WO2012066846A1 - Solid-state image sensor and imaging device - Google Patents

Solid-state image sensor and imaging device Download PDF

Info

Publication number
WO2012066846A1
WO2012066846A1 PCT/JP2011/071008 JP2011071008W WO2012066846A1 WO 2012066846 A1 WO2012066846 A1 WO 2012066846A1 JP 2011071008 W JP2011071008 W JP 2011071008W WO 2012066846 A1 WO2012066846 A1 WO 2012066846A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
imaging device
state imaging
light
photoelectric conversion
Prior art date
Application number
PCT/JP2011/071008
Other languages
French (fr)
Japanese (ja)
Inventor
有人 澤田石
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012066846A1 publication Critical patent/WO2012066846A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems

Definitions

  • the present invention relates to a solid-state imaging device including a plurality of pairs of pupil division pixel units.
  • a phase difference detection method is known as one of focus detection techniques.
  • a defocus amount of the photographing lens is detected by using signals from a pair of pupil division pixels that receive light beams passing through different pupil regions of the photographing lens.
  • This phase difference detection method is often used in single-lens reflex cameras because it can perform focus adjustment at a higher speed than the focus detection technology of the contrast AF method.
  • the phase difference detection method employed in the conventional single-lens reflex camera is based on the phase difference between the detection information of each of the two phase difference detection line sensors provided separately from the solid-state imaging device that images the subject. It is configured to detect the distance to the subject.
  • This phase difference detection method requires a line sensor for phase difference detection in addition to the solid-state image sensor, which increases the cost of parts and manufacturing, and further increases the size of the apparatus.
  • the light shielding film openings of a pair of adjacent pixels are made small, and the light shielding film opening positions of one and the other of the pair of adjacent pixels are set in the phase difference detection direction (normal direction). In this case, the phase difference is detected by shifting in the horizontal direction.
  • a large-format (large area) solid-state imaging device capable of increasing the light-receiving area of each pixel can obtain phase difference information at high speed and high accuracy even if the light-shielding film aperture is thus reduced.
  • the phase difference may vary depending on the state of the subject.
  • the accuracy of information that is, the in-focus position detection accuracy is lowered.
  • a method of gaining up the signal output from the phase difference pixel to acquire phase difference information is also conceivable. However, with this method, noise is also gained up, so that sufficient focus position detection accuracy cannot be obtained.
  • An object of the present invention is to provide a solid-state imaging device capable of acquiring phase difference information and obtaining a focus position at high speed and with high accuracy regardless of the state of a subject even when applied to a solid-state imaging device having a small area. It is providing an imaging device provided with.
  • the solid-state imaging device of the present invention is a solid-state imaging device including a pair of pupil-dividing pixel units, and each of the two pupil-dividing pixel units constituting the pair includes a photoelectric conversion element and the photoelectric conversion element. And a condensing lens that condenses light on the photoelectric conversion element, and is provided in the vicinity of a position where the light beam is converged most thinly by the condensing lens, and the photoelectric conversion element of the pupil division pixel unit
  • a light-shielding part that shields a part of the light-receiving surface, and the light-shielding part includes a center of an optical aperture of the photoelectric conversion element included in each of the two pupil-dividing pixel parts constituting the pair.
  • the imaging device of the present invention includes the solid-state imaging device.
  • a solid-state image sensor capable of acquiring phase difference information and obtaining a focus position at high speed and with high accuracy regardless of the state of the subject, and this An imaging apparatus including the above can be provided.
  • FIG. 1 is a schematic plan view showing a schematic configuration of a solid-state imaging device 100 for explaining an embodiment of the present invention.
  • AA cross-sectional schematic diagram of the solid-state imaging device 100 shown in FIG. BB cross-sectional schematic diagram in the solid-state imaging device 100 shown in FIG.
  • FIG. 1 is a schematic cross-sectional view taken along line AA when the solid-state imaging device 100 shown in FIG. 1 is a MOS type.
  • the figure which shows the modification of the cross-sectional structure shown in FIG. The figure which shows the result of the wave optical simulation (incidence angle 0 degree) with respect to the pixel part 10 for pupil division
  • the figure which shows the modification of the cross-sectional structure shown in FIG. FIG. 1 is a schematic cross-sectional view taken along the line AA when the solid-state imaging device 100 shown in FIG.
  • FIG. 1 is a schematic cross-sectional view taken along the line AA when the solid-state imaging device 100 shown in FIG.
  • FIG. 1 is a schematic plan view showing a schematic configuration of a solid-state imaging device 100 for explaining an embodiment of the present invention.
  • the solid-state imaging device 100 is used by being mounted on an imaging device such as an imaging module of a digital camera, a digital video camera, or a camera-equipped mobile phone.
  • the solid-state imaging device 100 shown in FIG. 1 includes a plurality of pixel portions arranged in a two-dimensional manner (in the example of FIG. 1, a square lattice) in a horizontal direction X and a vertical direction Y orthogonal thereto.
  • the plurality of pixel portions include a normal pixel portion 10, a pupil division pixel portion 11, and a pupil division pixel portion 12.
  • the pupil division pixel unit 11 constitutes a pair together with the pupil division pixel unit 12 arranged close to the pupil division (disposed adjacent to the lower right in the example of FIG. 1).
  • the pupil division pixel unit 11 and the pupil division pixel unit 12 constituting the pair respectively receive a pair of light beams that have passed through different areas of the exit pupil of the imaging optical system of the imaging apparatus in which the solid-state imaging device 100 is mounted. It will be a thing.
  • the solid-state imaging device 100 has at least one such pair.
  • the normal pixel unit 10 is a pixel unit that does not have a pupil division function, and receives a light beam that passes through the entire pupil region of the exit pupil of the imaging optical system of the imaging apparatus in which the solid-state imaging device 100 is mounted.
  • FIG. 2 is a schematic cross-sectional view taken along the line AA in the solid-state imaging device 100 shown in FIG. 3 is a schematic cross-sectional view taken along the line BB in the solid-state imaging device 100 shown in FIG.
  • a photodiode (PD) 2 as a photoelectric conversion element is provided for each pixel portion.
  • a charge transfer channel (not shown) for transferring the charge generated and accumulated in each PD2 is formed on the right side of each PD2.
  • a charge transfer electrode 4 for applying a voltage to the charge transfer channel is formed on the charge transfer channel via an insulating film 3 formed on the semiconductor substrate 1.
  • a light shielding film 5 is formed on the charge transfer electrode 4 and the insulating film 3.
  • an opening having the same shape is formed above each PD2.
  • the PD2 region seen from the opening is the light receiving surface of PD2.
  • the center position of the light receiving surface coincides with the position of the optical axis of the condenser lens described later.
  • an upper convex in-layer lens 8, a color filter 9, and a top micro lens 13 are laminated in this order.
  • the charge transfer electrode 4 and the light shielding film 5 are formed in an insulating film 6, and a plurality of upper convex in-layer lenses 8 are formed on the insulating film 6.
  • a planarizing film H is formed on the plurality of upper convex inner lenses 8, and a plurality of color filters 9 are formed on the planarizing film H.
  • the top microlens 13 is formed on the color filter 9.
  • the top microlens 13 is a lens provided on the most light incident side (outside) of the solid-state image sensor 100 among the lenses included in the solid-state image sensor 100.
  • the top micro lens 13 and the upper convex inner lens 8 below the top micro lens 13 constitute a condensing lens that condenses incident light on the PD 2 below the top micro lens 13.
  • each pixel unit included in the solid-state imaging device 100 includes at least a condenser lens and a PD 2 that receives light collected by the condenser lens.
  • the position (position in the light incident direction) where the incident light beam is converged most thinly by the condenser lens included in the solid-state imaging device 100 is not near the surface of the PD 2 (the surface of the semiconductor substrate 1) but rather than the semiconductor substrate 1.
  • the curvature of the condensing lens is determined so as to be on the upper side.
  • the position where the light flux of incident light is converged by the condensing lens included in the solid-state imaging device 100 is referred to as the thinnest converging position of the condensing lens.
  • a light shielding unit 7a that shields a part of the light receiving surface of the PD 2 is formed.
  • the light shielding part 7a is provided in the vicinity of the thinnest convergence position of the condenser lens, and is arranged so as to shield, for example, the right third of the light receiving surface of the PD 2 in a plan view. Therefore, the portion of the light receiving surface of PD2 of pupil division pixel unit 11 that is not shielded by light shielding unit 7a is the optical aperture of PD2 of pupil division pixel unit 11.
  • a light shielding part 7b that shields a part of the light receiving surface of the PD 2 is formed.
  • the light shielding part 7b is provided in the vicinity of the thinnest convergence position of the condenser lens, and is disposed so as to shield, for example, the left third of the light receiving surface of the PD 2 in a plan view. Therefore, the portion of the light receiving surface of PD2 of pupil division pixel unit 12 that is not shielded by light shielding unit 7b is the optical aperture of PD2 of pupil division pixel unit 12.
  • the light shielding parts 7a and 7b are such that the center of the optical aperture of the PD 2 included in each of the two pupil dividing pixel parts 11 and 12 is opposite to the center of the condenser lens of each of the pupil dividing pixel parts 11 and 12. It is provided so as to be eccentric in the direction.
  • the pupil division in the horizontal direction can be performed by the PD2 in the pupil division pixel unit 11 and the PD2 in the pupil division pixel unit 12, and the phase difference information in the horizontal direction can be acquired.
  • FIG. 4 is a diagram showing a case where the light shielding part 7a is provided immediately above the PD 2 of the pupil division pixel part 11 (on the insulating film 3) in the cross-sectional view shown in FIG.
  • both the PD2 of the pupil division pixel unit 11 and the PD2 of the pupil division pixel unit 12 it is preferable that light with an incident angle of 0 ° can be received as much as possible in order to improve sensitivity.
  • the length of the light-shielding portion 7a provided immediately above the PD2 of the pupil division pixel unit 11 is shortened, and the optical aperture of the PD2 of the pupil division pixel unit 11 is widened to the right side.
  • a method for improving the sensitivity of the PD 2 of the dividing pixel unit 11 is conceivable.
  • the optical aperture of PD2 of the pupil division pixel unit 11 and the optical aperture of PD2 of the pupil division pixel unit 12 are closer to each other. Pupil division performance is degraded.
  • the configuration shown in FIG. 2 is the configuration in which the size of the optical aperture of the PD 2 of the pupil division pixel unit 11 is maintained and the light shielding unit 7 a is provided in the vicinity of the thinnest convergence position of the condenser lens. is there.
  • the luminous flux is thinner than that near the surface of PD2.
  • the amount of light with an incident angle of 0 ° shielded by the light shielding portion 7a is smaller than in the case shown in FIG.
  • the sensitivity of the PD 2 of the pupil division pixel unit 11 can be improved while the pupil division performance is the same as the configuration shown in FIG.
  • the light shielding portions 7 a and 7 b for limiting the optical opening of the PD 2 of the pupil division pixel unit 11 and the optical opening of the PD 2 of the pupil division pixel unit 12 include the charge transfer electrode 4. Is formed above. For this reason, the opening on PD2 formed in the light shielding film 5 can be formed in the same shape in all the pixels. Therefore, as compared with the case where the shape of the light shielding film opening is changed for each pixel as shown in FIG.
  • the horizontal position of the light shielding portions 7a and 7b can be easily changed, so that it is easy to take measures against shading.
  • the vicinity of the finest convergence position of the condensing lens provided with the light shielding portion is ideally the finest convergence position itself of the condensing lens.
  • the position where the light-shielding portion is provided is the highest position of the condensing lens as long as the sensitivity and pupil division performance are not significantly reduced. It may be a position slightly shifted up and down from the fine convergence position.
  • 6 to 8 are diagrams showing the results of wave optical simulation for the normal pixel unit 10 shown in FIG.
  • FIG. 6 shows a result when light having an incident angle of 0 ° is incident on the top microlens 13.
  • FIG. 7 shows a result when light having an incident angle of 5 ° (light incident from an oblique upper right) is incident on the top microlens 13.
  • FIG. 8 shows a result when light having an incident angle of 10 ° (light incident from an oblique upper right) is incident on the top microlens 13. 6 to 8, the same components as those shown in FIG. 2 are denoted by the same reference numerals.
  • the pupil division pixel unit 12 shown in FIG. 3 considering the pupil division performance, light incident from the upper right side (incident angle is 5 ° or incident angle is 10 °) is shielded as much as possible. Is preferred.
  • the light flux is converged most narrowly by the condensing lens in the range indicated by the arrow, and the range indicated by the arrow moves toward the light incident side as the incident angle increases. I understand that.
  • the light shielding portions 7a and 7b are arranged as high as possible in order to efficiently shield the oblique light unnecessary for the pupil division pixel portions 11 and 12.
  • the narrowest convergence position of the condenser lens for light having an incident angle of 5 ° or an incident angle of 10 ° exists at a position higher than the charge transfer electrode 4.
  • providing the light-shielding portions 7a and 7b at the finest convergence position of the condenser lens for light having an incident angle of 5 ° or an incident angle of 10 ° is also preferable from the viewpoint of suppressing the above-described deterioration of the process margin.
  • the solid-state image sensor 100 is a CCD type, but the solid-state image sensor 100 may be a MOS type.
  • FIG. 9 is a schematic cross-sectional view taken along the line AA when the solid-state imaging device 100 shown in FIG. 1 is a MOS type.
  • the same components as those in FIG. 9 are identical to FIG. 9 in FIG. 9, the same components as those in FIG.
  • the solid-state imaging device 100 shown in FIG. 9 is similar to that shown in FIG. 3 except that the layer between the insulating film 3 and the upper convex inner lens 8 is changed to a wiring layer 24 including metal wirings 21, 22, and 23.
  • the configuration is the same as that shown in FIG.
  • the wiring layer 24 includes drive wirings, output signal lines, and the like of a MOS circuit (a circuit configured by a MOS transistor that reads a signal corresponding to the charge stored in the PD 2, not shown in FIG. 9) formed on the semiconductor substrate 1.
  • the wiring layer 24 includes three layers of metal wiring 21, metal wiring 22, and metal wiring 23.
  • the finest converging position of the condenser lens is provided at a substantially intermediate depth of the wiring layer 24.
  • the metal wirings 21 to 23 are usually arranged above the PD2 of the pixel unit 10 so as to avoid the PD2.
  • the second-layer metal wiring 22 protrudes to the left above the PD2. A part of the light receiving surface of the PD 2 of the pupil division pixel unit 11 is shielded by the protruding portion of the metal wiring 22.
  • This overhanging portion performs the same function as the light shielding portion 7a shown in FIG.
  • the center of the optical aperture of the PD 2 of the pupil division pixel unit 11 is shifted to the left in the horizontal direction from the center of the condenser lens of the pupil division pixel unit 11.
