的に瞳透過率の低い瞳領域からの光を受光する光電変換部322,323よりも、相対的に瞳透過率の高い瞳領域からの光を受光する光電変換部321,324の容量が大きくなっている。これにより、瞳透過率の低い瞳領域を通過した光を受光する光電変換部における光量不足と、瞳透過率の高い瞳領域を通過した光を受光する光電変換部における飽和を、同時に解決することが可能となる。
FIG. 9A is a diagram showing the arrangement of distance measuring pixels in the solid-state image sensor 303. FIGS. 9B and 9C are cross-sectional views showing the configuration of the ranging pixels 310 and 311. Although only the photoelectric conversion unit is shown in this figure, a microlens 112 is provided on the upper part of the photoelectric conversion unit as in the first embodiment. The ranging pixel 310 is a ranging pixel located in the peripheral region 305 in the minus direction (−X direction) of the solid-state imaging device 303. In the ranging pixel 310, the length of the photoelectric conversion unit 321 in the second direction (Y direction) perpendicular to the first direction is longer than that of the photoelectric conversion unit 322 (FIG. 9B). On the other hand, the ranging pixel 311 is a ranging pixel located in the peripheral region 306 in the plus direction (+ X direction) of the solid-state imaging device 303. In the ranging pixel 311, the length of the photoelectric conversion unit 324 in the second direction (Y direction) perpendicular to the first direction is longer than that of the photoelectric conversion unit 323 (FIG. 9C). That is, the photoelectric conversion units 321 and 324 that receive light from the pupil region with relatively high pupil transmittance than the photoelectric conversion units 322 and 323 that receive light from the pupil region with relatively low pupil transmittance. The capacity is increasing. This simultaneously solves the shortage of light in the photoelectric conversion unit that receives light that has passed through the pupil region with low pupil transmittance and saturation in the photoelectric conversion unit that receives light that has passed through the pupil region with high pupil transmittance. Is possible.

なお、従来の固体撮像素子において、2つの光電変換部の容量を共に大きくするという方法も考えられる。しかし、実施形態1,2で説明したように消費電力が不必要に増大するという問題がある。さらに、光電変換部の面内の大きさを変える場合には、測距画素の画素面積が限られているので、2つの光電変換部の容量を共に大きくすることは難しいという問題も生じる。本実施形態では、受光する光量が相対的に少ない光電変換部の容量を相対的に小さく、受光する光量が相対的に多い光電変換部の容量を相対的に大きくしているため、限られた画素面積で、測距像の品質低下が防止できる。   In addition, in the conventional solid-state imaging device, a method of increasing both the capacities of the two photoelectric conversion units is also conceivable. However, as described in the first and second embodiments, there is a problem that power consumption increases unnecessarily. Further, when the size of the photoelectric conversion unit is changed, the pixel area of the distance measuring pixel is limited, so that it is difficult to increase the capacity of the two photoelectric conversion units. In this embodiment, the capacity of the photoelectric conversion unit that receives a relatively small amount of light is relatively small, and the capacity of the photoelectric conversion unit that receives a relatively large amount of light is relatively large. The pixel area can prevent the degradation of the quality of the distance measurement image.

<受光領域と光電変換部の関係>
図9(d)、(e)のように、容量が相対的に大きい(面積が大きい)光電変換部321、324は、測距画素310、311の光受光領域325に完全に包含されていない方が好ましい。すなわち、光電変換部321、324の一部の領域は、光受光領域325以外に位置することが好ましい。言葉を換えると、容量が相対的に大きい光電変換部321、324は、入射光が到達しない非受光領域を含むことが好ましい、とも表現できる。このような構成が好ましい理由を、以下で説明する。なお、光受光領域とは、測距画素の基板表面において、入射光が到達する領域のことであり、マイクロレンズ111による集光特性や配線によるケラレ等によって決まる。
<Relationship between light receiving area and photoelectric conversion unit>
As shown in FIGS. 9D and 9E, the photoelectric conversion units 321 and 324 having relatively large capacitance (large area) are not completely included in the light receiving regions 325 of the ranging pixels 310 and 311. Is preferred. That is, it is preferable that a part of the photoelectric conversion units 321 and 324 is located outside the light receiving region 325. In other words, it can be expressed that the photoelectric conversion units 321 and 324 having a relatively large capacity preferably include a non-light-receiving region where incident light does not reach. The reason why such a configuration is preferable will be described below. Note that the light receiving area is an area where incident light reaches on the substrate surface of the distance measuring pixel, and is determined by a condensing characteristic by the microlens 111, vignetting by wiring, and the like.

光電変換部が光受光領域に完全に包含されている場合、光電変換部の面内方向の大きさが大きいほど、光電変換部に入射する光量が増加する。そのため、容量が大きい方の光電変換部321、324が光受光領域325に完全に包含されると、光電変換部321、324に入射する光量も増えてしまう。光電変換部321、324が光受光領域に包含されないと、光受光領域に含まれない部分(図9(c)でハッチングした領域)では受光しないため、入射する光量を増加させずにすむ。光電変換部321、324を光受光領域に包含させないようにすることは、配線の下部まで光電変換部321、324を伸ばす、光電変換部321、324の一部を遮光膜で覆う等の方法で、実現できる。   When the photoelectric conversion unit is completely included in the light receiving region, the amount of light incident on the photoelectric conversion unit increases as the size of the photoelectric conversion unit in the in-plane direction increases. Therefore, when the photoelectric conversion units 321 and 324 having a larger capacity are completely included in the light receiving region 325, the amount of light incident on the photoelectric conversion units 321 and 324 also increases. If the photoelectric conversion units 321 and 324 are not included in the light receiving region, light is not received in a portion not included in the light receiving region (the hatched region in FIG. 9C), and thus it is not necessary to increase the amount of incident light. In order not to include the photoelectric conversion units 321 and 324 in the light receiving region, the photoelectric conversion units 321 and 324 are extended to the lower part of the wiring, or a part of the photoelectric conversion units 321 and 324 is covered with a light shielding film. ,realizable.

上記のような構成により、受光量の少ない光電変換部における光量不足と、受光量の多い光電変換部における飽和を、より容易に解決することができるため、好ましい。   The above configuration is preferable because it is possible to more easily solve the shortage of light amount in the photoelectric conversion unit with a small amount of received light and the saturation in the photoelectric conversion unit with a large amount of received light.

<FD共用>
第一の方向(X方向)と垂直な方向(Y方向)の長さを変えて光電変換部の容量を変化させることで、トランジスタ(Tr)やフローティングディフュージョン(FD)などを設けやすくなるという利点もある。具体的には、図10(a)、(b)に示すように、光電変換部322、323のY方向の上端位置は光電変換部321、324のY方向の上端位置と一致させつつ、光電変換部322、323のY方向長さを短くする。すなわち、光電変換部322、323のY方向の下端位置を、光電変換部321、324のY方向の下端位置よりも+Y方向側とする。このような構成とすることで、光電変換部322、323のY方向の下端よりも下側のスペースが空くため、ここにTrやFDなどの回路素子を設けることが可能となる。なお、光電変換部322、323のY方向の下端位置は光電変
換部321、324と同じにした状態で、Y方向の長さを短くしてもよい。この場合は、光電変換部322、323のY方向の上端よりも上側にスペースが空く。これらの方法以外にも、光電変換部322、323の中心のY位置が測距画素310、311の中心のY位置からずれるように光電変換部322、323のY方向長さを短くすれば同様の効果が得られる。
<FD sharing>
Advantage of changing the capacitance of the photoelectric conversion unit by changing the length in the direction (Y direction) perpendicular to the first direction (X direction), thereby making it easier to provide a transistor (Tr), a floating diffusion (FD), and the like. There is also. Specifically, as shown in FIGS. 10A and 10B, the upper end position of the photoelectric conversion units 322 and 323 in the Y direction matches the upper end position of the photoelectric conversion units 321 and 324 in the Y direction. The lengths in the Y direction of the conversion units 322 and 323 are shortened. That is, the lower end position of the photoelectric conversion units 322 and 323 in the Y direction is set to the + Y direction side of the lower end position of the photoelectric conversion units 321 and 324 in the Y direction. With such a configuration, a space below the lower end in the Y direction of the photoelectric conversion units 322 and 323 is vacant, so that circuit elements such as Tr and FD can be provided here. Note that the Y-direction length of the photoelectric conversion units 322 and 323 may be shortened with the lower end position in the Y direction being the same as that of the photoelectric conversion units 321 and 324. In this case, a space is vacant above the upper ends of the photoelectric conversion units 322 and 323 in the Y direction. In addition to these methods, if the Y-direction length of the photoelectric conversion units 322 and 323 is shortened so that the Y position at the center of the photoelectric conversion units 322 and 323 is shifted from the Y position at the center of the ranging pixels 310 and 311, the same applies. The effect is obtained.

更に、図10(c)、(d)に示すように、Y方向に隣接する2つの測距画素において、各々の測距画素中の光電変換部322、323の中心を、2つの測距画素の隣接部から離れた方向にずらすことが好ましい。具体的には、Y方向上側の測距画素では、光電変換部322のY方向上端を光電変換部321のY方向上端と一致させ、Y方向下側の測距画素で、光電変換部322のY方向下端を光電変換部321のY方向下端と一致させる。このような条件で光電変換部321のY方向長さを短くすることで、2つの測距画素の光電変換部322の間に、スペースを空けることができる。このスペースに、当該2つの測距画素で共用されるFD(電荷検出部)を配置することが好ましい。複数の画素でFDを共用することで、限られた画素面積内で配線などレイアウトの自由度を増すことができる。   Furthermore, as shown in FIGS. 10C and 10D, in the two distance measuring pixels adjacent in the Y direction, the center of the photoelectric conversion units 322 and 323 in each distance measuring pixel is set to the two distance measuring pixels. It is preferable to shift in a direction away from the adjacent portion. Specifically, in the ranging pixel on the upper side in the Y direction, the upper end in the Y direction of the photoelectric conversion unit 322 is matched with the upper end in the Y direction on the photoelectric conversion unit 321, and the ranging pixel on the lower side in the Y direction is used. The lower end in the Y direction is made to coincide with the lower end in the Y direction of the photoelectric conversion unit 321. By shortening the Y direction length of the photoelectric conversion unit 321 under such conditions, a space can be provided between the photoelectric conversion units 322 of the two distance measuring pixels. It is preferable to arrange an FD (charge detection unit) shared by the two distance measuring pixels in this space. By sharing the FD among a plurality of pixels, the degree of freedom of layout such as wiring can be increased within a limited pixel area.

[実施形態4]
本実施形態における固体撮像素子403は、第一の方向(X方向)の長さの変化により光電変換部の容量を変える。
[Embodiment 4]
The solid-state imaging device 403 in the present embodiment changes the capacitance of the photoelectric conversion unit by changing the length in the first direction (X direction).

以下では、実施形態1と同様に、結像光学系101の射出瞳130が固体撮像素子403から無限遠の位置にある場合に最適化されている場合を示す。射出瞳130が固体撮像素子から近い位置にある場合に最適化されている場合には、実施形態1と実施形態2の関係と同様に、光電変換部の位置関係を、第一の方向に沿って反転すればよい。   In the following, as in the first embodiment, a case where the exit pupil 130 of the imaging optical system 101 is optimized when it is at a position at infinity from the solid-state imaging device 403 is shown. When the exit pupil 130 is optimized when it is close to the solid-state imaging device, the positional relationship of the photoelectric conversion units is set along the first direction as in the relationship between the first and second embodiments. And invert it.

図11(a)は固体撮像素子403に含まれる測距画素410および411の配置を示した図である。図11(b)(c)は、各測距画素410および411の構成を示した断面図である。測距画素410は、固体撮像素子403のマイナス方向(−X方向)の周辺領域405に位置する測距画素である。測距画素410では、光電変換部422よりも光電変換部421の、X方向(第一の方向)の長さを長くしている(図11(b))。一方、測距画素411は、固体撮像素子403のプラス方向(+X方向)の周辺領域406に位置する測距画素である。測距画素411では、光電変換部423よりも光電変換部424の、X方向(第一の方向)の長さを長くしている(図11(c))。これにより、瞳透過率の低い瞳領域を通過した光を受光する光電変換部における光量不足と、瞳透過率の高い瞳領域を通過した光を受光する光電変換部における飽和を、同時に解決することが可能となる。   FIG. 11A is a diagram illustrating the arrangement of the distance measurement pixels 410 and 411 included in the solid-state image sensor 403. FIGS. 11B and 11C are cross-sectional views showing the configurations of the distance measuring pixels 410 and 411. FIG. The ranging pixel 410 is a ranging pixel located in the peripheral area 405 in the minus direction (−X direction) of the solid-state imaging device 403. In the distance measuring pixel 410, the length of the photoelectric conversion unit 421 in the X direction (first direction) is longer than that of the photoelectric conversion unit 422 (FIG. 11B). On the other hand, the ranging pixel 411 is a ranging pixel located in the peripheral region 406 in the plus direction (+ X direction) of the solid-state imaging device 403. In the distance measurement pixel 411, the length of the photoelectric conversion unit 424 in the X direction (first direction) is longer than that of the photoelectric conversion unit 423 (FIG. 11C). This simultaneously solves the shortage of light in the photoelectric conversion unit that receives light that has passed through the pupil region with low pupil transmittance and saturation in the photoelectric conversion unit that receives light that has passed through the pupil region with high pupil transmittance. Is possible.

実施形態3と同様に容量の大きい(面積の大きい)光電変換部421、424は、測距画素410、411の光受光領域425に完全には包含されていない方が好ましい。すなわち、X方向の長さが長い光電変換部421、424は、入射光を受光しない非受光領域が含まれることが好ましい。   As in the third embodiment, it is preferable that the photoelectric conversion units 421 and 424 having large capacities (large areas) are not completely included in the light receiving regions 425 of the ranging pixels 410 and 411. That is, it is preferable that the photoelectric conversion units 421 and 424 having a long length in the X direction include a non-light receiving region that does not receive incident light.

<基線長変化>
また、1つの測距画素内の2つの光電変換部の中心が、光受光領域425の中心からX方向(第一の方向)にずれている場合、瞳分割の特性も制御することが可能となるため、好ましい。特に、図11(d)、(e)のように、2つの光電変換部の中心を、容量が小さい光電変換部422、423側にずらせば、配線レイアウトを大きく変更することなく、瞳分割特性を制御できる。
<Change in baseline length>
In addition, when the centers of the two photoelectric conversion units in one ranging pixel are shifted from the center of the light receiving region 425 in the X direction (first direction), the pupil division characteristics can be controlled. Therefore, it is preferable. In particular, as shown in FIGS. 11D and 11E, if the centers of the two photoelectric conversion units are shifted to the photoelectric conversion units 422 and 423 having a small capacity, the pupil division characteristic is not changed without largely changing the wiring layout. Can be controlled.

[実施形態5]
上記実施形態1〜4では、光電変換部の実効的な深さ、Y方向の長さ、X方向の長さのいずれかを変えることで、その容量を変化させている。本実施形態では、これら複数の方法を組み合わせて光電変換部の容量を変化させる。光電変換部の容量は、光電変換部の実効的な深さ、X方向とは垂直な方向の長さ、X方向の長さ、の3つの積で決定される。これらを組み合わせて、瞳透過率が相対的に低い瞳領域を通過する光を選択的に受光する光電変換部の容量よりも、瞳透過率が相対的に高い瞳領域を通過する光を受光する光電変換部の容量を大きくすれば良い。
[Embodiment 5]
In the first to fourth embodiments, the capacitance is changed by changing any one of the effective depth, the length in the Y direction, and the length in the X direction of the photoelectric conversion unit. In the present embodiment, the capacitance of the photoelectric conversion unit is changed by combining these plural methods. The capacity of the photoelectric conversion unit is determined by three products of the effective depth of the photoelectric conversion unit, the length in the direction perpendicular to the X direction, and the length in the X direction. By combining these, light that passes through a pupil region that has a relatively high pupil transmittance than the capacity of a photoelectric conversion unit that selectively receives light that passes through a pupil region that has a relatively low pupil transmittance is received. What is necessary is just to enlarge the capacity | capacitance of a photoelectric conversion part.

[実施形態6]
上記実施形態1〜5では、全ての光電変換部について同じ方法により容量を変化させている。本実施形態では、測距画素によって光電変換部の容量のさせ方を変える。図12(a)は本実施形態にかかる固体撮像素子403における測距画素の配置を示す図であり、図12(b)は測距画素の構成を示す断面図である。図に示すように本実施形態では、X方向の長さによって容量を変化させた測距画素412と、光電変換部の深さによって容量を変化させた測距画素413を近接して配置している。
[Embodiment 6]
In the said Embodiments 1-5, the capacity | capacitance is changed by the same method about all the photoelectric conversion parts. In the present embodiment, the method of setting the capacity of the photoelectric conversion unit is changed by the distance measurement pixel. FIG. 12A is a diagram showing the arrangement of the ranging pixels in the solid-state imaging device 403 according to the present embodiment, and FIG. 12B is a cross-sectional view showing the configuration of the ranging pixels. As shown in the figure, in this embodiment, the distance measuring pixel 412 whose capacity is changed according to the length in the X direction and the distance measuring pixel 413 whose capacity is changed according to the depth of the photoelectric conversion unit are arranged close to each other. Yes.

更に、測距画素412の2つの光電変換部の中心は、光受光領域425の中心からX方向にずれている。また、測距画素413の2つの光電変換部の中心は、光受光領域425の中心に一致している。即ち、測距画素412内の2つの光電変換部の中心の光受光領域の中心からのずれは、測距画素413内の2つの光電変換部の中心の光受光領域の中心からのずれの大きさとは異なっている。   Further, the centers of the two photoelectric conversion units of the ranging pixel 412 are shifted from the center of the light receiving region 425 in the X direction. In addition, the centers of the two photoelectric conversion units of the ranging pixel 413 coincide with the center of the light receiving region 425. In other words, the deviation of the center of the two photoelectric conversion units in the ranging pixel 412 from the center of the light receiving region is the magnitude of the deviation of the center of the two photoelectric conversion units in the ranging pixel 413 from the center of the light receiving region. Is different.

なお、図12(a)(b)には、−X方向の周辺領域405の測距画素のみを示したが、+X方向の周辺領域でも、光電変換部の位置関係が第一の方向に反転して配置されている。このような構成とすることで、ズーム状態や被写体によらず、更に高精度な測距が可能となる。以下でその原理について説明する。   FIGS. 12A and 12B show only the ranging pixels in the peripheral region 405 in the −X direction, but the positional relationship of the photoelectric conversion units is reversed in the first direction also in the peripheral region in the + X direction. Are arranged. By adopting such a configuration, it is possible to perform distance measurement with higher accuracy regardless of the zoom state or the subject. The principle will be described below.

図13に、各測距画素中の光電変換部の感度特性を示す。光電変換部426が受光する瞳領域は、光電変換部428が受光する瞳領域よりも中央に寄っており、光電変換部427が受光する瞳領域は、光電変換部429が受光する瞳領域よりも周辺に寄っている。また、光電変換部426が受光する光量は、光電変換部428が受光する光量よりも多く、光電変換部427が受光する光量は、光電変換部429が受光する光量よりも少ない。   FIG. 13 shows the sensitivity characteristics of the photoelectric conversion unit in each ranging pixel. The pupil region received by the photoelectric conversion unit 426 is closer to the center than the pupil region received by the photoelectric conversion unit 428, and the pupil region received by the photoelectric conversion unit 427 is more than the pupil region received by the photoelectric conversion unit 429. Close to the surroundings. Further, the amount of light received by the photoelectric conversion unit 426 is larger than the amount of light received by the photoelectric conversion unit 428, and the amount of light received by the photoelectric conversion unit 427 is smaller than the amount of light received by the photoelectric conversion unit 429.

光電変換部428で取得した測距像と光電変換部427で取得した測距像を使用して測距を行った場合、分割された瞳領域間の距離が長いため、測距精度が向上する。一方、光電変換部426で取得した測距像と光電変換部429で取得した測距像を使用した場合、受光する光量が多く測距像の品質が向上する。   When distance measurement is performed using the distance measurement image acquired by the photoelectric conversion unit 428 and the distance measurement image acquired by the photoelectric conversion unit 427, the distance between the divided pupil regions is long, so that the distance measurement accuracy is improved. . On the other hand, when the ranging image acquired by the photoelectric conversion unit 426 and the ranging image acquired by the photoelectric conversion unit 429 are used, the amount of received light is large and the quality of the ranging image is improved.

従って、ズーム状態や被写体によって、使用する光電変換部を切り替えることで、瞳領域間の距離と測距像の品質のどちらを優先して測距するかを、選択することが可能となる。   Therefore, by switching the photoelectric conversion unit to be used according to the zoom state or the subject, it is possible to select which of the distances between the pupil regions and the quality of the distance measurement image is to be prioritized.

<測距画素の近接配置>
測距画素412と測距画素413とは、同じ被写体からの光束の一部を受光するように、近傍に配置することが望ましい。望ましくは、4画素以内、更に望ましくは、2画素以内の距離に配置することが望ましい。図12には、測距画素412と測距画素413を隣接して配置した例を示している。
<Proximity placement of ranging pixels>
It is desirable that the ranging pixel 412 and the ranging pixel 413 are arranged in the vicinity so as to receive a part of the light beam from the same subject. Desirably, it is arranged within a distance of 4 pixels, more desirably within a distance of 2 pixels. FIG. 12 shows an example in which the ranging pixels 412 and the ranging pixels 413 are arranged adjacent to each other.

[実施形態7]
本実施形態では、Y方向に瞳分割して測距を行う固体撮像素子503に本発明を適用し
た場合を示す。
[Embodiment 7]
In the present embodiment, a case where the present invention is applied to a solid-state imaging device 503 that performs distance measurement by pupil division in the Y direction is shown.

以下では、実施形態1と同様に、結像光学系101の射出瞳130が固体撮像素子403から無限遠の位置にある場合に最適化されている場合を示す。射出瞳130が固体撮像素子から近い位置にある場合に最適化されている場合には、実施形態1と実施形態2の関係と同様に、Y方向に沿って光電変換部の容量の大小関係を反転させればよい。   In the following, as in the first embodiment, a case where the exit pupil 130 of the imaging optical system 101 is optimized when it is at a position at infinity from the solid-state imaging device 403 is shown. In the case where the exit pupil 130 is optimized when it is close to the solid-state imaging device, the magnitude relationship of the capacitance of the photoelectric conversion unit is changed along the Y direction in the same way as the relationship between the first and second embodiments. What is necessary is just to invert.

図14(a)は、固体撮像素子503に含まれる測距画素510、511の配置を示した図である。図14(b)(c)は、測距画素510、511の構成を示した断面図である。測距画素510、511の基板内には、マイクロレンズ112の光軸を中心として、Y方向に対称な位置に配置された光電変換部521、523及び光電変換部522、524が形成されている。基板面内方向における光電変換部521、523と光電変換部522、524の形状は等しい。このような構成とすることで、光電変換部521、523と、光電変換部522、524の感度のYZ断面における入射角依存性を互いに異ならせることができる。   FIG. 14A is a diagram illustrating an arrangement of the ranging pixels 510 and 511 included in the solid-state image sensor 503. FIG. FIGS. 14B and 14C are cross-sectional views showing the configuration of the ranging pixels 510 and 511. Photoelectric conversion units 521 and 523 and photoelectric conversion units 522 and 524 are formed in the substrate of the ranging pixels 510 and 511 and are arranged at positions symmetrical with respect to the Y direction around the optical axis of the microlens 112. . The photoelectric conversion units 521 and 523 and the photoelectric conversion units 522 and 524 have the same shape in the substrate in-plane direction. With such a configuration, the incident angle dependency of the sensitivity of the photoelectric conversion units 521 and 523 and the photoelectric conversion units 522 and 524 in the YZ section can be made different from each other.

また、受光する光量が相対的に多い光電変換部521、524の容量が、受光する光量が相対的に少ない光電変換部522、523の容量よりも大きくなっている。具体的には、固体撮像素子503の−Y方向の周辺領域505に配置されている測距画素510については、+Y方向側の光電変換部522よりも、−Y方向側の光電変換部521の容量が大きくなっている。また、固体撮像素子503の+Y方向の周辺領域506に配置されている測距画素511については、−Y方向側の光電変換部523よりも、+Y方向側の光電変換部524の容量が大きくなっている。なお、容量を変化させる方法は、上記で説明した任意の方法を採用可能である。   Further, the capacities of the photoelectric conversion units 521 and 524 that receive a relatively large amount of light are larger than the capacities of the photoelectric conversion units 522 and 523 that receive a relatively small amount of light. Specifically, with respect to the ranging pixel 510 arranged in the peripheral region 505 in the −Y direction of the solid-state imaging device 503, the photoelectric conversion unit 521 on the −Y direction side is closer to the photoelectric conversion unit 522 on the −Y direction side. The capacity is increasing. Further, with respect to the ranging pixels 511 arranged in the peripheral region 506 in the + Y direction of the solid-state imaging device 503, the capacitance of the photoelectric conversion unit 524 on the + Y direction side is larger than that on the −Y direction side of the photoelectric conversion unit 523. ing. In addition, the method of changing a capacity | capacitance can employ | adopt the arbitrary methods demonstrated above.

これにより、瞳透過率の低い瞳領域を通過した光を受光する光電変換部522,523における光量不足と、瞳透過率の高い瞳領域を通過した光を受光する光電変換部521、524における飽和を、同時に解決できる。以上により、X方向に伸びた線分で構成される被写体についても、ズーム状態、フォーカス状態によらず、固体撮像素子全面において、測距精度の向上と撮像画像品質の向上が実現できる。   As a result, the light quantity shortage in the photoelectric conversion units 522 and 523 that receive light that has passed through the pupil region with low pupil transmittance and the saturation in the photoelectric conversion units 521 and 524 that receive light that has passed through the pupil region with high pupil transmittance are achieved. Can be solved at the same time. As described above, with respect to a subject composed of line segments extending in the X direction, it is possible to improve the ranging accuracy and the quality of the captured image over the entire surface of the solid-state imaging device regardless of the zoom state and the focus state.

X方向の瞳分割を行う測距画素と、Y方向の瞳分割を行う測距画素を同時に配置しても良い。これらの測距画素はいずれも、2つの光電変換部の対、瞳透過率が相対的に高い瞳領域に対応する光電変換部の容量が大きく構成される。このような構成とすることで、X方向に伸びた線分で構成される被写体および、Y方向に伸びた線分で構成される被写体のどちらについても測距を行うことができる。この場合も、瞳透過率の大小関係に応じて、光電変換部の容量を決めれば良い。   Ranging pixels that perform pupil division in the X direction and ranging pixels that perform pupil division in the Y direction may be arranged at the same time. Each of these ranging pixels is configured to have a large capacity of a photoelectric conversion unit corresponding to a pair of two photoelectric conversion units and a pupil region having a relatively high pupil transmittance. By adopting such a configuration, it is possible to perform distance measurement for both a subject constituted by a line segment extending in the X direction and a subject constituted by a line segment extending in the Y direction. In this case as well, the capacity of the photoelectric conversion unit may be determined according to the magnitude relationship of pupil transmittance.

[その他]
以上の実施形態では、瞳分割の方法としてマイクロレンズによる方法を用いたが、これに限定されるものではない。図15(a)に示すように導波路114を用い、導波モードによって分割を行っても良い。第一の瞳領域を通って導波路に入射する光が結合する支配的な導波モードと、第二の瞳領域を通って導波路に入射する光が結合する支配的な導波モードが異なる。そのため、第一の瞳領域を通った光束を選択的に第一の光電変換部に導き、第二の瞳領域を通った光束を選択的に第二の光電変換部に導くことができる。図15(b)に示すように瞳分割用の導波路115と、光電変換部への導光用の導波路116を用いても良いし、図15(c)に示すように、瞳分割用のマイクロレンズと、光電変換部への導光用の導波路を同時に用いても良い。導波路を用いる事で、画素に入射した光を効率良く光電変換部に導くことが可能となり、より高品質な測距像を得ることができ、より高精度な測距ができる。図15に示す変形例においても、実施形態2で示したマイクロレン
ズの偏心を組み合わせても良い。
[Others]
In the above embodiment, a method using a microlens is used as a pupil division method, but the method is not limited to this. As shown in FIG. 15A, the waveguide 114 may be used and division may be performed according to the waveguide mode. The dominant waveguide mode that couples light incident on the waveguide through the first pupil region is different from the dominant waveguide mode that couples light incident on the waveguide through the second pupil region. . Therefore, the light beam that has passed through the first pupil region can be selectively guided to the first photoelectric conversion unit, and the light beam that has passed through the second pupil region can be selectively guided to the second photoelectric conversion unit. As shown in FIG. 15B, a pupil division waveguide 115 and a waveguide 116 for guiding light to the photoelectric conversion unit may be used. As shown in FIG. These microlenses and a waveguide for guiding light to the photoelectric conversion unit may be used at the same time. By using the waveguide, it is possible to efficiently guide the light incident on the pixel to the photoelectric conversion unit, obtain a higher-quality ranging image, and perform more accurate ranging. Also in the modification shown in FIG. 15, the eccentricity of the microlens shown in the second embodiment may be combined.

上記で種々の実施形態およびその変形例を説明したが、これらの内容はいずれも可能な限り組み合わせて本発明を構成することが可能である。   Although various embodiments and modifications thereof have been described above, it is possible to configure the present invention by combining these contents as much as possible.

101:結像光学系
103:固体撮像素子
110、111:測距画素
121、122、123、124:光電変換部
101: imaging optical system 103: solid-state imaging device 110, 111: ranging pixels 121, 122, 123, 124: photoelectric conversion unit

Claims (23)

結像光学系により結像される被写体像を光電変換する複数の画素を備える固体撮像素子であって、
前記複数の画素のうち少なくとも一部は、第1の光電変換部と第2の光電変換部が第1の方向に沿って並んで設けられた測距画素であり、
前記固体撮像素子の中心を通り前記第1の方向と垂直な直線により前記固体撮像素子の領域を第1の領域および第2の領域に分けた場合に、
前記第1の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第1の光電変換部の容量が前記第2の光電変換部の容量よりも大きく、
前記第2の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から前記所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第2の光電変換部の容量が前記第1の光電変換部の容量よりも大きい、
固体撮像素子。
A solid-state imaging device including a plurality of pixels that photoelectrically convert a subject image formed by an imaging optical system,
At least a part of the plurality of pixels is a ranging pixel in which a first photoelectric conversion unit and a second photoelectric conversion unit are provided side by side along a first direction,
When the region of the solid-state imaging device is divided into a first region and a second region by a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction,
More than 80% of the ranging pixels in the first region and within a region that is more than a predetermined distance away from a straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The capacity of the first photoelectric conversion unit is larger than the capacity of the second photoelectric conversion unit,
80% or more of the ranging pixels in the second region and within the region separated by the predetermined distance or more from the straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The capacity of the second photoelectric conversion unit is larger than the capacity of the first photoelectric conversion unit,
Solid-state image sensor.
前記第1の領域内の測距画素のうちの8割以上の測距画素は、前記第1の光電変換部の容量が前記第2の光電変換部の容量よりも大きく、
前記第2の領域内の測距画素のうちの8割以上の測距画素は、前記第2の光電変換部の容量が前記第1の光電変換部の容量よりも大きい、
請求項1に記載の固体撮像素子。
More than 80% of the ranging pixels in the first area have a capacitance of the first photoelectric conversion unit larger than that of the second photoelectric conversion unit,
80% or more of the ranging pixels in the second region have a capacity of the second photoelectric conversion unit larger than a capacity of the first photoelectric conversion unit.
The solid-state imaging device according to claim 1 .
前記第1の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から前記所定の距離未満の領域内の測距画素の半分より多くの測距画素は、前記第2の光電変換部の容量が前記第1の光電変換部の容量以上であり、
前記第2の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から前記所定の距離未満の領域内の測距画素の半分より多くの測距画素は、前記第1の光電変換部の容量が前記第2の光電変換部の容量以上である、
請求項に記載の固体撮像素子。
More than half the distance measurement pixels in the first area and within the area less than the predetermined distance from a straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The capacity of the second photoelectric conversion unit is equal to or greater than the capacity of the first photoelectric conversion unit,
More than half of the distance measurement pixels in the second area and within the area less than the predetermined distance from a straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The capacity of the first photoelectric conversion unit is greater than or equal to the capacity of the second photoelectric conversion unit.
The solid-state imaging device according to claim 2 .
前記所定の距離は、前記固体撮像素子の前記第1の方向の長さの0.40倍以上である、
請求項またはに記載の固体撮像素子。
The predetermined distance is at least 0.40 times the length of the solid-state image sensor in the first direction.
The solid-state imaging device according to claim 2 or 3 .
前記固体撮像素子の中心を通り前記第1の方向と垂直な直線からの距離が大きい測距画素ほど、前記第1の光電変換部と前記第2の光電変換部の容量の差が大きい、
請求項1からのいずれか1項に記載の固体撮像素子。
A distance measuring pixel having a larger distance from a straight line passing through the center of the solid-state imaging device and perpendicular to the first direction has a larger capacitance difference between the first photoelectric conversion unit and the second photoelectric conversion unit.
The solid-state image sensor of any one of Claim 1 to 4 .
前記固体撮像素子の中心を通り前記第1の方向と垂直な直線からの距離が大きい測距画素ほど、当該距離が小さい測距画素よりも、前記第1の光電変換部および前記第2の光電変換部の容量が少なく、前記第1の光電変換部と前記第2の光電変換部とで前記直線からの距離に応じた減少率が異なることにより、前記距離が大きい測距画素ほど、前記第1の光電変換部と前記第2の光電変換部の容量の差が大きい、
請求項に記載の固体撮像素子。
A distance measuring pixel that has a larger distance from a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction, than the distance measuring pixel that has a smaller distance, has the first photoelectric conversion unit and the second photoelectric sensor. A distance measuring pixel having a larger distance due to a smaller capacity of the converter and a decrease rate corresponding to the distance from the straight line is different between the first photoelectric converter and the second photoelectric converter. A large difference in capacitance between the first photoelectric conversion unit and the second photoelectric conversion unit;
The solid-state imaging device according to claim 5 .
撮像面と垂直な方向の長さが、前記第1の光電変換部と前記第2の光電変換部とで異なることにより、前記第1および第2の光電変換部の容量に差がある、
請求項1からのいずれか1項に記載の固体撮像素子。
Since the length in the direction perpendicular to the imaging surface is different between the first photoelectric conversion unit and the second photoelectric conversion unit, there is a difference in capacitance between the first and second photoelectric conversion units.
The solid-state image sensor of any one of Claim 1 to 6 .
不純物濃度が、前記第1の光電変換部の中と前記第2の光電変換部の中とで異なることにより、前記第1および第2の光電変換部の容量に差がある、
請求項1からのいずれか1項に記載の固体撮像素子。
Since the impurity concentration is different between the first photoelectric conversion unit and the second photoelectric conversion unit, there is a difference in capacitance between the first and second photoelectric conversion units.
The solid-state image sensor of any one of Claim 1 to 7 .
撮像面における面積が、前記第1の光電変換部と前記第2の光電変換部とで異なることにより、前記第1および第2の光電変換部の容量に差がある、
請求項1からのいずれか1項に記載の固体撮像素子。
Since the area on the imaging surface is different between the first photoelectric conversion unit and the second photoelectric conversion unit, there is a difference in capacitance between the first and second photoelectric conversion units.
The solid-state image sensor of any one of Claim 1 to 8 .
撮像面内における前記第1の方向の長さが、前記第1の光電変換部と前記第2の光電変換部とで異なる、
請求項に記載の固体撮像素子。
The length in the first direction in the imaging surface is different between the first photoelectric conversion unit and the second photoelectric conversion unit.
The solid-state imaging device according to claim 9 .
前記第1の光電変換部と前記第2の光電変換部の中心が、前記第1の方向に沿って、前記測距画素の中心から容量が小さい光電変換部の側にずれている、
請求項または10に記載の固体撮像素子。
The centers of the first photoelectric conversion unit and the second photoelectric conversion unit are shifted from the center of the ranging pixel toward the photoelectric conversion unit having a small capacity along the first direction.
The solid-state image sensor according to claim 9 or 10 .
前記第1および第2の光電変換部のうち、撮像面における面積が大きい方の光電変換部は、光が入射しない非受光領域を含む、
請求項から11のいずれか1項に記載の固体撮像素子。
Of the first and second photoelectric conversion units, the photoelectric conversion unit having a larger area on the imaging surface includes a non-light-receiving region where light does not enter.
The solid-state image sensor of any one of Claim 9 to 11 .
結像光学系により結像される被写体像を光電変換する複数の画素を備える固体撮像素子であって、A solid-state imaging device including a plurality of pixels that photoelectrically convert a subject image formed by an imaging optical system,
前記複数の画素のうち少なくとも一部は、第1の光電変換部と第2の光電変換部が第1の方向に沿って並んで設けられた測距画素であり、At least a part of the plurality of pixels is a ranging pixel in which a first photoelectric conversion unit and a second photoelectric conversion unit are provided side by side along a first direction,
前記固体撮像素子の中心を通り前記第1の方向と垂直な直線により前記固体撮像素子の領域を第1の領域および第2の領域に分けた場合に、When the region of the solid-state imaging device is divided into a first region and a second region by a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction,
前記第1の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第1の光電変換部の撮像面と垂直な方向の長さが前記第2の光電変換部の撮像面と垂直な方向の長さよりも長く、More than 80% of the ranging pixels in the first region and within a region that is more than a predetermined distance away from a straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The length in the direction perpendicular to the imaging surface of the first photoelectric conversion unit is longer than the length in the direction perpendicular to the imaging surface of the second photoelectric conversion unit,
前記第2の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線A straight line within the second region and passing through the center of the solid-state imaging device and perpendicular to the first direction
から前記所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第2の光電変換部の撮像面と垂直な方向の長さが前記第1の光電変換部の撮像面と垂直な方向の長さよりも長い、More than 80% of the distance measurement pixels in the region separated by the predetermined distance or more from the first photoelectric conversion unit have a length in a direction perpendicular to the imaging surface of the second photoelectric conversion unit. Longer than the length in the direction perpendicular to the imaging surface,
固体撮像素子。Solid-state image sensor.
結像光学系により結像される被写体像を光電変換する複数の画素を備える固体撮像素子であって、A solid-state imaging device including a plurality of pixels that photoelectrically convert a subject image formed by an imaging optical system,
前記複数の画素のうち少なくとも一部は、第1の光電変換部と第2の光電変換部が第1の方向に沿って並んで設けられた測距画素であり、At least a part of the plurality of pixels is a ranging pixel in which a first photoelectric conversion unit and a second photoelectric conversion unit are provided side by side along a first direction,
前記固体撮像素子の中心を通り前記第1の方向と垂直な直線により前記固体撮像素子の領域を第1の領域および第2の領域に分けた場合に、When the region of the solid-state imaging device is divided into a first region and a second region by a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction,
前記第1の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第1の光電変換部の不純物濃度が前記第2の光電変換部の不純物濃度よりも高く、More than 80% of the ranging pixels in the first region and within a region that is more than a predetermined distance away from a straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The impurity concentration of the first photoelectric conversion unit is higher than the impurity concentration of the second photoelectric conversion unit,
前記第2の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から前記所定の距離以上離れた領域内の測距画素の8割以上の測距画素は、前記第2の光電変換部の不純物濃度が前記第1の光電変換部の不純物濃度よりも高い、80% or more of the ranging pixels in the second region and within the region separated by the predetermined distance or more from the straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The impurity concentration of the second photoelectric conversion unit is higher than the impurity concentration of the first photoelectric conversion unit;
固体撮像素子。Solid-state image sensor.
前記第1の領域は、前記固体撮像素子の中心を通り前記第1の方向と垂直な直線よりも、前記第1の方向の負の方向に位置し、
前記第2の領域は、前記固体撮像素子の中心を通り前記第1の方向と垂直な直線よりも、前記第1の方向の正の方向に位置する、
請求項1から14のいずれか1項に記載の固体撮像素子。
The first region is located in a negative direction of the first direction from a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction,
The second region is located in a positive direction of the first direction from a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction.
The solid-state image sensor of any one of Claim 1 to 14 .
前記第1の領域は、前記固体撮像素子の中心を通り前記第1の方向と垂直な直線よりも、前記第1の方向の正の方向に位置し、
前記第2の領域は、前記固体撮像素子の中心を通り前記第1の方向と垂直な直線よりも、前記第1の方向の負の方向に位置する、
請求項1から15のいずれか1項に記載の固体撮像素子。
The first region is located in a positive direction of the first direction from a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction,
The second region is located in a negative direction of the first direction from a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction.
The solid-state image sensor of any one of Claim 1 to 15 .
前記測距画素はマイクロレンズを有しており、前記第1の光電変換部と前記第2の光電変換部が、前記マイクロレンズの光軸を中心として、互いに対称な位置に配置されている、
請求項1から16のいずれか1項に記載の固体撮像素子。
The distance measuring pixel has a microlens, and the first photoelectric conversion unit and the second photoelectric conversion unit are arranged symmetrically with respect to the optical axis of the microlens.
The solid-state image sensor of any one of Claim 1 to 16 .
前記測距画素は導波路を有しており、前記測距画素への入射角に応じて入射光を前記第1の光電変換部または第2の光電変換部に導く、
請求項1から17のいずれか1項に記載の固体撮像素子。
The ranging pixel has a waveguide, and guides incident light to the first photoelectric conversion unit or the second photoelectric conversion unit according to an incident angle to the ranging pixel.
The solid-state image sensor of any one of Claim 1 to 17 .
結像光学系により結像される被写体像を光電変換する複数の画素を備える固体撮像素子であって、A solid-state imaging device including a plurality of pixels that photoelectrically convert a subject image formed by an imaging optical system,
前記複数の画素のうち少なくとも一部は、第1の光電変換部と第2の光電変換部が第1の方向に沿って並んで設けられた測距画素であり、At least a part of the plurality of pixels is a ranging pixel in which a first photoelectric conversion unit and a second photoelectric conversion unit are provided side by side along a first direction,
前記固体撮像素子の中心を通り前記第1の方向と垂直な直線により前記固体撮像素子の領域を第1の領域および第2の領域に分けた場合に、When the region of the solid-state imaging device is divided into a first region and a second region by a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction,
前記第1の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から所定の距離以上離れた領域内の測距画素の半分より多くの測距画素は、前記第1の光電変換部の撮像面における面積が前記第2の光電変換部の撮像面における面積よりも大きく、More than half the distance measurement pixels in the first area and within the area that is more than a predetermined distance away from a straight line that passes through the center of the solid-state imaging device and is perpendicular to the first direction, The area of the imaging surface of the first photoelectric conversion unit is larger than the area of the imaging surface of the second photoelectric conversion unit,
前記第2の領域内であって前記固体撮像素子の中心を通り前記第1の方向と垂直な直線から前記所定の距離以上離れた領域内の測距画素の半分より多くの測距画素は、前記第2の光電変換部の撮像面における面積が前記第1の光電変換部の撮像面における面積よりも大きく、More than half the distance measurement pixels in the second area and within the area that is more than the predetermined distance from the straight line passing through the center of the solid-state imaging device and perpendicular to the first direction, The area of the imaging surface of the second photoelectric conversion unit is larger than the area of the imaging surface of the first photoelectric conversion unit;
前記測距画素は導波路を有しており、前記測距画素への入射角に応じて入射光を前記第1の光電変換部または第2の光電変換部に導く、The ranging pixel has a waveguide, and guides incident light to the first photoelectric conversion unit or the second photoelectric conversion unit according to an incident angle to the ranging pixel.
固体撮像素子。Solid-state image sensor.
前記複数の画素のうち少なくとも一部は、第3の光電変換部と第4の光電変換部が前記第1の方向と垂直な第2の方向に沿って並んで設けられた第2の測距画素であり、
前記固体撮像素子の中心を通り前記第1の方向に平行な直線により前記固体撮像素子の領域を第3の領域および第4の領域に分けた場合に、
前記第3の領域内であって前記固体撮像素子の中心を通り前記第2の方向と垂直な直線から所定の距離以上離れた領域内の第2の測距画素のうちの少なくとも半分より多くの測距画素は、前記第3の光電変換部の容量が前記第4の光電変換部の容量よりも大きく、
前記第4の領域内であって前記固体撮像素子の中心を通り前記第2の方向と垂直な直線から所定の距離以上離れた領域内の第2の測距画素のうちの少なくとも半分より多くの測距画素は、前記第4の光電変換部の容量が前記第3の光電変換部の容量よりも大きい、
請求項1から19のいずれか1項に記載の固体撮像素子。
At least a part of the plurality of pixels includes a second distance measuring unit in which a third photoelectric conversion unit and a fourth photoelectric conversion unit are provided side by side along a second direction perpendicular to the first direction. Pixel,
When the region of the solid-state imaging device is divided into a third region and a fourth region by a straight line passing through the center of the solid-state imaging device and parallel to the first direction,
More than at least half of the second ranging pixels in the third region and in the region that is more than a predetermined distance away from a straight line that passes through the center of the solid-state imaging device and is perpendicular to the second direction. The ranging pixel has a capacity of the third photoelectric conversion unit larger than a capacity of the fourth photoelectric conversion unit,
More than at least half of the second ranging pixels in the fourth region and in the region that is more than a predetermined distance away from a straight line that passes through the center of the solid-state imaging device and is perpendicular to the second direction. The distance measurement pixel has a capacity of the fourth photoelectric conversion unit larger than a capacity of the third photoelectric conversion unit.
The solid-state image sensor of any one of Claim 1 to 19 .
結像光学系と、
前記結像光学系によって結像される被写体像を光電変換する請求項1から20のいずれか1項に記載の固体撮像素子と、
前記固体撮像素子の前記第1および第2の光電変換部から得られる信号に基づいて被写体の距離を算出する距離算出部と、
を備える測距装置。
An imaging optical system;
The solid-state imaging device according to any one of claims 1 to 20 , wherein a subject image formed by the imaging optical system is photoelectrically converted.
A distance calculation unit that calculates a distance of a subject based on signals obtained from the first and second photoelectric conversion units of the solid-state imaging device;
Ranging device comprising.
前記第1の光電変換部は、前記結像光学系の射出瞳の一部である第1の瞳領域からの光を選択的に受光するように構成され、
前記第2の光電変換部は、前記結像光学系の射出瞳の一部であって、前記第1の瞳領域とは異なる第2の瞳領域からの光を選択的に受光するように構成され、
前記第1および第2の瞳領域のうち瞳透過率の高い瞳領域に対応する光電変換部の容量が、瞳透過率の低い瞳領域に対応する光電変換部の容量よりも大きい、
請求項21に記載の測距装置。
The first photoelectric conversion unit is configured to selectively receive light from a first pupil region that is a part of an exit pupil of the imaging optical system,
The second photoelectric conversion unit is configured to selectively receive light from a second pupil region that is a part of an exit pupil of the imaging optical system and is different from the first pupil region. And
Of the first and second pupil regions, the capacity of the photoelectric conversion unit corresponding to the pupil region having a high pupil transmittance is larger than the capacity of the photoelectric conversion unit corresponding to the pupil region having a low pupil transmittance,
The distance measuring device according to claim 21 .
請求項21または22に記載の測距装置と、
前記固体撮像素子から得られる信号に基づいて被写体像を取得する被写体像取得部、
を備える撮像装置。
A distance measuring device according to claim 21 or 22 ,
A subject image acquisition unit for acquiring a subject image based on a signal obtained from the solid-state image sensor;
An imaging apparatus comprising:
JP2014097073A 2013-07-11 2014-05-08 Solid-state imaging device, distance measuring device, and imaging device Expired - Fee Related JP6338442B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014097073A JP6338442B2 (en) 2013-07-11 2014-05-08 Solid-state imaging device, distance measuring device, and imaging device
US14/327,937 US9402041B2 (en) 2013-07-11 2014-07-10 Solid-state image sensor and imaging apparatus using same
US14/327,924 US9160942B2 (en) 2013-07-11 2014-07-10 Solid-state imaging sensor, ranging device, and imaging apparatus
US14/831,122 US9319607B2 (en) 2013-07-11 2015-08-20 Solid-state imaging sensor, ranging device, and imaging apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013145559 2013-07-11
JP2013145559 2013-07-11
JP2013183017 2013-09-04
JP2013183017 2013-09-04
JP2014097073A JP6338442B2 (en) 2013-07-11 2014-05-08 Solid-state imaging device, distance measuring device, and imaging device

Publications (3)

Publication Number Publication Date
JP2015073071A JP2015073071A (en) 2015-04-16
JP2015073071A5 JP2015073071A5 (en) 2017-06-15
JP6338442B2 true JP6338442B2 (en) 2018-06-06

Family

ID=53015227

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014097074A Expired - Fee Related JP6338443B2 (en) 2013-07-11 2014-05-08 Solid-state imaging device and imaging apparatus using the same
JP2014097073A Expired - Fee Related JP6338442B2 (en) 2013-07-11 2014-05-08 Solid-state imaging device, distance measuring device, and imaging device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014097074A Expired - Fee Related JP6338443B2 (en) 2013-07-11 2014-05-08 Solid-state imaging device and imaging apparatus using the same

Country Status (1)

Country Link
JP (2) JP6338443B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6579756B2 (en) * 2015-02-10 2019-09-25 キヤノン株式会社 Solid-state imaging device and imaging apparatus using the same
JP2017054966A (en) * 2015-09-10 2017-03-16 ルネサスエレクトロニクス株式会社 Method of manufacturing semiconductor device and semiconductor device
JP2017069553A (en) 2015-09-30 2017-04-06 キヤノン株式会社 Solid-state imaging device, method of manufacturing the same, and camera
KR102577844B1 (en) * 2016-08-09 2023-09-15 삼성전자주식회사 Image sensor
KR102354298B1 (en) * 2020-05-27 2022-01-24 주식회사 덱셀리온 Camera system with complementary pixlet structure in quard bayer coding pattern and operation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138968A (en) * 2002-10-21 2004-05-13 Canon Inc Focus detector
JP4508619B2 (en) * 2003-12-03 2010-07-21 キヤノン株式会社 Method for manufacturing solid-state imaging device
JP2007088732A (en) * 2005-09-21 2007-04-05 Fujifilm Corp Solid-state imaging element
JP2007158692A (en) * 2005-12-05 2007-06-21 Nikon Corp Solid state imaging device and electronic camera using the same
JP4935078B2 (en) * 2006-01-10 2012-05-23 株式会社ニコン Solid-state imaging device and electronic camera using the same
JP2010062438A (en) * 2008-09-05 2010-03-18 Toshiba Corp Solid-state imaging device and method of designing the same
JP5593602B2 (en) * 2008-09-24 2014-09-24 ソニー株式会社 Imaging device and imaging apparatus
JP5489641B2 (en) * 2008-11-11 2014-05-14 キヤノン株式会社 Focus detection apparatus and control method thereof
US8913175B2 (en) * 2008-11-27 2014-12-16 Canon Kabushiki Kaisha Solid-state image sensing element and image sensing apparatus for detecting a focus state of a photographing lens
JP5693082B2 (en) * 2010-08-09 2015-04-01 キヤノン株式会社 Imaging device
JP5737971B2 (en) * 2011-01-28 2015-06-17 キヤノン株式会社 Solid-state imaging device and camera
JP2013037296A (en) * 2011-08-10 2013-02-21 Olympus Imaging Corp Image pickup apparatus and image pickup device
JP6039165B2 (en) * 2011-08-11 2016-12-07 キヤノン株式会社 Imaging device and imaging apparatus
JP5995416B2 (en) * 2011-08-24 2016-09-21 キヤノン株式会社 Imaging device and imaging apparatus
JP6010465B2 (en) * 2013-01-11 2016-10-19 富士フイルム株式会社 Solid-state imaging device
JP2014165778A (en) * 2013-02-27 2014-09-08 Nikon Corp Solid state image sensor, imaging device and focus detector

Also Published As

Publication number Publication date
JP2015073071A (en) 2015-04-16
JP6338443B2 (en) 2018-06-06
JP2015073072A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
US9319607B2 (en) Solid-state imaging sensor, ranging device, and imaging apparatus
JP6172982B2 (en) Imaging apparatus and camera system
JP6338442B2 (en) Solid-state imaging device, distance measuring device, and imaging device
US9443891B2 (en) Solid-state image sensor and imaging device
US20150077522A1 (en) Solid state imaging device, calculating device, and calculating program
JP6579756B2 (en) Solid-state imaging device and imaging apparatus using the same
US9998691B2 (en) Pixel, a solid-state imaging device, and an imaging apparatus having barrier region between photoelectric conversion portions in parallel
US9565381B2 (en) Solid-state image sensor and image-capturing device
JP2009109965A (en) Solid-state image sensor and image-pick up device
JP2011222827A (en) Solid-state image sensor
JP2015032610A (en) Solid-state imaging element, and imaging device using the same
JP2014216970A (en) Distance measuring device
WO2012066846A1 (en) Solid-state image sensor and imaging device
WO2014073401A2 (en) Distance measuring apparatus
JP5204728B2 (en) Focus detection device
US11825196B2 (en) Image sensor and image capturing apparatus
JP6931306B2 (en) Image shift amount calculation device and method, imaging device, defocus amount calculation device, and distance calculation device
JP6082212B2 (en) Image sensor and distance measuring apparatus using the same
JP2017005509A (en) Solid-state image pickup element, imaging device and ranging device
JP2016206556A (en) Method for acquiring measurement distance and imaging apparatus using the method
JP2017092190A (en) Image pick-up device and imaging device using the same
US20140139817A1 (en) Solid-state image sensor and range finder using the same
US9407841B2 (en) Depth measurement apparatus, imaging apparatus, and method of controlling depth measurement apparatus
JP5464285B2 (en) Focus detection device
JP2017117897A (en) Imaging device and imaging apparatus employing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180508

R151 Written notification of patent or utility model registration

Ref document number: 6338442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees