JP6332932B2 - Manufacturing method of thermal flow rate / flow rate sensor and thermal flow rate / flow rate sensor - Google Patents

Manufacturing method of thermal flow rate / flow rate sensor and thermal flow rate / flow rate sensor Download PDF

Info

Publication number
JP6332932B2
JP6332932B2 JP2013200812A JP2013200812A JP6332932B2 JP 6332932 B2 JP6332932 B2 JP 6332932B2 JP 2013200812 A JP2013200812 A JP 2013200812A JP 2013200812 A JP2013200812 A JP 2013200812A JP 6332932 B2 JP6332932 B2 JP 6332932B2
Authority
JP
Japan
Prior art keywords
substrate
flow rate
flow velocity
velocity detection
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013200812A
Other languages
Japanese (ja)
Other versions
JP2015068659A (en
Inventor
林 泰正
泰正 林
Original Assignee
林 泰正
泰正 林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林 泰正, 泰正 林 filed Critical 林 泰正
Priority to JP2013200812A priority Critical patent/JP6332932B2/en
Priority to PCT/JP2014/075424 priority patent/WO2015046328A1/en
Priority to KR1020167010915A priority patent/KR101786741B1/en
Publication of JP2015068659A publication Critical patent/JP2015068659A/en
Application granted granted Critical
Publication of JP6332932B2 publication Critical patent/JP6332932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Description

この発明は流体の流速及び流量を計測する流速・流量センサの製造方法及び流速・流量センサに関し、特に、供給電流により熱を発生するヒータ素子と、流速に応じて変化するヒータ素子からの温度を検出する測温素子とを有する流速検出部と、気温を計測する気温計測素子とを実装部品を用いて製造する熱式流速・流量センサの製造方法及びその流速・流量センサに関するものである。   The present invention relates to a flow velocity / flow rate sensor manufacturing method and a flow velocity / flow rate sensor for measuring a flow velocity and a flow rate of a fluid, and more particularly, to a heater element that generates heat by a supply current and a temperature from the heater element that changes according to the flow velocity. The present invention relates to a method of manufacturing a thermal flow rate / flow rate sensor and a flow rate / flow rate sensor for manufacturing a flow rate detection unit having a temperature measuring element to be detected and an air temperature measurement element for measuring an air temperature by using mounting parts.

一般に、熱式流速・流量センサは、電熱線等のヒータ素子を流体中に置いた時に、その流体に奪われるヒータ素子からの熱量が、流体の流速に依存して変化することを利用して流速を計測し、その結果から流体の流量を算出している。そして、流速・流量センサは流速の検出対象となる流体の温度が変化した場合に、流速検出部からの出力(熱量)に対する気温の変化の影響を補償できるように、一般には温度補償素子を備えている。   In general, when a heater element such as a heating wire is placed in a fluid, a thermal flow rate / flow rate sensor utilizes the fact that the amount of heat from the heater element deprived by the fluid changes depending on the fluid flow rate. The flow rate is measured and the flow rate of the fluid is calculated from the result. The flow rate / flow rate sensor generally includes a temperature compensation element so that the influence of the change in temperature on the output (heat amount) from the flow rate detection unit can be compensated when the temperature of the fluid to be detected for the flow rate changes. ing.

ここで、一般的な熱式流速・流量センサの動作原理について説明する。
まず、一定の発熱源を持つ発熱体が、流体中に存在する場合、発熱体の持つ熱が流速に応じて流体に移動する物理現象を利用している。この物理現象は、下記式(1)に示すように、Kingの式として一般的に知られている。
Here, the operation principle of a general thermal flow rate / flow rate sensor will be described.
First, when a heating element having a constant heat source is present in the fluid, a physical phenomenon is used in which the heat of the heating element moves to the fluid according to the flow velocity. This physical phenomenon is generally known as the King equation, as shown in the following equation (1).

Q=(a+bu)(T−Ta) 式(1)
ここで、Qは発熱体の発熱量、uは流速、Tは発熱体温度、Taは周囲流体の温度、a及びbは定数で、発熱体の素材や構造に依存する値である。
Q = (a + bu) (T−Ta) Formula (1)
Here, Q is the amount of heat generated by the heating element, u is the flow velocity, T is the temperature of the heating element, Ta is the temperature of the surrounding fluid, and a and b are constants, which depend on the material and structure of the heating element.

上記式(1)から、流速を計測するには、発熱量Qが一定の場合には、発熱体温度T及び周囲流体の温度Taの温度を計測して求めなければならない。又、発熱量Qが不定の場合には、発熱量Q、発熱体温度T、周囲流体の温度Taを計測し、求めなければならない。なお、a及びbは、発熱体の素材や構造に依存する値であるから、素材や構造が同一であれば、原理的には、a及びbも定まる値である。   From the above equation (1), in order to measure the flow velocity, when the calorific value Q is constant, the temperature of the heating element temperature T and the temperature Ta of the surrounding fluid must be measured. Further, when the heat generation amount Q is indefinite, the heat generation amount Q, the heating element temperature T, and the temperature Ta of the surrounding fluid must be measured and obtained. In addition, since a and b are values depending on the material and structure of the heating element, if the material and structure are the same, in principle, a and b are also determined values.

図12は従来例1を示すもので、風速検出用のセンサを自己発熱させるために、この風速検出素子63の制御回路として昇圧回路60や定電流回路61、電流電圧変換回路62等が必要である。なお、風速検出素子63は、白金抵抗体を用いた場合には、昇圧回路60は必ずしも必要ではない。又、従来例1の風速検出素子63の場合、ブリッジ回路を用いて電圧値に変換し、この電圧値を増幅して、コンピュータの演算処理装置の風速値変換部64により流速値を算出している。なお、基準抵抗65及び気温検出素子66は、周囲流体の温度を測定している。   FIG. 12 shows Conventional Example 1. In order to cause the wind speed detection sensor to self-heat, a booster circuit 60, a constant current circuit 61, a current-voltage conversion circuit 62, and the like are required as a control circuit for the wind speed detection element 63. is there. The wind speed detecting element 63 is not necessarily required when the platinum resistor is used. Further, in the case of the wind speed detecting element 63 of the conventional example 1, it is converted into a voltage value by using a bridge circuit, this voltage value is amplified, and the flow velocity value is calculated by the wind speed value converting section 64 of the computer processing unit. Yes. The reference resistor 65 and the air temperature detection element 66 measure the temperature of the surrounding fluid.

この際、ブリッジ回路には高精度で比較的高価な部品が用いられているとともに、このブリッジ回路は、出荷時や設置の際には、ブリッジ回路自体の調整作業が必要である。さらに、定電流回路61や電流電圧変換回路62については、それぞれの回路特性の固体差の調整やコンピュータへの記録等の作業も行う必要がある。   At this time, high-precision and relatively expensive parts are used for the bridge circuit, and the bridge circuit needs to be adjusted at the time of shipment or installation. Further, for the constant current circuit 61 and the current-voltage conversion circuit 62, it is necessary to perform operations such as adjustment of individual differences in circuit characteristics and recording to a computer.

又、風速検出用の素子として適した素子は、限られた部品若しくは特注品となる。特に、白金抵抗体を用いた場合には、特性は規格化されているが、ほとんどは特注生産品でまかなわれているのが現状であり、コスト高の原因となっている。さらに、発熱体温度Tを検出するための測温素子と発熱源となるヒータとは、同一素子で構成されており、これも又コスト高の原因の1つとなっている。   Also, elements suitable as elements for detecting the wind speed are limited parts or custom-made products. In particular, when a platinum resistor is used, the characteristics are standardized, but most of them are provided by custom-made products, which causes high costs. Furthermore, the temperature measuring element for detecting the heating element temperature T and the heater as the heat source are composed of the same element, which is also one of the causes of high cost.

そこで、発熱体温度Tを検出するための測温素子と発熱源となるヒータとを、同一素子で構成することによるコスト高を解決する手段として、図13に示すように、風速検出素子73とヒータ71とに分離する回路構成が提案されている。75は基準抵抗、76は気温検出素子、74は風速値変換(マイコン等)である。   Therefore, as a means for solving the high cost by configuring the temperature measuring element for detecting the heating element temperature T and the heater as the heat generation source with the same element, as shown in FIG. A circuit configuration separated into the heater 71 has been proposed. 75 is a reference resistance, 76 is an air temperature detecting element, and 74 is a wind speed value conversion (such as a microcomputer).

この図13の回路構成の場合には、発熱体温度Tを検出するための風速検出素子73とヒータ71とは、熱的に直接接続されている。即ち、物理的に接合されている。図13に示す回路構成と図12に示す回路構成とを比較すると、図13に示す回路構成は簡略化されている。従って、簡略化された分それだけコストを削減することが出来る。   In the case of the circuit configuration of FIG. 13, the wind speed detecting element 73 for detecting the heating element temperature T and the heater 71 are thermally connected directly. That is, they are physically joined. When the circuit configuration shown in FIG. 13 is compared with the circuit configuration shown in FIG. 12, the circuit configuration shown in FIG. 13 is simplified. Therefore, the cost can be reduced correspondingly.

一方、図14に示す従来例2のものは、発明者が、リード線付きの素子(ヒータ素子80と測温素子81)で流速検出部を構成した試作品で、ヒータ素子80と測温素子81とを分離した構造の流速・流量センサである。この試作品では、加熱用のヒータ電源82に接続されたヒータ素子80と、このヒータ素子80から伝わる熱の温度を測定する測温素子81とは、リード線83を介して接続した構造となっている。   On the other hand, the thing of the prior art example 2 shown in FIG. 14 is a prototype in which the inventor constituted the flow velocity detection part by the element (the heater element 80 and the temperature measuring element 81) with a lead wire, and the heater element 80 and the temperature measuring element 81 is a flow velocity / flow rate sensor having a structure separated from 81. In this prototype, a heater element 80 connected to a heater power supply 82 for heating and a temperature measuring element 81 for measuring the temperature of heat transmitted from the heater element 80 are connected via a lead wire 83. ing.

そのため、リード線83を介してヒータ素子80から測温素子81へと伝導する熱の熱伝導速度が悪く、一度熱を奪われると測温素子81の温度上昇に時間がかかる。その上、リード線83の接続位置や接続のための半田付けの際の半田の量によっても熱伝導速度が変動する等の問題もあり、コスト削減、実用化にはほど遠いものであった。   Therefore, the heat conduction speed of heat conducted from the heater element 80 to the temperature measuring element 81 via the lead wire 83 is poor, and it takes time to increase the temperature of the temperature measuring element 81 once the heat is deprived. In addition, there is a problem that the heat conduction speed fluctuates depending on the connection position of the lead wire 83 and the amount of solder at the time of soldering for connection, which is far from cost reduction and practical use.

そこで、発明者の試作品の問題点を解決するひとつの手段(従来例3)として、1mm以下の薄い板状の物質に、ヒータと流速検出用の測温素子を形成する方法が実用化されている。これは、板状の基板の表面に、蒸着やエッチング等の化学的処理により、素子を直接基板に形成する方法である。   Therefore, as a means for solving the problems of the prototype of the inventor (conventional example 3), a method of forming a heater and a temperature measuring element for detecting a flow rate on a thin plate-like material of 1 mm or less has been put into practical use. ing. This is a method in which an element is directly formed on a surface of a plate-like substrate by chemical treatment such as vapor deposition or etching.

この熱式流速・流量センサでは、シリコン基板やその他の電子基板等の単一の基板上に、流速検出部と気温計測部とが設けられており、ヒータにより流速検出部を発熱させる必要がある。そのため、流速検出部と気温計測部とを単一の基板上に設けた場合、気温計測部は、基板を伝わる流速検出部からの熱の影響を受け、正確な気温を計測することが出来ないという問題がある。   In this thermal flow rate / flow rate sensor, a flow rate detection unit and an air temperature measurement unit are provided on a single substrate such as a silicon substrate or other electronic substrate, and the flow rate detection unit must be heated by a heater. . Therefore, when the flow velocity detection unit and the temperature measurement unit are provided on a single substrate, the temperature measurement unit is affected by the heat from the flow velocity detection unit that travels through the substrate and cannot accurately measure the temperature. There is a problem.

そこで、図15(a)、(b)に示す従来例4のものは、熱式風速センサの基板部材としては、熱伝導率の低いセラミック基板90を用いるとともに、このセラミック基板90の一端側に、風速検出用センサRHを、他端側に温度補償用のセンサである気温計測用センサRTを白金材料の印刷又は蒸着によって直接形成している。このように、風速検出用センサRHと気温計測用センサRTを同一のセラミック基板90の両端に間隙を介して配置することにより、気温計測用センサRTが、セラミック基板90を伝わる風速検出センサRHからの熱の影響をなるべく受けないように構成されている。なお、91はハイブリッドICである。   Therefore, in the conventional example 4 shown in FIGS. 15A and 15B, a ceramic substrate 90 having low thermal conductivity is used as a substrate member of the thermal wind speed sensor, and one end side of the ceramic substrate 90 is used. The wind speed detecting sensor RH and the temperature measuring sensor RT, which is a temperature compensating sensor, are directly formed on the other end side by printing or vapor deposition of a platinum material. In this way, by arranging the wind speed detection sensor RH and the temperature measurement sensor RT on both ends of the same ceramic substrate 90 via the gap, the temperature measurement sensor RT is separated from the wind speed detection sensor RH transmitted through the ceramic substrate 90. It is configured so as not to be affected by the heat of as much as possible. Reference numeral 91 denotes a hybrid IC.

又、図16に示す従来例5のものは、熱式流速・流量センサ100の流量検出部が外的衝撃により損傷する可能性がある場合には、サーミスタ(流体温度検出用素子)102と、このサーミスタ102を保護するプロテクタ101とをユニットとして一体化を図った構造としている。このようにユニットとして一体化した構造のものは、パイプ取付の際、すでにユニットとして一体化されており、一体成型で製造されているものではない。又、流量検出部の発熱による火傷を防止するためにも、プロテクタ101のような保護ガードが必要であり、この保護ガードは、一般的には別部品として製造し、これを組み合わせなければならない。なお、103は検出用通路、104は回路ケース、105は構造体である。   In the case of the conventional example 5 shown in FIG. 16, the thermistor (fluid temperature detecting element) 102 and the flow rate detecting portion of the thermal flow rate / flow rate sensor 100 may be damaged by an external impact, The protector 101 that protects the thermistor 102 is integrated as a unit. Thus, the thing of the structure integrated as a unit is already integrated as a unit at the time of pipe attachment, and is not manufactured by integral molding. Also, in order to prevent burns due to heat generation in the flow rate detection unit, a protective guard such as the protector 101 is necessary, and this protective guard is generally manufactured as a separate part and must be combined. Reference numeral 103 denotes a detection passage, 104 denotes a circuit case, and 105 denotes a structure.

特開平10−274552号公報JP-A-10-274552 特開2008−241318号公報JP 2008-241318 A 特開平6−249864号公報JP-A-6-249864 特許第3553422号公報Japanese Patent No. 3553422

図12に示す従来例1に述べた流速検出用の素子は、数mm〜数十mm程度の大きさのものが用いられており、電気信号を伝達する導線が細い場合には、手作業でリード線を伸ばして固定する必要があり、一般に普及している電子部品の自動搭載機等の自動組立機(自動搭載機)を用いることが出来ない。このため、手作業による組み立て、あるいは、特注品としての自動組立機を新たに作成して、これを用いるしか方法がなく、これもコスト高の原因となっている。   The element for detecting the flow velocity described in the conventional example 1 shown in FIG. 12 has a size of several millimeters to several tens of millimeters. It is necessary to extend and fix the lead wire, and it is not possible to use an automatic assembly machine (automatic mounting machine) such as an electronic component automatic mounting machine that is generally used. For this reason, there is only a method for manually assembling or creating a new automatic assembly machine as a custom-made product and using it, which also causes high costs.

さらに、従来例1の風速検出素子63は、風速検出部に白金抵抗体やサーミスタ等の測温素子が用いられており、この測温素子に付属している細い銅線で支持されている構造となっているが、この銅線で支える構造は、機械的衝撃に弱く、その上、金属であるため錆や腐食による破損等のため、長期間の連続使用には不適当である。そこで、耐久性を向上させるためには、風速検出素子63及び付属の銅線を太くするという選択肢もあるが、この場合には、応答性が悪く、性能が劣化するため、現実的ではないという問題がある。   Furthermore, the wind speed detecting element 63 of the conventional example 1 uses a temperature measuring element such as a platinum resistor or a thermistor in the wind speed detecting section, and is supported by a thin copper wire attached to the temperature measuring element. However, the structure supported by the copper wire is weak against mechanical impacts, and moreover, because it is a metal, it is not suitable for long-term continuous use due to damage caused by rust or corrosion. Therefore, in order to improve the durability, there is an option of thickening the wind speed detecting element 63 and the attached copper wire, but in this case, the response is poor and the performance deteriorates, so it is not realistic. There's a problem.

又、図13に示すように、発熱体温度Tを検出するための回路構成を簡略化したものは、図12に示す回路構成のものと比較して、その回路構成は簡略化され、コスト削減出来るが、発熱体温度Tを検出するための風速検出素子73とヒータ71とを熱的に直接接続する際の物理的な接合が問題となる。即ち、風速検出素子73とヒータ71との物理的な接合がある程度一定にならなければ、固体差が大きくなり、流速・流量センサとしての固定調整の手間が増加する。個体差が大きい場合には、上記式(1)に示すKingの式からも明らかであるように、定数a及び定数bについても固体別に求めなければならない。従って、製品調整の手間が増大するとともに、検出部の互換性も悪いという問題がある。   Further, as shown in FIG. 13, the circuit configuration for detecting the heating element temperature T is simplified, compared with the circuit configuration shown in FIG. 12, and the cost is reduced. However, there is a problem of physical joining when the wind speed detecting element 73 for detecting the heating element temperature T and the heater 71 are directly connected thermally. That is, if the physical connection between the wind speed detection element 73 and the heater 71 is not constant to some extent, the difference in solids increases, and the labor for fixing adjustment as a flow velocity / flow rate sensor increases. When the individual difference is large, the constant a and the constant b must be obtained for each individual, as is apparent from the King equation shown in the above equation (1). Therefore, there is a problem that the labor for product adjustment increases and the compatibility of the detection unit is also poor.

又、ヒータ71と風速検出素子73との熱伝導面の距離が離れていると、応答性が悪くなるという問題もある。   Further, when the distance between the heat conducting surfaces of the heater 71 and the wind speed detecting element 73 is increased, there is a problem that the responsiveness is deteriorated.

又、半導体製造プロセスを用いたデバイスの製造方法であるMEMS(Micro Electric Mechanical System:以下、MEMSと記す)を用いて製造した流速検出用素子があり、このMEMSを利用することにより、素子の製造過程において自動化が図られているものがある。しかしながら、一般にMEMSでは、生産数量が多いほど素子の製造単価は安くなるが、特に一般的な板状の電子基板の製造方法における版代と比較すると、MEMSの版代は非常に高価であるため、生産数量の少ない製品の場合には素子の販売単価が高くなるという問題がある。その上、上記したように版代が非常に高価であるため、素子のカスタマイズやバリエーション展開する際にはコスト的な制限があるという問題がある。   In addition, there is a flow velocity detecting element manufactured using MEMS (Micro Electric Mechanical System: hereinafter referred to as MEMS) which is a method of manufacturing a device using a semiconductor manufacturing process. By using this MEMS, manufacturing of the element is possible. Some are automated in the process. However, in general, in MEMS, the higher the production quantity, the lower the unit manufacturing cost of an element. However, the plate cost of MEMS is very expensive, especially compared to the plate cost in a general plate-shaped electronic substrate manufacturing method. In the case of a product with a small production quantity, there is a problem that the unit sales price of the element becomes high. In addition, since the plate cost is very expensive as described above, there is a problem that there is a cost limitation when customizing elements or developing variations.

又、従来例2に述べたように、ヒータ素子80と測温素子81とを分離して、ヒータ素子80と測温素子81とをリード線83を介して接続した構造のものは、リード線83を介してのヒータ素子80から測温素子81へと熱が伝導する際の熱伝導速度が悪く、一度熱を奪われると測温素子81の温度上昇に時間がかかるという問題がある。その上、リード線83の接続位置や接続のための半田付けの際の半田の量によっても熱伝導速度が変動する等の問題もある。   Further, as described in the conventional example 2, the heater element 80 and the temperature measuring element 81 are separated and the heater element 80 and the temperature measuring element 81 are connected via the lead wire 83. There is a problem that the heat conduction speed when heat is conducted from the heater element 80 to the temperature measuring element 81 through 83 is poor, and it takes time to increase the temperature of the temperature measuring element 81 once the heat is deprived. In addition, there is a problem that the heat conduction speed varies depending on the connection position of the lead wire 83 and the amount of solder at the time of soldering for connection.

又、従来例2に記載の素子に限らず、一般的に、流速を検出するための流速検出部の温度を上昇させる際、少ない電気エネルギーで、発熱量を確保するには、リード線をなるべく細くすることにより、リード線を伝って放散する熱量を抑える必要があるが、リード線を細くすれば、機械的衝撃に対して弱くなるという問題がある。   In addition to the elements described in the conventional example 2, in general, when increasing the temperature of the flow velocity detection unit for detecting the flow velocity, in order to secure a heat generation amount with a small amount of electric energy, a lead wire is preferably used. Although it is necessary to reduce the amount of heat dissipated through the lead wire by making it thin, there is a problem that if the lead wire is made thin, it becomes weak against mechanical shock.

又、従来例3として述べたように、板状の基板の表面に、蒸着やエッチング等の化学的処理により、素子を直接基板に形成する方法では、蒸着やエッチング等の化学的処理を行うための設備や装置、微細加工技術、精度を高めるためのノウハウの蓄積が必要な技術分野であり、製造技術が容易ではなく、大量生産を行わない限り、コスト削減にはほど遠い技術分野であるという問題がある。   In addition, as described in the conventional example 3, in the method of directly forming an element on the surface of a plate-like substrate by chemical treatment such as vapor deposition or etching, chemical treatment such as vapor deposition or etching is performed. Equipment and equipment, microfabrication technology, and technical fields that require accumulation of know-how to improve accuracy, manufacturing technology is not easy, and it is far from cost reduction unless mass production is performed. There is.

図15に示す従来例4に記載のものは、ダクト内の風速を計測することを前提としており、気流が単一指向性の場合にしか用いることが出来ないという問題がある。さらに、風速検出用センサRHと気温計測用センサRTとの間に距離を設けているため、特に、微風速の場合には、風速検出用センサRHと気温計測用センサRTとが接している空気の条件が異なる事による計測精度への影響を考慮しなければならない。又、ハイブリッドIC91をセラミック基板90の中央に配置することを前提としているため、ハイブリッドIC91による気流の乱れが計測値に及ぼす影響も考慮する必要があるという問題がある。又、RHとRTの間隔を短くすると熱伝導の影響が無視できなくなるため、小型化するには限界があるという問題もある。   The thing of the prior art example 4 shown in FIG. 15 presupposes measuring the wind speed in a duct, and there exists a problem that it can be used only when an airflow is unidirectional. Further, since a distance is provided between the wind speed detection sensor RH and the temperature measurement sensor RT, the air in which the wind speed detection sensor RH and the temperature measurement sensor RT are in contact particularly in the case of a slight wind speed. The effect on measurement accuracy due to different conditions must be taken into account. Further, since it is assumed that the hybrid IC 91 is arranged at the center of the ceramic substrate 90, there is a problem that it is necessary to consider the influence of the turbulence of the air flow by the hybrid IC 91 on the measurement value. In addition, if the distance between RH and RT is shortened, the influence of heat conduction cannot be ignored, so there is a problem that there is a limit to downsizing.

図16に示す従来例5に記載のものは、熱式流速・流量センサの流速検出部が外的衝撃により損傷する可能性がある場合には、保護ガード等により流速検出部を保護するためにも、又、流速検出部の発熱による火傷を防止するためにも、保護ガードが必要であり、この保護ガードは、プローブ形状の保護ガードが用いられるが、一般的に別部品として製造して組み合わせる等するため、製造コスト、組み立てコストが発生するという問題がある。   In the case of the conventional example 5 shown in FIG. 16, when there is a possibility that the flow rate detection part of the thermal flow rate / flow rate sensor is damaged by an external impact, the flow rate detection part is protected by a protective guard or the like. In addition, in order to prevent burns due to heat generation in the flow velocity detection unit, a protective guard is necessary, and this protective guard is a probe-shaped protective guard, but is generally manufactured and combined as a separate part. Therefore, there is a problem that manufacturing costs and assembly costs occur.

以上の多くの問題点から、この発明では、熱式流速・流量センサの製造方法及びその熱式流速・流量センサにおいて、流速検出用の発熱部(ヒータ素子)及びこの発熱部からの熱の温度を計測する流速検出部の基板として、単一の板状の基板を用いることにより、汎用の基板製造装置を用いるとともに、さらに、流速検出部へ実装する電子部品は、汎用の自動搭載機を用いて汎用の表面実装部品を実装することにより、流速検出部を形成することを第1の目的とし、さらに、流速検出部の周囲及び気温計測部との間に空間を設けることにより、流速検出部の発熱部から気温計測部への熱伝導を少なくすることを第2の目的としている。又、気温計測部の周囲にも空間を設けて流速検出部の発熱部からの熱伝導をさらに少なくすることにより、流速検出部からの熱による気温計測部に与える影響を少なくすることを第3の目的としている。さらに、基板から突出した構造となっている流速検出部を保護するガード部を設けることにより、外部からの衝撃による熱式流速・流量センサの損傷防止及び流速検出部の誤接触による火傷防止を第4の目的としている。   In view of the many problems described above, the present invention provides a method of manufacturing a thermal flow rate / flow rate sensor and a thermal flow rate / flow rate sensor, and a heat generation part (heater element) for detecting a flow rate and the temperature of heat from the heat generation unit. A single plate-like substrate is used as the substrate for the flow velocity detection unit for measuring the flow rate, and a general-purpose substrate manufacturing apparatus is used, and further, electronic components mounted on the flow velocity detection unit use a general-purpose automatic mounting machine. The first object is to form a flow velocity detection unit by mounting general-purpose surface mount components, and by providing a space between the flow velocity detection unit and the air temperature measurement unit, the flow velocity detection unit The second object is to reduce heat conduction from the heat generating part to the temperature measuring part. In addition, by providing a space around the temperature measurement unit to further reduce the heat conduction from the heat generation unit of the flow rate detection unit, the third effect is to reduce the influence of the heat from the flow rate detection unit on the temperature measurement unit. The purpose is. In addition, by providing a guard that protects the flow velocity detector that has a structure protruding from the substrate, it is possible to prevent damage to the thermal flow velocity / flow sensor due to external impact and to prevent burns due to erroneous contact of the flow velocity detector. The purpose of 4 is.

請求項に係る発明は、供給電流により熱を発生するヒータ素子と、流速に応じて変化するヒータ素子からの熱の温度を検出する測温素子とを有する流速検出部とからなる流体の流速及び流量を計測する熱式流速・流量センサの製造方法において、
ヒータ素子及び測温素子は、汎用の表面実装部品であり、熱式流速・流量センサの板状の単一の基板から、この基板の主要部である基板主要部を構成する帯状外周部を、基板と一体的に形成し、帯状外周部を構成する基板主要部から互いに中心方向へ一体的に延びた細長形状の一対の流速検出部用支持部と、この一対の流速検出部用支持部の先端部に支持する流速検出部を実装する基板部分とを、基板主要部と一体的に形成し、流速検出部を実装する基板部分に流速検出部用の回路パターンを形成し、流速検出部を実装する基板部分の表面実装箇所の一方の面に、ヒータ素子を実装し、このヒータ素子の表面実装箇所に対向位置させて、測温素子を、流速検出部を実装する基板部分の表面実装箇所の他方の面に実装し、ヒータ素子と測温素子とを流速検出部を実装する基板部分の表面実装箇所両面に配置して実装することにより、この表面実装箇所における基板部分を介してヒータ素子と測温素子とが熱的に直接接続してなる流速検出部を形成し、この流速検出部を実装する基板部分の表面実装箇所と、この表面実装箇所から基板主要部へと一体的に延びる一対の流速検出部用支持部と、帯状外周部とを残して、基板の周辺部を切断することにより、帯状外周部を構成する基板主要部を、流速検出部を保護するガード部とするとともに、流速検出部の周囲に空間を設けた構造となるように、汎用の基板製造装置を用いて形成した熱式流速・流量センサの製造方法である。
The invention according to claim 1 is a fluid flow velocity comprising a heater element that generates heat by a supply current, and a flow velocity detector having a temperature measuring element that detects the temperature of the heat from the heater element that changes according to the flow velocity. And a method of manufacturing a thermal flow rate / flow rate sensor for measuring the flow rate,
The heater element and the temperature measuring element are general-purpose surface-mount components, and from a single substrate of the thermal flow rate / flow rate sensor, the belt-shaped outer peripheral portion constituting the main part of the substrate, which is the main part of the substrate, A pair of elongated flow velocity detecting portion support portions integrally formed with the substrate and extending integrally from the main portion of the substrate constituting the belt-shaped outer peripheral portion toward the center, and the pair of flow velocity detection portion support portions A substrate portion on which the flow velocity detection unit supported at the tip is mounted integrally with the main portion of the substrate, a circuit pattern for the flow velocity detection portion is formed on the substrate portion on which the flow velocity detection portion is mounted, and the flow velocity detection portion is A heater element is mounted on one surface of the surface mounting part of the board part to be mounted, and the temperature measuring element is placed opposite to the surface mounting part of the heater element, and the surface mounting part of the board part on which the flow velocity detector is mounted. Mounted on the other side of the heater element and temperature sensor Is installed on both surfaces of the surface mounting part of the board part where the flow rate detection unit is mounted, and the heater element and the temperature measuring element are thermally connected directly via the board part at the surface mounting part. A surface mounting portion of the substrate portion on which the detection portion is formed and the flow velocity detection portion is mounted, a pair of flow velocity detection portion support portions extending integrally from the surface mounting portion to the main portion of the substrate, and a belt-shaped outer peripheral portion. By leaving the peripheral part of the substrate, the main part of the substrate constituting the belt-shaped outer peripheral part is used as a guard part for protecting the flow rate detection part, and a space is provided around the flow rate detection part. And a method of manufacturing a thermal flow rate / flow rate sensor formed using a general-purpose substrate manufacturing apparatus.

請求項に係る発明は、供給電流により熱を発生するヒータ素子と、流速に応じて変化するヒータ素子からの熱の温度を検出する測温素子とを有する流速検出部と、気温を計測する気温計測用素子を有する気温計測部とからなる流体の流速及び流量を計測する熱式流速・流量センサの製造方法において、
ヒータ素子及び測温素子及び気温計測用素子は汎用の表面実装部品であり、熱式流速・流量センサの板状の単一の基板から、この基板の主要部である基板主要部を構成する帯状外周部を、基板と一体的に形成し、基板の一端中央部分に、基板主要部から一体的に延びた細長形状の流速検出部用支持部を、基板と一体的に形成し、この流速検出部用支持部の先端部に、流速検出部を実装する基板部分が帯状外周部の中心部分に位置するように形成するとともに、この基板部分に流速検出部用の回路パターンを形成し、帯状外周部に気温計測部用の回路パターンを形成し、流速検出部を実装する基板部分の表面実装箇所に、ヒータ素子と測温素子とを互いに隣接して配置して実装することによりヒータ素子と測温素子とが熱的に直接接続してなる流速検出部を形成し、帯状外周部の表面実装箇所に、気温計測素子を実装してなる気温計測部を形成し、流速検出部を実装する基板部分の表面実装箇所と、この表面実装箇所から基板主要部へと一体的に延びる流速検出部用支持部と、帯状外周部とを残して、基板の周辺部を切断することにより、表面実装箇所に形成した流速検出部を、流速検出部用支持部により基板主要部に支持した構造に形成するとともに、帯状外周部を構成する基板主要部を、流速検出部を保護するガード部とし、且つ、流速検出部及び気温計測素子の周囲に空間を設けるとともに、流速検出部及び気温計測素子との間に、空間を設け、且つ、板状の基板主要部を設けた構造となるように汎用の基板製造装置を用いて形成した熱式流速・流量センサの製造方法である。
According to a second aspect of the present invention, a flow rate detector having a heater element that generates heat by a supply current, and a temperature measuring element that detects the temperature of the heat from the heater element that changes in accordance with the flow rate, and measures the temperature. In the manufacturing method of the thermal flow rate / flow rate sensor for measuring the flow rate and flow rate of the fluid comprising the temperature measurement unit having the temperature measurement element,
The heater element, temperature measuring element, and air temperature measuring element are general-purpose surface-mount components, and a belt-shaped structure that forms the main part of this board from a single plate-like board of the thermal flow rate / flow rate sensor The outer peripheral part is formed integrally with the substrate, and a slender flow rate detection part support part integrally extending from the main part of the substrate is formed integrally with the substrate at the central part of one end of the substrate. At the tip of the support part for the part, the substrate part for mounting the flow velocity detection part is formed so as to be positioned at the center part of the belt-like outer peripheral part, and the circuit pattern for the flow velocity detection part is formed on this substrate part, A circuit pattern for the air temperature measurement unit is formed on the surface, and the heater element and the temperature measurement element are mounted adjacent to each other on the surface mounting portion of the board portion on which the flow velocity detection unit is mounted. Thermally connected directly to the temperature element A speed detector is formed, an air temperature measuring unit is formed by mounting an air temperature measuring element on the surface mounting part of the belt-shaped outer periphery, and the surface mounting part of the substrate part on which the flow velocity detecting part is mounted and the surface mounting part The flow rate detection unit formed at the surface mounting location is cut for the flow rate detection unit by cutting the peripheral part of the substrate, leaving the support for the flow rate detection unit extending integrally to the main part of the substrate and the belt-shaped outer periphery. It is formed in a structure that is supported by the main part of the substrate by the support part, and the main part of the substrate constituting the belt-shaped outer peripheral part is used as a guard part that protects the flow rate detection part, and a space is provided around the flow rate detection part and the temperature measurement element. A thermal flow velocity / flow rate formed using a general-purpose substrate manufacturing device so that a space is provided between the flow velocity detection unit and the air temperature measurement element, and a plate-shaped substrate main part is provided. It is a manufacturing method of a sensor.

請求項に係る発明は、供給電流により熱を発生するヒータ素子と、流速に応じて変化するヒータ素子からの熱の温度を検出する測温素子とを有する流速検出部とからなる流体の流速及び流量を計測する熱式流速・流量センサにおいて、
熱式流速・流量センサの板状の単一の基板と、この基板から一体的に形成した基板の主要部である基板主要部を構成する帯状外周部と、この帯状外周部を構成する基板主要部から互いに中心方向へ一体的に延びた細長形状の一対の流速検出部用支持部と、この一対の流速検出部用支持部の先端部に支持するとともに、基板主要部と一体的に形成してなる流速検出部を実装する基板部分と、この基板部分に形成した流速検出部用の回路パターンと、
流速検出部を実装する基板部分の表面実装箇所の一方の面に実装した汎用の表面実装部品であるヒータ素子と、このヒータ素子の表面実装箇所に対向位置する流速検出部を実装する基板部分の表面実装箇所の他方の面に実装した汎用の表面実装部品である測温素子と、ヒータ素子と測温素子とを流速検出部を実装する基板部分の表面実装箇所両面に配置して実装することにより、この表面実装箇所における基板部分を介してヒータ素子と測温素子とが熱的に直接接続してなる流速検出部とからなり、この流速検出部を実装する基板部分の表面実装箇所と、この表面実装箇所から基板主要部へと一体的に延びる一対の流速検出部用支持部と、帯状外周部とを残して、基板の周辺部を切断することにより、帯状外周部を構成する基板主要部を、流速検出部を保護するガード部とするとともに、流速検出部の周囲に空間を設けた構造となるように、汎用の基板製造装置を用いて形成した熱式流速・流量センサである。
According to a third aspect of the present invention, there is provided a fluid flow velocity comprising a heater element that generates heat by a supply current, and a flow velocity detection unit that includes a temperature measuring element that detects the temperature of heat from the heater element that varies according to the flow velocity. And in the thermal flow rate / flow rate sensor that measures the flow rate,
A single plate-like substrate of the thermal flow rate / flow rate sensor, a belt-like outer peripheral portion constituting the main portion of the substrate integrally formed from this substrate, and a main substrate constituting this belt-like outer peripheral portion A pair of elongated flow velocity detecting portion support portions integrally extending from the first portion toward the center, and a pair of flow velocity detection portion support portions that are supported at the distal ends of the pair of flow velocity detection portion support portions and integrally formed with the main portion of the substrate. A circuit board portion for mounting the flow velocity detection unit, a circuit pattern for the flow velocity detection unit formed on the substrate part,
A heater element that is a general-purpose surface-mounted component mounted on one surface of a surface mounting portion of a substrate portion on which a flow velocity detection unit is mounted, and a substrate portion that mounts a flow velocity detection portion facing the surface mounting portion of the heater element. Mount the temperature sensor, which is a general-purpose surface-mounted component mounted on the other surface of the surface-mounted part, and the heater element and the temperature sensor on both surface-mounted parts of the board part where the flow velocity detector is mounted. From the flow rate detection unit in which the heater element and the temperature measuring element are thermally connected directly via the substrate part in the surface mounting location, the surface mounting location of the substrate portion on which the flow rate detection unit is mounted, The main substrate constituting the belt-shaped outer peripheral portion is formed by cutting the peripheral portion of the substrate while leaving a pair of flow velocity detecting portion supporting portions integrally extending from the surface mounting portion to the main substrate portion and the belt-shaped outer peripheral portion. Part, flow With a guard portion for protecting the detector, so that a structure in which a space around the flow rate detecting unit, a thermal type flow rate-flow sensor formed by using a general-purpose substrate manufacturing apparatus.

請求項に係る発明は、供給電流により熱を発生するヒータ素子と、流速に応じて変化するヒータ素子からの熱の温度を検出する測温素子とを有する流速検出部と、気温を計測する気温計測用素子を有する気温計測部とからなる流体の流速及び流量を計測する熱式流速・流量センサにおいて、
熱式流速・流量センサの板状の単一の基板と、この基板から一体的に形成した基板の主要部である基板主要部を構成する帯状外周部と、この基板の一端中央部分に、基板と一体的に形成するとともに、基板主要部から一体的に延びる細長形状に形成した流速検出部用支持部と、この流速検出部用支持部の先端部に形成するとともに、帯状外周部の中心部分に位置するように形成してなる流速検出部を実装する基板部分と、この基板部分に形成した流速検出部用の回路パターンと、帯状外周部に形成した気温計測部用の回路パターンと、流速検出部を実装する基板部分の表面実装箇所に形成され、汎用の表面実装部品であるヒータ素子と汎用の表面実装部品である測温素子とを互いに隣接して配置して実装することによりヒータ素子と測温素子とが熱的に直接接続してなる流速検出部と、帯状外周部の表面実装箇所に実装した汎用の表面実装部品である気温計測素子と、流速検出部を実装する基板部分の表面実装箇所と、この表面実装箇所から基板主要部へと一体的に延びる流速検出部用支持部と、帯状外周部とを残して、基板の周辺部を切断することにより、表面実装箇所に形成した流速検出部を、流速検出部用支持部により基板主要部に支持した構造に形成するとともに、帯状外周部を構成する基板主要部を、流速検出部を保護するガード部とし、且つ、流速検出部及び気温計測素子の周囲に空間を設けるとともに、流速検出部及び気温計測素子との間に、空間を設け、且つ、板状の基板主要部を設けた構造となるように汎用の基板製造装置を用いて形成した熱式流速・流量センサである。
According to a fourth aspect of the present invention, a flow rate detector having a heater element that generates heat by a supply current, and a temperature measuring element that detects a temperature of heat from the heater element that changes in accordance with the flow rate, and measures the temperature. In a thermal flow rate / flow rate sensor that measures the flow rate and flow rate of a fluid consisting of an air temperature measurement unit having an air temperature measurement element,
A single plate-like substrate of the thermal flow rate / flow rate sensor, a belt-shaped outer peripheral portion constituting the main portion of the substrate, which is the main portion of the substrate integrally formed from this substrate, and a substrate at one central portion of this substrate And a flow rate detecting portion supporting portion formed in an elongated shape integrally extending from the main portion of the substrate, and formed at the tip portion of the flow velocity detecting portion supporting portion, and at the center portion of the belt-shaped outer peripheral portion A circuit board part for mounting a flow velocity detection unit formed so as to be located on the substrate, a circuit pattern for the flow velocity detection unit formed on the substrate part, a circuit pattern for the air temperature measurement unit formed on the belt-shaped outer periphery, and a flow rate A heater element formed by mounting a heater element, which is a general-purpose surface-mounted component, and a temperature-measuring element, which is a general-purpose surface-mounted component, arranged adjacent to each other and mounted on a surface-mounted portion of a substrate portion on which the detection unit is mounted And temperature sensor A flow rate detection unit that is directly connected thermally, a temperature measurement element that is a general-purpose surface-mounted component mounted on a surface-mounted location on the outer periphery of the belt, and a surface-mounted location on the board portion on which the flow rate detection unit is mounted, The flow velocity detector formed at the surface mount location is cut by cutting the peripheral portion of the substrate, leaving the support portion for the flow velocity detection portion extending integrally from the surface mount location to the main part of the substrate and the belt-shaped outer peripheral portion. The substrate main part that forms the belt-shaped outer peripheral part is formed as a guard part that protects the flow rate detecting part, and the flow rate detecting part and the temperature measuring element In addition, a space is provided between the flow velocity detection unit and the temperature measurement element, and a general substrate manufacturing apparatus is used so that a plate-like substrate main part is provided. Thermal flow rate / flow rate sensor It is.

請求項1及び請求項に係る発明は、上記のように構成したので、流速検出部用支持部9を基板部分1aと同じ部材で形成した場合、従来のリード線のように細くする必要がなく、その機械的強度はより高くなるという効果がある。さらに、流速検出部5には、汎用の表面実装用の電子部品であるヒータ素子4とこのヒータからの熱の温度を計測する測温素子3とを用いて、板状の電子基板の製造方法において一般に用いられている自動実装機により各電子部品を基板に実装することが出来るので、組み立て工程の自動化が容易となり、組み立てコストが非常に安くなる。 Since the invention according to claim 1 and claim 3 is configured as described above, when the flow velocity detecting portion support portion 9 is formed of the same member as the substrate portion 1a, it is necessary to make it thin like a conventional lead wire. And there is an effect that the mechanical strength becomes higher. Further, the flow velocity detection unit 5 uses a heater element 4 which is a general-purpose electronic component for surface mounting and a temperature measuring element 3 which measures the temperature of heat from the heater, and a method for manufacturing a plate-shaped electronic substrate. Since each electronic component can be mounted on a board by an automatic mounting machine generally used in the above, the assembly process can be automated easily, and the assembly cost is very low.

又、ヒータ素子4と測温素子3とは、実装箇所の基板部分1aを介して熱的に直接接続された構造となっているので、応答性の良い流速検出部5が得られるとともに、個体差の少ない流速検出部5が得られるので、センサとしての調整も必要とせず、コストが安くなる。又、ヒータ素子4と測温素子3とは、実装箇所の基板部分1aを介して熱的に直接接続された構造となっているので、応答性の良い流速検出部5が得られるとともに、個体差の少ない流速検出部5が得られるので、センサとしての調整も必要とせず、コストが安くなる。   Moreover, since the heater element 4 and the temperature measuring element 3 have a structure in which they are thermally connected directly via the board portion 1a of the mounting location, a flow rate detection unit 5 with good responsiveness can be obtained, and an individual Since the flow velocity detection unit 5 with little difference is obtained, adjustment as a sensor is not required, and the cost is reduced. Moreover, since the heater element 4 and the temperature measuring element 3 have a structure in which they are thermally connected directly via the board portion 1a of the mounting location, a flow rate detection unit 5 with good responsiveness can be obtained, and an individual Since the flow velocity detection unit 5 with little difference is obtained, adjustment as a sensor is not required, and the cost is reduced.

その上、一般的な半導体製造プロセスを用いたデバイスの製造方法であるMEMS(Micro Electric Mechanical System )を用いて製造した流速検出用素子では、版代が高価であるため、少数生産には不適であるとともに、カスタマイズやバリエーション展開には制限がある。しかしながら、この発明の場合には、汎用の基板製造装置を用いて板状の電子基板の製造方法により製造するとともに、一般に用いられている自動搭載機を利用できるので、版代は一般的な板状の電子基板用と変わらず、非常に安価であるため、初期コストが製造単価に与える影響はMEMSに比べて軽微である。さらに、現在は、生産数量の少ない製品でも対応出来る自動組立機もあるため、生産数量が少ない製品であっても製造単価が極端に高価となることはない。その上、初期コストを安く抑えることができるため、カスタマイズやバリエーション展開も容易である。   In addition, a flow rate detecting element manufactured using MEMS (Micro Electric Mechanical System), which is a device manufacturing method using a general semiconductor manufacturing process, is not suitable for a small number of production because the plate cost is expensive. At the same time, there are restrictions on customization and variation development. However, in the case of the present invention, a plate-shaped electronic substrate is manufactured using a general-purpose substrate manufacturing apparatus and a commonly used automatic mounting machine can be used. The cost of the initial cost on the manufacturing unit price is negligible compared with MEMS because the cost is the same as for the electronic substrate. Furthermore, since there are currently automatic assembly machines that can handle products with a small production quantity, even a product with a small production quantity will not be extremely expensive. In addition, since the initial cost can be kept low, customization and variation development are easy.

また、精度が安定している汎用の電子部品を用いることが出来るとともに、一般に用いられている自動搭載機を利用できるので、個体差の少ない低コストの熱式流速・流量センサが得られる。 In addition, general-purpose electronic components with stable accuracy can be used, and a commonly used automatic mounting machine can be used, so a low-cost thermal flow rate / flow rate sensor with little individual difference can be obtained.

さらに、流速検出部用支持部22は、希望する熱伝導率に合わせてその形状(幅や長さ等)を形成することが出来るとともに、流速検出部20は流速検出部用支持部22により支持された構造であり、基板21及び流速検出部用支持部22の基板材は、実施例1の基板部分1aと同様の熱伝導率が低い部材(FR−4基板:熱伝導率は0.45W/m/K)が用いられている。その上、流速検出部用支持部22を細長く形成することにより、流速検出部20から基板21の基板主要部21bへの熱伝導を抑えることが出来るとともに、さらに、取付孔23を介して固定されている他の装置等への熱伝導をも抑えることが出来る。   Furthermore, the flow velocity detection portion support portion 22 can be formed in its shape (width, length, etc.) according to the desired thermal conductivity, and the flow velocity detection portion 20 is supported by the flow velocity detection portion support portion 22. The substrate material of the substrate 21 and the flow velocity detection unit support portion 22 is a member having a low thermal conductivity similar to that of the substrate portion 1a of the first embodiment (FR-4 substrate: thermal conductivity is 0.45 W). / M / K) is used. In addition, by forming the flow velocity detection portion support portion 22 to be elongated, heat conduction from the flow velocity detection portion 20 to the substrate main portion 21 b of the substrate 21 can be suppressed, and further, the flow velocity detection portion support portion 22 is fixed through the mounting hole 23. It is also possible to suppress heat conduction to other devices.

請求項及び請求項に係る発明は、上記のように構成したので、請求項1及び請求項3に記載の発明と同様な効果があるとともに、流速検出部40から基板主要部41bへの熱伝導を軽減することが出来る。さらに、流速検出部用支持部42を細く形成することにより、より一層の熱伝導を軽減することが出来る。又、流速検出部40と気温計測部44との間には、空間47が形成され、さらに、流速検出部40及び気温計測部44の周囲にも空間46が形成されている。その上、気温計測部44の気温計測部用支持部43を細く形成することにより、気温計測部44への熱伝導をさらに低く抑えることが出来るとともに、流速検出部40からの熱が、気温計測部44に与える影響を可能な限り少なくすることが出来る。 Since the inventions according to claims 2 and 4 are configured as described above, the same effects as the inventions according to claims 1 and 3 are obtained, and the flow velocity detection unit 40 to the substrate main part 41b is provided. Heat conduction can be reduced. Furthermore, the heat conduction can be further reduced by forming the support portion 42 for the flow velocity detection portion to be thin. A space 47 is formed between the flow velocity detection unit 40 and the air temperature measurement unit 44, and a space 46 is also formed around the flow velocity detection unit 40 and the air temperature measurement unit 44. In addition, by forming the temperature measurement unit support 43 of the temperature measurement unit 44 to be thin, the heat conduction to the temperature measurement unit 44 can be further reduced, and the heat from the flow velocity detection unit 40 is measured by the temperature measurement. The influence on the portion 44 can be reduced as much as possible.

また、測温素子3の温度が低下した場合でも、測温素子3を挟み込むように配置し、個数も増やしたヒータ素子4により、より迅速に測温素子3の温度を回復させることが出来るので、熱式流速・流量センサとしての応答性を良くすることが出来る。 Further, even when the temperature of the temperature measuring element 3 is lowered, the temperature of the temperature measuring element 3 can be recovered more quickly by the heater element 4 which is arranged so as to sandwich the temperature measuring element 3 and the number thereof is increased. Responsiveness as a thermal flow rate / flow rate sensor can be improved.

さらに、ガード部56により、基板主要部51bから流速検出部用支持部52を介して突出した状態となっている流速検出部50を保護することが出来る。さらに、このガード部56により、流速検出部50で発熱しているヒータ素子4に誤って接触することによる火傷をも防ぐ事も出来る。又、ガード部56は基板の製造段階で数値制御機械(NCM:Numerically Controlled Machine :以下、NCMと記す)等により基板とともに一体的に形成することが出来ので、製造及び組み立てコストを大幅に削減することが出来る。 Furthermore, the guard part 56 can protect the flow velocity detection part 50 in a state of protruding from the substrate main part 51 b via the flow velocity detection part support part 52. Furthermore, the guard part 56 can also prevent burns caused by erroneous contact with the heater element 4 that generates heat in the flow velocity detection part 50. The guard 56 can be integrally formed with the substrate by a numerically controlled machine (hereinafter referred to as NCM) or the like in the substrate manufacturing stage, thereby greatly reducing manufacturing and assembly costs. I can do it.

この発明の第1の実施例を示す要部模式図である。It is a principal part schematic diagram which shows the 1st Example of this invention. この発明の第2の実施例を示す要部模式図である。It is a principal part schematic diagram which shows the 2nd Example of this invention. この発明の第3の実施例を示す要部模式図である。It is a principal part schematic diagram which shows the 3rd Example of this invention. この発明の第4の実施例を示す要部模式図である。It is a principal part schematic diagram which shows the 4th Example of this invention. この発明の第4の実施例を示すもので、変形例を示す要部模式図である。The 4th Example of this invention is shown and it is a principal part schematic diagram which shows a modification. この発明の試作品と比較実験するための試作品Aの平面図及び熱伝導実験の結果を示す熱分布曲線である。It is the heat distribution curve which shows the top view of the prototype A for the comparative experiment with the prototype of this invention, and the result of a heat conduction experiment. この発明の試作品Bの平面図及び熱伝導実験の結果を示す熱分布曲線である。It is the heat distribution curve which shows the result of the top view of the prototype B of this invention, and a heat conduction experiment. この発明の試作品Cの平面図及び熱伝導実験の結果を示す熱分布曲線である。It is a heat distribution curve which shows the result of the top view of the prototype C of this invention, and a heat conduction experiment. この発明の試作品Dの平面図及び熱伝導実験の結果を示す熱分布曲線である。It is a heat distribution curve which shows the result of the top view of the prototype D of this invention, and a heat conduction experiment. この発明の試作品Eの平面図及び熱伝導実験の結果を示す熱分布曲線である。It is a heat distribution curve which shows the result of the top view of the prototype E of this invention, and a heat conduction experiment. この発明の第5の実施例を示す要部模式図である。It is a principal part schematic diagram which shows the 5th Example of this invention. 従来例1を示すもので、発熱体温度Tを検出するための測温素子と発熱源となるヒータ素子を同一素子で構成した場合のブロック図である。It is a block diagram at the time of comprising the temperature measuring element for detecting the heat generating body temperature T, and the heater element used as a heat-generation source by the same element, showing the prior art example 1. 従来例2を示すもので、発熱体温度Thを検出するための測温素子と発熱源となるヒータ素子を別々の素子で構成した場合のブロック図である。It is a block diagram at the time of comprising the temperature measuring element for detecting the heat generating body temperature Th, and the heater element used as a heat-generation source by a separate element which shows the prior art example 2. FIG. 従来例3を示すもので、発明者が試作した流速・流量センサの要部構成図である。It is a principal part block diagram of the flow velocity and the flow sensor which showed the prior art example 3, and was invented as a trial. 従来例4を示すもので、流速・流量センサの要部構成図である。It is a principal part block diagram of the flow velocity and flow volume sensor which shows the prior art example 4. FIG. 従来例5を示すもので、流速・流量センサの要部構成図である。It is a principal part block diagram of the flow velocity and flow volume sensor which shows the prior art example 5. FIG.

供給電流により熱を発生する汎用の表面実装部品であるヒータ素子と、流速に応じて変化するヒータ素子からの熱の温度を検出する測温素子とを有する流速検出部とからなる流体の流速及び流量を計測する熱式流速・流量センサの製造方法において、ヒータ素子及び測温素子は汎用の表面実装部品であり、熱式流速・流量センサの板状の単一の基板の一端両側部分に、この基板の主要部である基板主要部からそれぞれ一体的に延びた細長形状の流速検出部用支持部と気温計測部用支持部とを互いに離間して基板と一体的に形成する。さらに、流速検出部用支持部の先端部に、流速検出部を実装する基板部分を形成するとともに、この基板部分に流速検出部用の回路パターンを形成する。気温計測部用支持部の先端部に、気温計測部を実装する基板部分を形成するとともに、この基板部分に気温計測部用の回路パターンを形成する。流速検出部を実装する基板部分の表面実装箇所に、ヒータ素子と測温素子とを互いに隣接して配置して実装することによりヒータ素子と測温素子とが熱的に直接接続してなる流速検出部を形成する。気温計測部を実装する基板部分の表面実装箇所に、気温計測素子を実装してなる気温計測部を形成する。   A flow rate of fluid comprising a heater element, which is a general-purpose surface-mounted component that generates heat by a supply current, and a temperature measuring element that detects the temperature of heat from the heater element that changes according to the flow rate; and In the manufacturing method of the thermal flow rate / flow rate sensor that measures the flow rate, the heater element and the temperature measuring element are general-purpose surface-mount components, and on both sides of one end of the plate-like single substrate of the thermal flow rate / flow rate sensor, The elongated flow velocity detecting portion support portion and the temperature measuring portion support portion that are integrally extended from the substrate main portion, which is the main portion of the substrate, are formed integrally with the substrate so as to be separated from each other. Further, a substrate portion on which the flow velocity detection unit is mounted is formed at the tip of the flow velocity detection portion support portion, and a circuit pattern for the flow velocity detection portion is formed on the substrate portion. A substrate part for mounting the temperature measurement unit is formed at the tip of the temperature measurement unit support part, and a circuit pattern for the temperature measurement unit is formed on the substrate part. A flow rate in which a heater element and a temperature measuring element are directly connected to each other by mounting the heater element and the temperature measuring element adjacent to each other on the surface mounting portion of the substrate portion on which the flow rate detecting unit is mounted. A detection unit is formed. An air temperature measurement unit formed by mounting an air temperature measurement element is formed on the surface mounting portion of the substrate portion on which the air temperature measurement unit is mounted.

次いで、流速検出部を実装する基板部分の表面実装箇所と、この表面実装箇所から基板主要部へと一体的に延びる流速検出部用支持部と、気温計測部を実装する基板部分の表面実装箇所と、この表面実装箇所から基板主要部へと一体的に延びる気温計測素子用支持部とを残して、基板の周辺部を切断することにより、それぞれの表面実装箇所にそれぞれ形成した流速検出部と気温計測素子とを、それぞれ流速検出部用支持部と気温計測素子用支持部とにより、それぞれ基板主要部に支持した構造に形成するとともに、流速検出部及び気温計測素子の周囲に空間を設け、且つ、流速検出部及び気温計測素子との間に、空間を設け、且つ、板状の基板主要部を設けた構造となるように汎用の基板製造装置及び汎用の自動搭載機を用いて形成する。   Next, the surface mounting portion of the substrate portion on which the flow velocity detection portion is mounted, the support portion for the flow velocity detection portion extending integrally from the surface mounting portion to the main portion of the substrate, and the surface mounting portion of the substrate portion on which the air temperature measurement portion is mounted And a flow rate detector formed at each surface mount location by cutting the peripheral portion of the substrate, leaving the temperature measurement element support portion extending integrally from the surface mount location to the main part of the substrate. The temperature measuring element is formed in a structure that is supported by the main part of the substrate by the flow velocity detection unit support and the temperature measurement element support, respectively, and a space is provided around the flow rate detection unit and the temperature measurement element. In addition, a space is provided between the flow rate detection unit and the air temperature measurement element, and a general substrate manufacturing apparatus and a general-purpose automatic mounting machine are used so as to have a structure in which a plate-like substrate main part is provided. .

実用的な熱式流速・流量センサとして求められている一般的な条件は、測定精度や応答性が良く、低消費電力で、低コストなことである。そして、一般に、基板表面に実装される表面実装部品等の電子部品の小型化、高精度化、低コスト化は進んでおり、このような電子部品は、一般に流通品として汎用されている。特に、電子部品の個体差による誤差精度が、±1%程度の電子部品は、一般流通品として入手可能である。そして、これらの電子部品を基板に実装する自動搭載機もまた一般化されており、その自動搭載機を用いて表面実装部品等の電子部品を実装する方法も自動化が確立されている。これらの汎用の電子部品や、自動搭載機を利用することが出来れば、測定精度が良く、低コストの熱式流速・流量センサを実現可能である。   The general conditions required for a practical thermal flow rate / flow rate sensor are good measurement accuracy and responsiveness, low power consumption, and low cost. In general, electronic components such as surface-mounted components mounted on the surface of a substrate are becoming smaller, more accurate, and lower in cost. Such electronic components are generally used as distribution products. In particular, electronic components having an error accuracy of about ± 1% due to individual differences among electronic components are available as general distribution products. An automatic mounting machine for mounting these electronic components on a substrate has also been generalized, and automation has been established for a method for mounting electronic components such as surface mounting components using the automatic mounting machine. If these general-purpose electronic components and automatic mounting machines can be used, a thermal flow rate / flow rate sensor with good measurement accuracy and low cost can be realized.

一方で、低消費電力で、応答性が良い熱式流速・流量センサを実現可能とするためには、熱式流速・流量センサの発熱部で発熱した熱が銅線等を伝って逃げる熱量を抑えることが重要である。熱式流速・流量センサにおいて、消費電力が一番高いのが発熱部であり、この発熱部で発熱した熱が他の装置等へ逃げることは即ち、消費電力が余計に増加するだけでなく、センサ自体の応答性が悪くなることを意味するからである。   On the other hand, in order to realize a thermal flow rate / flow rate sensor with low power consumption and good responsiveness, the heat generated by the heat generation part of the thermal flow rate / flow rate sensor is transferred through the copper wire etc. It is important to suppress. In the thermal type flow velocity / flow rate sensor, the heat generating part has the highest power consumption, and the heat generated by the heat generating part escapes to other devices, that is, not only the power consumption increases, This is because it means that the responsiveness of the sensor itself is deteriorated.

ここで、電子部品を実装する基板の基板材としては、一般的に熱伝導率の低い部材が用いられている。例えば、基板材として良く用いられているFR−4(FRAME RETARDANT TYPE 4)は、一般に普及しているプリント基板で、その強度(弾性率)は、銅線と比較すると、55%であり、銅線の機械的強度には及ばないが、熱伝導率は銅線に対し0.1%と低い。   Here, as a substrate material for a substrate on which an electronic component is mounted, a member having a low thermal conductivity is generally used. For example, FR-4 (FRAME RETARDANT TYPE 4), which is often used as a substrate material, is a commonly used printed circuit board, and its strength (elastic modulus) is 55% compared to copper wire. Although it does not reach the mechanical strength of the wire, the thermal conductivity is as low as 0.1% with respect to the copper wire.

一方、一般に、物体を伝わる熱伝導は、その物体の構造の断面積及び温度差に依存する。空気の熱伝導率は、0.0241W/m・Kであり、FR−4基板の熱伝導率は、0.45W/m・Kである。これらの熱伝導率は、銅の熱伝導率403W/m・Kに比べて低い。そこで、この発明では、熱式流速・流量センサに、ボトルネックとなるような熱伝導率が低くなる部分を構造的に設け、熱伝導を抑制する方法を用いている。   On the other hand, in general, the heat conduction through an object depends on the cross-sectional area and temperature difference of the structure of the object. The thermal conductivity of air is 0.0241 W / m · K, and the thermal conductivity of the FR-4 substrate is 0.45 W / m · K. These thermal conductivities are lower than the thermal conductivities of copper, 403 W / m · K. Therefore, in the present invention, the thermal flow velocity / flow rate sensor is structurally provided with a portion having a low thermal conductivity that becomes a bottleneck, and a method of suppressing thermal conduction is used.

この発明の第1の実施例を、図1に基づいて詳細に説明する。
図1は、この発明の第1の実施例を示す要部模式図で、板状の単一の基板1は、流速・流量センサの流速検出部を形成する基板部分1aとこの基板部分1aに延設する基板主要部(図示せず)とにより構成されている。なお、図1では、後述する気温計測部は省略されている。
A first embodiment of the present invention will be described in detail with reference to FIG.
FIG. 1 is a schematic view of a main part showing a first embodiment of the present invention. A single plate-like substrate 1 is formed on a substrate portion 1a that forms a flow velocity detecting portion of a flow velocity / flow rate sensor and the substrate portion 1a. It is comprised by the board | substrate main part (not shown) extended. In FIG. 1, a temperature measuring unit described later is omitted.

板状の単一の基板1としては、この実施例に限らず後述するすべての実施例において、プリント基板として一般に広く販売されているガラスエポキシ製のFR−4を用いている。なお、基板1としては、ポリアミド製の基板でも良く、あるいはFR−4のようなガラスエポキシ製の基板、セラミック製の基板等のように、熱伝導率の低い部材で形成された基板が適している。又、この実施例では、流速検出部5が形成されている基板部分1aのみが記載され、基板主要部(図示せず)は省略している。   The plate-like single substrate 1 is not limited to this embodiment, and FR-4 made of glass epoxy, which is generally widely sold as a printed circuit board, is used in all embodiments described later. The substrate 1 may be a polyamide substrate, or a substrate formed of a member having low thermal conductivity such as a glass epoxy substrate such as FR-4 or a ceramic substrate. Yes. In this embodiment, only the substrate portion 1a on which the flow velocity detection unit 5 is formed is described, and the substrate main portion (not shown) is omitted.

2は基板部分1aの表面に形成されている流速検出部用の回路パターンで、流速検出部5の基板部分1aの実装箇所には、それぞれ汎用の電子部品(ヒータ素子4及び測温素子3)が実装される。なお、回路パターン2は銅の薄膜で形成されているので、熱伝導を低くするためには、回路パターン2に流れる電流量を可能な限り小さくする。そのためには、基板1の製造技術が許容する範囲で、流速検出部5の基板部分1aの回路パターン2の幅を狭くすることが望ましい。なお、基板部分1aの回路パターン2の幅を狭くした場合、耐環境性が悪くなるので、レジスト膜等による保護膜(図示せず)を形成し、回路パターン2を保護することが望ましい。さらに、流速検出部5を構成するヒータ素子4と測温素子3の実装箇所の周囲の基板部分1aは、流速検出部5を支持する流速検出部用支持部9を構成している。   Reference numeral 2 denotes a circuit pattern for the flow velocity detection unit formed on the surface of the substrate portion 1a. General-purpose electronic components (the heater element 4 and the temperature measuring element 3) are mounted on the mounting portion of the substrate portion 1a of the flow velocity detection unit 5, respectively. Is implemented. Since the circuit pattern 2 is formed of a copper thin film, the amount of current flowing through the circuit pattern 2 is made as small as possible in order to reduce heat conduction. For that purpose, it is desirable to narrow the width of the circuit pattern 2 of the substrate portion 1a of the flow velocity detector 5 within a range allowed by the manufacturing technology of the substrate 1. When the width of the circuit pattern 2 of the substrate portion 1a is narrowed, the environmental resistance is deteriorated. Therefore, it is desirable to protect the circuit pattern 2 by forming a protective film (not shown) such as a resist film. Further, the substrate portion 1 a around the mounting location of the heater element 4 and the temperature measuring element 3 constituting the flow velocity detection unit 5 constitutes a flow velocity detection unit support 9 that supports the flow velocity detection unit 5.

測温素子3は汎用の電子部品で、この実施例の場合には、基板部分1aの表面に形成されている流速検出部用の回路パターンの該当箇所に、測温素子3の端子を半田で固定し実装されている。ヒータ素子4も同様に、汎用の電子部品で、基板部分1aの裏面に形成されている流速検出部用の回路パターンの該当箇所(測温素子3が実装される実装箇所に対向位置している)に、ヒータ素子4の端子を半田で固定し実装されている。従って、ヒータ素子4と測温素子3とは、基板部分1aの両面(表面及び裏面)で、基板部分1aの実装箇所を介して熱的に直接接続された構造となっている。6はパットで、流速検出部5からの信号を取り出すための出力端である。   The temperature measuring element 3 is a general-purpose electronic component. In the case of this embodiment, the terminal of the temperature measuring element 3 is soldered to a corresponding portion of the circuit pattern for the flow velocity detecting portion formed on the surface of the substrate portion 1a. Fixed and implemented. Similarly, the heater element 4 is a general-purpose electronic component, and is located opposite to a corresponding portion of the circuit pattern for the flow velocity detection portion formed on the back surface of the substrate portion 1a (a mounting portion where the temperature measuring element 3 is mounted). ), The terminal of the heater element 4 is fixed by soldering and mounted. Therefore, the heater element 4 and the temperature measuring element 3 have a structure in which both sides (front surface and back surface) of the substrate portion 1a are thermally connected directly via the mounting portion of the substrate portion 1a. Reference numeral 6 denotes a pad, which is an output terminal for taking out a signal from the flow velocity detector 5.

このように構成されているので、ヒータ素子4と測温素子3とにより構成される流速検出部5の周囲の基板部分は、流速検出部5を支持持する流速検出部用支持部9として作用している。さらに、基板部分1aは、基板主要部(図示せず)に延設された構造となっている。   Since it is configured in this way, the substrate portion around the flow velocity detection unit 5 constituted by the heater element 4 and the temperature measuring element 3 acts as a flow velocity detection unit support unit 9 that supports and supports the flow velocity detection unit 5. doing. Furthermore, the board | substrate part 1a has a structure extended in the board | substrate main part (not shown).

次に、流速・流量センサの流速検出部の製造方法及び作用動作について、図1に基づいて説明する。まず、流速検出部5の製造方法について説明する。板状の基板は、汎用の基板製造装置を用いるとともに、板状の電子機器基板の一般的な製造プロセスにおいて用いられている自動搭載機を用いて製造する。流速検出部5の回路パターン2が形成されている板状の基板部分1aの実装箇所には、半田ペースト印刷機により半田ペーストが塗られる。次いで、自動搭載機により、測温素子3が基板部分1aの表面にマウントされ、ヒータ素子4は基板部分1aの裏面であって、測温素子3の実装箇所に対向位置する実装箇所に、同様にマウントされる。   Next, the manufacturing method and operation of the flow rate detection unit of the flow rate / flow rate sensor will be described with reference to FIG. First, the manufacturing method of the flow velocity detection unit 5 will be described. The plate-shaped substrate is manufactured using a general-purpose substrate manufacturing apparatus and an automatic mounting machine used in a general manufacturing process of a plate-shaped electronic device substrate. A solder paste is applied to a mounting portion of the plate-like substrate portion 1a on which the circuit pattern 2 of the flow velocity detection unit 5 is formed by a solder paste printer. Next, the temperature measuring element 3 is mounted on the front surface of the substrate portion 1a by the automatic mounting machine, and the heater element 4 is the same as the back surface of the substrate portion 1a, and the mounting location opposite to the mounting location of the temperature measuring device 3. To be mounted.

次いで、測温素子3及びヒータ素子4は、リフロー炉又はフロー装置等により、半田付けされ固定される。ヒータ素子4と測温素子3とは、基板部分1aの表面及び裏面の実装箇所に半田付けされるので、両素子3、4はこの実装箇所の基板部分を介して、熱的に直接接続された構造となっている。又、流速検出部5の周囲の基板部分1aは、流速検出部5を支持する流速検出部用支持部9を構成している。又、基板部分1aは基板主要部に一体的に延設されている。   Next, the temperature measuring element 3 and the heater element 4 are soldered and fixed by a reflow furnace or a flow device. Since the heater element 4 and the temperature measuring element 3 are soldered to the mounting portions on the front and back surfaces of the substrate portion 1a, both the elements 3 and 4 are thermally directly connected via the substrate portion of the mounting portion. It has a structure. The substrate portion 1 a around the flow velocity detection unit 5 constitutes a flow velocity detection unit support 9 that supports the flow velocity detection unit 5. The substrate portion 1a extends integrally with the main portion of the substrate.

ここで、従来の方法では、ヒータ素子4を加熱させる際、少ない供給電力で発熱量を確保するために、ヒータ素子4のリード線を細くするという手法が一般的であった。リード線の主成分である銅やステンレス等の金属線は熱伝導率が高いので、リード線をなるべく細くして、流速検出部5のヒータ素子4から基板主要部や他の装置等へとリード線を伝って逃げる熱量を抑制する必要があったためである。しかしながら一方で、リード線を細くすると、機械的衝撃に対して弱くなり、流速検出部5が破損し易くなるという問題があった。   Here, in the conventional method, when the heater element 4 is heated, a method of thinning the lead wire of the heater element 4 is generally used in order to secure a heat generation amount with a small supply power. Since metal wires such as copper and stainless steel, which are the main components of the lead wire, have high thermal conductivity, make the lead wire as thin as possible and lead it from the heater element 4 of the flow velocity detection unit 5 to the main part of the substrate or other devices. This is because it was necessary to suppress the amount of heat that escapes along the wire. On the other hand, however, when the lead wire is made thin, it becomes weak against mechanical shock, and there is a problem that the flow velocity detection unit 5 is easily damaged.

一方、上記したように、板状の基板部分1aの基板材は、機械的強度では銅には及ばないものの、熱伝導率は銅より低い部材(FR−4基板:熱伝導率は0.45W/m/K)が用いられている。従って、流速検出部5のヒータ素子4から基板主要部や他の装置等への放熱量という観点で、この実施例のように、流速検出部用支持部9を基板部分1aと同じ部材で形成した場合、従来のリード線のように細くする必要がなく、その機械的強度はより高くなるという効果がある。   On the other hand, as described above, the substrate material of the plate-like substrate portion 1a does not reach copper in terms of mechanical strength, but has a lower thermal conductivity than that of copper (FR-4 substrate: thermal conductivity is 0.45 W). / M / K) is used. Therefore, from the viewpoint of heat radiation from the heater element 4 of the flow velocity detection unit 5 to the main part of the substrate and other devices, the flow velocity detection unit support portion 9 is formed of the same member as the substrate portion 1a as in this embodiment. In such a case, there is no need to make it thinner as in the case of a conventional lead wire, and there is an effect that the mechanical strength becomes higher.

次に、流速検出部5の作用動作について説明する。まず、基板部分1aの内部電源(図示せず)からの供給電流により、ヒータ素子4は加熱されている。熱式流速・流量センサが流体中に配置されると、その流体の流速に応じてヒータ素子4の熱は変化し、この熱は、基板部分1aの実装箇所の基板を介して測温素子3へと熱的に直接伝導する。この伝導する熱の温度は、測温素子3により計測され、この計測値から、前記した熱式流速・流量センサの動作原理に基づいて流速が算出される。   Next, the operation of the flow velocity detector 5 will be described. First, the heater element 4 is heated by a current supplied from an internal power supply (not shown) of the substrate portion 1a. When the thermal flow rate / flow rate sensor is disposed in the fluid, the heat of the heater element 4 changes according to the flow rate of the fluid, and this heat is measured by the temperature measuring element 3 via the substrate at the mounting portion of the substrate portion 1a. Direct thermal conduction to The temperature of the conducted heat is measured by the temperature measuring element 3, and the flow velocity is calculated from the measured value based on the operating principle of the thermal flow velocity / flow rate sensor described above.

このように、この発明による熱式流速・流量センサの流速検出部5には、汎用の表面実装用の電子部品であるヒータ素子4とこのヒータからの熱の温度を計測する測温素子3とを用いて、板状の電子基板の製造方法において一般に用いられている自動搭載機により各電子部品を基板に実装することが出来るので、組み立て工程の自動化が容易となり、組み立てコストが非常に安くなる。   Thus, the flow rate detector 5 of the thermal flow rate / flow rate sensor according to the present invention includes a heater element 4 which is a general-purpose electronic component for surface mounting, and a temperature measuring element 3 for measuring the temperature of heat from the heater, Since each electronic component can be mounted on the board by an automatic mounting machine generally used in the manufacturing method of a plate-shaped electronic board, the assembly process can be automated easily and the assembling cost is very low. .

又、ヒータ素子4と測温素子3とは、実装箇所の基板部分1aを介して熱的に直接接続された構造となっているので、応答性の良い流速検出部5が得られるとともに、個体差の少ない流速検出部5が得られるので、センサとしての調整も必要とせず、コストが安くなる。   Moreover, since the heater element 4 and the temperature measuring element 3 have a structure in which they are thermally connected directly via the board portion 1a of the mounting location, a flow rate detection unit 5 with good responsiveness can be obtained, and an individual Since the flow velocity detection unit 5 with little difference is obtained, adjustment as a sensor is not required, and the cost is reduced.

又、上記したように、一般的な半導体製造プロセスを用いたデバイスの製造方法であるMEMS(Micro Electric Mechanical System )を用いて製造した流速検出用素子では、版代が高価であるため、少数生産には不適であるとともに、カスタマイズやバリエーション展開には制限がある。   In addition, as described above, the flow rate detecting element manufactured using MEMS (Micro Electric Mechanical System), which is a device manufacturing method using a general semiconductor manufacturing process, is expensive because the plate cost is expensive. In addition to being unsuitable, there are restrictions on customization and variations.

しかしながら、この発明の場合には、汎用の基板製造装置を用いて板状の電子基板の製造方法により製造するとともに、一般に用いられている自動搭載機を利用できるので、版代は一般的な板状の電子基板用と変わらず、非常に安価であるため、初期コストが製造単価に与える影響はMEMSに比べて軽微である。さらに、現在は、生産数量の少ない製品でも対応出来る自動組立機もあるため、生産数量が少ない製品であっても製造単価が極端に高価となることはない。その上、初期コストを安く抑えることができるため、カスタマイズやバリエーション展開も容易である。   However, in the case of the present invention, a plate-shaped electronic substrate is manufactured using a general-purpose substrate manufacturing apparatus and a commonly used automatic mounting machine can be used. The cost of the initial cost on the manufacturing unit price is negligible compared with MEMS because the cost is the same as for the electronic substrate. Furthermore, since there are currently automatic assembly machines that can handle products with a small production quantity, even a product with a small production quantity will not be extremely expensive. In addition, since the initial cost can be kept low, customization and variation development are easy.

この発明の第2の実施例を、図2に基づいて詳細に説明する。図2は、この発明の第2の実施例を示す要部模式図である。なお、第1の実施例と同じ部分については、同一名称、同一番号を用い、その説明を省略する。又、気温計測用の気温計測素子は省略している。   A second embodiment of the present invention will be described in detail with reference to FIG. FIG. 2 is a schematic diagram showing the main part of a second embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same names and the same numbers, and the description thereof is omitted. Also, the temperature measuring element for measuring the temperature is omitted.

図2に示すように、板状の基板21の一端中央部分には、基板主要部21bから一体的に延びた細長形状の流速検出部用支持部22に支持された流速検出部20が形成されている。この流速検出部20を実装する板状の基板部分21aの表面には、流速検出部用の回路パターン(図示せず)が形成されており、その表面実装箇所には、測温素子3及びヒータ素子4が、それぞれ半田付けにより実装されて流速検出部20を構成している。従って、測温素子3及びヒータ素子4は、基板部分1aに表面実装されているとともに、両素子3、4が互いに隣接して配置し実装されていることで熱的に直接接続された構造となっている。
なお、測温素子3とヒータ素子4とを互いに隣接して配置し実装する代わりに、実施例1に記載のように、基板部分21aの表面及び裏面にそれぞれ実装し、基板部分21aの実装箇所を介して熱的に直接接続された構造となるようにしてもよい。
As shown in FIG. 2, a flow velocity detection unit 20 supported by an elongated flow velocity detection unit support 22 extending integrally from the substrate main portion 21 b is formed at the center of one end of the plate-like substrate 21. ing. A circuit pattern (not shown) for the flow velocity detection unit is formed on the surface of the plate-like substrate portion 21a on which the flow velocity detection unit 20 is mounted, and the temperature measuring element 3 and the heater are formed on the surface mounting portion. Each element 4 is mounted by soldering to constitute a flow velocity detection unit 20. Therefore, the temperature measuring element 3 and the heater element 4 are surface-mounted on the substrate portion 1a, and the elements 3 and 4 are arranged and mounted adjacent to each other so as to be thermally connected directly. It has become.
Instead of arranging and mounting the temperature measuring element 3 and the heater element 4 adjacent to each other, as described in the first embodiment, the temperature measuring element 3 and the heater element 4 are respectively mounted on the front surface and the back surface of the substrate portion 21a. It may be made to be a structure directly connected through the heat.

流速検出部20を支持する流速検出部用支持部22は、基板主要部21bと測温素子3及びヒータ素子4の実装箇所、即ち、基板部分21aを残して、周囲の基板を、NCM等で切断して形成される。従って、測温素子3及びヒータ素子4により構成される流速検出部20が形成されている基板部分21aは、細長い構造の流速検出部用支持部22により基板主要部21bに一体的に支持された構造となっている。23は取付孔で、熱式流速・流量センサを他の装置等に固定するためのものである。
なお、測温素子がヒータ素子を兼用した回路構成であっても、この様な回路構成の測温素子を流速検出部20に搭載し、同様にして細長い構造の流速検出部用支持部22で支持すれば、同様の効果を得られる。
The flow velocity detection portion support portion 22 that supports the flow velocity detection portion 20 is provided with the substrate main portion 21b, the temperature measuring element 3 and the heater element 4, where the substrate portion 21a is left, and the surrounding substrate is made of NCM or the like. It is formed by cutting. Accordingly, the substrate portion 21a on which the flow velocity detection unit 20 composed of the temperature measuring element 3 and the heater element 4 is formed is integrally supported by the substrate main portion 21b by the flow velocity detection unit support portion 22 having an elongated structure. It has a structure. Reference numeral 23 denotes a mounting hole for fixing the thermal flow rate / flow rate sensor to another device or the like.
Note that even if the temperature measuring element has a circuit configuration that also serves as a heater element, the temperature measuring element having such a circuit configuration is mounted on the flow velocity detection unit 20, and similarly, the flow rate detection unit support unit 22 having an elongated structure is used. If supported, the same effect can be obtained.

このように構成されているので、上記実施例1の場合と同様に、精度が安定している汎用の電子部品を用いることが出来るとともに、一般に用いられている自動搭載機を用いて自動的に製造することが出来るので、個体差の少ない低コストの熱式流速・流量センサが得られる。   Since it is configured in this manner, as in the case of the first embodiment, general-purpose electronic components with stable accuracy can be used, and automatically using a commonly used automatic mounting machine. Since it can be manufactured, a low-cost thermal flow rate / flow rate sensor with little individual difference can be obtained.

さらに、流速検出部用支持部22は、希望とする熱伝導率に合わせてその形状(幅や長さ等)を形成することが出来るとともに、流速検出部20は流速検出部用支持部22により支持された構造であり、基板21及び流速検出部用支持部22の基板材は、実施例1の基板部分1aと同様の熱伝導率が低い部材(FR−4基板:熱伝導率は0.45W/m/K)が用いられている。その上、流速検出部用支持部22を細長く形成することにより、流速検出部20から基板21の基板主要部21bへの熱伝導を抑えることが出来るとともに、さらに、取付孔23を介して固定されている他の装置等への熱伝導をも抑えることが出来る。   Furthermore, the flow velocity detection unit support portion 22 can be formed in its shape (width, length, etc.) in accordance with the desired thermal conductivity, and the flow velocity detection portion 20 is supported by the flow velocity detection portion support portion 22. The substrate material of the substrate 21 and the flow velocity detecting portion support portion 22 is a member having a low thermal conductivity similar to that of the substrate portion 1a of the first embodiment (FR-4 substrate: the thermal conductivity is 0. 0). 45 W / m / K) is used. In addition, by forming the flow velocity detection portion support portion 22 to be elongated, heat conduction from the flow velocity detection portion 20 to the substrate main portion 21 b of the substrate 21 can be suppressed, and further, the flow velocity detection portion support portion 22 is fixed through the mounting hole 23. It is also possible to suppress heat conduction to other devices.

この発明の第3の実施例を、図3に基づいて詳細に説明する。図3は、この発明の第3の実施例を示す要部模式図である。なお、第1の実施例及び第2の実施例と同じ部分については、同一名称、同一番号を用い、その説明を省略する。又、気温計測用の気温計測素子は省略している。   A third embodiment of the present invention will be described in detail with reference to FIG. FIG. 3 is a schematic view showing the main part of a third embodiment of the present invention. In addition, about the same part as the 1st Example and the 2nd Example, the same name and the same number are used and the description is abbreviate | omitted. Also, the temperature measuring element for measuring the temperature is omitted.

図3に示すように、板状の基板31の基板主要部31bは、円形の帯状外周部を有する形状に形成されており、この帯状外周部から中心方向へ一体的に延びる一対の流速検出部用支持部32が形成されている。さらに、この一対の流速検出部用支持部32の先端部には、流速検出部30を形成する基板部分31aが一体的に形成されている。従って、この基板部分31aは、基板主要部31bの中心部分において一対の流速検出部用支持部32により支持された構造となっている。このような構造に形成するには、実施例2の場合と同様に、NCM等により板状の基板を切断することにより形成される。   As shown in FIG. 3, the substrate main portion 31b of the plate-like substrate 31 is formed in a shape having a circular belt-shaped outer peripheral portion, and a pair of flow velocity detection portions extending integrally from the belt-shaped outer peripheral portion toward the center. A support portion 32 is formed. Further, a substrate portion 31 a that forms the flow velocity detection unit 30 is integrally formed at the distal ends of the pair of flow velocity detection unit support portions 32. Therefore, the substrate portion 31a has a structure supported by the pair of flow velocity detecting portion support portions 32 at the central portion of the substrate main portion 31b. In order to form such a structure, it is formed by cutting a plate-like substrate with NCM or the like as in the case of the second embodiment.

なお、この実施例では、基板主要部31bの形状は、円形の帯状外周部の形状に形成されているが、これに限定されることなく、基板主要部31bを構成する帯状外周部は、矩形状であっても良く、あるいはその他、多角形状であっても良く、いずれも基板主要部31bを構成する帯状外周部の内側部分に、あるいは中心部分に、基板部分31aが流速検出部用支持部32により支持された構造であればよい。
なお、この実施例では流速検出部指示部は2本であるが、強度が得られれば1本でも良く、また性能上の問題が無ければ、3本以上でも良い。
In this embodiment, the shape of the substrate main portion 31b is formed in the shape of a circular belt-shaped outer peripheral portion. However, the shape of the belt-shaped outer peripheral portion constituting the substrate main portion 31b is not limited to this. The substrate portion 31a may be formed on the inner portion of the belt-shaped outer peripheral portion constituting the substrate main portion 31b or in the center portion, and may be in a polygonal shape. Any structure supported by 32 may be used.
In this embodiment, there are two flow velocity detection unit instruction units, but one may be used if strength is obtained, and three or more may be used if there is no problem in performance.

基板部分31aの流速検出部30の実装箇所には、流速検出部用の回路パターン(図示せず)が形成され、一方の面にヒータ素子4が半田付けにより実装され、このヒータ素子4の実装箇所に対向位置させて基板部分31aの他方の面に、測温素子3が半田付けにより実装されている。従って、ヒータ素子4と測温素子3とは、基板部分31aの両面(表面及び裏面)で、基板部分31aの実装箇所を介して熱的に直接接続された構造となっている。
なお、測温素子3とヒータ素子4とを、基板部分31aの両面(表面及び裏面)に実装する代わりに、実施例2に記載のように、基板部分31aの片面に両素子3、4を互いに隣接して配置し実装することで熱的に直接接続された構造となるようにしてもよい。
A circuit pattern (not shown) for the flow velocity detection unit is formed at the mounting location of the flow velocity detection unit 30 of the substrate portion 31a, and the heater element 4 is mounted on one surface by soldering. The temperature measuring element 3 is mounted by soldering on the other surface of the substrate portion 31a so as to face the portion. Therefore, the heater element 4 and the temperature measuring element 3 have a structure in which both sides (front surface and back surface) of the substrate portion 31a are thermally connected directly via the mounting portion of the substrate portion 31a.
Instead of mounting the temperature measuring element 3 and the heater element 4 on both surfaces (front surface and back surface) of the substrate portion 31a, both elements 3 and 4 are disposed on one surface of the substrate portion 31a as described in the second embodiment. You may make it become the structure directly connected thermally by arrange | positioning adjacent and mutually mounting.

また、流速検出部30は、帯状外周部の中心部分において、基板主要部31bから一体的に延びた一対の流速検出部用支持部32により支持された構造となっており、流速検出部30の周辺には空間33が形成されている。34はスルーホールで、ヒータ素子4への電源供給用及び測温素子3の温度計測値データを出力する信号線が接続される。このように構成されているので、上記実施例1及び実施例2と同様な効果がある。   Further, the flow velocity detection unit 30 has a structure that is supported by a pair of flow velocity detection unit support portions 32 integrally extending from the substrate main portion 31b at the central portion of the belt-shaped outer peripheral portion. A space 33 is formed around the periphery. Reference numeral 34 denotes a through hole to which a signal line for supplying power to the heater element 4 and outputting temperature measurement value data of the temperature measuring element 3 is connected. Since it is configured in this manner, the same effects as those of the first and second embodiments are obtained.

この発明の第4の実施例を、図4〜図10に基づいて詳細に説明する。図4は、この発明の第4の実施例を示す要部模式図である。なお、第1〜第3の実施例と同じ部分については、同一名称、同一番号を用い、その説明を省略する。   A fourth embodiment of the present invention will be described in detail with reference to FIGS. FIG. 4 is a schematic view of the essential portions showing a fourth embodiment of the present invention. In addition, about the same part as the 1st-3rd Example, the same name and the same number are used and the description is abbreviate | omitted.

この実施例では、気温計測部44に影響する流速検出部40からの熱の伝導を下げることを目的としたもので、図4に示すように、板状の基板41の一端両側部分には、基板主要部41bからそれぞれ一体的に延びた細長形状の流速検出部用支持部42と気温計測部用支持部43が互いに離間して形成されている。流速検出部用支持部42の先端部には、この流速検出部用支持部42に支持された流速検出部40を実装する基板部分41aが形成されており、気温計測部用支持部43の先端部には、この気温計測部用支持部43に支持された気温計測部44を実装する基板部分41cが、実施例2の場合と同様に、NCM等を用いて形成されている。   In this embodiment, the purpose is to reduce the conduction of heat from the flow velocity detection unit 40 that affects the air temperature measurement unit 44. As shown in FIG. An elongated flow velocity detection portion support portion 42 and an air temperature measurement portion support portion 43 that are integrally extended from the substrate main portion 41b are formed apart from each other. A substrate portion 41a for mounting the flow velocity detection unit 40 supported by the flow velocity detection unit support portion 42 is formed at the distal end portion of the flow velocity detection portion support portion 42, and the distal end of the temperature measurement portion support portion 43 is formed. The board portion 41c on which the temperature measuring unit 44 supported by the temperature measuring unit support unit 43 is mounted is formed using NCM or the like, as in the second embodiment.

流速検出部40を実装する基板部分41a及び気温計測部44を実装する基板部分41cの表面には、それぞれ流速検出部用の回路パターン(図示せず)及び気温計測用の回路パターン(図示せず)が形成されている。基板部分41aの表面実装箇所には、汎用の表面実装部品である測温素子3及び汎用の表面実装部品であるヒータ素子4が、それぞれ半田付けにより実装されて流速検出部40を構成し、基板部分41cの表面実装箇所には、汎用の表面実装部品である気温計測用素子45が、半田付けにより実装されて気温計測部44を構成している。   A circuit pattern (not shown) for a flow velocity detection unit (not shown) and a circuit pattern for temperature measurement (not shown) are respectively provided on the surfaces of the substrate portion 41a on which the flow velocity detection unit 40 is mounted and the substrate portion 41c on which the temperature measurement unit 44 is mounted. ) Is formed. A temperature measuring element 3 that is a general-purpose surface-mounting component and a heater element 4 that is a general-purpose surface-mounting component are each mounted by soldering on a surface-mounted portion of the substrate portion 41a to constitute a flow velocity detection unit 40. A temperature measuring element 45, which is a general-purpose surface-mounted component, is mounted by soldering on the surface mounting portion of the portion 41c to constitute the temperature measuring unit 44.

従って、流速検出部40は、流速検出部用支持部42により基板主要部41bに一体的に支持された構造となり、又、気温計測部44は、気温計測部用支持部43により基板主要部41bに一体的に支持された構造となっている。又、測温素子3及びヒータ素子4は、基板部分41aの表面に実装されているとともに、両素子3、4が互いに隣接して配置し実装されていることで熱的に直接接続された構造となっている。
なお、測温素子3とヒータ素子4とを互いに隣接して配置し実装する代わりに、実施例1に記載のように、基板部分41aの表面及び裏面にそれぞれ実装し、基板部分41aの実装箇所を介して熱的に直接接続された構造となるようにしてもよい。
Accordingly, the flow velocity detection unit 40 has a structure that is integrally supported by the substrate main portion 41b by the flow velocity detection portion support portion 42, and the air temperature measurement portion 44 has the substrate main portion 41b by the air temperature measurement portion support portion 43. It is a structure that is supported in a single piece. Further, the temperature measuring element 3 and the heater element 4 are mounted on the surface of the substrate portion 41a, and the elements 3 and 4 are disposed adjacent to each other and mounted so as to be thermally connected directly. It has become.
Instead of arranging and mounting the temperature measuring element 3 and the heater element 4 adjacent to each other, as described in the first embodiment, the temperature measuring element 3 and the heater element 4 are respectively mounted on the front surface and the back surface of the substrate portion 41a. It may be made to be a structure directly connected through the heat.

さらに、流速検出部40及び気温計測部44の周囲には、それぞれ空間46が設けられた構造となっているとともに、流速検出部40と気温計測部44との間にも空間47が設けられ、且つ、板状の基板主要部を設けた構造となっている。なお、48は取付孔で、熱式流速・流量センサを他の装置に取り付けるためのものである。   Furthermore, a space 46 is provided around each of the flow velocity detection unit 40 and the air temperature measurement unit 44, and a space 47 is also provided between the flow velocity detection unit 40 and the air temperature measurement unit 44. And it has the structure which provided the plate-shaped board | substrate principal part. Reference numeral 48 denotes an attachment hole for attaching the thermal flow rate / flow rate sensor to another device.

このように構成されているので、実施例1〜実施例3と同様な効果があるとともに、流速検出部40から基板主要部41cへの熱伝導を軽減することが出来る。さらに、流速検出部用支持部42を細く形成することにより、より一層の熱伝導を軽減することが出来る。又、流速検出部40と気温計測部44との間には、空間47が形成され、さらに、流速検出部40及び気温計測部44の周囲にも空間46が形成されており、且つ、板状の基板主要部を設けた構造となっている。その上、気温計測部44の気温計測部用支持部43を細く形成することにより、気温計測部44への熱伝導をさらに低く抑えることが出来るとともに、流速検出部40からの熱が、気温計測部44に与える影響を可能な限り少なくすることが出来る。   Since it is configured in this way, the same effects as in the first to third embodiments can be obtained, and the heat conduction from the flow velocity detection unit 40 to the substrate main part 41c can be reduced. Furthermore, the heat conduction can be further reduced by forming the support portion 42 for the flow velocity detection portion to be thin. A space 47 is formed between the flow velocity detection unit 40 and the air temperature measurement unit 44, and a space 46 is also formed around the flow velocity detection unit 40 and the air temperature measurement unit 44. The main part of the substrate is provided. In addition, by forming the temperature measurement unit support 43 of the temperature measurement unit 44 to be thin, the heat conduction to the temperature measurement unit 44 can be further reduced, and the heat from the flow velocity detection unit 40 is measured by the temperature measurement. The influence on the portion 44 can be reduced as much as possible.

又、図5は、図4に示す熱式流速・流量センサの変形例を示すもので、流速検出部40’は、測温素子3とこの測温素子3を狭持するように配置されている2つのヒータ素子4とにより構成されている。このように構成されているので、測温素子3の温度が低下した場合でも、測温素子3を挟み込むように配置し、個数も増やしたヒータ素子4により、より迅速に測温素子3の温度を回復させることが出来るので、熱式流速・流量センサとしての応答性を良くすることが出来る。又、基板の反対側の面にもヒータ素子を搭載する事で、さらに応答性等の特性を良くする事も出来る。   FIG. 5 shows a modified example of the thermal flow rate / flow rate sensor shown in FIG. 4. The flow rate detection unit 40 ′ is disposed so as to sandwich the temperature measuring element 3 and the temperature measuring element 3. The two heater elements 4 are provided. Since it is configured in this manner, even when the temperature of the temperature measuring element 3 is lowered, the temperature of the temperature measuring element 3 is more quickly arranged by the heater elements 4 arranged so as to sandwich the temperature measuring element 3 and the number of the temperature measuring elements 3 is increased. Therefore, the responsiveness as a thermal flow rate / flow rate sensor can be improved. Further, by mounting a heater element on the opposite surface of the substrate, characteristics such as responsiveness can be further improved.

一般に、熱式流速・流量センサでは、測温素子及びヒータ素子を実装してなる流速検出部と、気温を計測するための気温計測用素子を実装した気温計測部とを同一基板上に配置した場合、流速検出部のヒータ素子からの熱伝導による気温計測部への影響が問題となる。そこで、発明者は、この影響を見るために、図6に示すように、同一基板上(基板主要部41bが矩形状の帯状の外周部を有している)に流速検出部40Aと気温計測部44Aとを配置した構造の試作品Aを作成した。   In general, in a thermal flow rate / flow rate sensor, a flow rate detection unit in which a temperature measuring element and a heater element are mounted and an air temperature measurement unit in which an air temperature measurement element for measuring temperature is mounted are arranged on the same substrate. In this case, the influence of the heat conduction from the heater element of the flow velocity detection unit on the temperature measurement unit becomes a problem. Therefore, in order to see this effect, the inventor, as shown in FIG. 6, the flow velocity detection unit 40A and the temperature measurement on the same substrate (the substrate main part 41b has a rectangular belt-shaped outer periphery). A prototype A having a structure in which the portion 44A is arranged was created.

次いで、上記実施例4において、図4に示す構造の熱式流速・流量センサを基本構造として、流速検出用の基板部分41aの形状、流速検出部用支持部42及び気温計測部用支持部43の長さ等を種々変更した各試作品(試作品B、C、D、E)を作成し、試作品Aとの比較実験を行った。その結果を図7〜図10に示す。   Next, in Example 4 described above, the thermal flow velocity / flow rate sensor having the structure shown in FIG. 4 is used as a basic structure, the shape of the substrate portion 41a for detecting the flow velocity, the flow velocity detection portion support portion 42, and the temperature measurement portion support portion 43. Prototypes (prototypes B, C, D, and E) with various lengths and the like were created and compared with prototype A. The results are shown in FIGS.

図6〜図10に示す熱伝導の比較実験の結果は、熱式流速・流量センサの周囲温度が0[℃]で、熱式流速・流量センサの電源投入後120[s]経過時の熱式流速・流量センサにおける温度分布を示している。これらの結果において、特に、気温計測部における温度が高い、即ち、周囲温度0[℃]に対する気温計測部との温度差が大きいほど、流速検出部のヒータ素子からの熱伝導による気温計測部への影響が大きいことを示している。   The results of the heat conduction comparison experiments shown in FIGS. 6 to 10 show that the ambient temperature of the thermal flow rate / flow rate sensor is 0 [° C.] and the heat at the time of 120 [s] has elapsed since the thermal flow rate / flow rate sensor was turned on. This shows the temperature distribution in the flow velocity / flow rate sensor. In these results, in particular, the higher the temperature in the air temperature measurement unit, that is, the larger the temperature difference from the air temperature measurement unit with respect to the ambient temperature 0 [° C.], the more the temperature measurement unit due to heat conduction from the heater element of the flow velocity detection unit. It shows that the influence of.

まず、図6に示す試作品Aの場合、流速検出部40Aのヒータ素子からの熱伝導による気温計測部44Aへの影響について測定した。その結果、図6に示すように、気温+15[℃]以上の熱伝導の影響があり、低風速もしくは無風状態では、数分経過すると無風状態であるにも係わらず数[m/s]相当の計測誤差が生じ、実用上問題であった。   First, in the case of the prototype A shown in FIG. 6, the influence on the temperature measurement unit 44 </ b> A due to heat conduction from the heater element of the flow velocity detection unit 40 </ b> A was measured. As a result, as shown in FIG. 6, there is an influence of heat conduction of air temperature +15 [° C.] or more, and in a low wind speed or no wind state, after several minutes, it corresponds to several [m / s] even though there is no wind. Measurement error occurred, which was a practical problem.

次に、図7に示す試作品Bの場合、図7に示す温度分布からも明かであるように、流速検出部40Bのヒータ素子からの熱伝導による気温計測部44Bへの影響は、ほとんどなく、実用上全く問題はないという結果が得られた。42Bは流速検出部用支持部、43Bは気温計測部用支持部である。   Next, in the case of the prototype B shown in FIG. 7, as apparent from the temperature distribution shown in FIG. 7, there is almost no influence on the temperature measuring unit 44B due to the heat conduction from the heater element of the flow velocity detecting unit 40B. As a result, there was no problem in practical use. Reference numeral 42B denotes a flow velocity detection unit support, and 43B denotes an air temperature measurement unit support.

図8に示す試作品Cは、試作品Bに比べて、流速検出部用支持部42Cと気温計測部用支持部43Cとの間隔(空間47C)を広げた構造としたものである。図8に示す温度分布からも明かであるように、流速検出部用支持部42Cと気温計測部用支持部43Cとの空間47Cは、熱伝導には影響しないことが判明した。   The prototype C shown in FIG. 8 has a structure in which the interval (space 47C) between the flow velocity detection unit support 42C and the temperature measurement unit support 43C is wider than that of the prototype B. As is apparent from the temperature distribution shown in FIG. 8, it has been found that the space 47C between the flow velocity detection portion support portion 42C and the temperature measurement portion support portion 43C does not affect the heat conduction.

図9に示す試作品Dは、試作品Bに比べて、基板主要部41cDの面積を縮小した構造のものである。図9に示す温度分布からも明かであるように、基板主要部41cDの面積を縮小すると、熱伝導の影響が大きくなることが判明した。なお、40Dは流速検出部、42Dは流速検出部用支持部、43Dは気温計測部用支持部、44Dは気温計測部である。   The prototype D shown in FIG. 9 has a structure in which the area of the substrate main part 41cD is reduced compared to the prototype B. As is clear from the temperature distribution shown in FIG. 9, it has been found that the effect of heat conduction increases when the area of the substrate main portion 41cD is reduced. In addition, 40D is a flow velocity detection unit, 42D is a flow velocity detection unit support unit, 43D is an air temperature measurement unit support unit, and 44D is an air temperature measurement unit.

図10に示す試作品Eは、流速検出部用支持部42Eと気温計測部用支持部43Eの長さを短縮すると、特に、流速検出部用支持部42Eの長さを短縮すると、熱伝導の影響は大きくなることが判明した。なお、41cEは基板主要部、40Eは流速検出部、44Eは気温計測部である。   In the prototype E shown in FIG. 10, when the lengths of the flow rate detection unit support 42E and the temperature measurement unit support 43E are shortened, in particular, when the length of the flow rate detection unit support 42E is shortened, The impact was found to be significant. In addition, 41cE is a board | substrate main part, 40E is a flow velocity detection part, 44E is an air temperature measurement part.

以上に実験結果から、実施例4で述べた試作品Bと試作品Cは、流速検出部40Bのヒータ素子からの熱伝導による気温計測部44Bへの影響はほとんどなく、実用上全く問題はないという結果が得られた。   From the above experimental results, the prototype B and the prototype C described in Example 4 have almost no influence on the temperature measurement unit 44B due to the heat conduction from the heater element of the flow velocity detection unit 40B, and there is no problem in practical use. The result was obtained.

この発明の第5の実施例を、図11に基づいて詳細に説明する。図11は、この発明の第5の実施例を示す要部模式図である。なお、第1の実施例〜第4の実施例と同じ部分については、同一名称、同一番号を用い、その説明を省略する。   A fifth embodiment of the present invention will be described in detail with reference to FIG. FIG. 11 is a schematic view of the essential portions showing a fifth embodiment of the present invention. In addition, about the same part as 1st Example-4th Example, the same name and the same number are used and the description is abbreviate | omitted.

この実施例5では、気温計測部54に影響する流速検出部50からの熱伝導を下げるとともに、さらに、流速検出部50を保護することを目的としている。   The fifth embodiment aims to lower the heat conduction from the flow velocity detection unit 50 that affects the air temperature measurement unit 54 and to protect the flow velocity detection unit 50.

図11に示すように、板状の単一の基板51の基板主要部51bから一体的に延びたアーチ型の帯状外周部51dが形成されており、板状の基板51の基板主要部51bの一端中央部には、基板主要部51bから一体的に延びた細長形状の流速検出部用支持部52が形成されている。この流速検出部用支持部52の先端部には、この流速検出部用支持部52に支持された流速検出部50を実装する基板部分51aが形成されている。この際、流速検出部50の基板部分51aが帯状外周部51dの中心部分に位置するように流速検出部用支持部52の長さは調整されて形成される。従って、アーチ型の帯状外周部51dは、基板主要部51bから突出した構造となる流速検出部50を保護するガード部56となっている。   As shown in FIG. 11, an arch-shaped strip-shaped outer peripheral portion 51d extending integrally from the substrate main portion 51b of the single plate-like substrate 51 is formed, and the substrate main portion 51b of the plate-like substrate 51 is formed. At the center of one end, an elongated flow velocity detecting portion support portion 52 that is integrally extended from the substrate main portion 51b is formed. A substrate portion 51 a on which the flow velocity detection unit 50 supported by the flow velocity detection portion support 52 is mounted is formed at the tip of the flow velocity detection portion support portion 52. At this time, the length of the flow velocity detecting portion support portion 52 is adjusted so that the substrate portion 51a of the flow velocity detecting portion 50 is positioned at the center portion of the belt-shaped outer peripheral portion 51d. Therefore, the arch-shaped belt-shaped outer peripheral portion 51d serves as a guard portion 56 that protects the flow velocity detection portion 50 having a structure protruding from the substrate main portion 51b.

基板部分51aの表面実装箇所には、ヒータ素子4と測温素子3がそれぞれ半田付けにより実装されて流速検出部50を構成している。従って、測温素子3及びヒータ素子4は、基板部分51aに表面実装されているとともに、両素子3、4が互いに隣接して配置し実装されていることで熱的に直接接続された構造となっている。
なお、測温素子3とヒータ素子4とを互いに隣接して配置し実装する代わりに、実施例1に記載のように、基板部分51aの表面及び裏面にそれぞれ実装し、基板部分51aの実装箇所を介して熱的に直接接続された構造となるようにしてもよい。
The heater element 4 and the temperature measuring element 3 are each mounted by soldering at the surface mounting location of the substrate portion 51a to constitute the flow velocity detection unit 50. Therefore, the temperature measuring element 3 and the heater element 4 are surface-mounted on the substrate portion 51a, and the elements 3 and 4 are disposed and mounted adjacent to each other so as to be thermally connected directly. It has become.
Instead of arranging and mounting the temperature measuring element 3 and the heater element 4 adjacent to each other, as described in the first embodiment, the temperature measuring element 3 and the heater element 4 are respectively mounted on the front surface and the back surface of the substrate portion 51a. It may be made to be a structure directly connected through the heat.

さらに、流速検出部50と流速検出部用支持部52の周囲は、基板51の基板主要部51bから延設されているアーチ型の帯状外周部51dを残してくり抜いた状態にNCM等を用いて形成されている。   Further, the periphery of the flow velocity detection unit 50 and the flow velocity detection unit support unit 52 is formed using an NCM or the like in a state where the arch-shaped belt-like outer peripheral portion 51d extending from the substrate main portion 51b of the substrate 51 is left. Is formed.

従って、流速検出部50及びこれを支持する流速検出部用支持部52の周囲には、空間57が形成されるので、流速検出部50は、流速検出部用支持部52に支持された状態で基板主要部51bから突出した状態となっている。   Accordingly, since the space 57 is formed around the flow velocity detection unit 50 and the flow velocity detection unit support unit 52 that supports the flow velocity detection unit 50, the flow velocity detection unit 50 is supported by the flow velocity detection unit support unit 52. It is in a state of protruding from the substrate main part 51b.

54は気温計測部で、基板主要部51bに延設して形成されたアーチ状の帯状外周部51dに設けられている。この気温計測部54の基板部分51cの表面実装箇所には、気温計測用素子55が半田付けにより実装されている。なお、48は取付孔で、熱式流速・流量センサを他の装置に取り付けるためのものである。   Reference numeral 54 denotes an air temperature measurement unit, which is provided on an arch-shaped belt-shaped outer peripheral portion 51d formed to extend to the substrate main portion 51b. An air temperature measuring element 55 is mounted on the surface mounting portion of the substrate portion 51c of the air temperature measuring unit 54 by soldering. Reference numeral 48 denotes an attachment hole for attaching the thermal flow rate / flow rate sensor to another device.

このように構成されているので、実施例1〜実施例4と同様な効果があるとともに、ガード部56により、基板主要部51bから流速検出部用支持部52を介して突出した状態となっている流速検出部50を保護することが出来る。さらに、このガード部56により、流速検出部50で発熱しているヒータ素子4に誤って接触することによる火傷をも防ぐ事も出来る。又、ガード部56は基板の製造段階でNCM等により基板とともに一体的に形成することが出来ので、製造及び組み立てコストを大幅に削減することが出来る。   Since it is configured in this way, the same effects as those of the first to fourth embodiments are obtained, and the guard portion 56 protrudes from the substrate main portion 51b via the flow velocity detection portion support portion 52. It is possible to protect the existing flow velocity detection unit 50. Furthermore, the guard part 56 can also prevent burns caused by erroneous contact with the heater element 4 that generates heat in the flow velocity detection part 50. Further, since the guard portion 56 can be integrally formed with the substrate by NCM or the like at the substrate manufacturing stage, manufacturing and assembly costs can be greatly reduced.

建物内の各部屋に載置して快適センサの一部として使用することが可能である。人間の生活環境の快適性評価指数として、PMV(予測平均温冷感)やET(有効温度)、OT(作用温度)等があるが、いずれも風速の値を用いて算出される。温度センサや湿度センサは一般家庭にも普及しつつあるが、古来より夏季の快適性維持手法として扇風機等が用いられており、従って、風が快適性維持・向上に効果がある事は知られている。これは、生物の体表面に形成された空気の滞留層および境界層を、風による空気流動によって排除することにより、皮膚表面の蒸発が促進され、皮膚が冷却効果を得られるためである。   It can be placed in each room in the building and used as part of the comfort sensor. There are PMV (predicted average thermal sensation), ET (effective temperature), OT (working temperature), etc. as comfort evaluation indexes of human living environment, all of which are calculated using the value of wind speed. Temperature sensors and humidity sensors are becoming popular in ordinary households, but fans have been used as a method for maintaining comfort in summer since ancient times, and it is known that the wind is effective in maintaining and improving comfort. ing. This is because by removing the air staying layer and the boundary layer formed on the body surface of the living body by the air flow by the wind, the evaporation of the skin surface is promoted and the skin can obtain a cooling effect.

しかし、エアコンデイショナや扇風機等の機器に風速センサが用いられることは無かった。本発明は、コスト面・耐久面・製作容易性等を向上した流速・流量センサを得られるため、従来は導入がされなかった住環境への導入の可能性が見込まれる。   However, wind speed sensors have never been used in devices such as air conditioners and electric fans. Since the present invention can provide a flow rate / flow rate sensor with improved cost, durability, ease of manufacture, etc., there is a possibility of introduction into a living environment that has not been introduced in the past.

同様に、建物内の換気機能の検査や、労働環境基準の検査・監視、健康増進法に基づく分煙状況の検査・監視など、人間の居住環境および周囲環境のモニタリングへの応用が期待できる。   Similarly, it can be expected to be applied to the monitoring of human living environment and surrounding environment, such as inspection of ventilation function in buildings, inspection and monitoring of labor environment standards, and inspection and monitoring of smoke distribution based on the Health Promotion Law.

一方、病院等の医療機関においては、患者の周囲環境が患者の治療回復に影響を与えることが知られており、旧来より温度・湿度の管理は積極的に行われてきた。また、手術中や手術直後の患者や、生体調整機能に変調をきたしている患者は、体温調整機能が低下しているために、他の状態の患者よりも環境管理に特に注意を払う必要がある。さらに、手術患者の術後の経過は、手術中および手術後の患者に与える環境ストレスを最小化する事が特に求められている。しかし、快適性の評価要素の一つである気流速度は、これまで積極的に用いられる事は無かった。病床数が減少している日本の医療環境において、患者の短期回復による早期退院が進めば、医療機関への負担および入院待ちを余儀なくされている患者にとってメリットがある。よって、医療現場への導入が期待できる。   On the other hand, in medical institutions such as hospitals, it is known that the surrounding environment of patients affects the recovery of treatment for patients, and temperature and humidity have been actively managed from the past. In addition, patients who have undergone surgery, immediately after surgery, or patients who have undergone modulation of the bioregulatory function, need to pay more attention to environmental management than patients in other conditions because the body temperature regulation function is reduced. is there. Furthermore, the post-operative course of a surgical patient is particularly required to minimize environmental stress on the patient during and after surgery. However, the air velocity, which is one of the evaluation factors of comfort, has not been actively used until now. In Japan's medical environment where the number of beds is decreasing, early discharge due to short-term recovery of patients will benefit patients who are burdened with medical institutions and are forced to wait for hospitalization. Therefore, introduction into the medical field can be expected.

産業分野においては、清浄空気環境の風速・風量の検査等に応用することが出来る。クリーンルームや、箱状構造物内部のみを清浄空気環境にすることの可能なチャンバー等は、汚染空気の混合・混入に注意を払わねばならないが、従来は風速・風量をモニタリングできなかった。又、農業分野の特に園芸分野では、0.3〜0.7m/s.の微風を植物体もしくは植物群落に与えることが、光合成促進や病害予防に効果があることが判っている。よって、清浄空気環境のモニタリングや植物生産管理への利用が見込まれる。   In the industrial field, it can be applied to inspection of wind speed and air volume in a clean air environment. In clean rooms and chambers where only the inside of a box-like structure can be made into a clean air environment, attention must be paid to the mixing and mixing of contaminated air, but conventionally the wind speed and volume could not be monitored. Moreover, in the field of agriculture, especially in the field of horticulture, it has been found that applying a breeze of 0.3 to 0.7 m / s to plants or plant communities is effective in promoting photosynthesis and preventing disease. Therefore, it is expected to be used for monitoring clean air environment and plant production management.

1、21、31、41、51 流速・流量センサを形成する板状の基板
1a、21a、31a、41a、51a 流速検出部5、20、30、40、50の基板部分
1b、21b、31b、41b、51b 基板主要部
3 ヒータ素子
4 測温素子
5、20、30、40、50 流速検出部
9、22、32、42、52 流速検出部用支持部
34、44、54 気温計測部
33、43 気温計測部用支持部
35、45、55 気温計測用素子
36、37、38、47、57 空間
41c、51c 気温計測部44、54の基板部分
56 ガード部
1, 21, 31, 41, 51 Plate-like substrates 1a, 21a, 31a, 41a, 51a forming flow velocity / flow rate sensors Substrate portions 1b, 21b, 31b of the flow velocity detectors 5, 20, 30, 40, 50 41b, 51b Substrate main part 3 Heater element 4 Temperature measuring element 5, 20, 30, 40, 50 Flow rate detection part 9, 22, 32, 42, 52 Flow rate detection part support part 34, 44, 54 Air temperature measurement part 33, 43 Air temperature measuring unit support part 35, 45, 55 Air temperature measuring element 36, 37, 38, 47, 57 Space 41c, 51c Substrate portion of the air temperature measuring part 44, 54 56 Guard part

Claims (4)

供給電流により熱を発生するヒータ素子と、流速に応じて変化する前記ヒータ素子からの熱の温度を検出する測温素子とを有する流速検出部とからなる流体の流速及び流量を計測する熱式流速・流量センサの製造方法において、
前記ヒータ素子及び前記測温素子は汎用の表面実装部品であり、
前記熱式流速・流量センサの板状の単一の基板から、この基板の主要部である基板主要部を構成する帯状外周部を、前記基板と一体的に形成し、
前記帯状外周部を構成する前記基板主要部から互いに中心方向へ一体的に延びた細長形状の一対の流速検出部用支持部と、この一対の流速検出部用支持部の先端部に支持する前記流速検出部を実装する基板部分とを、前記基板主要部と一体的に形成し、
前記流速検出部を実装する基板部分に前記流速検出部用の回路パターンを形成し、
前記流速検出部を実装する基板部分の表面実装箇所の一方の面に、前記ヒータ素子を実装し、
このヒータ素子の表面実装箇所に対向位置させて、前記測温素子を、前記流速検出部を実装する基板部分の表面実装箇所の他方の面に実装し、
前記ヒータ素子と前記測温素子とを前記流速検出部を実装する基板部分の表面実装箇所両面に配置して実装することにより、この表面実装箇所における基板部分を介して前記ヒータ素子と前記測温素子とが熱的に直接接続してなる前記流速検出部を形成し、
前記流速検出部を実装する基板部分の表面実装箇所と、この表面実装箇所から前記基板主要部へと一体的に延びる一対の前記流速検出部用支持部と、前記帯状外周部とを残して、前記基板の周辺部を切断することにより、
帯状外周部を構成する前記基板主要部を、前記流速検出部を保護するガード部とするとともに、前記流速検出部の周囲に空間を設けた構造となるように、汎用の基板製造装置を用いて形成したこと
を特徴とする熱式流速・流量センサの製造方法。
A thermal type that measures the flow velocity and flow rate of a fluid comprising a heater element that generates heat by a supply current and a temperature measuring element that detects a temperature of heat from the heater element that changes according to the flow rate. In the manufacturing method of the flow velocity / flow rate sensor,
The heater element and the temperature measuring element are general-purpose surface mount components,
From the plate-like single substrate of the thermal flow rate / flow rate sensor, a belt-like outer peripheral portion constituting the substrate main portion which is the main portion of this substrate is formed integrally with the substrate,
A pair of elongated flow velocity detection portion support portions integrally extending in the center direction from the substrate main portion constituting the belt-shaped outer peripheral portion, and the tip portions of the pair of flow velocity detection portion support portions are supported on the tip portions. A substrate part on which the flow velocity detection unit is mounted is formed integrally with the substrate main part,
Forming a circuit pattern for the flow velocity detection unit on a substrate portion on which the flow velocity detection unit is mounted;
The heater element is mounted on one surface of the surface mounting portion of the substrate portion on which the flow velocity detection unit is mounted,
The temperature measuring element is mounted on the other surface of the surface mounting portion of the substrate portion on which the flow velocity detection unit is mounted, facing the surface mounting portion of the heater element,
The heater element and the temperature measuring element are arranged and mounted on both surfaces of the surface mounting portion of the substrate portion on which the flow velocity detection unit is mounted, so that the heater element and the temperature measuring device are interposed via the substrate portion at the surface mounting location. Forming the flow velocity detection part formed by thermal direct connection with the element;
The surface mounting location of the substrate portion for mounting the flow velocity detection portion, the pair of flow velocity detection portion support portions extending integrally from the surface mounting location to the main portion of the substrate, and the belt-shaped outer peripheral portion, By cutting the periphery of the substrate,
Using a general-purpose substrate manufacturing apparatus so that the substrate main portion constituting the belt-shaped outer peripheral portion is a guard portion that protects the flow velocity detection portion, and a space is provided around the flow velocity detection portion. A method of manufacturing a thermal flow rate / flow rate sensor characterized by being formed.
供給電流により熱を発生するヒータ素子と、流速に応じて変化する前記ヒータ素子からの熱の温度を検出する測温素子とを有する流速検出部と、気温を計測する気温計測用素子を有する気温計測部とからなる流体の流速及び流量を計測する熱式流速・流量センサの製造方法において、
前記ヒータ素子及び前記測温素子及び前記気温計測用素子は汎用の表面実装部品であり、
前記熱式流速・流量センサの板状の単一の基板から、この基板の主要部である基板主要部を構成する帯状外周部を、前記基板と一体的に形成し、
前記基板の一端中央部分に、前記基板主要部から一体的に延びた細長形状の流速検出部用支持部を、前記基板と一体的に形成し、
この流速検出部用支持部の先端部に、前記流速検出部を実装する基板部分が前記帯状外周部の中心部分に位置するように形成するとともに、この基板部分に前記流速検出部用の回路パターンを形成し、
前記帯状外周部に前記気温計測部用の回路パターンを形成し、
前記流速検出部を実装する基板部分の表面実装箇所に、前記ヒータ素子と前記測温素子とを互いに隣接して配置して実装することにより前記ヒータ素子と前記測温素子とが熱的に直接接続してなる前記流速検出部を形成し、
前記帯状外周部の表面実装箇所に、前記気温計測素子を実装してなる前記気温計測部を形成し、
前記流速検出部を実装する基板部分の表面実装箇所と、この表面実装箇所から前記基板主要部へと一体的に延びる前記流速検出部用支持部と、前記帯状外周部とを残して、前記基板の周辺部を切断することにより、
前記表面実装箇所に形成した前記流速検出部を、前記流速検出部用支持部により前記基板主要部に支持した構造に形成するとともに、前記帯状外周部を構成する前記基板主要部を、前記流速検出部を保護するガード部とし、且つ、前記流速検出部及び前記気温計測素子の周囲に空間を設けるとともに、前記流速検出部及び前記気温計測素子との間に、空間を設け、かつ、板状の基板主要部を設けた構造となるように汎用の基板製造装置を用いて形成したこと
を特徴とする熱式流速・流量センサの製造方法。
A flow rate detector having a heater element that generates heat by a supply current, a temperature measuring element that detects the temperature of heat from the heater element that changes according to the flow rate, and an air temperature that includes an air temperature measuring element that measures the air temperature In the manufacturing method of the thermal flow rate / flow rate sensor that measures the flow rate and flow rate of the fluid consisting of the measurement unit,
The heater element, the temperature measuring element, and the temperature measuring element are general-purpose surface-mount components,
From the plate-like single substrate of the thermal flow rate / flow rate sensor, a belt-like outer peripheral portion constituting the substrate main portion which is the main portion of this substrate is formed integrally with the substrate,
An elongated flow rate detecting portion supporting portion integrally extending from the main portion of the substrate is integrally formed with the substrate at a central portion of one end of the substrate,
A circuit board portion for mounting the flow velocity detection unit is formed at the distal end of the flow velocity detection unit so that the substrate portion is located at the center of the belt-shaped outer periphery, and the circuit pattern for the flow velocity detection unit is formed on the substrate portion. Form the
Forming a circuit pattern for the air temperature measurement section on the belt-shaped outer periphery;
The heater element and the temperature measuring element are thermally directly connected to each other by mounting the heater element and the temperature measuring element adjacent to each other on the surface mounting portion of the substrate portion on which the flow velocity detection unit is mounted. Forming the flow velocity detection unit connected,
Forming the temperature measuring part formed by mounting the temperature measuring element on the surface mounting location of the belt-shaped outer peripheral part,
The substrate, leaving the surface mounting portion of the substrate portion on which the flow velocity detecting portion is mounted, the flow velocity detecting portion supporting portion integrally extending from the surface mounting portion to the main portion of the substrate, and the belt-shaped outer peripheral portion. By cutting the periphery of
The flow velocity detection part formed at the surface mounting location is formed in a structure that is supported by the substrate main part by the flow rate detection part support part, and the substrate main part constituting the belt-shaped outer peripheral part is formed by the flow velocity detection. And a space around the flow rate detection unit and the temperature measurement element, a space is provided between the flow rate detection unit and the temperature measurement element, and a plate-like shape is provided. A method of manufacturing a thermal flow rate / flow rate sensor, characterized in that it is formed using a general-purpose substrate manufacturing apparatus so as to have a structure in which a main part of the substrate is provided.
供給電流により熱を発生するヒータ素子と、流速に応じて変化する前記ヒータ素子からの熱の温度を検出する測温素子とを有する流速検出部とからなる流体の流速及び流量を計測する熱式流速・流量センサにおいて、
前記熱式流速・流量センサの板状の単一の基板と、
この基板から一体的に形成した前記基板の主要部である基板主要部を構成する帯状外周部と、
この帯状外周部を構成する前記基板主要部から互いに中心方向へ一体的に延びた細長形状の一対の流速検出部用支持部と、
この一対の流速検出部用支持部の先端部に支持するとともに、前記基板主要部と一体的に形成してなる前記流速検出部を実装する基板部分と、
この基板部分に形成した前記流速検出部用の回路パターンと、
前記流速検出部を実装する基板部分の表面実装箇所の一方の面に実装した汎用の表面実装部品であるヒータ素子と、
このヒータ素子の表面実装箇所に対向位置する前記流速検出部を実装する基板部分の表面実装箇所の他方の面に実装した汎用の表面実装部品である測温素子と、
前記ヒータ素子と前記測温素子とを前記流速検出部を実装する基板部分の表面実装箇所両面に配置して実装することにより、この表面実装箇所における基板部分を介して前記ヒータ素子と前記測温素子とが熱的に直接接続してなる前記流速検出部とからなり、
前記流速検出部を実装する基板部分の表面実装箇所と、この表面実装箇所から前記基板主要部へと一体的に延びる一対の前記流速検出部用支持部と、前記帯状外周部とを残して、前記基板の周辺部を切断することにより、
帯状外周部を構成する前記基板主要部を、前記流速検出部を保護するガード部とするとともに、前記流速検出部の周囲に空間を設けた構造となるように、汎用の基板製造装置を用いて形成したこと
を特徴とする熱式流速・流量センサ。
A thermal type that measures the flow velocity and flow rate of a fluid comprising a heater element that generates heat by a supply current and a temperature measuring element that detects a temperature of heat from the heater element that changes according to the flow rate. In the flow velocity / flow rate sensor,
A plate-like single substrate of the thermal flow rate / flow rate sensor;
A belt-shaped outer peripheral portion constituting a main part of the substrate which is a main part of the substrate integrally formed from the substrate;
A pair of elongated flow velocity detection unit support portions integrally extending in the center direction from the substrate main portion constituting the belt-shaped outer peripheral portion;
A substrate portion for mounting the flow velocity detection portion formed integrally with the substrate main portion while being supported at the tip of the pair of flow velocity detection portion support portions,
A circuit pattern for the flow velocity detection unit formed on the substrate part,
A heater element that is a general-purpose surface-mounted component mounted on one surface of a surface-mounted portion of a substrate portion on which the flow velocity detection unit is mounted;
A temperature measuring element that is a general-purpose surface-mounted component mounted on the other surface of the surface-mounted portion of the substrate portion that mounts the flow velocity detection unit positioned opposite to the surface-mounted portion of the heater element;
The heater element and the temperature measuring element are arranged and mounted on both surfaces of the surface mounting portion of the substrate portion on which the flow velocity detection unit is mounted, so that the heater element and the temperature measuring device are interposed via the substrate portion at the surface mounting location. It consists of the flow velocity detection part formed by thermally connecting the element directly,
The surface mounting location of the substrate portion for mounting the flow velocity detection portion, the pair of flow velocity detection portion support portions extending integrally from the surface mounting location to the main portion of the substrate, and the belt-shaped outer peripheral portion, By cutting the periphery of the substrate,
Using a general-purpose substrate manufacturing apparatus so that the substrate main portion constituting the belt-shaped outer peripheral portion is a guard portion that protects the flow velocity detection portion, and a space is provided around the flow velocity detection portion. A thermal flow rate / flow rate sensor characterized by being formed.
供給電流により熱を発生するヒータ素子と、流速に応じて変化する前記ヒータ素子からの熱の温度を検出する測温素子とを有する流速検出部と、気温を計測する気温計測用素子を有する気温計測部とからなる流体の流速及び流量を計測する熱式流速・流量センサにおいて、
前記熱式流速・流量センサの板状の単一の基板と、
この基板から一体的に形成した前記基板の主要部である基板主要部を構成する帯状外周部と、
この基板の一端中央部分に、前記基板と一体的に形成するとともに、前記基板主要部から一体的に延びる細長形状に形成した流速検出部用支持部と、
この流速検出部用支持部の先端部に形成するとともに、前記帯状外周部の中心部分に位置するように形成してなる前記流速検出部を実装する基板部分と、
この基板部分に形成した前記流速検出部用の回路パターンと、
前記帯状外周部に形成した前記気温計測部用の回路パターンと、
前記流速検出部を実装する基板部分の表面実装箇所に形成され、汎用の表面実装部品であるヒータ素子と汎用の表面実装部品である測温素子とを互いに隣接して配置して実装することにより前記ヒータ素子と前記測温素子とが熱的に直接接続してなる前記流速検出部と、
前記帯状外周部の表面実装箇所に実装した汎用の表面実装部品である前記気温計測素子と、
前記流速検出部を実装する基板部分の表面実装箇所と、この表面実装箇所から前記基板主要部へと一体的に延びる前記流速検出部用支持部と、前記帯状外周部とを残して、前記基板の周辺部を切断することにより、
前記表面実装箇所に形成した前記流速検出部を、前記流速検出部用支持部により前記基板主要部に支持した構造に形成するとともに、前記帯状外周部を構成する前記基板主要部を、前記流速検出部を保護するガード部とし、且つ、前記流速検出部及び前記気温計測素子の周囲に空間を設けるとともに、前記流速検出部及び前記気温計測素子との間に、空間を設け、かつ、板状の基板主要部を設けた構造となるように汎用の基板製造装置を用いて形成したこと
を特徴とする熱式流速・流量センサ。
A flow rate detector having a heater element that generates heat by a supply current, a temperature measuring element that detects the temperature of heat from the heater element that changes according to the flow rate, and an air temperature that includes an air temperature measuring element that measures the air temperature In the thermal flow rate / flow rate sensor that measures the flow rate and flow rate of the fluid consisting of the measurement unit,
A plate-like single substrate of the thermal flow rate / flow rate sensor;
A belt-shaped outer peripheral portion constituting a main part of the substrate which is a main part of the substrate integrally formed from the substrate;
In the central part of one end of the substrate, the support for the flow rate detection unit formed in an elongated shape integrally formed with the substrate and extending integrally from the main part of the substrate,
A substrate portion for mounting the flow velocity detection portion formed at the front end portion of the flow velocity detection portion support portion and formed so as to be positioned at the center portion of the belt-shaped outer peripheral portion,
A circuit pattern for the flow velocity detection unit formed on the substrate part,
A circuit pattern for the air temperature measurement part formed on the belt-shaped outer peripheral part;
By forming a heater element, which is a general-purpose surface-mounted component, and a temperature-measuring element, which is a general-purpose surface-mounted component, arranged adjacent to each other and mounted on a surface-mounted portion of the substrate portion on which the flow velocity detection unit is mounted The flow rate detection unit formed by thermally connecting the heater element and the temperature measuring element directly;
The temperature measuring element which is a general-purpose surface-mounted component mounted on the surface-mounted portion of the belt-shaped outer peripheral portion,
The substrate, leaving the surface mounting portion of the substrate portion on which the flow velocity detecting portion is mounted, the flow velocity detecting portion supporting portion integrally extending from the surface mounting portion to the main portion of the substrate, and the belt-shaped outer peripheral portion. By cutting the periphery of
The flow velocity detection part formed at the surface mounting location is formed in a structure that is supported by the substrate main part by the flow rate detection part support part, and the substrate main part constituting the belt-shaped outer peripheral part is formed by the flow velocity detection. And a space around the flow rate detection unit and the temperature measurement element, a space is provided between the flow rate detection unit and the temperature measurement element, and a plate-like shape is provided. A thermal flow rate / flow rate sensor formed using a general-purpose substrate manufacturing equipment so as to have a structure in which the main part of the substrate is provided.
JP2013200812A 2013-09-27 2013-09-27 Manufacturing method of thermal flow rate / flow rate sensor and thermal flow rate / flow rate sensor Active JP6332932B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013200812A JP6332932B2 (en) 2013-09-27 2013-09-27 Manufacturing method of thermal flow rate / flow rate sensor and thermal flow rate / flow rate sensor
PCT/JP2014/075424 WO2015046328A1 (en) 2013-09-27 2014-09-25 Manufacturing method for thermal flow velocity/flow rate sensor, and thermal flow velocity/flow rate sensor
KR1020167010915A KR101786741B1 (en) 2013-09-27 2014-09-25 Manufacturing method for thermal flow velocity/flow rate sensor, and thermal flow velocity/flow rate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200812A JP6332932B2 (en) 2013-09-27 2013-09-27 Manufacturing method of thermal flow rate / flow rate sensor and thermal flow rate / flow rate sensor

Publications (2)

Publication Number Publication Date
JP2015068659A JP2015068659A (en) 2015-04-13
JP6332932B2 true JP6332932B2 (en) 2018-05-30

Family

ID=52743462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200812A Active JP6332932B2 (en) 2013-09-27 2013-09-27 Manufacturing method of thermal flow rate / flow rate sensor and thermal flow rate / flow rate sensor

Country Status (3)

Country Link
JP (1) JP6332932B2 (en)
KR (1) KR101786741B1 (en)
WO (1) WO2015046328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821438B2 (en) 2020-09-30 2023-11-21 Daikin Industries, Ltd. Fan unit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6846025B2 (en) * 2016-11-29 2021-03-24 ホルトプラン合同会社 Thermal flow velocity / flow rate sensor equipped with a thermal flow velocity / flow rate sensor and its directivity error correction device
WO2018105753A2 (en) * 2017-05-08 2018-06-14 株式会社村田製作所 Sensor substrate, air velocity measurement device, and air volume measurement device
JP7285056B2 (en) * 2018-09-21 2023-06-01 Koa株式会社 Flow sensor device
JP7305189B2 (en) * 2020-03-25 2023-07-10 ホルトプラン合同会社 thermal flow sensor
KR102177856B1 (en) 2020-07-13 2020-11-11 (주)바이올 Ambient temperature independent wind speed meter using thermal mass sensor
KR102165644B1 (en) 2020-07-24 2020-10-14 (주)바이올 Biological safety cabinet with ease of air circulation
JP7112001B2 (en) 2020-10-15 2022-08-03 ダイキン工業株式会社 Thermal velocity/flow sensor and air conditioner

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116464A (en) * 1990-09-06 1992-04-16 Matsushita Electric Ind Co Ltd Fluid velocity sensor
JPH06249864A (en) 1993-02-25 1994-09-09 Murata Mfg Co Ltd Wind speed sensor
JPH0829228A (en) * 1994-07-13 1996-02-02 Unisia Jecs Corp Thermal air flow rate detection device
JPH10274552A (en) 1997-03-28 1998-10-13 Ngk Spark Plug Co Ltd Thermal type flow velocity sensor
JP3553422B2 (en) 1999-06-08 2004-08-11 三菱電機株式会社 Flow sensor
US7333899B2 (en) * 2004-10-13 2008-02-19 Therm-O-Disc, Incorporated Fluid flow rate sensor and method of operation
JP2006292620A (en) * 2005-04-13 2006-10-26 Shibaura Electronics Co Ltd Indirectly heated thermistor
JP2008241318A (en) 2007-03-26 2008-10-09 Miura Co Ltd Gas flow meter
IL205084A (en) * 2010-04-14 2017-08-31 Vasa Applied Tech Ltd Flow-meter probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821438B2 (en) 2020-09-30 2023-11-21 Daikin Industries, Ltd. Fan unit

Also Published As

Publication number Publication date
WO2015046328A1 (en) 2015-04-02
KR101786741B1 (en) 2017-10-18
KR20160067129A (en) 2016-06-13
JP2015068659A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
JP6332932B2 (en) Manufacturing method of thermal flow rate / flow rate sensor and thermal flow rate / flow rate sensor
JP5947282B2 (en) Flow meter probe
JP5350413B2 (en) Intake air temperature sensor and thermal air flow meter having the same
JP4805773B2 (en) Electronic thermometer
JP6413179B2 (en) Thermal flow rate / flow rate sensor with flow direction detection function
JP2013531248A (en) Infrared temperature measurement and stabilization
RU2011129824A (en) ANEMOMETER CONTROL DEVICE WITH WIRE
EP2574891B1 (en) Temperature sensor attachment facilitating thermal conductivity to a measurement point and insulation from a surrounding environment
US9921088B2 (en) Device for determining temperature as well as measuring arrangement for determining flow
JP2015210196A (en) Thermal flow velocity and flow rate sensor and method for manufacturing the same
JP7079922B2 (en) Thermal flow velocity / flow rate sensor equipped with a thermal flow velocity / flow rate sensor and its directivity error correction device
US8583385B2 (en) Thermal, flow measuring device
CN111741709A (en) Body core temperature sensor with two TEGs
JP2007194502A (en) Optical communication module
JP3829637B2 (en) Temperature measuring device
SE1050545A1 (en) Temperature measurement system and method for a temperature measurement system comprising at least one thermocouple
JP6846025B2 (en) Thermal flow velocity / flow rate sensor equipped with a thermal flow velocity / flow rate sensor and its directivity error correction device
JP2015212636A (en) Radiation heat detection sensor
JP7365049B2 (en) Thermal flow rate/flow sensor
CN208736893U (en) A kind of micro- air velocity transducer
JP6536059B2 (en) Humidity sensor
JP5521498B2 (en) Wind speed sensor
JP2021039047A (en) Thermal flowmeter
JP2015021946A (en) Environment measuring apparatus and environment sensor
JP2001141538A (en) Measuring instrument

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180424

R150 Certificate of patent or registration of utility model

Ref document number: 6332932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250