JP6338134B2 - Silicon carbide vertical MOSFET and manufacturing method thereof - Google Patents

Silicon carbide vertical MOSFET and manufacturing method thereof Download PDF

Info

Publication number
JP6338134B2
JP6338134B2 JP2012081429A JP2012081429A JP6338134B2 JP 6338134 B2 JP6338134 B2 JP 6338134B2 JP 2012081429 A JP2012081429 A JP 2012081429A JP 2012081429 A JP2012081429 A JP 2012081429A JP 6338134 B2 JP6338134 B2 JP 6338134B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
conductivity type
concentration
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012081429A
Other languages
Japanese (ja)
Other versions
JP2013211447A (en
Inventor
憲幸 岩室
憲幸 岩室
原田 信介
信介 原田
保幸 星
保幸 星
原田 祐一
祐一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fuji Electric Co Ltd
Priority to JP2012081429A priority Critical patent/JP6338134B2/en
Publication of JP2013211447A publication Critical patent/JP2013211447A/en
Application granted granted Critical
Publication of JP6338134B2 publication Critical patent/JP6338134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、縦型MOSFET及びその製造方法に関し、特に、素子耐圧向上とオン抵抗低減の両立を実現する縦型MOSFETの構造及びその製造方法に関する。   The present invention relates to a vertical MOSFET and a manufacturing method thereof, and more particularly, to a structure of a vertical MOSFET that realizes both improvement of device breakdown voltage and reduction of on-resistance and a manufacturing method thereof.

炭化珪素(以後、「SiC」ともいう。)によるスイッチングデバイスであるNチャネルのMOSFETは、一例として、つぎのような手順で製造される。なお、この例では、第1の導電型をn型、第2の導電型をp型とし、高濃度を+(プラス)、これに比べて低濃度を無印で示している。
(1)高濃度のn+型SiC基板の表面に、低濃度のn型SiC層(n-耐圧領域 ドリフト層)がエピタキシャル成長により形成され、そのn型SiC層の表面に、さらに複数のp+型領域が選択的に形成される。
(2)各p+型領域の表面には、n+型ソース領域とp型コンタクト領域が複数形成され、n+型ソース領域とp型コンタクト領域との表面にソース電極が形成される。
(3)n+型ソース領域の間のp型コンタクト領域と、n型SiC層表面にゲート絶縁膜を介してゲート電極が形成され、また、n+型SiC基板の裏面側にはドレイン電極が形成される。
An N-channel MOSFET which is a switching device made of silicon carbide (hereinafter also referred to as “SiC”) is manufactured by the following procedure as an example. In this example, the first conductivity type is n-type, the second conductivity type is p-type, the high concentration is + (plus), and the low concentration is not marked.
(1) A low-concentration n-type SiC layer (n breakdown voltage region drift layer) is formed by epitaxial growth on the surface of a high-concentration n + -type SiC substrate, and a plurality of p + is further formed on the surface of the n-type SiC layer. A mold region is selectively formed.
(2) A plurality of n + type source regions and p type contact regions are formed on the surface of each p + type region, and a source electrode is formed on the surface of the n + type source region and the p type contact region.
(3) A gate electrode is formed on the p-type contact region between the n + -type source region and the n-type SiC layer via a gate insulating film, and a drain electrode is formed on the back side of the n + -type SiC substrate. It is formed.

こうしたNチャネルのSiC―MOSFETは、高耐圧であることが知られているが、下記特許文献1には、こうしたNチャネルのSiC―MOSFETのオン抵抗を低減するための製造方法が提案されている。
第1図は、この先行技術における炭化ケイ素縦型MOSFETの単位セルを説明するための模式断面図である。
Such an N-channel SiC-MOSFET is known to have a high breakdown voltage, but the following Patent Document 1 proposes a manufacturing method for reducing the on-resistance of such an N-channel SiC-MOSFET. .
FIG. 1 is a schematic cross-sectional view for explaining a unit cell of a silicon carbide vertical MOSFET in this prior art.

第1図において、窒素がドーピングされた(0001)面を有する高濃度n+型基板a表面上には、たとえば、窒素がドーピングされた、基板aより低濃度のn型ドリフト層bが堆積されている。この低濃度n型ドリフト層bの表面上には、アルミニウムがドーピングされた高濃度p+型層cが堆積され、その上面には、アルミニウムがドーピングされた、p+型層cより低濃度のp型層dが堆積されている。 In FIG. 1, for example, an n-type drift layer b doped with nitrogen and having a lower concentration than the substrate a is deposited on the surface of the high-concentration n + -type substrate a having a (0001) plane doped with nitrogen. ing. A high-concentration p + -type layer c doped with aluminum is deposited on the surface of the low-concentration n-type drift layer b, and a lower concentration than the p + -type layer c doped with aluminum is deposited on the upper surface thereof. A p-type layer d is deposited.

このp型層dの表面部分には、たとえば、選択的にリンがドーピングされた高濃度n+型ソース領域eが形成されており、高濃度p+型層cには、選択的に形成された切欠き部からなる第1の領域が設けられ、また、低濃度p型層dには、切欠き部より幅の広い切欠き部からなる第2の領域が形成されている。 For example, a high-concentration n + type source region e selectively doped with phosphorus is formed on the surface portion of the p-type layer d, and is selectively formed in the high-concentration p + type layer c. A first region consisting of a notch is provided, and a second region consisting of a notch wider than the notch is formed in the low-concentration p-type layer d.

第1及び第2の領域には、窒素がドーピングされた、低濃度n型ベース領域fがn型ドリフト層bに直接接して設けられており、低濃度p型層dにおける幅の広い第2の領域は、チャネル抵抗成分が小さくなり、炭化ケイ素半導体装置のオン抵抗を低減することができる。
n型ベース領域fと高濃度n+型ソース領域eの中間部分には、高濃度p+型層cの表面層に低濃度ベース領域gが形成され、その上面及びn型ベース領域fの表面上には、ゲート絶縁膜hを介してゲート電極iが設けられており、ゲート電極i上には、層間絶縁膜jを介して、高濃度n+型ソース領域eと低濃度p型層dとのそれぞれの表面に低抵抗接続されたソース電極kが形成されている。
なお、pはドレイン電極である。
In the first and second regions, a low-concentration n-type base region f doped with nitrogen is provided in direct contact with the n-type drift layer b, and the second wide layer in the low-concentration p-type layer d is provided. In this region, the channel resistance component is reduced, and the on-resistance of the silicon carbide semiconductor device can be reduced.
A low-concentration base region g is formed on the surface layer of the high-concentration p + -type layer c at the intermediate portion between the n-type base region f and the high-concentration n + -type source region e, and its upper surface and the surface of the n-type base region f A gate electrode i is provided on the gate electrode i via a gate insulating film h. A high concentration n + type source region e and a low concentration p type layer d are provided on the gate electrode i via an interlayer insulating film j. A source electrode k connected to each other at low resistance is formed.
Note that p is a drain electrode.

このように、低濃度n型ドリフト層bの一部の部分mが表面に露出しており、高濃度p+型層cが、この低濃度n型ドリフト層bに直接接して設けられており、低濃度n型ドリフト層bの表面すべてが高濃度p+型層cで覆われることなく、高濃度p+型層cが、n型不純物イオンを注入して低濃度n型ベース領域fを形成する領域を除いて、すべて低濃度のp型層dで構成されているので、n型不純物イオン注入を行った後、n型ベース領域fのn型ドリフト層bと接する部分mを高濃度にでき、オン抵抗を低減することが可能となる。 Thus, a part m of the low-concentration n-type drift layer b is exposed on the surface, and the high-concentration p + -type layer c is provided in direct contact with the low-concentration n-type drift layer b. without any surface of the low concentration n-type drift layer b is covered with the high-concentration p + -type layer c, the high-concentration p + -type layer c is, by implanting n-type impurity ions of low concentration n-type base region f Except for the region to be formed, all are composed of a low-concentration p-type layer d. Therefore, after n-type impurity ion implantation, a portion m in contact with the n-type drift layer b of the n-type base region f is highly concentrated. Thus, the on-resistance can be reduced.

特開2001−23757号公報JP 2001-23757 A 特開2009−59949号公報JP 2009-59949 A 特開2007−115791号公報JP 2007-115791 A

上記の先行技術により、n型ベース領域fのn型ドリフト層bと接する部分mを高濃度にでき、オン抵抗を低減することが可能となるが、一般に、高濃度n+型基板aより低濃度のn型SiC層(n型耐圧領域)であるドリフト層bは、ソース・ドレイン電極間に電流が流れる際、ドリフト層bでの電位降下が大きく、その結果電流導通時の抵抗が大きくなってしまう。
これを防止するため、ドリフト層bの不純物濃度を上げると、低濃度p型層mと低濃度n型ドリフト層bとの接合部分から広がる空乏層が不十分となり、局所的なブレークダウンが発生し、耐圧が低下する。
According to the above-described prior art, the portion m in contact with the n-type drift layer b of the n-type base region f can be made high in concentration and the on-resistance can be reduced, but generally lower than that in the high-concentration n + -type substrate a. The drift layer b, which is an n-type SiC layer (n-type withstand voltage region), has a large potential drop in the drift layer b when a current flows between the source and drain electrodes. As a result, the resistance during current conduction increases. End up.
In order to prevent this, if the impurity concentration of the drift layer b is increased, the depletion layer extending from the junction between the low-concentration p-type layer m and the low-concentration n-type drift layer b becomes insufficient, and local breakdown occurs. However, the withstand voltage decreases.

このように、SiC−MOSFETにおいては、ドリフト層b自体が、さらなる素子耐圧向上とオン抵抗低減の両立を阻む要因となっており、素子耐圧を確保した上で、さらなるオン抵抗の低減を実現するため、ドリフト層bの改善が求められている。   As described above, in the SiC-MOSFET, the drift layer b itself is a factor that hinders both further improvement of the device breakdown voltage and reduction of the on-resistance, and further reduces the on-resistance after securing the device breakdown voltage. Therefore, improvement of the drift layer b is demanded.

素子耐圧の向上とオン抵抗の低減を両立させるため、上記特許文献2には、LDMOSトランジスタ(ラテラル二重拡散MOSトランジスタ)のn型拡散領域にp型拡散領域を形成し、ドレイン側のゲートエッジ周辺の領域の電界集中を緩和することが記載されている。また上記特許文献3には、横側MOSFETのn型ドレインドリフト層に、p型埋め込み領域を形成し、高耐圧化、低オン抵抗化を図ることが記載されている。
しかし、これらはいずれも、LDMOSトランジスタ、横側MOSFETを前提としたもので、そのままでは、炭化ケイ素縦型MOSFETに適用できず、素子耐圧を確保した上で、さらなるオン抵抗の低減を実現することはできない。
In order to achieve both improvement in device breakdown voltage and reduction in on-resistance, Patent Document 2 discloses that a p-type diffusion region is formed in an n-type diffusion region of an LDMOS transistor (lateral double diffusion MOS transistor) and a gate edge on the drain side is formed. It describes that the electric field concentration in the surrounding area is alleviated. Patent Document 3 describes that a p-type buried region is formed in the n-type drain drift layer of the lateral MOSFET to increase the breakdown voltage and reduce the on-resistance.
However, both of these are premised on LDMOS transistors and lateral MOSFETs, and cannot be applied to silicon carbide vertical MOSFETs as they are, and further reduce the on-resistance while ensuring the device breakdown voltage. I can't.

すなわち、縦型素子の場合電流が縦方向に流れるため、p型埋め込み領域と垂直方向に流れる電流を妨げないように、高精度な前記p型領域同志の合わせ精度が必要となる。
これに対し横型素子は、p型埋め込み領域と平行に電流が流れるため高度な合わせ精度は全く必要ない。また横型素子の場合、素子内を流れる電流は表面に集中して流れるため、p型埋め込み層を適用してことで達成されるn型層の高濃度化、低オン抵抗の効果が、電流が流れる表面層のみに限られるが、縦型素子の場合は電流が素子全体に均一に流れる構造であるため、p型埋め込み層の適用によるn層の高濃度層の効果が素子全体に影響するため、低オン抵抗化の効果が横型素子に比べ格段に大きくなる。
That is, in the case of a vertical element, since the current flows in the vertical direction, a highly accurate alignment accuracy between the p-type regions is required so as not to disturb the current flowing in the direction perpendicular to the p-type buried region.
On the other hand, since a current flows in parallel with the p-type buried region, the lateral element does not require any high alignment accuracy. In the case of a lateral element, the current flowing in the element concentrates on the surface, so that the effect of increasing the concentration of the n-type layer and reducing the on-resistance achieved by applying the p-type buried layer Although it is limited to the flowing surface layer, in the case of a vertical element, since the current flows uniformly throughout the element, the effect of the high concentration layer of n layers due to the application of the p-type buried layer affects the entire element. As a result, the effect of reducing the on-resistance is remarkably greater than that of the lateral element.

そこで、本発明の目的は、炭化ケイ素縦型MOSFETのドリフト層に、高濃度n+型ソース領域と同一の位置に、高濃度p+型層を中間層として形成することにより、ドリフト層の不純物濃度を上げても、n型耐圧領域であるドリフト層と高濃度p+型層との接合面に空乏層を発生させ、その両端に印加される電圧がドレイン電極の電圧を増加させても変化しないことを利用して、素子耐圧向上とオン抵抗低減の両立を実現することにある。 Accordingly, an object of the present invention is to form an impurity in the drift layer by forming a high-concentration p + -type layer as an intermediate layer in the drift layer of the silicon carbide vertical MOSFET at the same position as the high-concentration n + -type source region. Even if the concentration is increased, a depletion layer is generated at the junction surface between the drift layer which is the n-type breakdown voltage region and the high concentration p + -type layer, and the voltage applied to both ends of the depletion layer changes even when the drain electrode voltage is increased. This is to realize both improvement in device breakdown voltage and reduction in on-resistance.

以上の目的を達成するため、本発明の縦型MOSFETにおいては、次のような技術的手段を講じた。すなわち、本発明の縦型MOSFETは、
(1)炭化珪素からなり、第1導電型の半導体基板(1)と、前記半導体基板(1)上に形成された、第1導電型で前記半導体基板(1)よりも低濃度の第1の半導体層(2)と、前記第1の半導体層(2)上に選択的に形成された、高濃度の第2導電型である第2の半導体層(3)と、前記第1の半導体層(2)及び前記第2の半導体層(3)上に、第1導電型で前記第1の半導体層(2)と同一の濃度で形成された第3の半導体層(21)と、前記第3の半導体層(21)の表面に、前記第2の半導体層(3)と同一の位置上に選択的に形成された、前記第2の半導体層(3)と同一膜厚の高濃度の第2導電型である第4の半導体層(31)と、前記第4の半導体層(31)の表面に形成された第2導電型で低濃度のベース層(4)と、当該ベース層(4)の表面層に選択的に形成された第2導電型のコンタクト領域(12)及び第1導電型のソース領域(5)と、
表面から前記ベース層(4)を貫通して、前記第3の半導体層(21)に達するように形成された第1導電型のウェル領域(6)と、前記ソース領域(5)と前記ウェル領域(6)とに挟まれた、前記ベース層(4)の表面露出部上の少なくとも一部にゲート絶縁膜(8)を介して設けられたゲート電極層(9)と、前記ソース領域(5)と前記コンタクト領域(12)の表面に共通に接触するソース電極(10)と、前記半導体基板(1)の裏面に設けられたドレイン電極(11)と構成される。
In order to achieve the above object, the following technical means were taken in the vertical MOSFET of the present invention. That is, the vertical MOSFET of the present invention is
(1) A first conductive type semiconductor substrate (1) made of silicon carbide and formed on the semiconductor substrate (1) and having a first conductivity type and a lower concentration than the semiconductor substrate (1). A semiconductor layer (2), a second semiconductor layer (3) having a high concentration of the second conductivity type selectively formed on the first semiconductor layer (2), and the first semiconductor A third semiconductor layer (21) formed on the layer (2) and the second semiconductor layer (3) with the same conductivity type as the first semiconductor layer (2); A high concentration of the same film thickness as the second semiconductor layer (3) selectively formed on the surface of the third semiconductor layer (21) at the same position as the second semiconductor layer (3). A fourth semiconductor layer (31) of the second conductivity type, a second conductivity type low-concentration base layer (4) formed on the surface of the fourth semiconductor layer (31), The base layer selectively formed second conductivity type contact regions (12) and the first conductive type source region in the surface layer (4) (5),
A well region (6) of the first conductivity type formed so as to penetrate the base layer (4) from the surface and reach the third semiconductor layer (21), the source region (5), and the well A gate electrode layer (9) provided on at least a part of the exposed surface of the base layer (4) between the region (6) via a gate insulating film (8), and the source region ( 5) and a source electrode (10) in common contact with the surface of the contact region (12), and a drain electrode (11) provided on the back surface of the semiconductor substrate (1).

(2)上記の縦型MOSFETにおいて、前記第2の半導体層(3)及び前記第3の半導体層(21)を交互に複数形成した。 (2) In the vertical MOSFET, a plurality of the second semiconductor layers (3) and the third semiconductor layers (21) are alternately formed.

また、上記の縦型MOSFETを効率よく製造するため、本発明の縦型MOSFETの製造方法は、次のような工程から構成した。すなわち、本発明の縦型MOSFETの製造方法は、
(3)炭化珪素からなり、第1導電型の半導体基板(1)上に、第1導電型で前記半導体基板(1)よりも低濃度の第1の半導体層(2)をエピタキシャル成長により形成する第1の工程と、前記第1の半導体層(2)上に、高濃度の第2導電型である第2の半導体層(3)を、マスクを用いたイオン注入により選択的に形成する第2の工程と、前記第1の半導体層(2)及び前記第2の半導体層(3)上に、前記第1の半導体層(2)と同一の濃度の第3の半導体層(21)をエピタキシャル成長により形成する第3の工程と、前記第3の半導体層(21)上に、前記第2の工程で形成した前記第2の半導体層(3)と同一の場所において、高濃度の第2導電型である、前記第2の半導体層(3)と同一膜厚の第4の半導体層(31)を、マスクを用いたイオン注入により選択的に形成する第4の工程と、前記第4の半導体層(31)の表面上に、第2導電型で低濃度のベース層(4)をエピタキシャル成長により形成する第5の工程と、前記ベース層(4)上に、前記第4の半導体層表面に直接達するよう、マスクを用いたイオン注入により第1導電型のウェル領域(6)を選択的に形成する第6の工程と、前記ベース層(4)上に、イオン注入により、第2導電型のコンタクト領域(12)と、その内側に第1導電型のソース領域(5)を形成するとともに、前記ソース領域(5)と前記ウェル領域(6)とに挟まれた前記ベース層(4)の表面露出部の一部に、ゲート絶縁膜(8)を介して設けられたゲート電極層(9)を形成する第7の工程と、前記ソース領域(5)と前記コンタクト領域(12)に共通して接触するようソース電極(10)を形成するとともに、前記半導体基板(1)の裏面にドレイン電極(11)を形成する第8の工程とから構成する。
In addition, in order to efficiently manufacture the vertical MOSFET, the vertical MOSFET manufacturing method of the present invention includes the following steps. That is, the manufacturing method of the vertical MOSFET of the present invention is as follows.
(3) A first semiconductor layer (2) of the first conductivity type and having a lower concentration than the semiconductor substrate (1) is formed on the first conductivity type semiconductor substrate (1) by epitaxial growth. A first step of selectively forming a second semiconductor layer (3) having a high concentration of the second conductivity type on the first semiconductor layer (2) by ion implantation using a mask; And a third semiconductor layer (21) having the same concentration as that of the first semiconductor layer (2) on the first semiconductor layer (2) and the second semiconductor layer (3). A third step formed by epitaxial growth and a second high-concentration second layer on the third semiconductor layer (21) at the same location as the second semiconductor layer (3) formed in the second step. A fourth semiconductor layer (31) having the same film thickness as the second semiconductor layer (3), which is of a conductive type, A fourth step of selective formation by ion implantation using a mask, and a low-concentration base layer (4) of the second conductivity type is formed by epitaxial growth on the surface of the fourth semiconductor layer (31). In the fifth step, the first conductivity type well region (6) is selectively formed on the base layer (4) by ion implantation using a mask so as to directly reach the surface of the fourth semiconductor layer. In the sixth step, a second conductivity type contact region (12) and a first conductivity type source region (5) are formed on the inside of the base layer (4) by ion implantation. A gate electrode layer (9) provided on a part of the exposed surface of the base layer (4) sandwiched between the source region (5) and the well region (6) via a gate insulating film (8) A seventh step of forming a source region and the source region (5) To form a source electrode (10) so as to contact common to serial contact region (12), constructed from the eighth step of forming a drain electrode (11) on the back surface of the semiconductor substrate (1).

(4)上記の縦型MOSFETの製造方法において、前記第3の工程の後に、再び前記第2の工程を行い、前記第3の工程を行う工程を、少なくとも1回繰り返すようにした。 (4) In the above vertical MOSFET manufacturing method, the second step is performed again after the third step, and the step of performing the third step is repeated at least once.

本発明によれば、ソース電極とドレイン電極との間に高電圧が印加された場合、第2の半導体層ならびに第4の半導体層が起点となって、横方向にも空乏層を広げることができる。
これにより、半導体層2の濃度を従来MOSFETよりも高く設定しても、空乏層が伸びやすいため、高耐圧が実現できるので、高耐圧特性と半導体層2の濃度を高くしたことによる低オン抵抗特性が両立できること可能となる。
According to the present invention, when a high voltage is applied between the source electrode and the drain electrode, the depletion layer can be expanded in the lateral direction starting from the second semiconductor layer and the fourth semiconductor layer. it can.
As a result, even if the concentration of the semiconductor layer 2 is set higher than that of the conventional MOSFET, the depletion layer is easily extended, and thus a high breakdown voltage can be realized. Therefore, a high breakdown voltage characteristic and a low on-resistance due to the increased concentration of the semiconductor layer 2 It is possible to achieve both characteristics.

従来の縦型MOSFETの構造を示す図Diagram showing the structure of a conventional vertical MOSFET 実施例における第1の工程により形成される構造を示す図The figure which shows the structure formed by the 1st process in an Example. 実施例における第2の工程により形成される構造を示す図The figure which shows the structure formed by the 2nd process in an Example. 実施例における第3の工程により形成される構造を示す図The figure which shows the structure formed by the 3rd process in an Example. 実施例における第4の工程により形成される構造を示す図The figure which shows the structure formed by the 4th process in an Example. 実施例における第5の工程により形成される構造を示す図The figure which shows the structure formed by the 5th process in an Example. 実施例における第6の工程により形成される構造を示す図The figure which shows the structure formed by the 6th process in an Example. 実施例における第7の工程により形成される構造を示す図The figure which shows the structure formed by the 7th process in an Example. 実施例における第8の工程終了後に作製された本発明の縦型MOSFETの構造を示す図The figure which shows the structure of the vertical MOSFET of this invention produced after completion | finish of the 8th process in an Example.

以下、図面を参照しつつ本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施例による、スイッチングデバイスであるSiC−NチャネルのMOSFETの製造の手順は、次のとおりである。
この実施例では、第1の導電型をN型、第2の導電型をP型とし、高濃度を+(プラス)、低濃度を−(マイナス)で示しているが、第1の導電型をP型、第2の導電型をN型としてもよい。
The procedure for manufacturing a SiC-N channel MOSFET as a switching device according to the present embodiment is as follows.
In this embodiment, the first conductivity type is N-type, the second conductivity type is P-type, high concentration is indicated by + (plus), and low concentration is indicated by-(minus). May be P-type and the second conductivity type may be N-type.

(第1の工程)
図2に示すように、第1の導電型で、窒素がドーピングされた(000-1)面を有する高濃度の半導体基板1(N+型SiC基板)の表面に、第1の導電型で半導体基板1よりも低濃度な第1半導体層2(N-型SiC層)をエピタキシャル成長により形成する。本実施例では不純物濃度6×1016cm-3、厚さ4.5μmとした。
(First step)
As shown in FIG. 2, on the surface of a high-concentration semiconductor substrate 1 (N + -type SiC substrate) having a first conductivity type and having a (000-1) plane doped with nitrogen, the first conductivity type is formed. A first semiconductor layer 2 (N type SiC layer) having a lower concentration than that of the semiconductor substrate 1 is formed by epitaxial growth. In this embodiment, the impurity concentration is 6 × 10 16 cm −3 and the thickness is 4.5 μm.

(第2の工程)
図3に示すように、第1の半導体層2(N-型SiC層)の表面上に減圧CVD法により堆積された厚さ1.5μmのSiO2膜をフォトリソグラフィによりパターン加工して形成し、これをマスクとして、アルミニウムあるいはボロンをイオン注入して、高濃度の第1導電型である第2の半導体層3(P+型領域)を選択的に形成する。このとき、半導体基板1は500℃程度に加熱してイオン注入をする。その結果、0.5μm厚の第2の半導体層3が形成される。
(Second step)
As shown in FIG. 3, a 1.5 μm thick SiO 2 film deposited by low pressure CVD is formed on the surface of the first semiconductor layer 2 (N -type SiC layer) by patterning by photolithography. Then, using this as a mask, ions of aluminum or boron are ion-implanted to selectively form the second semiconductor layer 3 (P + -type region) having a high concentration of the first conductivity type. At this time, the semiconductor substrate 1 is heated to about 500 ° C. to perform ion implantation. As a result, the second semiconductor layer 3 having a thickness of 0.5 μm is formed.

(第3の工程)
図4に示すように、マスクとしたSiO2膜を除去した後、第2の半導体層3(P+型領域)が形成された第1の半導体層2(N-型SiC層)の表面上に、第1の半導体層2とほぼ同一の濃度で形成された第3の半導体層21をエピタキシャル成長により形成する。厚さは半導体層2と同じ4.5μmとした。
(Third step)
As shown in FIG. 4, after removing the SiO 2 film used as a mask, on the surface of the first semiconductor layer 2 (N type SiC layer) on which the second semiconductor layer 3 (P + type region) is formed. In addition, a third semiconductor layer 21 formed at substantially the same concentration as the first semiconductor layer 2 is formed by epitaxial growth. The thickness was 4.5 μm, which is the same as that of the semiconductor layer 2.

(第4の工程)
図5に示すように、第3の半導体層21の表面に、第2の工程と同一の位置に、SiO2膜をパターン加工したマスクを形成した後、第2の工程と同様の手順で、アルミニウムあるいはボロンをイオン注入することにより、軸方向(図2(d)の第3の半導体層21の表面側)からみて第2の半導体層3(P+型領域)とほぼ同一の位置に、高濃度の第1導電型である、第4の半導体層31(P+型領域)を0.5μm厚さで形成する。
(Fourth process)
As shown in FIG. 5, after forming a mask obtained by patterning a SiO 2 film on the surface of the third semiconductor layer 21 at the same position as in the second step, the same procedure as in the second step is performed. By ion-implanting aluminum or boron, the second semiconductor layer 3 (P + type region) is almost at the same position as viewed from the axial direction (the surface side of the third semiconductor layer 21 in FIG. 2D). A fourth semiconductor layer 31 (P + -type region) having a high concentration of the first conductivity type is formed with a thickness of 0.5 μm.

(第5の工程)
図6に示すように、第4の半導体層31(P+型領域)の表面に、第2導電型で5×1015cm-3と比較的低濃度のベース層(4)をエピタキシャル成長により、厚さ0.5μmで形成する。
(Fifth step)
As shown in FIG. 6, a base layer (4) having a relatively low concentration of 5 × 10 15 cm −3 of the second conductivity type is epitaxially grown on the surface of the fourth semiconductor layer 31 (P + -type region). It is formed with a thickness of 0.5 μm.

(第6の工程)
図7に示すように、ベース層4の表面に、第4の半導体層31(P+型領域)を形成した位置を避け、このベース層4にマスクを用いたイオン注入により第1導電型ウェル領域6を選択的に形成する。この第1導電型ウェル領域6は、表面からベース層(4)を貫通して、第3の半導体層21に達することになる。
(Sixth step)
As shown in FIG. 7, the position where the fourth semiconductor layer 31 (P + -type region) is formed on the surface of the base layer 4 is avoided, and the first conductivity type well is formed by ion implantation using a mask for the base layer 4. Region 6 is selectively formed. The first conductivity type well region 6 penetrates the base layer (4) from the surface and reaches the third semiconductor layer 21.

(第7の工程)
図8に示すように、ベース層4内にアルミニウムイオンを打ち込み、後述するソース電極10と接触するコンタクト領域12(P+部分)を形成するとともに、その内側にリンイオンを打ち込み、コンタクト領域12(P+部分)とベース層4との表面に共通に接触するよう、高濃度の第1導電型であるソース領域5(n+部分)を形成する。
そして、ベース層4の表面露出部の一部にゲート絶縁膜8を形成し、ゲートpoly−Si9及び層間絶縁膜13を形成する。
(Seventh step)
As shown in FIG. 8, aluminum ions are implanted into the base layer 4 to form a contact region 12 (P + portion) that comes into contact with a source electrode 10 to be described later, and phosphorus ions are implanted into the contact region 12 (P A source region 5 (n + portion) having a high concentration of the first conductivity type is formed so as to be in contact with the surfaces of the + portion and the base layer 4 in common.
Then, the gate insulating film 8 is formed on a part of the surface exposed portion of the base layer 4, and the gate poly-Si 9 and the interlayer insulating film 13 are formed.

(第8の工程)
図9に示すように、第8の工程により、この第1導電型ソース領域5とベース層4との表面に共通に接触するようソース電極10を形成した後、半導体基板1の裏面にドレイン電極11を形成する。
(Eighth step)
As shown in FIG. 9, after forming the source electrode 10 so as to be in common contact with the surfaces of the first conductivity type source region 5 and the base layer 4 in the eighth step, the drain electrode is formed on the back surface of the semiconductor substrate 1. 11 is formed.

なお、第3の工程終了後、再び第2の工程に戻り、第3の半導体層21を複数形成することも可能である。   Note that it is possible to return to the second step again after the third step and to form a plurality of third semiconductor layers 21.

このような工程で、図9に示されるような構造の炭化珪素縦型MOSFETが得られるが、ソース電極10とドレイン電極11との間に高電圧が印加された場合、第2の半導体層3ならびに第4の半導体層31(P+型領域)が起点となって、横方向にも空乏層が広がることができる。これにより、半導体層2の濃度を従来MOSFETよりも高く設定しても、空乏層が伸びやすいため、高耐圧が実現できるので、高耐圧特性と半導体層2の濃度を高くしたことによる低オン抵抗特性が両立できることになる。 Through such a process, a silicon carbide vertical MOSFET having a structure as shown in FIG. 9 is obtained. When a high voltage is applied between the source electrode 10 and the drain electrode 11, the second semiconductor layer 3 is obtained. In addition, the fourth semiconductor layer 31 (P + -type region) is the starting point, and the depletion layer can spread in the lateral direction. As a result, even if the concentration of the semiconductor layer 2 is set higher than that of the conventional MOSFET, the depletion layer is easily extended, and thus a high breakdown voltage can be realized. Therefore, a high breakdown voltage characteristic and a low on-resistance due to the increased concentration of the semiconductor layer 2 The characteristics can be compatible.

以上説明したとおり、本発明の縦型MOSFET構造によれば、従来の縦方向だけでなく横方向にも空乏層が伸びることになり、その結果、半導体層2の濃度を従来MOSFETよりも高く設定しても、空乏層は伸びやすいので、高耐圧が実現され、しかも、半導体層の濃度を高くしたことにより、低オン抵抗特性が両立できるので、高耐圧、低オン抵抗の縦型MOSFETに広く採用されることが期待できる。   As described above, according to the vertical MOSFET structure of the present invention, the depletion layer extends not only in the conventional vertical direction but also in the horizontal direction. As a result, the concentration of the semiconductor layer 2 is set higher than that of the conventional MOSFET. Even so, since the depletion layer is easy to extend, high breakdown voltage is realized, and by increasing the concentration of the semiconductor layer, both low on-resistance characteristics can be achieved, so it is widely used in vertical MOSFETs with high breakdown voltage and low on-resistance. It can be expected to be adopted.

1 半導体基板
2 第1の半導体層
3 第2の半導体層
4 第6の半導体層
5 第1導電型ソース領域
6 第1導電型ウェル層
8 ゲートpoly-Si絶縁膜
10 ソース電極
11 ドレイン電極層
12 コンタクト領域
13 ゲート絶縁膜
21 第3の半導体層
31 第4の半導体層
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 1st semiconductor layer 3 2nd semiconductor layer 4 6th semiconductor layer 5 1st conductivity type source region 6 1st conductivity type well layer 8 Gate poly-Si insulating film 10 Source electrode 11 Drain electrode layer 12 Contact region 13 Gate insulating film 21 Third semiconductor layer 31 Fourth semiconductor layer

Claims (4)

炭化珪素からなり、第1導電型の半導体基板(1)と、
前記半導体基板(1)上に形成された、第1導電型で前記半導体基板(1)よりも低濃度の第1の半導体層(2)と、
前記第1の半導体層(2)上に選択的に形成された、高濃度の第2導電型である第2の半導体層(3)と、
前記第1の半導体層(2)及び前記第2の半導体層(3)上に、第1導電型で前記第1の半導体層(2)と同一の濃度で形成された第3の半導体層(21)と、
前記第3の半導体層(21)の表面に、前記第2の半導体層(3)と同一の位置上に選択的に形成された、前記第2の半導体層(3)と同一膜厚の高濃度の第2導電型である第4の半導体層(31)と、
前記第4の半導体層(31)の表面に形成された第2導電型で低濃度のベース層(4)と、
当該ベース層(4)の表面層に選択的に形成された第2導電型のコンタクト領域(12)及び第1導電型のソース領域(5)と、
表面から前記ベース層(4)を貫通して、前記第3の半導体層(21)に達するように形成された第1導電型のウェル領域(6)と、
前記ソース領域(5)と前記ウェル領域(6)とに挟まれた、前記ベース層(4)の表面露出部上の少なくとも一部にゲート絶縁膜(8)を介して設けられたゲート電極層(9)と、
前記ソース領域(5)と前記コンタクト領域(12)との表面に共通に接触するソース電極(10)と、
前記半導体基板(1)の裏面に設けられたドレイン電極(11)とからなる縦型MOSFET。
A first conductivity type semiconductor substrate (1) made of silicon carbide;
A first conductivity type first semiconductor layer (2) formed on the semiconductor substrate (1) and having a lower concentration than the semiconductor substrate (1);
A second semiconductor layer (3), which is selectively formed on the first semiconductor layer (2) and has a second conductivity type of high concentration;
A third semiconductor layer (first conductivity type) formed on the first semiconductor layer (2) and the second semiconductor layer (3) at the same concentration as the first semiconductor layer (2). 21) and
The surface of the third semiconductor layer (21) is selectively formed on the same position as the second semiconductor layer (3) and has the same thickness as the second semiconductor layer (3). A fourth semiconductor layer (31) having a second conductivity type with a concentration;
A second conductivity type low-concentration base layer (4) formed on the surface of the fourth semiconductor layer (31);
A second conductivity type contact region (12) and a first conductivity type source region (5) selectively formed on the surface layer of the base layer (4);
A well region (6) of the first conductivity type formed so as to penetrate the base layer (4) from the surface and reach the third semiconductor layer (21);
A gate electrode layer provided at least partially on the surface exposed portion of the base layer (4) between the source region (5) and the well region (6) via a gate insulating film (8). (9) and
A source electrode (10) in common contact with the surfaces of the source region (5) and the contact region (12);
A vertical MOSFET comprising a drain electrode (11) provided on the back surface of the semiconductor substrate (1).
前記第2の半導体層(3)及び前記第3の半導体層(21)が、交互に複数形成された請求項1に記載の縦型MOSFET。   The vertical MOSFET according to claim 1, wherein a plurality of the second semiconductor layers (3) and the third semiconductor layers (21) are alternately formed. 炭化珪素からなり、第1導電型の半導体基板(1)上に、第1導電型で前記半導体基板(1)よりも低濃度の第1の半導体層(2)をエピタキシャル成長により形成する第1の工程と、
前記第1の半導体層(2)上に、高濃度の第2導電型である第2の半導体層(3)を、マスクを用いたイオン注入により選択的に形成する第2の工程と、
前記第1の半導体層(2)及び前記第2の半導体層(3)上に、前記第1の半導体層(2)と同一の濃度の第3の半導体層(21)をエピタキシャル成長により形成する第3の工程と、
前記第3の半導体層(21)上に、前記第2の工程で形成した前記第2の半導体層(3)と同一の場所において、高濃度の第2導電型である、前記第2の半導体層(3)と同一膜厚の第4の半導体層(31)を、マスクを用いたイオン注入により選択的に形成する第4の工程と、
前記第4の半導体層(31)の表面上に、第2導電型で低濃度のベース層(4)をエピタキシャル成長により形成する第5の工程と、
前記ベース層(4)上に、前記第4の半導体層表面に直接達するよう、マスクを用いたイオン注入により第1導電型のウェル領域(6)を選択的に形成する第6の工程と、
前記ベース層(4)上に、イオン注入により、第2導電型のコンタクト領域(12)と、その内側に第1導電型のソース領域(5)を形成するとともに、前記ソース領域(5)と前記ウェル領域(6)とに挟まれた前記ベース層(4)の表面露出部の一部に、ゲート絶縁膜(8)を介して設けられたゲート電極層(9)を形成する第7の工程と、
前記ソース領域(5)と前記コンタクト領域(12)に共通して接触するようソース電極(10)を形成するとともに、前記半導体基板(1)の裏面にドレイン電極(11)を形成する第8の工程とからなる縦型MOSFETの製造方法。
A first semiconductor layer (2) made of silicon carbide and having a first conductivity type and a lower concentration than the semiconductor substrate (1) is formed on the first conductivity type semiconductor substrate (1) by epitaxial growth. Process,
A second step of selectively forming, on the first semiconductor layer (2), a second semiconductor layer (3) having a high concentration of the second conductivity type by ion implantation using a mask;
A third semiconductor layer (21) having the same concentration as the first semiconductor layer (2) is formed on the first semiconductor layer (2) and the second semiconductor layer (3) by epitaxial growth. 3 steps,
On the third semiconductor layer (21), the second semiconductor having the second conductivity type of high concentration at the same location as the second semiconductor layer (3) formed in the second step. A fourth step of selectively forming a fourth semiconductor layer (31) having the same thickness as the layer (3) by ion implantation using a mask;
A fifth step of forming a second conductivity type low-concentration base layer (4) on the surface of the fourth semiconductor layer (31) by epitaxial growth;
A sixth step of selectively forming a first conductivity type well region (6) on the base layer (4) by ion implantation using a mask so as to directly reach the surface of the fourth semiconductor layer;
A second conductivity type contact region (12) and a first conductivity type source region (5) are formed therein by ion implantation on the base layer (4), and the source region (5) A gate electrode layer (9) provided via a gate insulating film (8) is formed on a part of the surface exposed portion of the base layer (4) sandwiched between the well regions (6). Process,
A source electrode (10) is formed so as to be in common contact with the source region (5) and the contact region (12), and a drain electrode (11) is formed on the back surface of the semiconductor substrate (1). A method of manufacturing a vertical MOSFET comprising the steps.
前記第3の工程の後に、再び前記第2の工程を行い、前記第3の工程を行う工程を、少なくとも1回繰り返すことを特徴とする請求項3に記載の縦型MOSFETの製造方法。   4. The method of manufacturing a vertical MOSFET according to claim 3, wherein the second step is performed again after the third step, and the step of performing the third step is repeated at least once.
JP2012081429A 2012-03-30 2012-03-30 Silicon carbide vertical MOSFET and manufacturing method thereof Active JP6338134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081429A JP6338134B2 (en) 2012-03-30 2012-03-30 Silicon carbide vertical MOSFET and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081429A JP6338134B2 (en) 2012-03-30 2012-03-30 Silicon carbide vertical MOSFET and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013211447A JP2013211447A (en) 2013-10-10
JP6338134B2 true JP6338134B2 (en) 2018-06-06

Family

ID=49529032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081429A Active JP6338134B2 (en) 2012-03-30 2012-03-30 Silicon carbide vertical MOSFET and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6338134B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017162939A (en) * 2016-03-08 2017-09-14 株式会社東芝 Semiconductor device
US20190035899A1 (en) * 2017-07-28 2019-01-31 Sanken Electric Co., Ltd. Semiconductor Device and Method for Manufacturing the Semiconductor Device
JP7052330B2 (en) 2017-12-13 2022-04-12 富士電機株式会社 Insulated gate type semiconductor device and its manufacturing method
JP6710741B2 (en) * 2018-11-22 2020-06-17 株式会社東芝 Semiconductor device
JP7070393B2 (en) * 2018-12-25 2022-05-18 株式会社デンソー Semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4746169B2 (en) * 2000-04-28 2011-08-10 株式会社東芝 Power semiconductor device and driving method thereof
WO2004036655A1 (en) * 2002-10-18 2004-04-29 National Institute Of Advanced Industrial Science And Technology Silicon carbide semiconductor device and its manufacturing method
EP1742250A1 (en) * 2005-07-08 2007-01-10 STMicroelectronics S.r.l. Power field effect transistor and manufacturing method thereof
JP2009064970A (en) * 2007-09-06 2009-03-26 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
JP2013211447A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP4900662B2 (en) Silicon carbide MOS field effect transistor with built-in Schottky diode and manufacturing method thereof
JP6048317B2 (en) Silicon carbide semiconductor device
JP5728992B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP5776610B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP5844656B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPWO2017064949A1 (en) Semiconductor device and manufacturing method of semiconductor device
CN110050349B (en) Silicon carbide semiconductor device and method for manufacturing same
JP2017092368A (en) Semiconductor device and semiconductor device manufacturing method
JP6766512B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
US20150333127A1 (en) Silicon carbide semiconductor device
KR20070088377A (en) Semiconductor device and manufacturing method thereof
JPWO2012164817A1 (en) Semiconductor device and manufacturing method thereof
JP2007005723A (en) Semiconductor device
JP4727426B2 (en) Semiconductor device and manufacturing method of semiconductor device
CN111149213A (en) Silicon carbide semiconductor device and method for manufacturing same
JP6338134B2 (en) Silicon carbide vertical MOSFET and manufacturing method thereof
WO2018117061A1 (en) Semiconductor device and method for manufacturing semiconductor device
KR101371495B1 (en) Semiconductor device and method manufacturing the same
JP4948784B2 (en) Semiconductor device and manufacturing method thereof
JP4645705B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2013069786A (en) Power semiconductor device
KR101360070B1 (en) Semiconductor device and method manufacturing the same
JP5638559B2 (en) Semiconductor device
JP2018046161A (en) Semiconductor device and semiconductor device manufacturing method
JP2014187200A (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170224

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180426

R150 Certificate of patent or registration of utility model

Ref document number: 6338134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250