JP6337254B2 - Manufacturing method of mold for spark plasma sintering - Google Patents

Manufacturing method of mold for spark plasma sintering Download PDF

Info

Publication number
JP6337254B2
JP6337254B2 JP2015010624A JP2015010624A JP6337254B2 JP 6337254 B2 JP6337254 B2 JP 6337254B2 JP 2015010624 A JP2015010624 A JP 2015010624A JP 2015010624 A JP2015010624 A JP 2015010624A JP 6337254 B2 JP6337254 B2 JP 6337254B2
Authority
JP
Japan
Prior art keywords
sintering
mold
discharge plasma
powder
plasma sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015010624A
Other languages
Japanese (ja)
Other versions
JP2016132612A (en
Inventor
ジャブリ・カレッド
智宏 佐藤
智宏 佐藤
進一 竹井
進一 竹井
渉 西野谷
渉 西野谷
国博 堀口
国博 堀口
学 小出
学 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SINTER LAND INC.
Institute of National Colleges of Technologies Japan
Original Assignee
SINTER LAND INC.
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SINTER LAND INC., Institute of National Colleges of Technologies Japan filed Critical SINTER LAND INC.
Priority to JP2015010624A priority Critical patent/JP6337254B2/en
Publication of JP2016132612A publication Critical patent/JP2016132612A/en
Application granted granted Critical
Publication of JP6337254B2 publication Critical patent/JP6337254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、例えば放電プラズマ焼結法に用いられる放電プラズマ焼結用型の作製方法に関するものである。 The present invention relates to a method for producing a discharge plasma sintering mold used, for example, in a discharge plasma sintering method.

従来、この種の焼結用型にあっては、ダイ及び上下のパンチからなり、素材として、下記の表1に示すような諸物性を有するグラファイト(Gr)や助剤を添加して焼結法により作製したT(二硼化チタン)からなる構造のものが知られている。 Conventionally, this type of sintering mold consists of a die and upper and lower punches, and is sintered by adding graphite (Gr) and auxiliary agents having various physical properties as shown in Table 1 below as materials. It is known those composed of T i B 2 produced (titanium diboride) structure by law.

この表1において、グラファイトは1,900℃以上の温度で変形が見られるが、Tでは見られない。この変形温度の比較を含め、焼結用型に要求される全ての電気的特性及び機械特性において、Tはグラファイトより優れているといえる。電気的特性では、Tの電気抵抗率はグラファイトより小さいことから、グラファイトより電気を通しやすく、さらに低電位、大電流で加熱することができ、機械的特性では、Tはグラファイトより3倍以上硬い材料であることから傷等の損傷が発生しにくくなり、さらに、Tの密度はグラファイトより2倍以上高いため、焼結用型の小型化が図れるということが理解される。 In Table 1, the graphite is deformed at a temperature of 1,900 ° C. or higher, but is not observed in T i B 2 . It can be said that T i B 2 is superior to graphite in all the electrical and mechanical properties required for the sintering mold, including the comparison of the deformation temperatures. In electrical characteristics, the electrical resistivity of T i B 2 is smaller than that of graphite, so that it is easier to conduct electricity than graphite, and can be heated at a low potential and a large current. In mechanical characteristics, T i B 2 is Since it is a material that is three times harder than graphite, damage such as scratches is less likely to occur, and furthermore, the density of T i B 2 is more than twice that of graphite, so that the size of the sintering mold can be reduced. Understood.

特開2000−297302JP 2000-297302 A

しかしながらこれら従来構造のうち、型素材としてグラファイトを用いた前者のグラファイト型の場合、焼結温度1,900℃以上で加熱加圧して焼結すると型が変形し、型の変形により成形体の寸法精度が低下したり、他の焼結に再利用することができないことがあり、また、このグラファイト型にあっては、成形体への不純物、例えば、カーボンの拡散が生じ、成形体が半導体製品である場合にあっては、カーボンなどの不純物は僅かな量でも拡散し、製品の品質に大きく影響することがある。   However, among these conventional structures, in the case of the former graphite mold using graphite as a mold material, the mold deforms when heated and pressed at a sintering temperature of 1,900 ° C. or higher, and the deformation of the mold causes deformation of the molded body. In some cases, the accuracy may be reduced, and it may not be reusable for other sintering. In the case of this graphite mold, impurities such as carbon are diffused into the molded body, and the molded body becomes a semiconductor product. In such a case, impurities such as carbon diffuse even in a slight amount, which may greatly affect the quality of the product.

又、型素材としてTを用いた後者の助剤を添加して焼結法により作製したT型の場合、常圧焼成法及びホットプレス法により作製され、これら作製方法にあっては、高い温度及び長い時間が必要となり、このため、T粒子が大きく成長し、機械的強度が低下すると共にコスト低減が難しく、助剤添加により焼結用型からの成形体の離型の悪化が生ずることがあるという不都合を有している。 Further, if the addition of the latter aid with T i B 2 as a mold material for T i B 2 type was prepared by sintering method, produced by atmospheric sintering method and a hot press method, these manufacturing methods is a, requires a high temperature and a long time, Therefore, T i B 2 particles are grown large, cost reduction is difficult with mechanical strength decreases, the molded body from the mold for sintering the aid additives There is a disadvantage that the mold release may be deteriorated.

本発明はこのような不都合を解決することを目的とするもので、本発明のうち、請求項1記載の方法の発明は、放電プラズマ焼結用の型の作製方法であって、純度99.9%以上、粉末の平均粒径が300nm以下、最大粒子サイズ2μm以下であるT粉末(以下、「二硼化チタン粉末」ともいう。)を、放電プラズマ焼結法(以下、「SPS法」ともいう。)を用いて、焼結温度1,700℃以上2,000℃以下、焼結圧力20MPa以上80MPa以下である焼結条件下での該焼結時にT粒子間の反応を促進するための助剤を添加しないで、焼結した助剤無添加のT成形体からなる型を作製することを特徴とする放電プラズマ焼結用型の作製方法にある。 The present invention aims to solve such inconveniences. Among the present inventions, the method invention according to claim 1 is a method for producing a mold for spark plasma sintering, and has a purity of 99. 9% or more, an average particle size of the powder is 300nm or less, T i B 2 powder is less than or equal to the maximum particle size 2 [mu] m (hereinafter, also referred to as "titanium diboride powder".) the discharge plasma sintering method (hereinafter, " also referred to as SPS method ".) using a sintering temperature of 1,700 ° C. or higher 2,000 ° C. or less, when sintered at a sintering conditions are the following sintering pressure 20MPa or 80 MPa T i B between two particles the reaction without the addition of auxiliaries to facilitate the, in a manufacturing method of a spark plasma sintering mold, characterized in that to produce the type consisting of T i B 2 moldings of sintered aid additive-free .

又、請求項2記載の方法の発明は、上記焼結雰囲気は、真空雰囲気であることを特徴とするものである。   The invention of the method according to claim 2 is characterized in that the sintering atmosphere is a vacuum atmosphere.

又、請求項3記載の方法の発明は、上記焼結雰囲気は、不活性ガス雰囲気であることを特徴とするものである。   According to a third aspect of the present invention, the sintering atmosphere is an inert gas atmosphere.

本発明は上述の如く、請求項1記載の方法の発明にあっては、放電プラズマ焼結法により作製することにより短時間焼結が可能となり、放電プラズマ焼結用型のコスト低減を図ることができ、例えば、約2,000℃程度の高温、約100MPa程度の高圧の焼結条件での放電プラズマ焼結用型として使用したとしても、型の変形がきわめて少なく、型の変形による成形体の寸法精度の低下を防ぐことができ、他の焼結に再利用することもでき、かつ、助剤を添加しないので、Tの本質的な高硬度特性を生かすことができ、助剤添加がもたらすT粒子の成長を促進したり、あるいは、T粒子の界面状態を不均一にするという悪影響を避けることができ、焼結用型の機械的強度の低下を防ぐことができ、さらに、助剤添加がもたらす焼結型からの成形体の離型の悪化を防ぐこともでき、助剤による不純物拡散を回避することができ、T成形体からなる放電プラズマ焼結用型の品質を向上することができ、かつ、上記T粉末は、純度99.9%以上、粉末の平均粒径が300nm以下、最大粒子サイズ2μm以下としているから、成形体への不純物の影響を無視することができ、機械強度の低下を避けることができ、さらに、上記焼結条件は、焼結温度1,700℃以上2,000℃以下、焼結圧力20MPa以上80MPa以下としているから、焼結反応速度の低下を防いで生産コストの低減を図ることができ、高品質の放電プラズマ焼結用型を作製することができる。 As described above, the present invention is a method according to the first aspect of the present invention, which can be sintered for a short time by producing by the discharge plasma sintering method, thereby reducing the cost of the discharge plasma sintering mold. For example, even if it is used as a discharge plasma sintering mold under high temperature sintering conditions of about 2,000 ° C. and high pressure of about 100 MPa, there is very little deformation of the mold, and the molded body due to deformation of the mold. the reduction in dimensional accuracy can be prevented, can also be reused in other sintering, and therefore not added auxiliaries it possible to utilize the intrinsic high hardness characteristics of T i B 2, aid or promotes the growth of T i B 2 particles additive results, or the interface state T i B 2 particles can be avoided the adverse effect that non-uniform, a reduction in the mechanical strength of the mold for sintering Can prevent and further aid Can also prevent deterioration of the release of the molded body from sintered pressurized brings, it is possible to avoid the impurity diffusion by aid, the quality of type discharge plasma sintering consisting of T i B 2 moldings can be improved, and the T i B 2 powder having a purity of 99.9% or more, an average particle size of the powder is 300nm or less, because then the maximum particle size 2 [mu] m, ignoring the effect of impurities into the molded body Further, it is possible to avoid a decrease in mechanical strength. Further, since the sintering conditions are a sintering temperature of 1,700 ° C. to 2,000 ° C. and a sintering pressure of 20 MPa to 80 MPa, sintering The production cost can be reduced by preventing the reaction rate from decreasing, and a high-quality discharge plasma sintering mold can be produced.

又、請求項記載の発明にあっては、上記焼結雰囲気は、真空雰囲気としているから、酸化反応を防ぐことができ、高品質の放電プラズマ焼結用型を作製することができ、又、請求項記載の発明にあっては、上記焼結雰囲気は、不活性ガス雰囲気としているから、酸化反応を防ぐことができ、高品質の放電プラズマ焼結用型を作製することができる。 In the invention of claim 2 , since the sintering atmosphere is a vacuum atmosphere, an oxidation reaction can be prevented, and a high-quality discharge plasma sintering mold can be produced. In the invention of claim 3 , since the sintering atmosphere is an inert gas atmosphere, an oxidation reaction can be prevented, and a high-quality discharge plasma sintering mold can be produced.

本発明の実施の形態例の放電プラズマ焼結用型の説明斜視図である。1 is an explanatory perspective view of a discharge plasma sintering mold according to an embodiment of the present invention. 本発明の実施の形態例の放電プラズマ焼結法の説明図である。It is explanatory drawing of the discharge plasma sintering method of the embodiment of this invention. 本発明の実施の形態例の放電プラズマ焼結法の拡大説明図である。It is expansion explanatory drawing of the discharge plasma sintering method of the embodiment of this invention. 本発明の実施の形態例の放電プラズマ焼結用型のX線回折パターン図である。1 is an X-ray diffraction pattern diagram of a discharge plasma sintering mold according to an embodiment of the present invention. 本発明の実施の形態例の放電プラズマ焼結用型のSEMによる組織写真である。It is the structure | tissue photograph by SEM of the type | mold for discharge plasma sintering of the embodiment of this invention. 本発明の実施の形態例の放電プラズマ焼結用型の電気抵抗の温度依存性を示す図である。It is a figure which shows the temperature dependence of the electrical resistance of the type | mold for discharge plasma sintering of the embodiment of this invention. 本発明の実施の形態例の焼結中の型の変形量及び焼結温度の時間依存性を示す図である。It is a figure which shows the time dependence of the deformation | transformation amount of the type | mold during sintering of the example of embodiment of this invention, and sintering temperature. 焼結中のグラファイト型の変形量及び焼結温度の時間依存性を示す図である。It is a figure which shows the time dependency of the deformation amount of a graphite type | mold during sintering, and sintering temperature.

図1乃至図7は本発明の実施の形態例を示し、Mは放電プラズマ焼結用型であって、図1の如く、ダイM及び上下のパンチM・Mから構成され、この場合、ダイM及び上下のパンチM・Mのいずれにあっても、T粉末W(以下、「二硼化チタン粉末」ともいう。)を、放電プラズマ焼結法(以下、「SPS法」ともいう。)を用いて、焼結時にT粒子間の反応を促進するための助剤を添加しないで、焼結した助剤無添加のT成形体により作製されている。 1 to 7 show an embodiment of the present invention, where M is a discharge plasma sintering die, and is composed of a die M 1 and upper and lower punches M 2 and M 2 as shown in FIG. If, in any die M 1 and the upper and lower punches M 2 · M 2, T i B 2 powder W (hereinafter, also referred to as "titanium diboride powder".), and spark plasma sintering (hereinafter , Which is also referred to as “SPS method”), without adding an auxiliary agent for accelerating the reaction between the T i B 2 particles during sintering, and sintering the additive-free T i B 2 compact. It is produced by.

この場合、放電プラズマ焼結用型Mの作製において、例えば、パンチM・Mの作製にあっては、図2、図3の如く、グラファイトからなるダイD及びダイDの穴Dに挿入された上下のグラファイトからなるパンチP・Pにより構成されるグラファイト製の焼結型Sを用意し、このダイDの穴DとパンチP・Pにより形成された空間に焼結材料としてのT粉末Wを充填し、例えば、密閉構造のチャンバーC内に焼結型Sを配置し、上部電極PU、下部電極PD及び上部電極PUを上下加圧動作させる加圧機構K、上部電極PU及び下部電極PD間にパルス電流を流すパルス電源ユニットU、制御ユニットG等を備えてなる通電加圧焼結機Tを用意し、通電加圧焼結機Tを用いて、上記グラファイトからなる焼結型S内に充填されたT粉末WをパンチP・Pにより圧力を加えながらパルス電流を流して焼結材料としてのT粉末W及び焼結型Sの自己発熱効果(ジュール発熱効果)により焼結する放電プラズマ焼結法により作製され、かつ、この焼結時にT粒子間の反応を促進するための助剤を添加しないで、焼結して焼結用型Mを作製するように構成している。尚、ダイMの作製にあっては、例えば、図2、図3のダイDの穴Dに図示省略の中子を装入して上記同様に焼結してリング状に作製したり、又は、円柱状に焼結後にダイMに穴を追加加工により形成して作製することもある。この焼結用型Mの形状や構造は上記実施の形態例に限られるものではない。 In this case, in the production of the discharge plasma sintering mold M, for example, in the production of the punches M 2 and M 2 , as shown in FIGS. 2 and 3, the die D made of graphite and the hole D 1 of the die D are formed. providing a sintered S made composed of graphite by the punch P · P consisting inserted upper and lower graphite, as a sintered material in a space formed by the holes D 1 and the punch P · P of the die D Filling with Ti B 2 powder W, for example, placing a sintering mold S in a sealed chamber C, and pressurizing mechanism K for upper and lower pressure operation of upper electrode PU, lower electrode PD and upper electrode PU, upper part An electric pressure sintering machine T provided with a pulse power source unit U for passing a pulse current between the electrode PU and the lower electrode PD, a control unit G, etc. is prepared. Filled in the sintering mold S Baked by been T i B 2 powder W to T i B 2 powder W and sintered S self-heating effect as a sintered material by supplying a pulse current while applying a pressure by the punch P · P (Joule heating effects) A sintering die M is prepared by sintering without adding an auxiliary agent for accelerating the reaction between the T i B 2 particles during the sintering. It is configured. Incidentally, in the manufacturing of the die M 1, for example, to prepare in a ring shape 2, by charging a not shown of the core into the hole D 1 of the die D in Figure 3 is sintered in the same manner described above or, also be produced by forming the addition process a hole in the die M 1 after sintering a cylindrical shape. The shape and structure of the sintering mold M are not limited to the above embodiment.

ここにおいて、上記助剤を添加しないでとは、上記焼結時にT粒子間の反応を促進するための助剤を使用しないことを意味し、詳しくは、助剤を添加しないと、T粒子間の反応、例えば粒子と粒子を拡散等の反応により繋いだり、結合したりする反応が生じないか若しくは生じても遅くなるといわれている。例えば、助剤として、Ni、Fe、W、Zr、Ni−Zr+WC、Co等の様々な添加物が挙げられる。これら添加物を助剤として使用しないということである。 Here, the without the addition of the auxiliary agent, means not using auxiliaries for promoting the reaction between T i B 2 particles during the sintering, particularly, Without the addition auxiliaries, It is said that a reaction between T i B 2 particles, for example, a reaction of linking or bonding particles to each other by a reaction such as diffusion does not occur or is slow even if it occurs. For example, various additives such as Ni, Fe, W, Zr, Ni-Zr + WC, Co and the like can be cited as auxiliary agents. This means that these additives are not used as auxiliaries.

この場合、上記T粉末Wは、純度99.9%以上、粉末の平均粒径が300nm以下、最大粒子サイズ2μm以下であるとしている。その理由は、純度が99.9%以上であれば成形体への不純物の影響を無視することができ、又、粉末の平均粒径が300nmを超えると焼結反応速度が遅くなり、結晶粒子も大きく成長し、結晶粒子の大きい成形体は機械強度が低くなるからであり、又、最大粒子サイズが2μmを超えると成形体の機械強度が著しく低下することになるからである。 In this case, the T i B 2 powder W has a purity of 99.9% or more, an average particle size of the powder of 300 nm or less, and a maximum particle size of 2 μm or less. The reason is that if the purity is 99.9% or more, the influence of impurities on the compact can be ignored, and if the average particle size of the powder exceeds 300 nm, the sintering reaction rate becomes slow and the crystal particles This is because a molded body having a large crystal grain size and a large crystal particle has a low mechanical strength, and when the maximum particle size exceeds 2 μm, the mechanical strength of the molded body is remarkably lowered.

又、この場合、上記焼結条件は、焼結温度1,700℃以上2,000℃以下、焼結圧力20MPa以上80MPa以下であるとしている。その理由は、焼結温度が1,700℃未満になると焼結反応の速度がかなり遅くなり、焼結の生産コストが高くなり、焼結温度が2,000℃を超えるとグラファイトからなる焼結型Sの変形量が許容範囲を超えるおそれがあるからであり、又、焼結圧力が20MPa未満になると焼結反応は生じても速度が遅くなり、焼結圧力が80MPaを超えるとグラファイトからなる焼結型Sの変形量が許容範囲を超えるおそれがあるからである。   In this case, the sintering conditions are a sintering temperature of 1,700 ° C. to 2,000 ° C. and a sintering pressure of 20 MPa to 80 MPa. The reason is that when the sintering temperature is less than 1,700 ° C., the rate of the sintering reaction is considerably slowed, and the production cost of the sintering becomes high, and when the sintering temperature exceeds 2,000 ° C., the sintering made of graphite. This is because the deformation amount of the mold S may exceed the allowable range, and if the sintering pressure is less than 20 MPa, the rate of reaction is slowed even if the sintering reaction occurs, and if the sintering pressure exceeds 80 MPa, it is made of graphite. This is because the deformation amount of the sintering die S may exceed the allowable range.

又、この場合、上記焼結雰囲気は、真空雰囲気、例えば10Pa以下とされている。その理由は、真空雰囲気とすることにより、酸化反応を防ぐことができ、高品質の放電プラズマ焼結用型を作製することができるからである。尚、上記焼結雰囲気として、不活性ガス雰囲気とすることもあり、その理由は、アルゴンガスや窒素ガスなどの不活性ガス雰囲気とすることにより、酸化反応を防ぐことができ、高品質の放電プラズマ焼結用型を作製することができるからである。   In this case, the sintering atmosphere is a vacuum atmosphere, for example, 10 Pa or less. The reason for this is that, by using a vacuum atmosphere, an oxidation reaction can be prevented, and a high-quality discharge plasma sintering mold can be produced. The sintering atmosphere may be an inert gas atmosphere. The reason is that an inert gas atmosphere such as argon gas or nitrogen gas can prevent oxidation reaction and provide high quality discharge. This is because a plasma sintering mold can be produced.

この実施の形態例は上記構成であるから、図1、図2、図3の如く、グラファイトからなるダイDの穴D及びグラファイトからなるパンチP・Pにより構成されるグラファイト製の焼結型Sの空間に焼結材料としてのT粉末Wを充填し、密閉構造のチャンバーC内に焼結型Sを配置し、加圧機構K、パルス電源ユニットU及び制御ユニットGからなる通電加圧焼結機Tにより、上記焼結型S内に充填されたT粉末WをパンチP・Pにより圧力を加えながらパルス電流を流して焼結材料としてのT粉末W及び焼結型Sの自己発熱効果(ジュール発熱効果)により焼結する放電プラズマ焼結法により作製され、かつ、この焼結時にT粒子間の反応を促進するための助剤を添加しないで、焼結して放電プラズマ焼結用型Mを作製することになるから、作製された放電プラズマ焼結用型Mにおいては、放電プラズマ焼結法により作製することにより短時間焼結が可能となり、焼結用型Mのコスト低減を図ることができ、例えば約2,000℃程度の高温、約100MPa程度の高圧の焼結条件でのプラズマ焼結用型として使用したとしても、焼結用型Mの変形がきわめて少なく、焼結用型Mの変形による成形体の寸法精度の低下を防ぐことができ、他の焼結に再利用することもでき、かつ、助剤を添加しないので、Tの本質的な高硬度特性(約HV3000)を生かすことができ、助剤添加がもたらすT粒子の成長を促進したり、あるいは、T粒子の界面状態を不均一にするという悪影響を避けることができ、放電プラズマ焼結用型Mの機械的強度の低下を防ぐことができ、焼結温度1,700℃、圧力20MPaの低温低圧の焼結条件下で作製された助剤無添加のT成形体の相対密度は理論密度の95%となり、焼結温度2,000℃、圧力80MPaの高温高圧の焼結条件下で作製された助剤無添加のT成形体の相対密度の平均は99%となることが確認され、ここに、理論密度とは成形体中に全く空隙がないと仮定したときの密度をいい、結晶構造を用いて計算される。計算においては、結晶構造の大きさ及び結晶構造を構成するすべての原子の重量を利用して計算する。相対密度とは焼結後の成形体の密度をアルキメデス法などの密度測定方法によって測定した値を理論密度の割合として表すものであり、さらに、助剤添加がもたらす焼結型Sからの成形体の離型の悪化を防ぐこともでき、助剤による不純物拡散を回避することができ、T成形体からなる放電プラズマ焼結用型の品質を向上することができる。 Since embodiments of the present is the configuration, FIG. 1, FIG. 2, as in FIG. 3, made of graphite sintered constituted by the punch P · P consisting hole D 1 and graphite die D consisting of graphite The space of S is filled with T i B 2 powder W as a sintering material, the sintering mold S is disposed in a chamber C having a sealed structure, and the energization comprising the pressurizing mechanism K, the pulse power supply unit U, and the control unit G the pressure sintering machine T, T i B 2 powder W of the sintered type S T i B 2 powder W filled in as a sintering material by supplying a pulse current while applying a pressure by the punch P · P And an additive for promoting the reaction between T i B 2 particles during the sintering, which is produced by the spark plasma sintering method that sinters by the self-heating effect (joule heating effect) of the sintering mold S Do not sinter and discharge plasma Since the sintering mold M is produced, the produced discharge plasma sintering mold M can be sintered for a short time by being produced by the discharge plasma sintering method. Cost reduction can be achieved, for example, even when used as a plasma sintering mold under a high temperature of about 2,000 ° C. and a high pressure of about 100 MPa, the deformation of the sintering mold M is extremely small. , it is possible to prevent a reduction in dimensional accuracy of the molded body due to deformation of the sintering mold M, it can also be reused in other sintering, and therefore not added auxiliaries essentially of T i B 2 High hardness characteristics (about HV3000) can be exploited, and the adverse effect of promoting the growth of T i B 2 particles caused by the addition of an auxiliary agent or making the interface state of T i B 2 particles non-uniform is avoided. Can discharge plasma firing Reduction in the mechanical strength of the use type M can be prevented, sintering temperature 1,700 ° C., of the fabricated aid no additives under sintering conditions of low temperature and low pressure of the pressure 20MPa of T i B 2 shaped body relative density becomes 95% of the theoretical density, sintering temperature 2,000 ° C., an average of the relative density of the T i B 2 molded body fabricated aid no additives under sintering conditions of high temperature and high pressure in the pressure 80MPa 99% Here, the theoretical density means the density when it is assumed that there are no voids in the molded body, and is calculated using the crystal structure. In the calculation, the size is calculated using the size of the crystal structure and the weight of all atoms constituting the crystal structure. Relative density is a value obtained by measuring the density of a compact after sintering by a density measuring method such as Archimedes method as a ratio of theoretical density, and further, a compact from a sintered mold S brought about by the addition of an auxiliary agent. releasing worse can also prevent the can to avoid impurity diffusion by aid, thereby improving the quality of type discharge plasma sintering consisting of T i B 2 moldings.

この場合、上記T粉末Wは、純度99.9%以上、粉末の平均粒径が300nm以下、最大粒子サイズ2μm以下としているから、成形体への不純物の影響を無視することができ、機械強度の低下を避けることができ、又、この場合、上記焼結条件は、焼結温度1,700℃以上2,000℃以下、焼結圧力20MPa以上80MPa以下としているから、焼結の反応速度の低下を防いで生産コストの低減を図ることができ、高品質の放電プラズマ焼結用型Mを作製することができる。 In this case, the Ti B 2 powder W has a purity of 99.9% or more, an average particle size of the powder of 300 nm or less, and a maximum particle size of 2 μm or less, so the influence of impurities on the compact can be ignored. Decrease in mechanical strength can be avoided, and in this case, the sintering conditions are such that the sintering temperature is 1,700 ° C. to 2,000 ° C., and the sintering pressure is 20 MPa to 80 MPa. The production cost can be reduced by preventing the reaction rate from decreasing, and a high-quality discharge plasma sintering mold M can be produced.

又、この場合、上記焼結雰囲気は、真空雰囲気とされているから、酸化反応を防ぐことができ、高品質の放電プラズマ焼結用型Mを作製することができ、又、上記焼結雰囲気として、不活性ガス雰囲気とすることにより、同じく、酸化反応を防ぐことができ、高品質の放電プラズマ焼結用型Mを作製することができる。   In this case, since the sintering atmosphere is a vacuum atmosphere, an oxidation reaction can be prevented, and a high-quality discharge plasma sintering mold M can be produced. As described above, by using an inert gas atmosphere, the oxidation reaction can be similarly prevented, and a high-quality discharge plasma sintering mold M can be produced.

この実施の形態例により作製された助剤無添加のT成形体からなる放電プラズマ焼結用型Mは、図4のX線回折パターン図によれば、いずれのピークもT結晶に同定していることが分かり、ここに、X線回折パターンの測定にあっては、放電プラズマ焼結法を用いて助剤無添加のTバルクサンプルを作製し、そのバルクサンプルを粉砕して結晶相同定のためのX線回折用サンプルとし、株式会社リガク製のUltimaIVのX線回折装置を用い、回折角度(2θ)を5°〜85°範囲で測定を行った。その結果、T単一相であることが分かった。 According to the X-ray diffraction pattern diagram of FIG. 4, the discharge plasma sintering mold M made of the T i B 2 compact without additive added according to this embodiment has a peak of T i B. We see that the identified two crystals, here, in the measurement of X-ray diffraction pattern, using the discharge plasma sintering method to produce a T i B 2 bulk sample of auxiliaries not added, the bulk The sample was pulverized into an X-ray diffraction sample for crystal phase identification, and the diffraction angle (2θ) was measured in the range of 5 ° to 85 ° using an Ultimate IV X-ray diffractometer manufactured by Rigaku Corporation. As a result, it was found to be a T i B 2 single phase.

又、図5のT粒子サイズが100μmのSEMによる組織写真によれば、組織が緻密化していることが分かり、又、図6の電気抵抗の温度依存性を示す図によれば、金属特性を示す素材であることがわかる。この電気抵抗の温度依存性の測定にあっては、放電プラズマ焼結法を用いて作製した助剤無添加のT成形体を放電加工により長さ20mm、幅5mm、厚み4mmに切断してサンプルを得て、その後、四端子法によりサンプルの電流と電圧の関係の温度依存性を測定した。電流、電圧測定には、ADCMT製6242直流電圧電流電源及びモニターを用い、各温度における電流、電圧のプロットからサンプルの電気抵抗を測定した。 Further, according to the structure photograph by T i B 2 particle size 100μm in SEM of Figure 5, shows that the organization is densified, and, according to the diagram illustrating the temperature dependence of the electrical resistance of the FIG. 6, It turns out that it is a raw material which shows a metal characteristic. In the measurement of the temperature dependence of the electrical resistance, spark plasma sintering 20mm long by electric discharge machining was a T i B 2 moldings of aid no additives produced using a width 5 mm, cut in the thickness 4mm A sample was then obtained, and then the temperature dependence of the relationship between the current and voltage of the sample was measured by the four probe method. For the current and voltage measurement, an ACMT 6242 DC voltage current power source and a monitor were used, and the electric resistance of the sample was measured from plots of current and voltage at each temperature.

[実施例1]
純度99.9%、粉末の平均粒径が300nmのT粉末Wを用い、T粉末Wを、放電プラズマ焼結法を用いて、焼結時にT粒子間の反応を促進するための助剤を添加しないで、焼結した助剤無添加のT成形体からなる放電プラズマ焼結用型Mを作製した。焼結後の型寸法は、ダイMにあっては、外径50mm、内径20.05mm、高さ40mm、各パンチM・Mにあっては、それぞれ外径20.00mm、長さ25.05mmである。焼結条件は、焼結温度2,000℃、圧力40MPa、焼結時間30分及び焼結雰囲気は真空雰囲気である。作製した放電プラズマ焼結用型Mの相対密度は98%であった。
[Example 1]
99.9% purity, mean particle size of the powder using a T i B 2 powder W of 300 nm, the T i B 2 powder W, using a discharge plasma sintering method, between T i B 2 particles during sintering A discharge plasma sintering die M made of a sintered Ti- B 2 compact without adding an auxiliary agent was prepared without adding an auxiliary agent for promoting the reaction. Type Dimensions after sintering, in the die M 1, the outer diameter of 50 mm, an inner diameter 20.05Mm, height 40 mm, with the respective punches M 2 · M 2, respectively outside diameter 20.00 mm, a length 25.05 mm. The sintering conditions are a sintering temperature of 2,000 ° C., a pressure of 40 MPa, a sintering time of 30 minutes, and the sintering atmosphere is a vacuum atmosphere. The relative density of the produced discharge plasma sintering mold M was 98%.

[焼結例1]
この実施例1で作製した成形体を放電加工により仕上して放電プラズマ焼結用型Mを作製し、この焼結用型Mを用い、焼結用型M内に焼結材料を充填しない状態(ブランク焼結)で、真空雰囲気、温度1,900℃、圧力20MPa、焼結時間60分の焼結条件で焼結テストを試みた。焼結前後の型寸法を測定し、焼結による焼結用型Mの変形量、例えば、焼結前後のパンチM・M直径の差、パンチM・M長さの差及びダイ内径の差を算出したところ、表2に示すように、放電プラズマ焼結用型Mの変形量は許容範囲内にあり、助剤無添加のT成形体からなる放電プラズマ焼結用型Mの変形が殆どなかったことを確認した。
[Sintering Example 1]
The molded body produced in Example 1 is finished by electric discharge machining to produce a discharge plasma sintering mold M, and the sintering mold M is not filled with a sintering material using this sintering mold M In (blank sintering), a sintering test was attempted in a vacuum atmosphere, a temperature of 1,900 ° C., a pressure of 20 MPa, and sintering conditions of 60 minutes. The mold dimensions before and after sintering are measured, and the amount of deformation of the sintering mold M by sintering, for example, the difference between punch M 2 and M 2 diameters before and after sintering, the difference between punch M 2 and M 2 lengths, and the die was calculated difference inside diameter, as shown in Table 2, the amount of deformation of the discharge plasma sintering mold M is within the allowable range, the discharge plasma sintering consisting of T i B 2 moldings auxiliaries no additives It was confirmed that there was almost no deformation of the mold M.

[比較例1]
グラファイト型を用い、グラファイト型内に焼結材料を充填しない状態(ブランク焼結)で、実施例1に記載した焼結条件と同じ焼結条件で焼結テストを試みた。焼結例1と同様に焼結前後の型寸法を測定し、焼結によるグラファイト型の変形量を算出したところ、表2に示すように、焼結によって、パンチ直径は0.330mm太くなり、パンチ長さは0.790mm短くなり、一方ダイ内径は0.335mm大きくなり、グラファイト型の変形量が許容範囲外であることを確認した。
[Comparative Example 1]
Using a graphite mold, a sintering test was attempted under the same sintering conditions as described in Example 1 with no sintering material filled in the graphite mold (blank sintering). The mold dimensions before and after sintering were measured in the same manner as in Sintering Example 1, and the amount of deformation of the graphite mold due to sintering was calculated. As shown in Table 2, due to sintering, the punch diameter was increased by 0.330 mm, The punch length was reduced by 0.790 mm, while the inner diameter of the die was increased by 0.335 mm, confirming that the amount of deformation of the graphite mold was outside the allowable range.

[実施例2]
純度99.9%、粉末の平均粒径150nmのT粉末Wを用い、T粉末Wを、放電プラズマ焼結法を用いて、焼結時にT粒子間の反応を促進するための助剤を添加しないで、焼結した助剤無添加のT成形体からなる放電プラズマ焼結用型Mを作製した。焼結後の型寸法は、ダイMにあっては、外径50mm、内径20.05mm、高さ40mm、各パンチM・Mにあっては、それぞれ外径20.00mm、長さ25.05mmである。焼結条件は、焼結温度1,900℃、圧力40MPa、焼結時間45分及び焼結雰囲気は真空雰囲気である。作製した放電プラズマ焼結用型Mの相対密度は96%であった。
[Example 2]
99.9% purity, with a T i B 2 powder W having an average particle diameter of 150nm of the powder, T i B 2 powder W, using a discharge plasma sintering method, the reaction between T i B 2 particles during sintering A spark plasma sintering mold M made of a sintered Ti- B 2 compact without adding an auxiliary agent was prepared without adding an auxiliary agent for promoting. Type Dimensions after sintering, in the die M 1, the outer diameter of 50 mm, an inner diameter 20.05Mm, height 40 mm, with the respective punches M 2 · M 2, respectively outside diameter 20.00 mm, a length 25.05 mm. The sintering conditions are a sintering temperature of 1,900 ° C., a pressure of 40 MPa, a sintering time of 45 minutes, and the sintering atmosphere is a vacuum atmosphere. The relative density of the produced discharge plasma sintering mold M was 96%.

[焼結例2]
この実施例2で作製した成形体からなる放電プラズマ焼結用型Mを用い、放電プラズマ焼結用型M内に焼結材料を充填しない状態(ブランク焼結)で、真空雰囲気、温度2,800℃、圧力60MPa、焼結時間60分の焼結条件で焼結テストを試みた。上記焼結例1と同様に、焼結前後の型寸法を測定し、焼結による放電プラズマ焼結用型Mの変形量を算出したところ、表2に示すように、放電プラズマ焼結用型Mの変形量は許容範囲内にあり、助剤無添加のT成形体からなる焼結用型Mの変形が殆どなかったことを確認した。図7は焼結中の焼結用型Mの変形量及び焼結温度の時間依存性を示し、焼結用型Mの全変形量(熱膨張による変形量と焼結による変形量との和)は放電プラズマ焼結機の電極の移動量により、マイクロメーター単位の精度で確認することができ、この全変形量から焼結のみによる変形を算出することができ、焼結前後の型寸法の測定数値及び図7により、助剤無添加のT成形体からなる放電プラズマ焼結用型Mの変形が殆どなかったことを確認した。この焼結温度の測定には測定精度±2℃の株式会社チノー製のIR−AHS2放射温度計を用いた。焼結温度の測定位置は型表面である。変形量の測定については、一定加圧を掛けるため、下部電極PDの位置は放電プラズマ焼結機に内蔵されているサーボモーターによって自動的に調整できるよう設計され、下部電極PDの移動距離はサンプルの瞬時変形量(熱膨張による下方向の移動距離と収縮による上方の移動距離との和)に相当することになり、瞬時とはスキャンタイム1秒あたり1回の条件を示し、焼結のみによる変形量とは、電極の移動距離から型の熱膨張係数から算出される熱による型の膨張変形量を引いた後の変形量のこととした。
[Sintering Example 2]
Using the discharge plasma sintering mold M made of the molded body produced in Example 2, the discharge plasma sintering mold M was not filled with a sintered material (blank sintering), and the vacuum atmosphere, temperature 2, A sintering test was attempted under the sintering conditions of 800 ° C., pressure 60 MPa, and sintering time 60 minutes. As in the above-mentioned sintering example 1, the mold dimensions before and after sintering were measured, and the deformation amount of the discharge plasma sintering mold M due to sintering was calculated. As shown in Table 2, the discharge plasma sintering mold deformation amount of M is in the allowable range, it was confirmed that the deformation of the sintered mold M comprising a T i B 2 moldings of aid no addition was little. FIG. 7 shows the amount of deformation of the sintering mold M during sintering and the time dependence of the sintering temperature. The total deformation amount of the sintering mold M (the sum of the deformation amount due to thermal expansion and the deformation amount due to sintering). ) Can be confirmed with the accuracy of micrometer unit by the amount of movement of the electrode of the spark plasma sintering machine, and the deformation due to sintering alone can be calculated from this total deformation amount. the measured values and Figure 7, it was confirmed that the deformation of a discharge plasma sintering mold M comprising a T i B 2 moldings of aid no addition was little. For the measurement of the sintering temperature, an IR-AHS2 radiation thermometer manufactured by Chino Co., Ltd. having a measurement accuracy of ± 2 ° C. was used. The measurement position of the sintering temperature is the mold surface. Regarding the measurement of the deformation amount, since a constant pressure is applied, the position of the lower electrode PD is designed to be automatically adjusted by a servo motor built in the discharge plasma sintering machine, and the moving distance of the lower electrode PD is a sample. Is equivalent to the amount of instantaneous deformation (the sum of the downward moving distance due to thermal expansion and the upward moving distance due to contraction), and instantaneous means the condition of one scan time per second, only by sintering The amount of deformation is the amount of deformation after subtracting the amount of expansion and deformation of the mold due to the heat calculated from the coefficient of thermal expansion of the mold from the moving distance of the electrode.

[比較例2]
グラファイト型を用い、グラファイト型内に焼結材料を充填しない状態(ブランク焼結)で、実施例2と同じ焼結条件で焼結テストを試みた。焼結例1と同様に焼結前後の型寸法を測定し、焼結によるグラファイト型の変形量を算出したところ、表2に示すように、焼結によって、パンチ直径は1.530mm太くなり、パンチ長さは3.350mm短くなり、一方ダイ内径は1.535mm大きくなり、グラファイト型の変形量は比較例1よりも大きくなり、許容範囲外であることを確認した。図8は焼結中のグラファイト型の変形量及び焼結温度の時間依存性を示し、グラファイト型の全変形量(熱膨張による変形量と焼結による変形量との和)から焼結のみによる変形量を算出することができ、図8に示すように焼結のみによるグラファイト型の変形量は大きいことを確認した。この焼結温度の測定にあたっては上記実施例1と同様な測定方法により行った。
[実施例3]
純度99.9%、粉末の平均粒径150nmのT粉末Wを用い、T粉末Wを、放電プラズマ焼結法を用いて、焼結時にT粒子間の反応を促進するための助剤を添加しないで、焼結した助剤無添加のT成形体からなる放電プラズマ焼結用型Mを作製した。焼結後の型寸法は、ダイMにあっては、外径50mm、内径20.05mm、高さ40mm、各パンチM・Mにあっては、それぞれ外径20.00mm、長さ25.05mmである。焼結条件は、焼結温度1,750℃、圧力50MPa、焼結時間60分及び焼結雰囲気は真空雰囲気である。作製した放電プラズマ焼結用型Mの相対密度は95%であった。
[Comparative Example 2]
Using a graphite mold, a sintering test was attempted under the same sintering conditions as in Example 2 with no sintering material filled in the graphite mold (blank sintering). The mold dimensions before and after sintering were measured in the same manner as in sintering example 1, and the amount of deformation of the graphite mold due to sintering was calculated. As shown in Table 2, due to sintering, the punch diameter became 1.530 mm thicker, The punch length was shortened by 3.350 mm, while the inner diameter of the die was increased by 1.535 mm, and the deformation amount of the graphite mold was larger than that of Comparative Example 1 and was confirmed to be outside the allowable range. FIG. 8 shows the time dependence of the deformation amount of the graphite mold during sintering and the sintering temperature. From the total deformation amount of the graphite mold (the sum of the deformation amount due to thermal expansion and the deformation amount due to sintering), only the sintering is performed. The amount of deformation could be calculated, and it was confirmed that the amount of deformation of the graphite mold by sintering alone was large as shown in FIG. The sintering temperature was measured by the same measurement method as in Example 1 above.
[Example 3]
99.9% purity, with a T i B 2 powder W having an average particle diameter of 150nm of the powder, T i B 2 powder W, using a discharge plasma sintering method, the reaction between T i B 2 particles during sintering A spark plasma sintering mold M made of a sintered Ti- B 2 compact without adding an auxiliary agent was prepared without adding an auxiliary agent for promoting. Type Dimensions after sintering, in the die M 1, the outer diameter of 50 mm, an inner diameter 20.05Mm, height 40 mm, with the respective punches M 2 · M 2, respectively outside diameter 20.00 mm, a length 25.05 mm. The sintering conditions are a sintering temperature of 1,750 ° C., a pressure of 50 MPa, a sintering time of 60 minutes, and the sintering atmosphere is a vacuum atmosphere. The relative density of the produced discharge plasma sintering mold M was 95%.

[焼結例3]
この実施例3で作製した成形体からなる放電プラズマ焼結用型Mを用い、放電プラズマ焼結用型M内に焼結材料としてのタングステン粉末を充填し、真空雰囲気、焼結温度2,200℃、圧力40MPa、焼結時間20分の焼結条件で焼結テストを試みた。上記焼結例1及び焼結例2と同様に、焼結前後の型寸法を測定し、焼結による焼結用型Mの変形量を算出したところ、表2に示すように、焼結用型Mの変形が殆どなかったことを確認した。タングステン焼結体の相対密度は理論密度の98%であった。
[Sintering Example 3]
Using the discharge plasma sintering mold M made of the molded body produced in Example 3, tungsten powder as a sintering material was filled in the discharge plasma sintering mold M, and the vacuum atmosphere and sintering temperature of 2,200 were used. A sintering test was attempted under the sintering conditions of ° C., pressure of 40 MPa, and sintering time of 20 minutes. As in the above-mentioned sintering example 1 and sintering example 2, the mold dimensions before and after sintering were measured, and the amount of deformation of the sintering mold M due to sintering was calculated. It was confirmed that there was almost no deformation of the mold M. The relative density of the tungsten sintered body was 98% of the theoretical density.

[比較例3]
グラファイト型を用い、グラファイト型内に焼結材料としてのタングステン粉末を充填し、実施例3と同じ焼結条件で焼結テストを試みた。上記焼結例1及び焼結例2と同様に焼結前後の型寸法を測定し、焼結によるグラファイト型の変形量を算出したところ、表2に示すように、焼結によって、パンチ直径は0.460mm太くなり、パンチ長さは1.092mm短くなり、一方ダイ内径は0.470mm大きくなり、グラファイト型の変形量は許容範囲外であることを確認した。図8は焼結中のグラファイト型の変形量及び焼結温度の時間依存性を示し、グラファイト型の全変形量(熱膨張による変形量と焼結による変形量との和)から焼結のみによる変形量を算出することができ、図8に示すように焼結のみによるグラファイト型の変形量は大きいことを確認した。タングステン焼結体の相対密度は91%であった。焼結例3に用いた助剤無添加T型で焼結したタングステン焼結体の相対密度より低いことを確認した。これはグラファイト型が変形することによって、タングステン焼結体に十分な加圧を加えられないことによるものであるとされる。
[Comparative Example 3]
A graphite mold was used, tungsten powder as a sintering material was filled in the graphite mold, and a sintering test was attempted under the same sintering conditions as in Example 3. The mold dimensions before and after sintering were measured in the same manner as in Sintering Example 1 and Sintering Example 2 and the amount of deformation of the graphite mold due to sintering was calculated. As shown in Table 2, the punch diameter was determined by sintering. It was confirmed that the thickness of 0.460 mm was increased, the punch length was shortened by 1.092 mm, the inner diameter of the die was increased by 0.470 mm, and the deformation amount of the graphite mold was outside the allowable range. FIG. 8 shows the time dependence of the deformation amount of the graphite mold during sintering and the sintering temperature. From the total deformation amount of the graphite mold (the sum of the deformation amount due to thermal expansion and the deformation amount due to sintering), only the sintering is performed. The amount of deformation could be calculated, and it was confirmed that the amount of deformation of the graphite mold by sintering alone was large as shown in FIG. The relative density of the tungsten sintered body was 91%. It was confirmed less than the relative density of the sintered tungsten sintered body aid not added T i B 2 type used in Shoyuirei 3. This is due to the fact that the graphite mold cannot be deformed and sufficient pressure cannot be applied to the tungsten sintered body.

尚、本発明は上記実施の形態例に限られるものではなく、放電プラズマ焼結用型MのダイMやパンチM・Mの形状等は適宜変更して設計されるものである。 The present invention is not limited to the embodiment described above, and the shape and the like of the die M 1 and the punches M 2 and M 2 of the discharge plasma sintering mold M are designed as appropriate.

以上の如く、所期の目的を充分達成することができる。   As described above, the intended purpose can be sufficiently achieved.

W T粉末
M 放電プラズマ焼結用型
ダイ
パンチ
W Ti B 2 Powder M Discharge Plasma Sintering Mold M 1 Die M 2 Punch

Claims (3)

放電プラズマ焼結用の型の作製方法であって、純度99.9%以上、粉末の平均粒径が300nm以下、最大粒子サイズ2μm以下であるT粉末(以下、「二硼化チタン粉末」ともいう。)を、放電プラズマ焼結法(以下、「SPS法」ともいう。)を用いて、焼結温度1,700℃以上2,000℃以下、焼結圧力20MPa以上80MPa以下である焼結条件下での該焼結時にT粒子間の反応を促進するための助剤を添加しないで、焼結した助剤無添加のT成形体からなる型を作製することを特徴とする放電プラズマ焼結用型の作製方法。 A mold manufacturing method for the discharge plasma sintering, purity of 99.9% or higher, mean particle size of the powder is 300nm or less, T i B 2 powder is less than or equal to the maximum particle size 2 [mu] m (hereinafter, "titanium diboride The powder is also referred to as “powder”) using a discharge plasma sintering method (hereinafter also referred to as “SPS method”) at a sintering temperature of 1,700 ° C. to 2,000 ° C. and a sintering pressure of 20 MPa to 80 MPa. A mold made of a sintered T i B 2 compact without adding an auxiliary agent is produced without adding an auxiliary agent for promoting the reaction between the T i B 2 particles during the sintering under a certain sintering condition. A method for producing a discharge plasma sintering mold. 上記焼結雰囲気は、真空雰囲気であることを特徴とする請求項記載の放電プラズマ焼結用型の作製方法。 The sintering atmosphere is a manufacturing method of claim 1 type discharge plasma sintering, wherein a is a vacuum atmosphere. 上記焼結雰囲気は、不活性ガス雰囲気であることを特徴とする請求項1記載の放電プラズマ焼結用型の作製方法。   2. The method for producing a discharge plasma sintering mold according to claim 1, wherein the sintering atmosphere is an inert gas atmosphere.
JP2015010624A 2015-01-22 2015-01-22 Manufacturing method of mold for spark plasma sintering Active JP6337254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015010624A JP6337254B2 (en) 2015-01-22 2015-01-22 Manufacturing method of mold for spark plasma sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015010624A JP6337254B2 (en) 2015-01-22 2015-01-22 Manufacturing method of mold for spark plasma sintering

Publications (2)

Publication Number Publication Date
JP2016132612A JP2016132612A (en) 2016-07-25
JP6337254B2 true JP6337254B2 (en) 2018-06-06

Family

ID=56437322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015010624A Active JP6337254B2 (en) 2015-01-22 2015-01-22 Manufacturing method of mold for spark plasma sintering

Country Status (1)

Country Link
JP (1) JP6337254B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107716925B (en) * 2017-09-27 2019-07-05 西北工业大学 A kind of super-pressure anti-slip mold for discharge plasma sintering
CN107716926B (en) * 2017-09-27 2019-07-05 西北工业大学 A kind of school temperature mold for discharge plasma sintering

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2523423C2 (en) * 1975-02-03 1981-12-10 PPG Industries, Inc., 15222 Pittsburgh, Pa. Submicron titanium diboride and process for its manufacture
JPS5490312A (en) * 1977-12-28 1979-07-18 Kogyo Gijutsuin Sintered body by electric discharge of titanium diboride
US4689129A (en) * 1985-07-16 1987-08-25 The Dow Chemical Company Process for the preparation of submicron-sized titanium diboride
JPH08310867A (en) * 1995-05-15 1996-11-26 Mitsubishi Materials Corp Production of boride ceramic
JP2000297302A (en) * 1999-02-12 2000-10-24 Kubota Corp Electric sintering method, electric sintering device and die for electric sintering
JP2001213668A (en) * 2000-01-31 2001-08-07 Kubota Corp Boride group-based composite sintered ceramics
JP2012087042A (en) * 2010-09-21 2012-05-10 Institute Of National Colleges Of Technology Japan Titanium diboride-based sintered compact, and method for producing the same

Also Published As

Publication number Publication date
JP2016132612A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
KR101311480B1 (en) manufacturing method of WC sintered-body for friction stir welding(FSW) tool
KR20200032062A (en) Manufacturing method of boroncarbide sintered body and shaping die
JP6279559B2 (en) Metal crucible and method for forming the same
CN102390079A (en) High-pressure sintering combined die and high-pressure rapid sintering method for preparing nanometer ceramic thereof
CN105441881B (en) The manufacturing method of chromium target and combinations thereof
KR20140129249A (en) Tungsten sintered compact sputtering target and tungsten film formed using same target
JP6654210B2 (en) How to make a mold for sintering
JP6337254B2 (en) Manufacturing method of mold for spark plasma sintering
JPWO2012153645A1 (en) Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
US11219949B2 (en) Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption
JP6654169B2 (en) How to make a mold for sintering
KR101995377B1 (en) Method for preparing tungsten-molybdenum alloy
KR100960732B1 (en) method of manufacturing tantalum sintering for sputtering target
KR20120102430A (en) Manufacturing of molybdenum sputtering target for back electrode application of cigs solar cell
US10364191B2 (en) Methods of forming articles including silicon carbide by spark plasma sintering
KR101206534B1 (en) manufacturing method of Fabrication of WC-Co for friction stir weldingFSW tool
KR100841418B1 (en) Fabrication of a precious metal target using a spark plasma sintering
KR100936016B1 (en) Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby
JP2011011927A (en) Method for producing hafnium carbide sintered compact
KR101304758B1 (en) Process for Composite Materials of Nanostructured Metal Carbides-Intermetallic Compounds
JP2014001427A (en) Method of manufacturing sintered component
JP2012087042A (en) Titanium diboride-based sintered compact, and method for producing the same
JP2016191092A (en) Manufacturing method of cylindrical sputtering target
JP2022038259A (en) Manufacturing method of oxide sintered product
KR101181022B1 (en) Method for Making Nanostructured Ti from Titanium Hydride Powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180315

R150 Certificate of patent or registration of utility model

Ref document number: 6337254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250