  • the second-layer metal wiring 22 extends to the upper side of the PD2 toward the right side.
  • the overhanging portion of the metal wiring 22 causes the center of the optical aperture of the PD 2 of the pupil division pixel unit 12 to be shifted to the right in the horizontal direction from the center of the condenser lens of the pupil division pixel unit 12. Yes.
  • the height from the PD 2 to the upper convex in-layer lens 8 is higher than that of the CCD type.
  • the finest converging position of the condensing lens in the wiring layer 24 (preferably substantially in the middle), it is possible to reduce the vignetting of incident light and prevent a decrease in sensitivity.
  • the protruding portion of the metal wiring 22 having the same function as the light shielding portions 7a and 7b at the thinnest convergence position of the condenser lens, both high sensitivity and high pupil division performance can be achieved.
  • the formation of the overhanging portion of the metal wiring 22 can be dealt with only by changing the shape of the mask at the time of forming the metal wiring 22, so that an increase in manufacturing cost can be prevented.
  • FIG. 10 is a diagram showing a modification of the cross-sectional configuration shown in FIG.
  • the solid-state imaging device 100 shown in FIG. 10 is provided with a waveguide for guiding the light collected by the condenser lens to the PD 2 above the PD 2 of all the pixel portions in the configuration shown in FIG.
  • a light shielding portion 33 is provided near the entrance of the waveguide of the pixel portion 11.
  • the light shielding part 33 has the same function as the light shielding part 7a in the configuration shown in FIG.
  • the light shielding unit 33 shields a part of the light receiving surface of the PD 2 of the pupil division pixel unit 11.
  • the center of the optical aperture of the pupil division pixel unit 11 is decentered to the left with respect to the center of the condenser lens of the pupil division pixel unit 11.
  • the waveguide includes an insulating layer 6 and an optical functional layer 31.
  • the optical functional layer 31 only needs to be made of a material that can totally reflect the light collected by the condenser lens at the interface with the insulating layer 6.
  • the optical functional layer 31 is made of an insulating material having a lower refractive index than that of the insulating layer 6 or a metal material.
  • the optical functional layer 31 is formed around the light shielding film 5 covering the charge transfer electrode 4, and an opening is formed above each PD 2.
  • the PD2 region seen from the opening of the optical functional layer 31 is the light receiving surface of PD2.
  • FIG. 11 to 13 are diagrams showing the results of wave optical simulation for the normal pixel unit 10 shown in FIG.
  • FIG. 11 shows a result when light having an incident angle of 0 ° is incident on the top microlens 13.
  • FIG. 12 shows a result when light having an incident angle of 5 ° (light incident from an oblique upper right) is incident on the top microlens 13.
  • FIG. 13 shows a result when light having an incident angle of 10 ° (light incident from an oblique upper right) is incident on the top microlens 13.
  • light having an incident angle of 5 ° and an incident angle of 10 ° bends in the direction opposite to the direction of incidence on the microlens 13 after entering the waveguide and is received by the PD 2. Reach to the surface.
  • the pupil division pixel units 11 and 12 having a waveguide as shown in FIG. 10, by providing the light shielding unit 33 near the entrance of the waveguide, the pupil division performance can be satisfied. Recognize.
  • the position where the light shielding portion 33 is provided should be close to the position where the incident light is converged most finely outside the waveguide (the position where the incident light is converged most narrowly by the condenser lens). preferable.
  • the position where the incident light is converged most thinly by the condensing lens is far away from the entrance of the waveguide, the light that does not enter the waveguide may be emitted.
  • the vicinity of the entrance of the waveguide is the position where the incident light is converged most narrowly by the condenser lens. That is, as shown in FIG. 10, by providing the light shielding portion 33 near the entrance of the waveguide, both high sensitivity and high pupil division performance can be achieved.
  • the configuration of the pupil division pixel unit 12 is obtained by horizontally inverting the pupil division pixel unit 11 shown in FIG.
  • FIG. 14 is a diagram showing a modification of the cross-sectional configuration shown in FIG.
  • the solid-state imaging device 100 shown in FIG. 14 is provided with a waveguide that guides the light condensed by the condenser lens to the PD 2 above each PD 2 in the configuration shown in FIG. In this configuration, a light shielding portion 43 is provided near the entrance of the waveguide.
  • the waveguide includes an insulating layer 44 and an optical functional layer 41.
  • the optical functional layer 41 may be made of a material that can totally reflect the light collected by the condenser lens at the interface with the insulating layer 44.
  • the optical functional layer 41 is made of an insulating material having a lower refractive index than that of the insulating layer 44 or a metal material.
  • the optical function layer 41 is a layer made of a metal material
  • another insulating layer is formed between the optical function layer 41 and the wirings 21 to 23.
  • the optical functional layer 41 is formed so as to cover the wirings 21, 22, and 23, and an opening is formed above the PD2.
  • the light shielding part 43 has the same function as the light shielding part 7a in the configuration shown in FIG.
  • the light shielding unit 43 shields a part of the light receiving surface of the PD 2 of the pupil division pixel unit 11 (the region of PD 2 seen from the opening of the optical function layer 41), and the center of the optical aperture of the pupil division pixel unit 11 is The pupil division pixel unit 11 is decentered to the left with respect to the center of the condenser lens.
  • the position where the incident light is converged most narrowly by the condenser lens is near the entrance of the waveguide.
  • the light shielding portion 43 in the vicinity of the entrance of the waveguide, it is possible to achieve both high sensitivity and high pupil division performance even in a MOS type solid-state imaging device having a waveguide.
  • the configuration of the pupil division pixel unit 12 is obtained by horizontally inverting the pupil division pixel unit 11 shown in FIG.
  • the condenser lens only needs to include at least the top microlens, and the upper convex in-layer lens is omitted. May be.
  • the description has been made on the assumption that it is a surface irradiation type read by a type or MOS type readout circuit.
  • the solid-state imaging device 100 is not limited to the front side irradiation type, and may be a back side irradiation type or a laminated type.
  • the backside illumination type means that light incident from one side of a semiconductor substrate is received by a photodiode in the semiconductor substrate, and a signal corresponding to the charge generated and accumulated in the photodiode is sent to the semiconductor substrate. This is a configuration in which reading is performed by a reading circuit formed on the other surface.
  • the stacked type means that a signal corresponding to the electric charge generated in a photoelectric conversion element (a configuration including a pair of electrodes and a photoelectric conversion layer provided therebetween) stacked on a semiconductor substrate is formed on the semiconductor substrate.
  • the read-out circuit is configured to read out data.
  • FIG. 15 is a schematic cross-sectional view taken along line AA when the solid-state imaging device 100 shown in FIG. 1 is a back-illuminated type.
  • a photodiode (PD) 51 as a photoelectric conversion element is formed in a semiconductor substrate, and a color filter 54 and a top microlens are provided on each PD51 via an insulating layer 53. 55 are stacked in this order.
  • a CCD-type or MOS-type readout circuit (not shown) is formed on the surface of the semiconductor substrate opposite to the light incident side. A signal corresponding to the charge generated and accumulated in the PD 51 is read out by this readout circuit.
  • the top microlens 55 is a lens provided on the outermost side (light incident side) of the solid-state imaging device 100 and has a function of condensing light on the PD 51 below the top microlens 55.
  • the position where the incident light is most finely converged by the top micro lens 55 is between the PD 51 and the color filter 54.
  • a light-shielding part 52 that shields a part of the light-receiving surface of the PD 51 of the pupil division pixel unit 11 is formed at a position where the incident light is most finely converged by the top microlens 55 above the PD 51 of the pupil division pixel unit 11. Has been.
  • the light-shielding portion 52 has a configuration in which the center of the optical aperture of the PD 51 of the pupil division pixel unit 11 is decentered to the left with respect to the center of the top microlens 55 of the pupil division pixel unit 11.
  • the configuration of the pupil division pixel unit 12 is obtained by horizontally inverting the pupil division pixel unit 11 shown in FIG.
  • the position where the incident light is converged most finely by the top microlens 55 as the condenser lens is provided on the light incident side with respect to the PD 51, and the pupil division pixel is located at this position.
  • the light shielding part 52 for determining the optical aperture of the part 11 it is possible to realize a solid-state imaging device that achieves both high sensitivity and high pupil division performance.
  • the position where the incident light is converged most finely can be adjusted.
  • the height between the top micro lens 55 and the PD 51 is adjusted between the top micro lens 55 and the insulating layer 53 (for example, between the color filter 54 and the insulating layer 53). It is preferable to provide a height adjusting layer.
  • the height adjustment layer is made of a material having a low refractive index, the Airy disk spreads and becomes weak against crosstalk.
  • the height adjustment layer is preferably made of a material having a high refractive index (for example, silicon nitride).
  • FIG. 16 is a schematic cross-sectional view taken along the line AA when the solid-state imaging device 100 shown in FIG. 1 is a stacked type.
  • a photoelectric conversion layer 66 is laminated above the semiconductor substrate 61 with an insulating film 63 interposed therebetween.
  • the photoelectric conversion layer 66 has a single configuration common to all the pixel portions.
  • a pixel electrode 65 divided for each pixel portion is formed under the photoelectric conversion layer 66.
  • a readout circuit 62 is formed for each pixel portion on the semiconductor substrate 61 below each pixel electrode 65.
  • the pixel electrode 65 and the readout circuit 62 corresponding to the pixel electrode 65 are electrically connected by a conductive plug 64.
  • a common counter electrode 67 common to all the pixel portions is formed on the photoelectric conversion layer 66.
  • the pixel electrode 65, the upper counter electrode 67, and the photoelectric conversion layer 66 provided between the pixel electrode 65 and the counter electrode 67 constitute a photoelectric conversion element.
  • the photoelectric conversion element may have a configuration in which another functional layer such as a charge blocking layer is provided between the photoelectric conversion layer 66 and at least one of the pixel electrode 65 and the counter electrode 67.
  • another functional layer such as a charge blocking layer is provided between the photoelectric conversion layer 66 and at least one of the pixel electrode 65 and the counter electrode 67.
  • a color filter 70 and a top microlens 71 are laminated in this order for each pixel portion via an insulating layer 69.
  • the position where the incident light is converged most finely by the top microlens 71 is closer to the light incident side than the photoelectric conversion element corresponding to the top microlens 71.
  • a light shielding unit 68 is provided above the photoelectric conversion element of the pupil division pixel unit 11 at a position where incident light is converged most thinly by the top microlens 71 of the pupil division pixel unit 11.
  • the light shielding unit 68 shields a part of the light receiving surface of the photoelectric conversion element of the pupil division pixel unit 11 (a region overlapping the pixel electrode 65 in plan view). With this light shielding portion 68, the center of the optical aperture of the photoelectric conversion element of the pupil division pixel unit 11 is decentered to the left in the horizontal direction with respect to the center of the top microlens 71 of the pupil division pixel unit 11. .
  • the configuration of the pupil division pixel unit 12 is obtained by horizontally inverting the pupil division pixel unit 11 shown in FIG.
  • the position where the incident light is converged most finely by the top microlens 71 as a condenser lens is provided on the light incident side with respect to the photoelectric conversion element, and pupil division is performed at this position.
  • the light shielding unit 68 for determining the optical aperture of the pixel unit 11 it is possible to realize a solid-state imaging device that achieves both sensitivity and pupil division performance.
  • the position where the incident light is converged most finely can be adjusted.
  • the height between the top micro lens 71 and the photoelectric conversion element is adjusted between the top micro lens 71 and the insulating layer 69 (for example, between the color filter 70 and the insulating layer 69). It is preferable to provide a height adjusting layer for the purpose.
  • the height adjustment layer is made of a material having a low refractive index, the Airy disk spreads and becomes weak against crosstalk.
  • the height adjustment layer is preferably made of a material having a high refractive index (for example, silicon nitride).
  • the disclosed solid-state imaging device is a solid-state imaging device including a pair of pupil-dividing pixel units, and the two pupil-dividing pixel units constituting the pair are a photoelectric conversion element and a photoelectric conversion element, respectively. And a condensing lens that condenses light on the photoelectric conversion element, and is provided in the vicinity of a position where the light beam is converged most thinly by the condensing lens, and the photoelectric conversion element of the pupil division pixel unit
  • a light-shielding part that shields a part of the light-receiving surface, and the light-shielding part includes a center of an optical aperture of the photoelectric conversion element included in each of the two pupil-dividing pixel parts constituting the pair.
  • the disclosed solid-state imaging device is of a MOS type and a surface irradiation type, and the position where the light beam is converged most narrowly by the condenser lens is in a wiring layer between the condenser lens and the semiconductor substrate. Is.
  • the light shielding portion is formed by a part of the wiring included in the wiring layer.
  • the disclosed solid-state imaging device is of a CCD type and a surface irradiation type, and the position where the light beam is converged most narrowly by the condenser lens is from a charge transfer electrode for transferring the charge accumulated in the photoelectric conversion device. Is also formed on the top.
  • the disclosed solid-state imaging device is a surface irradiation type, and is provided between the condenser lens and the photoelectric conversion element, and includes a waveguide that guides the light collected by the condenser lens to the photoelectric conversion element.
  • the position at which the light beam is converged most thinly by the condenser lens is in the vicinity of the entrance of the waveguide.
  • the position where the light beam is converged most narrowly by the condensing lens includes that when the incident angle of light incident on the condensing lens is 5 ° or 10 °.
  • the condenser lens includes a top microlens provided closest to the light incident side, and an in-layer lens provided between the top microlens and the photoelectric conversion device.
  • the disclosed solid-state imaging device is a back-illuminated type.
  • the disclosed solid-state imaging device includes an adjustment layer that adjusts the height between the semiconductor substrate on which the photoelectric conversion element is formed and the condenser lens.
  • the photoelectric conversion device includes a pair of electrodes formed above the semiconductor substrate and a photoelectric conversion layer provided between the pair of electrodes.
  • the disclosed solid-state imaging device includes an adjustment layer that adjusts the height between the condenser lens and the photoelectric conversion device.
  • the disclosed imaging device includes the solid-state imaging device.
  • a solid-state image sensor capable of acquiring phase difference information and obtaining a focus position at high speed and with high accuracy regardless of the state of the subject, and this An imaging apparatus including the above can be provided.
  • Solid-state image sensor 2 PD 7a, 7b Light-shielding portion 8 Upper convex in-layer lens 10 Normal pixel portion 11, 12 Pupil division pixel portion 13 Top micro lens

Abstract

Provided is a solid-state image sensor which, even when applied to a solid-state image sensor with a small area, is capable of obtaining phase difference information rapidly and with high precision, and determining the focus position, regardless of the state of a subject. The solid-state image sensor (100) contains multiple pairs of pixels for pupil division (11, 12). The pixels for pupil division (11, 12): each contain a PD (2), and condenser lenses (microlens (13) and in-layer lens (8)) that are disposed above the PD (2) and focus light onto the PD (2); and are provided with light blocking sections (7a, 7b) that are disposed near the location where light beams most finely converge due to the condenser lenses, and that block a portion of the light receiving surfaces of the PDs (2) of the pixels for pupil division (11, 12). The light blocking sections (7a, 7b) are disposed in such a manner that the centers of the optical apertures of the PDs (2) contained in the pixels for pupil division (11, 12) are disposed eccentrically to the centers of the condenser lenses contained in the pixels for pupil division in the opposite direction.

Description

固体撮像素子及び撮像装置Solid-state imaging device and imaging apparatus
 本発明は、瞳分割用画素部のペアを複数含む固体撮像素子に関する。 The present invention relates to a solid-state imaging device including a plurality of pairs of pupil division pixel units.
 焦点検出技術の1つとして位相差検出方式が知られている。この方式は、撮影レンズの異なる瞳領域を通過する光束を受光する一対の瞳分割用画素からの信号を用いることで、撮影レンズのデフォーカス量を検出するものである。この位相差検出方式は、コントラストAF方式の焦点検出技術に比べて高速に焦点調節を行うことができるため、一眼レフカメラで多く採用されている。 A phase difference detection method is known as one of focus detection techniques. In this method, a defocus amount of the photographing lens is detected by using signals from a pair of pupil division pixels that receive light beams passing through different pupil regions of the photographing lens. This phase difference detection method is often used in single-lens reflex cameras because it can perform focus adjustment at a higher speed than the focus detection technology of the contrast AF method.
 従来の一眼レフカメラで採用されている位相差検出方式は、例えば、被写体を撮像する固体撮像素子とは別に設けられる2つの位相差検出用ラインセンサの各々の検出情報の位相差に基づき、主要被写体までの距離を検出する構成になっている。 The phase difference detection method employed in the conventional single-lens reflex camera, for example, is based on the phase difference between the detection information of each of the two phase difference detection line sensors provided separately from the solid-state imaging device that images the subject. It is configured to detect the distance to the subject.
 この位相差検出方式は、固体撮像素子とは別に位相差検出用のラインセンサが必要となり、部品コスト及び製造コストが嵩んでしまい、更に装置が大型化してしまうという問題がある。 This phase difference detection method requires a line sensor for phase difference detection in addition to the solid-state image sensor, which increases the cost of parts and manufacturing, and further increases the size of the apparatus.
 これに対し、下記の特許文献1,2に記載されている様に、固体撮像素子受光面上に位相差検出用の画素を設けたものが提案されている。被写体画像を撮像する固体撮像素子として位相差検出用の画素が形成された固体撮像素子を採用することで、外部の位相差検出用センサが不要となり、低コスト化を図ることが可能となる。 On the other hand, as described in Patent Documents 1 and 2 below, a pixel in which a pixel for detecting a phase difference is provided on a light receiving surface of a solid-state imaging device has been proposed. By adopting a solid-state image sensor in which pixels for phase difference detection are formed as a solid-state image sensor that captures a subject image, an external phase difference detection sensor becomes unnecessary, and the cost can be reduced.
日本国特開2008―134389号公報Japanese Unexamined Patent Publication No. 2008-134389 日本国特開2000―156823号公報Japanese Unexamined Patent Publication No. 2000-156823
 特許文献1、2に記載の従来技術は、1対の隣接画素の夫々の遮光膜開口を小さくし、かつ1対の隣接画素の一方と他方で遮光膜開口位置を位相差検出方向(通常の場合は左右方向)にずらすことで位相差を検出する構成になっている。 In the conventional techniques described in Patent Documents 1 and 2, the light shielding film openings of a pair of adjacent pixels are made small, and the light shielding film opening positions of one and the other of the pair of adjacent pixels are set in the phase difference detection direction (normal direction). In this case, the phase difference is detected by shifting in the horizontal direction.
 一画素一画素の受光面積を大きくとれる大判(大面積)の固体撮像素子であれば、このように遮光膜開口を小さくしても位相差情報を高速かつ高精度にとることができる。しかし、一画素一画素の受光面積を大きくとれない、例えばコンパクトカメラ等に搭載する固体撮像素子では、受光時間を短時間にして位相差情報を高速に取得すると、被写体の状態によっては、位相差情報の精度つまり合焦位置検出精度が落ちてしまうという問題が生じる。また、位相差画素から出力される信号をゲインアップして位相差情報を取得する方法も考えられる。しかし、この方法では、ノイズもゲインアップされるため、十分な合焦位置検出精度を得ることができない。 A large-format (large area) solid-state imaging device capable of increasing the light-receiving area of each pixel can obtain phase difference information at high speed and high accuracy even if the light-shielding film aperture is thus reduced. However, in a solid-state image sensor mounted on a compact camera, for example, where the light receiving area of each pixel cannot be increased, if the light receiving time is shortened and phase difference information is acquired at high speed, the phase difference may vary depending on the state of the subject. There arises a problem that the accuracy of information, that is, the in-focus position detection accuracy is lowered. Further, a method of gaining up the signal output from the phase difference pixel to acquire phase difference information is also conceivable. However, with this method, noise is also gained up, so that sufficient focus position detection accuracy cannot be obtained.
 本発明の目的は、小面積の固体撮像素子に適用した場合でも、被写体の状態によらずに、高速かつ高精度に位相差情報を取得し合焦位置を求めることができる固体撮像素子及びこれを備える撮像装置を提供することにある。 An object of the present invention is to provide a solid-state imaging device capable of acquiring phase difference information and obtaining a focus position at high speed and with high accuracy regardless of the state of a subject even when applied to a solid-state imaging device having a small area. It is providing an imaging device provided with.
 本発明の固体撮像素子は、瞳分割用画素部のペアを含む固体撮像素子であって、前記ペアを構成する2つの前記瞳分割用画素部は、それぞれ、光電変換素子と、前記光電変換素子上方に設けられ前記光電変換素子に光を集光する集光レンズとを含み、前記集光レンズにより光束が最も細く収斂される位置近傍に設けられ、前記瞳分割用画素部の前記光電変換素子の受光面の一部を遮光する遮光部を備え、前記遮光部は、前記ペアを構成する2つの前記瞳分割用画素部の各々に含まれる前記光電変換素子の光学開口の中心が、当該各々の瞳分割用画素部に含まれる前記集光レンズの中心に対し互いに逆方向に偏心するように設けられており、前記集光レンズにより光束が最も細く収斂される位置は、前記光電変換素子よりも光入射側にあるものである。 The solid-state imaging device of the present invention is a solid-state imaging device including a pair of pupil-dividing pixel units, and each of the two pupil-dividing pixel units constituting the pair includes a photoelectric conversion element and the photoelectric conversion element. And a condensing lens that condenses light on the photoelectric conversion element, and is provided in the vicinity of a position where the light beam is converged most thinly by the condensing lens, and the photoelectric conversion element of the pupil division pixel unit A light-shielding part that shields a part of the light-receiving surface, and the light-shielding part includes a center of an optical aperture of the photoelectric conversion element included in each of the two pupil-dividing pixel parts constituting the pair. Are arranged so as to be decentered in directions opposite to each other with respect to the center of the condenser lens included in the pupil division pixel portion, and the position at which the light flux is converged most narrowly by the condenser lens is from the photoelectric conversion element. Also on the light incident side It is.
 本発明の撮像装置は、前記固体撮像素子を備えるものである。 The imaging device of the present invention includes the solid-state imaging device.
 本発明によれば、小面積の固体撮像素子に適用した場合でも、被写体の状態によらずに、高速かつ高精度に位相差情報を取得し合焦位置を求めることができる固体撮像素子及びこれを備える撮像装置を提供することができる。 According to the present invention, even when applied to a solid-state image sensor with a small area, a solid-state image sensor capable of acquiring phase difference information and obtaining a focus position at high speed and with high accuracy regardless of the state of the subject, and this An imaging apparatus including the above can be provided.
本発明の一実施形態を説明するための固体撮像素子100の概略構成を示す平面模式図1 is a schematic plan view showing a schematic configuration of a solid-state imaging device 100 for explaining an embodiment of the present invention. 図1に示した固体撮像素子100におけるA-A線断面模式図AA cross-sectional schematic diagram of the solid-state imaging device 100 shown in FIG. 図1に示した固体撮像素子100におけるB-B線断面模式図BB cross-sectional schematic diagram in the solid-state imaging device 100 shown in FIG. 図2に示す断面図において、遮光部7aを瞳分割用画素部11のPD2の直上(絶縁膜3の上)に設けた場合を示す図In the cross-sectional view shown in FIG. 2, a diagram showing a case where the light shielding portion 7 a is provided immediately above the PD 2 (on the insulating film 3) of the pupil division pixel portion 11. 図4に示す断面図において、瞳分割用画素部11のPD2の直上に設けた遮光部7aの長さを短くして、瞳分割用画素部11のPD2の光学開口を右側に広げた構成を示す図In the cross-sectional view shown in FIG. 4, the length of the light-shielding portion 7a provided immediately above the PD2 of the pupil division pixel unit 11 is shortened, and the optical aperture of the PD2 of the pupil division pixel unit 11 is widened to the right side. Illustration 図2に示す瞳分割用画素部10に対する波動光学シミュレーション(入射角0°)の結果を示す図The figure which shows the result of the wave optical simulation (incidence angle 0 degree) with respect to the pixel part 10 for pupil division | segmentation shown in FIG. 図2に示す瞳分割用画素部10に対する波動光学シミュレーション(入射角5°)の結果を示す図The figure which shows the result of the wave optical simulation (incidence angle 5 degrees) with respect to the pixel part 10 for pupil division | segmentation shown in FIG. 図2に示す瞳分割用画素部10に対する波動光学シミュレーション(入射角10°)の結果を示す図The figure which shows the result of the wave optical simulation (incidence angle 10 degrees) with respect to the pixel part 10 for pupil division | segmentation shown in FIG. 図1に示した固体撮像素子100がMOS型である場合のA-A線断面模式図FIG. 1 is a schematic cross-sectional view taken along line AA when the solid-state imaging device 100 shown in FIG. 1 is a MOS type. 図2に示した断面構成の変形例を示す図The figure which shows the modification of the cross-sectional structure shown in FIG. 図10に示す瞳分割用画素部10に対する波動光学シミュレーション(入射角0°)の結果を示す図The figure which shows the result of the wave optical simulation (incidence angle 0 degree) with respect to the pixel part 10 for pupil division | segmentation shown in FIG. 図10に示す瞳分割用画素部10に対する波動光学シミュレーション(入射角5°)の結果を示す図The figure which shows the result of the wave optical simulation (incidence angle 5 degrees) with respect to the pixel part 10 for pupil division | segmentation shown in FIG. 図10に示す瞳分割用画素部10に対する波動光学シミュレーション(入射角10°)の結果を示す図The figure which shows the result of the wave optical simulation (incidence angle 10 degrees) with respect to the pixel part 10 for pupil division | segmentation shown in FIG. 図9に示した断面構成の変形例を示す図The figure which shows the modification of the cross-sectional structure shown in FIG. 図1に示す固体撮像素子100が裏面照射型である場合のA-A線断面模式図FIG. 1 is a schematic cross-sectional view taken along the line AA when the solid-state imaging device 100 shown in FIG. 図1に示す固体撮像素子100が積層型である場合のA-A線断面模式図FIG. 1 is a schematic cross-sectional view taken along the line AA when the solid-state imaging device 100 shown in FIG.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態を説明するための固体撮像素子100の概略構成を示す平面模式図である。固体撮像素子100は、デジタルカメラ、デジタルビデオカメラ、カメラ付携帯電話機の撮像モジュール等の撮像装置に搭載して用いられる。 FIG. 1 is a schematic plan view showing a schematic configuration of a solid-state imaging device 100 for explaining an embodiment of the present invention. The solid-state imaging device 100 is used by being mounted on an imaging device such as an imaging module of a digital camera, a digital video camera, or a camera-equipped mobile phone.
 図1に示した固体撮像素子100は、水平方向Xとこれに直交する垂直方向Yに二次元状(図1の例では正方格子状)に配列された複数の画素部を備えている。この複数の画素部は、通常画素部10と瞳分割用画素部11と瞳分割用画素部12とを含む。 The solid-state imaging device 100 shown in FIG. 1 includes a plurality of pixel portions arranged in a two-dimensional manner (in the example of FIG. 1, a square lattice) in a horizontal direction X and a vertical direction Y orthogonal thereto. The plurality of pixel portions include a normal pixel portion 10, a pupil division pixel portion 11, and a pupil division pixel portion 12.
 瞳分割用画素部11は、これに近接して配置(図1の例では斜め右下に隣接して配置)された瞳分割用画素部12と共にペアを構成する。このペアを構成する瞳分割用画素部11と瞳分割用画素部12が、固体撮像素子100が搭載される撮像装置の撮影光学系の射出瞳の異なる領域を通過した一対の光束をそれぞれ受光するものとなる。固体撮像素子100は、このペアを少なくとも1つ有している。 The pupil division pixel unit 11 constitutes a pair together with the pupil division pixel unit 12 arranged close to the pupil division (disposed adjacent to the lower right in the example of FIG. 1). The pupil division pixel unit 11 and the pupil division pixel unit 12 constituting the pair respectively receive a pair of light beams that have passed through different areas of the exit pupil of the imaging optical system of the imaging apparatus in which the solid-state imaging device 100 is mounted. It will be a thing. The solid-state imaging device 100 has at least one such pair.
 通常画素部10は、瞳分割機能を有していない画素部であり、固体撮像素子100が搭載される撮像装置の撮影光学系の射出瞳の全瞳領域を通過する光束を受光する。 The normal pixel unit 10 is a pixel unit that does not have a pupil division function, and receives a light beam that passes through the entire pupil region of the exit pupil of the imaging optical system of the imaging apparatus in which the solid-state imaging device 100 is mounted.
 図2は、図1に示した固体撮像素子100におけるA-A線断面模式図である。図3は、図1に示した固体撮像素子100におけるB-B線断面模式図である。 FIG. 2 is a schematic cross-sectional view taken along the line AA in the solid-state imaging device 100 shown in FIG. 3 is a schematic cross-sectional view taken along the line BB in the solid-state imaging device 100 shown in FIG.
 シリコン基板等の半導体基板1内には、光電変換素子としてのフォトダイオード(PD)2が画素部毎に設けられている。 In a semiconductor substrate 1 such as a silicon substrate, a photodiode (PD) 2 as a photoelectric conversion element is provided for each pixel portion.
 各PD2の右隣には、当該各PD2で発生し蓄積された電荷を転送する図示しない電荷転送チャネルが形成されている。この電荷転送チャネル上には、半導体基板1上に形成される絶縁膜3を介して、この電荷転送チャネルに電圧を印加するための電荷転送電極4が形成されている。 A charge transfer channel (not shown) for transferring the charge generated and accumulated in each PD2 is formed on the right side of each PD2. A charge transfer electrode 4 for applying a voltage to the charge transfer channel is formed on the charge transfer channel via an insulating film 3 formed on the semiconductor substrate 1.
 電荷転送電極4及び絶縁膜3上には遮光膜5が形成されている。遮光膜5には、各PD2上方に同一形状の開口が形成されている。平面視において、この開口から見えるPD2の領域がPD2の受光面となる。平面視において、この受光面の中心位置は、後述する集光レンズの光軸の位置と一致している。 A light shielding film 5 is formed on the charge transfer electrode 4 and the insulating film 3. In the light shielding film 5, an opening having the same shape is formed above each PD2. In a plan view, the PD2 region seen from the opening is the light receiving surface of PD2. In plan view, the center position of the light receiving surface coincides with the position of the optical axis of the condenser lens described later.
 各PD2の上方には、上凸層内レンズ8、カラーフィルタ9、及びトップマイクロレンズ13がこの順に積層されている。 Above each PD 2, an upper convex in-layer lens 8, a color filter 9, and a top micro lens 13 are laminated in this order.
 電荷転送電極4及び遮光膜5は絶縁膜6内に形成されており、この絶縁膜6上に複数の上凸層内レンズ8が形成されている。複数の上凸層内レンズ8の上には平坦化膜Hが形成され、この平坦化膜H上に複数のカラーフィルタ9が形成されている。トップマイクロレンズ13は、カラーフィルタ9上に形成されている。 The charge transfer electrode 4 and the light shielding film 5 are formed in an insulating film 6, and a plurality of upper convex in-layer lenses 8 are formed on the insulating film 6. A planarizing film H is formed on the plurality of upper convex inner lenses 8, and a plurality of color filters 9 are formed on the planarizing film H. The top microlens 13 is formed on the color filter 9.
 トップマイクロレンズ13は、固体撮像素子100に含まれるレンズのうち、固体撮像素子100の最も光入射側(外側)に設けられたレンズである。トップマイクロレンズ13とその下方の上凸層内レンズ8が、これらの下方にあるPD2に入射光を集光する集光レンズを構成している。 The top microlens 13 is a lens provided on the most light incident side (outside) of the solid-state image sensor 100 among the lenses included in the solid-state image sensor 100. The top micro lens 13 and the upper convex inner lens 8 below the top micro lens 13 constitute a condensing lens that condenses incident light on the PD 2 below the top micro lens 13.
 このように、固体撮像素子100に含まれる各画素部は、集光レンズとこの集光レンズによって集光された光を受光するPD2とを少なくとも含む構成である。 As described above, each pixel unit included in the solid-state imaging device 100 includes at least a condenser lens and a PD 2 that receives light collected by the condenser lens.
 固体撮像素子100に含まれる集光レンズにより入射光の光束が最も細く収斂される位置(光入射方向における位置)は、PD2の表面(半導体基板1の表面)付近ではなく、半導体基板1よりも上側になるように集光レンズの曲率等が決められている。以下、固体撮像素子100に含まれる集光レンズにより入射光の光束が最も細く収斂される位置のことを、集光レンズの最細収斂位置という。 The position (position in the light incident direction) where the incident light beam is converged most thinly by the condenser lens included in the solid-state imaging device 100 is not near the surface of the PD 2 (the surface of the semiconductor substrate 1) but rather than the semiconductor substrate 1. The curvature of the condensing lens is determined so as to be on the upper side. Hereinafter, the position where the light flux of incident light is converged by the condensing lens included in the solid-state imaging device 100 is referred to as the thinnest converging position of the condensing lens.
 図2,3の例では、上凸層内レンズ8と半導体基板1との間の絶縁膜6内における遮光膜5よりも光入射側の位置(遮光膜5のうち、電荷転送電極4上にある部分よりも光入射側の位置)に、集光レンズの最細収斂位置(図中の点線矢印が交わっている位置)がある。 2 and 3, the position on the light incident side of the light shielding film 5 in the insulating film 6 between the upper convex in-layer lens 8 and the semiconductor substrate 1 (on the charge transfer electrode 4 in the light shielding film 5). There is a thinnest convergence position of the condenser lens (a position where dotted arrows in the figure intersect) at a position closer to the light incident side than a certain portion.
 近年の固体撮像素子の微細化により、集光レンズの最細収斂位置が半導体基板内にあると、遮光膜5によって入射光がケラレてしまい、十分な感度を得ることができない。そこで、固体撮像素子100では、半導体基板よりも上側に最細収斂位置を設けることで、入射光のケラレを減らして、十分な感度を得られるようにしている。 Due to recent miniaturization of solid-state imaging devices, if the finest convergence position of the condenser lens is within the semiconductor substrate, incident light is vignetted by the light shielding film 5 and sufficient sensitivity cannot be obtained. Therefore, in the solid-state imaging device 100, by providing the finest convergence position above the semiconductor substrate, vignetting of incident light can be reduced and sufficient sensitivity can be obtained.
 図2に示すように、瞳分割用画素部11のPD2と上凸層内レンズ8との間には、当該PD2の受光面の一部を遮光する遮光部7aが形成されている。 As shown in FIG. 2, between the PD 2 of the pupil division pixel unit 11 and the upper convex in-layer lens 8, a light shielding unit 7a that shields a part of the light receiving surface of the PD 2 is formed.
 遮光部7aは、集光レンズの最細収斂位置近傍に設けられており、平面視においてPD2の受光面の例えば右側1/3を遮光するように配置されている。このため、瞳分割用画素部11のPD2の受光面のうち、遮光部7aによって遮光されていない部分が、瞳分割用画素部11のPD2の光学開口となる。 The light shielding part 7a is provided in the vicinity of the thinnest convergence position of the condenser lens, and is arranged so as to shield, for example, the right third of the light receiving surface of the PD 2 in a plan view. Therefore, the portion of the light receiving surface of PD2 of pupil division pixel unit 11 that is not shielded by light shielding unit 7a is the optical aperture of PD2 of pupil division pixel unit 11.
 図3に示すように、瞳分割用画素部12のPD2と上凸層内レンズ8との間には、当該PD2の受光面の一部を遮光する遮光部7bが形成されている。 As shown in FIG. 3, between the PD 2 of the pupil division pixel unit 12 and the upper convex in-layer lens 8, a light shielding part 7b that shields a part of the light receiving surface of the PD 2 is formed.
 遮光部7bは、集光レンズの最細収斂位置近傍に設けられており、平面視においてPD2の受光面の例えば左側1/3を遮光するように配置されている。このため、瞳分割用画素部12のPD2の受光面のうち、遮光部7bによって遮光されていない部分が、瞳分割用画素部12のPD2の光学開口となる。 The light shielding part 7b is provided in the vicinity of the thinnest convergence position of the condenser lens, and is disposed so as to shield, for example, the left third of the light receiving surface of the PD 2 in a plan view. Therefore, the portion of the light receiving surface of PD2 of pupil division pixel unit 12 that is not shielded by light shielding unit 7b is the optical aperture of PD2 of pupil division pixel unit 12.
 遮光部7a,7bは、2つの瞳分割用画素部11,12の各々に含まれるPD2の光学開口の中心が、瞳分割用画素部11,12の各々の集光レンズの中心に対し互いに逆方向に偏心するように設けられている。この結果、瞳分割用画素部11のPD2と、瞳分割用画素部12のPD2とにより、水平方向に瞳分割を行うことができ、水平方向における位相差情報の取得が可能となる。 The light shielding parts 7a and 7b are such that the center of the optical aperture of the PD 2 included in each of the two pupil dividing pixel parts 11 and 12 is opposite to the center of the condenser lens of each of the pupil dividing pixel parts 11 and 12. It is provided so as to be eccentric in the direction. As a result, the pupil division in the horizontal direction can be performed by the PD2 in the pupil division pixel unit 11 and the PD2 in the pupil division pixel unit 12, and the phase difference information in the horizontal direction can be acquired.
 以下では、遮光部7a,7bを集光レンズの最細収斂位置近傍に設けることの技術的意義について説明する。 Hereinafter, the technical significance of providing the light shielding portions 7a and 7b in the vicinity of the thinnest convergence position of the condenser lens will be described.
 図4は、図2に示す断面図において、遮光部7aを瞳分割用画素部11のPD2の直上(絶縁膜3の上)に設けた場合を示す図である。 FIG. 4 is a diagram showing a case where the light shielding part 7a is provided immediately above the PD 2 of the pupil division pixel part 11 (on the insulating film 3) in the cross-sectional view shown in FIG.
 図4に示すように遮光部7aを設けると、瞳分割用画素部11のPD2に入射する光のうち、入射角が0°の光(瞳分割用画素部11の集光レンズの光軸に対して平行に入射してくる光)は、その半分が遮光部7aによって遮られるため、入射角0°の光に対する瞳分割用画素部11のPD2の感度は半分になる。 As shown in FIG. 4, when the light-shielding portion 7 a is provided, out of the light incident on the PD 2 of the pupil division pixel unit 11, light having an incident angle of 0 ° (on the optical axis of the condenser lens of the pupil division pixel unit 11). Half of the light incident in parallel with respect to the light) is blocked by the light-shielding portion 7a, and thus the sensitivity of the PD2 of the pupil-dividing pixel portion 11 with respect to light having an incident angle of 0 ° is halved.
 瞳分割用画素部11のPD2と瞳分割用画素部12のPD2のいずれにおいても、感度向上のために、入射角0°の光はできるだけ多く受光できることが好ましい。 In both the PD2 of the pupil division pixel unit 11 and the PD2 of the pupil division pixel unit 12, it is preferable that light with an incident angle of 0 ° can be received as much as possible in order to improve sensitivity.
 そこで、図5に示すように、瞳分割用画素部11のPD2の直上に設けた遮光部7aの長さを短くして、瞳分割用画素部11のPD2の光学開口を右側に広げ、瞳分割用画素部11のPD2の感度を向上させる方法が考えられる。 Therefore, as shown in FIG. 5, the length of the light-shielding portion 7a provided immediately above the PD2 of the pupil division pixel unit 11 is shortened, and the optical aperture of the PD2 of the pupil division pixel unit 11 is widened to the right side. A method for improving the sensitivity of the PD 2 of the dividing pixel unit 11 is conceivable.
 しかし、図5に示す構成では、瞳分割用画素部11のPD2の光学開口と、瞳分割用画素部12のPD2の光学開口とが互いに近づくことになるため、図4に示した構成よりも瞳分割性能が低下する。 However, in the configuration shown in FIG. 5, the optical aperture of PD2 of the pupil division pixel unit 11 and the optical aperture of PD2 of the pupil division pixel unit 12 are closer to each other. Pupil division performance is degraded.
 このように、瞳分割用画素部11のPD2の直上に遮光部7aを設ける構成では、高感度と高い瞳分割性能とを両立させることができない。 As described above, in the configuration in which the light-shielding portion 7a is provided immediately above the PD 2 of the pupil division pixel unit 11, high sensitivity and high pupil division performance cannot be achieved at the same time.
 図5に示した構成において、瞳分割用画素部11のPD2の光学開口の大きさはそのままに、遮光部7aを集光レンズの最細収斂位置近傍に設けた構成が図2に示す構成である。 In the configuration shown in FIG. 5, the configuration shown in FIG. 2 is the configuration in which the size of the optical aperture of the PD 2 of the pupil division pixel unit 11 is maintained and the light shielding unit 7 a is provided in the vicinity of the thinnest convergence position of the condenser lens. is there.
 集光レンズの最細収斂位置近傍では光束がPD2の表面近傍よりも細くなっている。このため、図2に示す構成によれば、遮光部7aによって遮光される入射角0°の光の量は、図5に示す場合よりも減少する。この結果、瞳分割性能を図5に示した構成と同じにしながら、瞳分割用画素部11のPD2の感度を向上させることができる。 In the vicinity of the thinnest convergence position of the condenser lens, the luminous flux is thinner than that near the surface of PD2. For this reason, according to the configuration shown in FIG. 2, the amount of light with an incident angle of 0 ° shielded by the light shielding portion 7a is smaller than in the case shown in FIG. As a result, the sensitivity of the PD 2 of the pupil division pixel unit 11 can be improved while the pupil division performance is the same as the configuration shown in FIG.
 また、図2に示す構成によれば、遮光部7aを水平方向左側まで多少伸ばして、瞳分割用画素部11の光学開口の中心を左側にずらしても、ある程度の遮光部7aの伸ばし量までは、図5に示した感度よりも高い感度を得ることができる。したがって、図2に示す構成によれば、高い感度と高い瞳分割性能とを両立させることができる。 Further, according to the configuration shown in FIG. 2, even if the light shielding part 7a is slightly extended to the left in the horizontal direction and the center of the optical aperture of the pupil division pixel part 11 is shifted to the left, the amount of extension of the light shielding part 7a is reduced to some extent. Can obtain a higher sensitivity than the sensitivity shown in FIG. Therefore, according to the configuration shown in FIG. 2, it is possible to achieve both high sensitivity and high pupil division performance.
 また、図2に示す構成によれば、瞳分割用画素部11のPD2の光学開口と瞳分割用画素部12のPD2の光学開口とを制限するための遮光部7a,7bが電荷転送電極4よりも上に形成されている。このため、遮光膜5に形成するPD2上の開口は全ての画素において同一形状で形成することができる。したがって、図5のように画素毎に遮光膜開口の形状を変更する場合と比べると、プロセスマージンの悪化を抑えることができる。 In addition, according to the configuration shown in FIG. 2, the light shielding portions 7 a and 7 b for limiting the optical opening of the PD 2 of the pupil division pixel unit 11 and the optical opening of the PD 2 of the pupil division pixel unit 12 include the charge transfer electrode 4. Is formed above. For this reason, the opening on PD2 formed in the light shielding film 5 can be formed in the same shape in all the pixels. Therefore, as compared with the case where the shape of the light shielding film opening is changed for each pixel as shown in FIG.
 また、図2に示す構成によれば、遮光部7a,7bの水平方向の位置を容易に変更することができるため、シェーディング対策も容易となる。なお、遮光部を設ける集光レンズの最細収斂位置近傍は、理想的には集光レンズの最細収斂位置そのものである。ただし、瞳分割用画素部11,12の感度と瞳分割性能のバランスを考えて、感度と瞳分割性能が著しく低下しないような位置であれば、遮光部を設ける位置は、集光レンズの最細収斂位置から多少上下にずれた位置であってもよい。 Further, according to the configuration shown in FIG. 2, the horizontal position of the light shielding portions 7a and 7b can be easily changed, so that it is easy to take measures against shading. The vicinity of the finest convergence position of the condensing lens provided with the light shielding portion is ideally the finest convergence position itself of the condensing lens. However, considering the balance between the sensitivity and pupil division performance of the pixel division pixel portions 11 and 12, the position where the light-shielding portion is provided is the highest position of the condensing lens as long as the sensitivity and pupil division performance are not significantly reduced. It may be a position slightly shifted up and down from the fine convergence position.
 図6~8は、図2に示す通常画素部10に対する波動光学シミュレーションの結果を示す図である。 6 to 8 are diagrams showing the results of wave optical simulation for the normal pixel unit 10 shown in FIG.
 図6は、トップマイクロレンズ13に入射角0°の光を入射したときの結果を示す。図7は、トップマイクロレンズ13に入射角5°の光(斜め右上から入射する光)を入射したときの結果を示す。図8は、トップマイクロレンズ13に入射角10°の光(斜め右上から入射する光)を入射したときの結果を示す。図6~8において、図2に示した構成要素と同じものには同一符号を付してある。 FIG. 6 shows a result when light having an incident angle of 0 ° is incident on the top microlens 13. FIG. 7 shows a result when light having an incident angle of 5 ° (light incident from an oblique upper right) is incident on the top microlens 13. FIG. 8 shows a result when light having an incident angle of 10 ° (light incident from an oblique upper right) is incident on the top microlens 13. 6 to 8, the same components as those shown in FIG. 2 are denoted by the same reference numerals.
 図6~8に示すように、入射角が大きくなると、光束の中心は集光レンズの光軸から左側にずれていく。 As shown in FIGS. 6 to 8, as the incident angle increases, the center of the light beam shifts to the left from the optical axis of the condenser lens.
 例えば、図3に示した瞳分割用画素部12においては、瞳分割性能を考えると、右斜め上から入射してくる光(入射角が5°又は入射角が10°)をできるだけ遮光することが好ましい。 For example, in the pupil division pixel unit 12 shown in FIG. 3, considering the pupil division performance, light incident from the upper right side (incident angle is 5 ° or incident angle is 10 °) is shielded as much as possible. Is preferred.
 図7,8に示す結果から、入射角が5°又は入射角が10°の光に対する集光レンズの最細収斂位置に遮光部7a,7bを設けると、右斜め上から入射してくる光を効率よく遮光することができ、瞳分割性能を最も高くできることが分かる。 From the results shown in FIGS. 7 and 8, when the light shielding portions 7a and 7b are provided at the thinnest convergence position of the condenser lens with respect to the light having the incident angle of 5 ° or the incident angle of 10 °, the light incident from the upper right side. It can be seen that the light can be shielded efficiently and the pupil division performance can be maximized.
 また、図6~8では、矢印に示した範囲で、集光レンズにより光束が最も細く収斂されており、この矢印で示す範囲が、入射角が大きくなるにしたがって光入射側に移動していくことが分かる。 Also, in FIGS. 6 to 8, the light flux is converged most narrowly by the condensing lens in the range indicated by the arrow, and the range indicated by the arrow moves toward the light incident side as the incident angle increases. I understand that.
 このことから、瞳分割用画素部11,12にとって不要な斜め光を効率よく遮光するためには、なるべく高い位置に遮光部7a,7bを配置しておくのが好ましいことがわかる。図7,8の例では、入射角が5°又は入射角が10°の光に対する集光レンズの最細収斂位置が電荷転送電極4よりも高い位置に存在している。このため、入射角が5°又は入射角が10°の光に対する集光レンズの最細収斂位置に遮光部7a,7bを設けることは、上述したプロセスマージンの悪化を抑えるという観点からも好ましい。 From this, it can be seen that it is preferable to arrange the light shielding portions 7a and 7b as high as possible in order to efficiently shield the oblique light unnecessary for the pupil division pixel portions 11 and 12. In the example of FIGS. 7 and 8, the narrowest convergence position of the condenser lens for light having an incident angle of 5 ° or an incident angle of 10 ° exists at a position higher than the charge transfer electrode 4. For this reason, providing the light-shielding portions 7a and 7b at the finest convergence position of the condenser lens for light having an incident angle of 5 ° or an incident angle of 10 ° is also preferable from the viewpoint of suppressing the above-described deterioration of the process margin.
 以上の説明では、固体撮像素子100がCCD型となっているが、固体撮像素子100はMOS型であってもよい。 In the above description, the solid-state image sensor 100 is a CCD type, but the solid-state image sensor 100 may be a MOS type.
 図9は、図1に示した固体撮像素子100がMOS型である場合のA-A線断面模式図である。図9において、図2と同じ構成には同一符号を付してある。 FIG. 9 is a schematic cross-sectional view taken along the line AA when the solid-state imaging device 100 shown in FIG. 1 is a MOS type. In FIG. 9, the same components as those in FIG.
 図9に示す固体撮像素子100は、絶縁膜3と上凸層内レンズ8との間の層を、メタル配線21,22,23を含む配線層24に変更した点を除いては、図3に示した構成と同じである。 The solid-state imaging device 100 shown in FIG. 9 is similar to that shown in FIG. 3 except that the layer between the insulating film 3 and the upper convex inner lens 8 is changed to a wiring layer 24 including metal wirings 21, 22, and 23. The configuration is the same as that shown in FIG.
 配線層24は、半導体基板1に形成されたMOS回路(PD2の蓄積電荷に応じた信号を読み出すMOSトランジスタにより構成される回路、図9では不図示)の駆動配線及び出力信号線等を含む。図9の例では、配線層24は、メタル配線21とメタル配線22とメタル配線23の3層の配線を含む。 The wiring layer 24 includes drive wirings, output signal lines, and the like of a MOS circuit (a circuit configured by a MOS transistor that reads a signal corresponding to the charge stored in the PD 2, not shown in FIG. 9) formed on the semiconductor substrate 1. In the example of FIG. 9, the wiring layer 24 includes three layers of metal wiring 21, metal wiring 22, and metal wiring 23.
 図9に示す固体撮像素子100は、集光レンズの最細収斂位置が配線層24の略中間の深さに設けられている。 In the solid-state imaging device 100 shown in FIG. 9, the finest converging position of the condenser lens is provided at a substantially intermediate depth of the wiring layer 24.
 メタル配線21~23は、通常画素部10のPD2の上方では、このPD2を避けるように配置されている。一方、瞳分割用画素部11のPD2上方では、第二層目のメタル配線22が左側に向かってPD2上方まで張り出している。そして、このメタル配線22の張り出し部によって、瞳分割用画素部11のPD2の受光面の一部が遮光されている。 The metal wirings 21 to 23 are usually arranged above the PD2 of the pixel unit 10 so as to avoid the PD2. On the other hand, above the PD2 of the pupil division pixel unit 11, the second-layer metal wiring 22 protrudes to the left above the PD2. A part of the light receiving surface of the PD 2 of the pupil division pixel unit 11 is shielded by the protruding portion of the metal wiring 22.
 この張り出し部が、図2に示した遮光部7aと同様の機能を果たす。この張り出し部によって、瞳分割用画素部11のPD2の光学開口の中心が、瞳分割用画素部11の集光レンズの中心よりも水平方向左側にずれた構成となっている。 This overhanging portion performs the same function as the light shielding portion 7a shown in FIG. By this projecting portion, the center of the optical aperture of the PD 2 of the pupil division pixel unit 11 is shifted to the left in the horizontal direction from the center of the condenser lens of the pupil division pixel unit 11.
 また、図示していないが、瞳分割用画素部12のPD2上方では、第二層目のメタル配線22が右側に向かってPD2上方にまで張り出している。そして、このメタル配線22の張り出し部によって、瞳分割用画素部12のPD2の光学開口の中心が、瞳分割用画素部12の集光レンズの中心よりも水平方向右側にずれた構成となっている。 Although not shown, above the PD2 of the pupil division pixel unit 12, the second-layer metal wiring 22 extends to the upper side of the PD2 toward the right side. The overhanging portion of the metal wiring 22 causes the center of the optical aperture of the PD 2 of the pupil division pixel unit 12 to be shifted to the right in the horizontal direction from the center of the condenser lens of the pupil division pixel unit 12. Yes.
 図9に示すように、固体撮像素子100がMOS型である場合には、PD2から上凸層内レンズ8までの高さがCCD型に比べて高くなる。 As shown in FIG. 9, when the solid-state imaging device 100 is a MOS type, the height from the PD 2 to the upper convex in-layer lens 8 is higher than that of the CCD type.
 このため、集光レンズの最細収斂位置を配線層24の内部(好ましくは略中間)に設けることで、入射光のケラレ等を低減して感度低下を防ぐことができる。また、集光レンズの最細収斂位置に、遮光部7a、7bと同じ機能を持つメタル配線22の張り出し部を設けることで、高い感度と高い瞳分割性能の両立を図ることができる。また、このメタル配線22の張り出し部の形成は、メタル配線22形成時のマスクの形状を変更するだけで対応することができるため、製造コストの増大を防ぐことができる。 For this reason, by providing the finest converging position of the condensing lens in the wiring layer 24 (preferably substantially in the middle), it is possible to reduce the vignetting of incident light and prevent a decrease in sensitivity. Further, by providing the protruding portion of the metal wiring 22 having the same function as the light shielding portions 7a and 7b at the thinnest convergence position of the condenser lens, both high sensitivity and high pupil division performance can be achieved. Further, the formation of the overhanging portion of the metal wiring 22 can be dealt with only by changing the shape of the mask at the time of forming the metal wiring 22, so that an increase in manufacturing cost can be prevented.
 図10は、図2に示した断面構成の変形例を示す図である。 FIG. 10 is a diagram showing a modification of the cross-sectional configuration shown in FIG.
 図10に示した固体撮像素子100は、図2に示した構成における全ての画素部のPD2の上方に、集光レンズで集光された光を当該PD2に導く導波路を設け、瞳分割用画素部11の導波路の入り口近傍に遮光部33を設けた構成である。 The solid-state imaging device 100 shown in FIG. 10 is provided with a waveguide for guiding the light collected by the condenser lens to the PD 2 above the PD 2 of all the pixel portions in the configuration shown in FIG. In this configuration, a light shielding portion 33 is provided near the entrance of the waveguide of the pixel portion 11.
 遮光部33は、図2に示した構成における遮光部7aと同じ機能を有する。遮光部33は、瞳分割用画素部11のPD2の受光面の一部を遮光している。この遮光部33により、瞳分割用画素部11の光学開口の中心が、瞳分割用画素部11の集光レンズの中心に対して左側に偏心される。 The light shielding part 33 has the same function as the light shielding part 7a in the configuration shown in FIG. The light shielding unit 33 shields a part of the light receiving surface of the PD 2 of the pupil division pixel unit 11. By the light shielding portion 33, the center of the optical aperture of the pupil division pixel unit 11 is decentered to the left with respect to the center of the condenser lens of the pupil division pixel unit 11.
 図10に示すように、導波路は、絶縁層6と光学機能層31とを含んで構成される。光学機能層31は、集光レンズで集光された光を、絶縁層6との界面で全反射させることができる材料で構成されていればよい。例えば、光学機能層31は、絶縁層6よりも低屈折率の絶縁材料、又は、金属材料等で構成されている。 As shown in FIG. 10, the waveguide includes an insulating layer 6 and an optical functional layer 31. The optical functional layer 31 only needs to be made of a material that can totally reflect the light collected by the condenser lens at the interface with the insulating layer 6. For example, the optical functional layer 31 is made of an insulating material having a lower refractive index than that of the insulating layer 6 or a metal material.
 光学機能層31は、電荷転送電極4を覆う遮光膜5の周囲に形成されており、各PD2の上方には開口が形成されている。平面視において、この光学機能層31の開口から見えるPD2の領域が、PD2の受光面となる。 The optical functional layer 31 is formed around the light shielding film 5 covering the charge transfer electrode 4, and an opening is formed above each PD 2. In a plan view, the PD2 region seen from the opening of the optical functional layer 31 is the light receiving surface of PD2.
 図11~図13は、図10に示した通常画素部10に対する波動光学シミュレーションの結果を示す図である。図11は、トップマイクロレンズ13に入射角0°の光を入射したときの結果を示す。図12は、トップマイクロレンズ13に入射角5°の光(斜め右上から入射する光)を入射したときの結果を示す。図13は、トップマイクロレンズ13に入射角10°の光(斜め右上から入射する光)を入射したときの結果を示す。 11 to 13 are diagrams showing the results of wave optical simulation for the normal pixel unit 10 shown in FIG. FIG. 11 shows a result when light having an incident angle of 0 ° is incident on the top microlens 13. FIG. 12 shows a result when light having an incident angle of 5 ° (light incident from an oblique upper right) is incident on the top microlens 13. FIG. 13 shows a result when light having an incident angle of 10 ° (light incident from an oblique upper right) is incident on the top microlens 13.
 図11~図13に示すように、導波路を持つ固体撮像素子100の通常画素部10では、どの入射角の光であっても、PD2の受光面上ではほぼ同じ領域に光が入射する。 As shown in FIGS. 11 to 13, in the normal pixel portion 10 of the solid-state imaging device 100 having a waveguide, light is incident on almost the same region on the light receiving surface of the PD 2 at any incident angle.
 このため、従来のように、PD2の直上(絶縁膜3上)に遮光部を設けてPD2の光学開口を偏心させても、満足な瞳分割性能を得ることはできない。 For this reason, as in the prior art, satisfactory pupil division performance cannot be obtained even if a light shielding portion is provided immediately above PD2 (on insulating film 3) and the optical aperture of PD2 is decentered.
 図12,13に示すように、入射角5°と入射角10°の光は、導波路に侵入してからは、マイクロレンズ13に対して入射した方向とは逆方向に曲がってPD2の受光面まで到達する。 As shown in FIGS. 12 and 13, light having an incident angle of 5 ° and an incident angle of 10 ° bends in the direction opposite to the direction of incidence on the microlens 13 after entering the waveguide and is received by the PD 2. Reach to the surface.
 この結果から、導波路を持つ瞳分割用画素部11,12においては、図10に示すように、導波路の入り口近傍において遮光部33を設けることで、瞳分割性能を満足したものにできることがわかる。 From this result, in the pupil division pixel units 11 and 12 having a waveguide, as shown in FIG. 10, by providing the light shielding unit 33 near the entrance of the waveguide, the pupil division performance can be satisfied. Recognize.
 また、遮光部33を設ける位置は、感度を向上させる観点から、導波路外において入射光が最も細く収斂される位置(集光レンズによって入射光が最も細く収斂される位置)近傍にすることが好ましい。 Further, from the viewpoint of improving sensitivity, the position where the light shielding portion 33 is provided should be close to the position where the incident light is converged most finely outside the waveguide (the position where the incident light is converged most narrowly by the condenser lens). preferable.
 ただし、集光レンズによって入射光が最も細く収斂される位置が、導波路の入り口から上側に大きく離れた位置にあると、導波路に入射しない光が出てくる可能性もある。 However, if the position where the incident light is converged most thinly by the condensing lens is far away from the entrance of the waveguide, the light that does not enter the waveguide may be emitted.
 このため、図10に示した構成においては、集光レンズによって入射光が最も細く収斂される位置を、導波路の入り口近傍か又は導波路の内部に設ける必要がある。 For this reason, in the configuration shown in FIG. 10, it is necessary to provide the position where the incident light is most finely converged by the condenser lens in the vicinity of the entrance of the waveguide or inside the waveguide.
 したがって、図10に示した構成においては、導波路の入り口近傍(入り口又は入り口よりも僅かに上)を、集光レンズによって入射光が最も細く収斂される位置としている。つまり、図10に示すように、導波路の入り口近傍に遮光部33を設けることで、高い感度と高い瞳分割性能を両立させることができる。 Therefore, in the configuration shown in FIG. 10, the vicinity of the entrance of the waveguide (slightly above the entrance or entrance) is the position where the incident light is converged most narrowly by the condenser lens. That is, as shown in FIG. 10, by providing the light shielding portion 33 near the entrance of the waveguide, both high sensitivity and high pupil division performance can be achieved.
 なお、瞳分割用画素部12の構成は、図10に示した瞳分割用画素部11を左右反転させたものであるため、ここでは説明を省略する。 Note that the configuration of the pupil division pixel unit 12 is obtained by horizontally inverting the pupil division pixel unit 11 shown in FIG.
 図14は、図9に示した断面構成の変形例を示す図である。 FIG. 14 is a diagram showing a modification of the cross-sectional configuration shown in FIG.
 図14に示した固体撮像素子100は、図9に示した構成における各PD2の上方に、集光レンズで集光された光をPD2に導く導波路を設け、瞳分割用画素部11の導波路の入り口近傍に遮光部43を設けた構成である。 The solid-state imaging device 100 shown in FIG. 14 is provided with a waveguide that guides the light condensed by the condenser lens to the PD 2 above each PD 2 in the configuration shown in FIG. In this configuration, a light shielding portion 43 is provided near the entrance of the waveguide.
 図14に示すように、導波路は、絶縁層44と光学機能層41とを含んで構成される。 As shown in FIG. 14, the waveguide includes an insulating layer 44 and an optical functional layer 41.
 光学機能層41は、集光レンズで集光された光を、絶縁層44との界面で全反射させることができる材料で構成されていればよい。例えば、光学機能層41は、絶縁層44よりも低屈折率の絶縁材料、又は、金属材料等で構成されている。 The optical functional layer 41 may be made of a material that can totally reflect the light collected by the condenser lens at the interface with the insulating layer 44. For example, the optical functional layer 41 is made of an insulating material having a lower refractive index than that of the insulating layer 44 or a metal material.
 光学機能層41が金属材料で構成された層である場合は、光学機能層41と配線21~23との間には別の絶縁層が形成される。 When the optical function layer 41 is a layer made of a metal material, another insulating layer is formed between the optical function layer 41 and the wirings 21 to 23.
 光学機能層41は、配線21,22,23を覆って形成され、PD2上方には開口が形成されている。 The optical functional layer 41 is formed so as to cover the wirings 21, 22, and 23, and an opening is formed above the PD2.
 遮光部43は、図2に示した構成における遮光部7aと同じ機能を有する。遮光部43は、瞳分割用画素部11のPD2の受光面(光学機能層41の開口から見えるPD2の領域)の一部を遮光して、瞳分割用画素部11の光学開口の中心を、瞳分割用画素部11の集光レンズの中心に対して左側に偏心させている。 The light shielding part 43 has the same function as the light shielding part 7a in the configuration shown in FIG. The light shielding unit 43 shields a part of the light receiving surface of the PD 2 of the pupil division pixel unit 11 (the region of PD 2 seen from the opening of the optical function layer 41), and the center of the optical aperture of the pupil division pixel unit 11 is The pupil division pixel unit 11 is decentered to the left with respect to the center of the condenser lens.
 図14に示した固体撮像素子100においても、図10に示した固体撮像素子100と同様に、集光レンズによって入射光が最も細く収斂される位置が導波路の入り口近傍にある。 In the solid-state imaging device 100 shown in FIG. 14 as well, as in the solid-state imaging device 100 shown in FIG. 10, the position where the incident light is converged most narrowly by the condenser lens is near the entrance of the waveguide.
 このため、導波路の入り口近傍に遮光部43を設けることで、導波路を持つMOS型の固体撮像素子であっても、高い感度と高い瞳分割性能の両立を図ることができる。 For this reason, by providing the light shielding portion 43 in the vicinity of the entrance of the waveguide, it is possible to achieve both high sensitivity and high pupil division performance even in a MOS type solid-state imaging device having a waveguide.
 なお、瞳分割用画素部12の構成は、図14に示した瞳分割用画素部11を左右反転させたものであるため、ここでは説明を省略する。 It should be noted that the configuration of the pupil division pixel unit 12 is obtained by horizontally inverting the pupil division pixel unit 11 shown in FIG.
 以上説明してきた、図2、図3、図9、図10、及び図14に示した構成において、集光レンズは、少なくともトップマイクロレンズを含んでいればよく、上凸層内レンズは省略してもよい。 2, 3, 9, 10, and 14 described above, the condenser lens only needs to include at least the top microlens, and the upper convex in-layer lens is omitted. May be.
 ここまでは、固体撮像素子100が、半導体基板の表面(光入射側の面)に入射してPD2で発生し蓄積された電荷に応じた信号を、当該半導体基板の表面側に形成されたCCD型又はMOS型の読み出し回路で読み出す、表面照射型であることを前提として説明してきた。しかし、固体撮像素子100は、表面照射型に限らず、裏面照射型や積層型であってもよい。 Up to here, the CCD in which the solid-state imaging device 100 is formed on the front surface side of the semiconductor substrate to generate a signal corresponding to the electric charge generated and accumulated in the PD 2 by entering the front surface (light incident side surface) of the semiconductor substrate. The description has been made on the assumption that it is a surface irradiation type read by a type or MOS type readout circuit. However, the solid-state imaging device 100 is not limited to the front side irradiation type, and may be a back side irradiation type or a laminated type.
 以下では、固体撮像素子100が裏面照射型である場合の構成例と積層型である場合の構成例について説明する。 Hereinafter, a configuration example in the case where the solid-state imaging device 100 is a backside illumination type and a configuration example in the case of a stacked type will be described.
 なお、裏面照射型とは、半導体基板の一方の面側から入射した光を当該半導体基板内のフォトダイオードで受光し、このフォトダイオードで発生し蓄積された電荷に応じた信号を、当該半導体基板の他方の面に形成された読み出し回路で読み出す構成のものを言う。 The backside illumination type means that light incident from one side of a semiconductor substrate is received by a photodiode in the semiconductor substrate, and a signal corresponding to the charge generated and accumulated in the photodiode is sent to the semiconductor substrate. This is a configuration in which reading is performed by a reading circuit formed on the other surface.
 また、積層型とは、半導体基板上方に積層された光電変換素子(一対の電極とこれらの間に設けられる光電変換層を含む構成)で発生した電荷に応じた信号を、当該半導体基板に形成された読み出し回路にて読み出す構成のものを言う。 In addition, the stacked type means that a signal corresponding to the electric charge generated in a photoelectric conversion element (a configuration including a pair of electrodes and a photoelectric conversion layer provided therebetween) stacked on a semiconductor substrate is formed on the semiconductor substrate. The read-out circuit is configured to read out data.
 図15は、図1に示す固体撮像素子100が裏面照射型である場合のA-A線断面模式図である。 FIG. 15 is a schematic cross-sectional view taken along line AA when the solid-state imaging device 100 shown in FIG. 1 is a back-illuminated type.
 図15に示すように、各画素部において、半導体基板内には光電変換素子としてのフォトダイオード(PD)51が形成され、各PD51上には絶縁層53を介してカラーフィルタ54及びトップマイクロレンズ55がこの順に積層されている。 As shown in FIG. 15, in each pixel portion, a photodiode (PD) 51 as a photoelectric conversion element is formed in a semiconductor substrate, and a color filter 54 and a top microlens are provided on each PD51 via an insulating layer 53. 55 are stacked in this order.
 半導体基板の光入射側とは反対側の面には、図示しないCCD型又はMOS型の読み出し回路が形成されている。PD51で発生し蓄積された電荷に応じた信号は、この読み出し回路によって読み出される。 A CCD-type or MOS-type readout circuit (not shown) is formed on the surface of the semiconductor substrate opposite to the light incident side. A signal corresponding to the charge generated and accumulated in the PD 51 is read out by this readout circuit.
 トップマイクロレンズ55は、固体撮像素子100の最も外側(光入射側)に設けられるレンズであり、その下方のPD51に光を集光する機能を持つ。 The top microlens 55 is a lens provided on the outermost side (light incident side) of the solid-state imaging device 100 and has a function of condensing light on the PD 51 below the top microlens 55.
 トップマイクロレンズ55によって入射光が最も細く収斂される位置は、PD51とカラーフィルタ54との間にある。 The position where the incident light is most finely converged by the top micro lens 55 is between the PD 51 and the color filter 54.
 瞳分割用画素部11のPD51の上方におけるトップマイクロレンズ55によって入射光が最も細く収斂される位置には、瞳分割用画素部11のPD51の受光面の一部を遮光する遮光部52が形成されている。 A light-shielding part 52 that shields a part of the light-receiving surface of the PD 51 of the pupil division pixel unit 11 is formed at a position where the incident light is most finely converged by the top microlens 55 above the PD 51 of the pupil division pixel unit 11. Has been.
 この遮光部52により、瞳分割用画素部11のPD51の光学開口の中心が、瞳分割用画素部11のトップマイクロレンズ55の中心に対して左側に偏心した構成になっている。 The light-shielding portion 52 has a configuration in which the center of the optical aperture of the PD 51 of the pupil division pixel unit 11 is decentered to the left with respect to the center of the top microlens 55 of the pupil division pixel unit 11.
 なお、瞳分割用画素部12の構成は、図15に示した瞳分割用画素部11を左右反転させたものであるため、ここでは説明を省略する。 Note that the configuration of the pupil division pixel unit 12 is obtained by horizontally inverting the pupil division pixel unit 11 shown in FIG.
 このように、裏面照射型であっても、集光レンズとしてのトップマイクロレンズ55によって入射光が最も細く収斂される位置をPD51よりも光入射側に設け、かつ、この位置に瞳分割用画素部11の光学開口を決めるための遮光部52を設けることで、高い感度と高い瞳分割性能とを両立させた固体撮像素子を実現することができる。 As described above, even in the back-illuminated type, the position where the incident light is converged most finely by the top microlens 55 as the condenser lens is provided on the light incident side with respect to the PD 51, and the pupil division pixel is located at this position. By providing the light shielding part 52 for determining the optical aperture of the part 11, it is possible to realize a solid-state imaging device that achieves both high sensitivity and high pupil division performance.
 なお、裏面照射型の場合は、トップマイクロレンズ55の曲率を調整することで、入射光が最も細く収斂される位置を調整することができる。しかし、トップマイクロレンズ55の曲率の調整だけでは、入射光が最も細く収斂される位置の調整が難しい場合もある。 In the case of the back-illuminated type, by adjusting the curvature of the top micro lens 55, the position where the incident light is converged most finely can be adjusted. However, it may be difficult to adjust the position where the incident light is converged most narrowly only by adjusting the curvature of the top microlens 55.
 このような場合には、トップマイクロレンズ55と絶縁層53との間(例えば、カラーフィルタ54と絶縁層53の間)に、トップマイクロレンズ55とPD51との間の高さを調整するための高さ調整層を設けることが好ましい。 In such a case, the height between the top micro lens 55 and the PD 51 is adjusted between the top micro lens 55 and the insulating layer 53 (for example, between the color filter 54 and the insulating layer 53). It is preferable to provide a height adjusting layer.
 高さ調整層は、屈折率が低い材料で構成すると、エアリーディスクが広がってしまい、クロストークに弱くなる。このため、高さ調整層は、屈折率の高い材料(例えば、窒化珪素等)で構成することが好ましい。 If the height adjustment layer is made of a material having a low refractive index, the Airy disk spreads and becomes weak against crosstalk. For this reason, the height adjustment layer is preferably made of a material having a high refractive index (for example, silicon nitride).
 図16は、図1に示す固体撮像素子100が積層型である場合のA-A線断面模式図である。 FIG. 16 is a schematic cross-sectional view taken along the line AA when the solid-state imaging device 100 shown in FIG. 1 is a stacked type.
 図16に示すように、半導体基板61上方には、絶縁膜63を介して光電変換層66が積層されている。光電変換層66は、全ての画素部で共通の一枚構成となっている。 As shown in FIG. 16, a photoelectric conversion layer 66 is laminated above the semiconductor substrate 61 with an insulating film 63 interposed therebetween. The photoelectric conversion layer 66 has a single configuration common to all the pixel portions.
 光電変換層66の下には、画素部毎に分割された画素電極65が形成されている。各画素電極65下方の半導体基板61には画素部毎に読み出し回路62が形成されている。画素電極65とこれに対応する読み出し回路62とが導電性プラグ64によって電気的に接続されている。 A pixel electrode 65 divided for each pixel portion is formed under the photoelectric conversion layer 66. A readout circuit 62 is formed for each pixel portion on the semiconductor substrate 61 below each pixel electrode 65. The pixel electrode 65 and the readout circuit 62 corresponding to the pixel electrode 65 are electrically connected by a conductive plug 64.
 光電変換層66の上には、全ての画素部で共通の対向電極67が形成されている。画素電極65と、この上方の対向電極67と、画素電極65と対向電極67の間に設けられた光電変換層66とにより、光電変換素子が構成されている。 On the photoelectric conversion layer 66, a common counter electrode 67 common to all the pixel portions is formed. The pixel electrode 65, the upper counter electrode 67, and the photoelectric conversion layer 66 provided between the pixel electrode 65 and the counter electrode 67 constitute a photoelectric conversion element.
 なお、この光電変換素子は、光電変換層66と画素電極65及び対向電極67の少なくとも一方との間に、電荷ブロッキング層等の他の機能層が設けられた構成であってもよい。 The photoelectric conversion element may have a configuration in which another functional layer such as a charge blocking layer is provided between the photoelectric conversion layer 66 and at least one of the pixel electrode 65 and the counter electrode 67.
 対向電極67の上には絶縁層69を介して、画素部毎にカラーフィルタ70及びトップマイクロレンズ71がこの順に積層されている。 On the counter electrode 67, a color filter 70 and a top microlens 71 are laminated in this order for each pixel portion via an insulating layer 69.
 トップマイクロレン71によって入射光が最も細く収斂される位置は、このトップマイクロレンズ71に対応する光電変換素子よりも光入射側にある。 The position where the incident light is converged most finely by the top microlens 71 is closer to the light incident side than the photoelectric conversion element corresponding to the top microlens 71.
 瞳分割用画素部11の光電変換素子上方には、瞳分割用画素部11のトップマイクロレン71によって入射光が最も細く収斂される位置に遮光部68が設けられている。 A light shielding unit 68 is provided above the photoelectric conversion element of the pupil division pixel unit 11 at a position where incident light is converged most thinly by the top microlens 71 of the pupil division pixel unit 11.
 遮光部68は、瞳分割用画素部11の光電変換素子の受光面(平面視において画素電極65と重なる領域)の一部を遮光するものである。この遮光部68により、瞳分割用画素部11の光電変換素子の光学開口の中心が、瞳分割用画素部11のトップマイクロレンズ71の中心に対して水平方向左側に偏心した構成になっている。 The light shielding unit 68 shields a part of the light receiving surface of the photoelectric conversion element of the pupil division pixel unit 11 (a region overlapping the pixel electrode 65 in plan view). With this light shielding portion 68, the center of the optical aperture of the photoelectric conversion element of the pupil division pixel unit 11 is decentered to the left in the horizontal direction with respect to the center of the top microlens 71 of the pupil division pixel unit 11. .
 なお、瞳分割用画素部12の構成は、図16に示した瞳分割用画素部11を左右反転させたものであるため、ここでは説明を省略する。 Note that the configuration of the pupil division pixel unit 12 is obtained by horizontally inverting the pupil division pixel unit 11 shown in FIG.
 このように、積層型であっても、集光レンズとしてのトップマイクロレンズ71によって入射光が最も細く収斂される位置を光電変換素子よりも光入射側に設け、かつ、この位置に瞳分割用画素部11の光学開口を決めるための遮光部68を設けることで、感度と瞳分割性能とを両立させた固体撮像素子を実現することができる。 As described above, even in the laminated type, the position where the incident light is converged most finely by the top microlens 71 as a condenser lens is provided on the light incident side with respect to the photoelectric conversion element, and pupil division is performed at this position. By providing the light shielding unit 68 for determining the optical aperture of the pixel unit 11, it is possible to realize a solid-state imaging device that achieves both sensitivity and pupil division performance.
 なお、積層型の場合は、トップマイクロレンズ71の曲率を調整することで、入射光が最も細く収斂される位置を調整することができる。しかし、トップマイクロレンズ71の曲率の調整だけでは、入射光が最も細く収斂される位置の調整が難しい場合もある。 In the case of the stacked type, by adjusting the curvature of the top micro lens 71, the position where the incident light is converged most finely can be adjusted. However, it may be difficult to adjust the position where the incident light is converged most narrowly only by adjusting the curvature of the top microlens 71.
 このような場合には、トップマイクロレンズ71と絶縁層69との間(例えば、カラーフィルタ70と絶縁層69の間)に、トップマイクロレンズ71と光電変換素子との間の高さを調整するための高さ調整層を設けることが好ましい。 In such a case, the height between the top micro lens 71 and the photoelectric conversion element is adjusted between the top micro lens 71 and the insulating layer 69 (for example, between the color filter 70 and the insulating layer 69). It is preferable to provide a height adjusting layer for the purpose.
 高さ調整層は、屈折率が低い材料で構成すると、エアリーディスクが広がってしまい、クロストークに弱くなる。このため、高さ調整層は、屈折率の高い材料(例えば、窒化珪素等)で構成することが好ましい。 If the height adjustment layer is made of a material having a low refractive index, the Airy disk spreads and becomes weak against crosstalk. For this reason, the height adjustment layer is preferably made of a material having a high refractive index (for example, silicon nitride).
 本明細書には、次の事項が開示されている。 The following items are disclosed in this specification.
 開示された固体撮像素子は、瞳分割用画素部のペアを含む固体撮像素子であって、前記ペアを構成する2つの前記瞳分割用画素部は、それぞれ、光電変換素子と、前記光電変換素子上方に設けられ前記光電変換素子に光を集光する集光レンズとを含み、前記集光レンズにより光束が最も細く収斂される位置近傍に設けられ、前記瞳分割用画素部の前記光電変換素子の受光面の一部を遮光する遮光部を備え、前記遮光部は、前記ペアを構成する2つの前記瞳分割用画素部の各々に含まれる前記光電変換素子の光学開口の中心が、当該各々の瞳分割用画素部に含まれる前記集光レンズの中心に対し互いに逆方向に偏心するように設けられており、前記集光レンズにより光束が最も細く収斂される位置は、前記光電変換素子よりも光入射側にあるものである。 The disclosed solid-state imaging device is a solid-state imaging device including a pair of pupil-dividing pixel units, and the two pupil-dividing pixel units constituting the pair are a photoelectric conversion element and a photoelectric conversion element, respectively. And a condensing lens that condenses light on the photoelectric conversion element, and is provided in the vicinity of a position where the light beam is converged most thinly by the condensing lens, and the photoelectric conversion element of the pupil division pixel unit A light-shielding part that shields a part of the light-receiving surface, and the light-shielding part includes a center of an optical aperture of the photoelectric conversion element included in each of the two pupil-dividing pixel parts constituting the pair. Are arranged so as to be decentered in directions opposite to each other with respect to the center of the condenser lens included in the pupil division pixel portion, and the position at which the light flux is converged most narrowly by the condenser lens is from the photoelectric conversion element. Is also on the light incident side Than is.
 開示された固体撮像素子は、MOS型かつ表面照射型であり、前記集光レンズにより光束が最も細く収斂される位置は、前記集光レンズと前記半導体基板との間にある配線層内にあるものである。 The disclosed solid-state imaging device is of a MOS type and a surface irradiation type, and the position where the light beam is converged most narrowly by the condenser lens is in a wiring layer between the condenser lens and the semiconductor substrate. Is.
 開示された固体撮像素子は、前記遮光部は、前記配線層に含まれる配線の一部で形成されているものである。 In the disclosed solid-state imaging device, the light shielding portion is formed by a part of the wiring included in the wiring layer.
 開示された固体撮像素子は、CCD型かつ表面照射型であり、前記集光レンズにより光束が最も細く収斂される位置は、前記光電変換素子に蓄積された電荷を転送するための電荷転送電極よりも上に形成されているものである。 The disclosed solid-state imaging device is of a CCD type and a surface irradiation type, and the position where the light beam is converged most narrowly by the condenser lens is from a charge transfer electrode for transferring the charge accumulated in the photoelectric conversion device. Is also formed on the top.
 開示された固体撮像素子は、表面照射型であり、前記集光レンズと前記光電変換素子との間に設けられ、前記集光レンズで集光された光を前記光電変換素子に導く導波路を備え、前記集光レンズにより光束が最も細く収斂される位置は、前記導波路の入り口近傍にあるものである。 The disclosed solid-state imaging device is a surface irradiation type, and is provided between the condenser lens and the photoelectric conversion element, and includes a waveguide that guides the light collected by the condenser lens to the photoelectric conversion element. The position at which the light beam is converged most thinly by the condenser lens is in the vicinity of the entrance of the waveguide.
 開示された固体撮像素子は、前記集光レンズにより光束が最も細く収斂される位置は、前記集光レンズに入射する光の入射角が5°又は10°のときのものであるものを含む。 In the disclosed solid-state imaging device, the position where the light beam is converged most narrowly by the condensing lens includes that when the incident angle of light incident on the condensing lens is 5 ° or 10 °.
 開示された固体撮像素子は、前記集光レンズは、最も光入射側に設けられるトップマイクロレンズと、前記トップマイクロレンズと前記光電変換素子との間に設けられる層内レンズとを含むものである。 In the disclosed solid-state imaging device, the condenser lens includes a top microlens provided closest to the light incident side, and an in-layer lens provided between the top microlens and the photoelectric conversion device.
 開示された固体撮像素子は、裏面照射型であるものである。 The disclosed solid-state imaging device is a back-illuminated type.
 開示された固体撮像素子は、前記光電変換素子が内部に形成される半導体基板と前記集光レンズとの間に、当該間の高さを調整する調整層を備えるものである。 The disclosed solid-state imaging device includes an adjustment layer that adjusts the height between the semiconductor substrate on which the photoelectric conversion element is formed and the condenser lens.
 開示された固体撮像素子は、前記光電変換素子は、半導体基板上方に形成された一対の電極及び当該一対の電極の間に設けられる光電変換層を含むものである。 In the disclosed solid-state imaging device, the photoelectric conversion device includes a pair of electrodes formed above the semiconductor substrate and a photoelectric conversion layer provided between the pair of electrodes.
 開示された固体撮像素子は、前記集光レンズと前記光電変換素子との間に、当該間の高さを調整する調整層を備えるものである。 The disclosed solid-state imaging device includes an adjustment layer that adjusts the height between the condenser lens and the photoelectric conversion device.
 開示された撮像装置は、前記固体撮像素子を備えるものである。 The disclosed imaging device includes the solid-state imaging device.
 本発明によれば、小面積の固体撮像素子に適用した場合でも、被写体の状態によらずに、高速かつ高精度に位相差情報を取得し合焦位置を求めることができる固体撮像素子及びこれを備える撮像装置を提供することができる。 According to the present invention, even when applied to a solid-state image sensor with a small area, a solid-state image sensor capable of acquiring phase difference information and obtaining a focus position at high speed and with high accuracy regardless of the state of the subject, and this An imaging apparatus including the above can be provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年11月18日出願の日本出願(特願2010-258397)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on the Japanese application (Japanese Patent Application No. 2010-258397) filed on Nov. 18, 2010, the contents of which are incorporated herein by reference.
100 固体撮像素子
2 PD
7a,7b 遮光部
8 上凸層内レンズ
10 通常画素部
11,12 瞳分割用画素部
13 トップマイクロレンズ
100 Solid-state image sensor 2 PD
7a, 7b Light-shielding portion 8 Upper convex in-layer lens 10 Normal pixel portion 11, 12 Pupil division pixel portion 13 Top micro lens

Claims (12)

  1.  瞳分割用画素部のペアを含む固体撮像素子であって、
     前記ペアを構成する2つの前記瞳分割用画素部は、それぞれ、光電変換素子と、前記光電変換素子上方に設けられ前記光電変換素子に光を集光する集光レンズとを含み、
     前記集光レンズにより光束が最も細く収斂される位置近傍に設けられ、前記瞳分割用画素部の前記光電変換素子の受光面の一部を遮光する遮光部を備え、
     前記遮光部は、前記ペアを構成する2つの前記瞳分割用画素部の各々に含まれる前記光電変換素子の光学開口の中心が、当該各々の瞳分割用画素部に含まれる前記集光レンズの中心に対し互いに逆方向に偏心するように設けられており、
     前記集光レンズにより光束が最も細く収斂される位置は、前記光電変換素子よりも光入射側にある固体撮像素子。
    A solid-state image sensor including a pair of pupil division pixel units,
    Each of the two pupil division pixel portions constituting the pair includes a photoelectric conversion element and a condenser lens that is provided above the photoelectric conversion element and condenses light on the photoelectric conversion element,
    A light-shielding portion that is provided in the vicinity of a position where the light flux is converged most thinly by the condenser lens and shields a part of the light-receiving surface of the photoelectric conversion element of the pupil-dividing pixel portion;
    The light-shielding portion includes a center of an optical aperture of the photoelectric conversion element included in each of the two pupil-dividing pixel portions constituting the pair, and It is provided to be decentered in opposite directions with respect to the center,
    The position at which the light beam is most finely converged by the condensing lens is a solid-state imaging device that is closer to the light incident side than the photoelectric conversion device.
  2.  請求項1記載の固体撮像素子であって、
     MOS型かつ表面照射型であり、
     前記集光レンズにより光束が最も細く収斂される位置は、前記集光レンズと前記半導体基板との間にある配線層内にある固体撮像素子。
    The solid-state imaging device according to claim 1,
    MOS type and surface irradiation type,
    The position where the light beam is most finely converged by the condensing lens is a solid-state imaging device in a wiring layer between the condensing lens and the semiconductor substrate.
  3.  請求項2記載の固体撮像素子であって、
     前記遮光部は、前記配線層に含まれる配線の一部で形成されている固体撮像素子。
    The solid-state imaging device according to claim 2,
    The light-shielding portion is a solid-state image sensor formed by a part of wiring included in the wiring layer.
  4.  請求項1記載の固体撮像素子であって、
     CCD型かつ表面照射型であり、
     前記集光レンズにより光束が最も細く収斂される位置は、前記光電変換素子に蓄積された電荷を転送するための電荷転送電極よりも上に形成されている固体撮像素子。
    The solid-state imaging device according to claim 1,
    CCD type and surface irradiation type,
    The position where the light beam is most finely converged by the condensing lens is a solid-state imaging device formed above the charge transfer electrode for transferring the charge accumulated in the photoelectric conversion device.
  5.  請求項1記載の固体撮像素子であって、
     表面照射型であり、
     前記集光レンズと前記光電変換素子との間に設けられ、前記集光レンズで集光された光を前記光電変換素子に導く導波路を備え、
     前記集光レンズにより光束が最も細く収斂される位置は、前記導波路の入り口近傍にある固体撮像素子。
    The solid-state imaging device according to claim 1,
    Surface irradiation type,
    Provided between the condenser lens and the photoelectric conversion element, comprising a waveguide for guiding the light condensed by the condenser lens to the photoelectric conversion element,
    The position where the light beam is most finely converged by the condenser lens is a solid-state imaging device in the vicinity of the entrance of the waveguide.
  6.  請求項2~5のいずれか1項記載の固体撮像素子であって、
     前記集光レンズにより光束が最も細く収斂される位置は、前記集光レンズに入射する光の入射角が5°又は10°のときのものである固体撮像素子。
    The solid-state imaging device according to any one of claims 2 to 5,
    The position at which the light beam is most finely converged by the condensing lens is a solid-state imaging device in which an incident angle of light incident on the condensing lens is 5 ° or 10 °.
  7.  請求項2~6のいずれか1項記載の固体撮像素子であって、
     前記集光レンズは、最も光入射側に設けられるトップマイクロレンズと、前記トップマイクロレンズと前記光電変換素子との間に設けられる層内レンズとを含む固体撮像素子。
    The solid-state imaging device according to any one of claims 2 to 6,
    The condensing lens is a solid-state imaging device including a top microlens provided closest to the light incident side, and an in-layer lens provided between the top microlens and the photoelectric conversion element.
  8.  請求項1記載の固体撮像素子であって、
     裏面照射型である固体撮像素子。
    The solid-state imaging device according to claim 1,
    A solid-state imaging device that is a backside illumination type.
  9.  請求項8記載の固体撮像素子であって、
     前記光電変換素子が内部に形成される半導体基板と前記集光レンズとの間に、当該間の高さを調整する調整層を備える固体撮像素子。
    The solid-state imaging device according to claim 8,
    A solid-state imaging device comprising an adjustment layer for adjusting a height between a semiconductor substrate on which the photoelectric conversion element is formed and the condenser lens.
  10.  請求項1記載の固体撮像素子であって、
     前記光電変換素子は、半導体基板上方に形成された一対の電極及び当該一対の電極の間に設けられる光電変換層を含む固体撮像素子。
    The solid-state imaging device according to claim 1,
    The photoelectric conversion element is a solid-state imaging element including a pair of electrodes formed above a semiconductor substrate and a photoelectric conversion layer provided between the pair of electrodes.
  11.  請求項10記載の固体撮像素子であって、
     前記集光レンズと前記光電変換素子との間に、当該間の高さを調整する調整層を備える固体撮像素子。
    The solid-state imaging device according to claim 10,
    A solid-state imaging device comprising an adjustment layer for adjusting a height between the condenser lens and the photoelectric conversion element.
  12.  請求項1~11のいずれか1項記載の固体撮像素子を備える撮像装置。 An image pickup apparatus comprising the solid-state image pickup device according to any one of claims 1 to 11.
PCT/JP2011/071008 2010-11-18 2011-09-14 Solid-state image sensor and imaging device WO2012066846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-258397 2010-11-18
JP2010258397A JP2014029351A (en) 2010-11-18 2010-11-18 Solid state imaging element and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2012066846A1 true WO2012066846A1 (en) 2012-05-24

Family

ID=46083789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071008 WO2012066846A1 (en) 2010-11-18 2011-09-14 Solid-state image sensor and imaging device

Country Status (2)

Country Link
JP (1) JP2014029351A (en)
WO (1) WO2012066846A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056085A (en) * 2012-09-12 2014-03-27 Canon Inc Image sensor and ranging device using the same
WO2014208047A1 (en) * 2013-06-24 2014-12-31 パナソニックIpマネジメント株式会社 Solid state image-capture device and production method therefor
WO2016002575A1 (en) * 2014-07-03 2016-01-07 ソニー株式会社 Solid-state imaging device and electronic device
EP3441919A1 (en) 2017-08-11 2019-02-13 Schneider Electric Industries SAS Method for exchanging data between engineering tools of an engineering system and engineering system for carrying out the method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363857B2 (en) * 2014-03-24 2018-07-25 キヤノン株式会社 IMAGING ELEMENT, IMAGING DEVICE, IMAGE PROCESSING METHOD, AND PROGRAM
TWI692090B (en) * 2014-11-05 2020-04-21 日商索尼半導體解決方案公司 Solid-state imaging element and its manufacturing method
JP6393293B2 (en) * 2016-06-15 2018-09-19 キヤノン株式会社 Imaging device and imaging apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071972A (en) * 2006-09-14 2008-03-27 Canon Inc Imaging element and imaging system
JP2008312073A (en) * 2007-06-16 2008-12-25 Nikon Corp Solid-state imaging element, and imaging apparatus using the same
JP2010181485A (en) * 2009-02-03 2010-08-19 Nikon Corp Image-pickup device and imaging element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071972A (en) * 2006-09-14 2008-03-27 Canon Inc Imaging element and imaging system
JP2008312073A (en) * 2007-06-16 2008-12-25 Nikon Corp Solid-state imaging element, and imaging apparatus using the same
JP2010181485A (en) * 2009-02-03 2010-08-19 Nikon Corp Image-pickup device and imaging element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056085A (en) * 2012-09-12 2014-03-27 Canon Inc Image sensor and ranging device using the same
WO2014208047A1 (en) * 2013-06-24 2014-12-31 パナソニックIpマネジメント株式会社 Solid state image-capture device and production method therefor
JPWO2014208047A1 (en) * 2013-06-24 2017-02-23 パナソニックIpマネジメント株式会社 Solid-state imaging device and manufacturing method thereof
WO2016002575A1 (en) * 2014-07-03 2016-01-07 ソニー株式会社 Solid-state imaging device and electronic device
US9571721B2 (en) 2014-07-03 2017-02-14 Sony Corporation Solid-state imaging device and electronic apparatus
EP3441919A1 (en) 2017-08-11 2019-02-13 Schneider Electric Industries SAS Method for exchanging data between engineering tools of an engineering system and engineering system for carrying out the method
US10691364B2 (en) 2017-08-11 2020-06-23 Schneider Electric Industries Sas Method for exchanging data between engineering tools of an engineering system, and engineering system for carrying out the method

Also Published As

Publication number Publication date
JP2014029351A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
KR102562402B1 (en) Backside illumination image sensor, manufacturing method thereof and image-capturing device
US9686462B2 (en) Solid-state imaging device and electronic apparatus
KR102523203B1 (en) Solid state image sensor, method of manufacturing the same, and electronic device
JP6791243B2 (en) Image sensor and image sensor
JP5421207B2 (en) Solid-state imaging device
WO2012066846A1 (en) Solid-state image sensor and imaging device
KR102537009B1 (en) Solid-state image-capture element, image-capture element, and method for manufacturing solid-state image-capture element
JP2013157442A (en) Image pickup element and focal point detection device
WO2018061978A1 (en) Imaging element and focus adjustment device
JP2023159224A (en) Imaging element and imaging apparatus
JP2023067935A (en) Imaging device
WO2018181585A1 (en) Imaging element and imaging device
KR100848945B1 (en) Microlens Array Compensating Chief Ray and Image Sensor Assembly Having the Same
WO2018181590A1 (en) Image pickup element and image pickup device
WO2018061941A1 (en) Imaging element and imaging device
WO2018061729A1 (en) Imaging device and focus adjustment device
WO2018061940A1 (en) Imaging element and focus adjustment device
WO2018061728A1 (en) Imaging element and focus adjustment device
CN114127941A (en) Solid-state image sensor
US20200267306A1 (en) Image sensor and imaging device
JP7383876B2 (en) Imaging element and imaging device
JP2015159231A (en) Solid-state image pickup device
JP2012226115A (en) Imager, imaging apparatus and camera system with the same
JP2018182045A (en) Imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP