JP6332493B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP6332493B2
JP6332493B2 JP2017024553A JP2017024553A JP6332493B2 JP 6332493 B2 JP6332493 B2 JP 6332493B2 JP 2017024553 A JP2017024553 A JP 2017024553A JP 2017024553 A JP2017024553 A JP 2017024553A JP 6332493 B2 JP6332493 B2 JP 6332493B2
Authority
JP
Japan
Prior art keywords
cooling
plate
curved surface
cooled
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017024553A
Other languages
Japanese (ja)
Other versions
JP2017122571A (en
Inventor
啓輔 若尾
啓輔 若尾
淳 小島
淳 小島
育史 笹谷
育史 笹谷
史武 大橋
史武 大橋
一歩 近藤
一歩 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017024553A priority Critical patent/JP6332493B2/en
Publication of JP2017122571A publication Critical patent/JP2017122571A/en
Application granted granted Critical
Publication of JP6332493B2 publication Critical patent/JP6332493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

この発明は、曲面の放熱面を有する発熱体や帯熱体などの冷却対象を冷却する冷却装置に関するものである。   The present invention relates to a cooling device that cools a cooling target such as a heating element or a heating element having a curved heat radiation surface.

従来、曲面の放熱面を有する発熱体や帯熱体などの冷却対象を冷却する冷却装置には、冷却装置と発熱体を十分に接触・固定させ、放熱面積を確保するために、細管ヒートパイプを用い曲面に接触させる技術がある(例えば、特許文献1参照)。   Conventionally, a cooling device that cools an object to be cooled, such as a heating element or a heating element having a curved heat radiating surface, contacts and fixes the cooling device and the heating element sufficiently to secure a heat radiation area. There is a technique of bringing a curved surface into contact with the surface (for example, see Patent Document 1).

また、冷却構造部材(冷却装置)には、配管(パイプ)内に冷却剤を流通するものがある(例えば、特許文献2参照)。なお、冷却器(冷却装置)と試料(冷却対象)との間に緩衝部材を配置したものがある(例えば、特許文献3参照)。   Further, some cooling structural members (cooling devices) circulate coolant in pipes (pipes) (see, for example, Patent Document 2). In addition, there exists what has arrange | positioned the buffer member between the cooler (cooling device) and the sample (cooling object) (for example, refer patent document 3).

一般的には、空冷の場合、放熱面形状に大きく影響されず冷却できるが、発熱量に応じて大型の送風装置が必要となり、高い発熱量を持つものに対応できない。液冷の場合、空冷よりも冷却能力が高いといわれているが、さらに、曲面の放熱面を有する発熱体や帯熱体などの冷却対象を冷却する外付の冷却装置では、発熱体の放熱面が曲面である場合、放熱面と冷却装置の吸熱面を点接触や線接触では熱交換面積が小さくなり冷却能力が低下する為、面接触をさせて熱交換面積を十分に確保することが重要と考えられている。   In general, in the case of air cooling, cooling can be performed without being greatly affected by the shape of the heat radiating surface, but a large blower is required according to the amount of heat generation, and it is not possible to cope with one having a high heat generation amount. In the case of liquid cooling, it is said that the cooling capacity is higher than that of air cooling. However, in the case of an external cooling device that cools a cooling target such as a heating element or a heating element having a curved heat dissipation surface, heat dissipation of the heating element is performed. If the surface is a curved surface, the point of contact or line contact between the heat dissipation surface and the endothermic surface of the cooling device will reduce the heat exchange area and reduce the cooling capacity. It is considered important.

特開平6−291543号公報(第1図〜第4図)JP-A-6-291543 (FIGS. 1 to 4) 特開平6−72783号公報(第4図)Japanese Patent Laid-Open No. 6-72783 (FIG. 4) 特開平7−49167号公報(第1図)Japanese Patent Laid-Open No. 7-49167 (FIG. 1)

しかし、特許文献1に記載の従来技術では、曲面の放熱面を有する発熱体や帯熱体などの冷却対象に対して、必要時にのみ外部から取付け、取り外し可能な冷却装置に関しての記載がないという課題がある。さらに、特許文献2に記載の従来技術では、面の放熱面を有する発熱体や帯熱体などの冷却対象を想定していないという課題があった。   However, in the prior art described in Patent Document 1, there is no description about a cooling device that can be attached and removed from the outside only when necessary for a cooling object such as a heating element or a heating element having a curved heat radiation surface. There are challenges. Furthermore, in the prior art described in Patent Document 2, there is a problem that a cooling target such as a heating element having a heat radiating surface or a heating element is not assumed.

また、特許文献1及び2に記載の従来技術では、冷却装置と発熱体との接触又は固定に関しては、明記されていないという課題もあった。なお、特許文献3に記載の従来技術では、冷却対象である試料全体を覆う構造であるために、冷却対象が大型なものである場合、装置も非常に大きくなってしまうと課題があった。   Moreover, in the prior art described in Patent Documents 1 and 2, there is a problem that the contact or fixing between the cooling device and the heating element is not specified. Note that the conventional technique described in Patent Document 3 has a structure that covers the entire sample that is the object of cooling, and therefore, when the object to be cooled is large, there is a problem that the apparatus becomes very large.

この発明は、上記のような課題を解消するためになされたもので、曲面の放熱面を有する発熱体や帯熱体などの冷却対象を外部から効率よく冷却することができる冷却装置に関するものである。   The present invention has been made to solve the above-described problems, and relates to a cooling device that can efficiently cool a cooling target such as a heating element or a heating element having a curved heat radiation surface from the outside. is there.

この発明に係る冷却装置は、複数の冷却板の流路を連結して冷媒の循環路を形成し、可撓性を有する配管を備え、冷却板が、柱状である冷却対象の放熱面のうち任意の位置に曲面部を内側に向けて円環状に複数配置され、該複数の冷却板を含めて冷却板の形状に沿って変形する固定用ベルトによって冷却対象が縛られ、配管は、冷却板において前固定用ベルトと接触する面と交差する面に形成された開口を介して流路と接続されたことを特徴とするものである。 The cooling device according to the present invention includes a plurality of cooling plate flow paths to form a refrigerant circulation path, a flexible pipe, and the cooling plate having a columnar shape. A plurality of annular surfaces are arranged in an annular shape with the curved surface portion facing inward at an arbitrary position, and an object to be cooled is bound by a fixing belt that deforms along the shape of the cooling plate including the plurality of cooling plates. In this embodiment, the flow path is connected to the flow path through an opening formed in a surface intersecting with the surface in contact with the front fixing belt .

以上のように、この発明によれば、曲面の放熱面を有する発熱体や帯熱体などの冷却対象を外部から効率よく冷却することができる冷却装置を得ることができる。   As described above, according to the present invention, it is possible to obtain a cooling device that can efficiently cool a cooling target such as a heating element or a heating element having a curved heat radiation surface from the outside.

この発明の実施の形態1に係る冷却装置(外付液冷冷却装置)の外観図である。It is an external view of the cooling device (external liquid cooling device) according to Embodiment 1 of the present invention. この発明の実施の形態1に係る冷却装置(外付液冷冷却装置)の冷却部の透視図である。It is a perspective view of the cooling unit of the cooling device (external liquid cooling device) according to Embodiment 1 of the present invention. この発明の実施の形態1に係る冷却装置(外付液冷冷却装置)の冷却部の断面図である。It is sectional drawing of the cooling part of the cooling device (external liquid cooling device) which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る冷却装置(外付液冷冷却装置)の冷却部の断面図である。It is sectional drawing of the cooling part of the cooling device (external liquid cooling device) which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る冷却装置(外付液冷冷却装置)の外観図(固定部付き)である。It is an external view (with a fixing part) of the cooling device (external liquid cooling device) concerning Embodiment 1 of this invention. この発明の実施の形態1に係る冷却装置(外付液冷冷却装置)の外観図(固定部付き)である。It is an external view (with a fixing part) of the cooling device (external liquid cooling device) concerning Embodiment 1 of this invention. この発明の実施の形態1に係る冷却装置(外付液冷冷却装置)の外観図(固定具付き)である。It is an external view (with a fixture) of the cooling device (external liquid cooling device) concerning Embodiment 1 of this invention. この発明の実施の形態1に係る冷却装置(外付液冷冷却装置)の外観図(固定具付き)である。It is an external view (with a fixture) of the cooling device (external liquid cooling device) concerning Embodiment 1 of this invention. この発明の実施の形態2に係る冷却装置(外付液冷冷却装置)の外観図である。It is an external view of the cooling device (external liquid cooling device) according to Embodiment 2 of the present invention. この発明の実施の形態2に係る冷却装置(外付液冷冷却装置)の冷却部の断面図である。It is sectional drawing of the cooling part of the cooling device (external liquid cooling device) which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る冷却装置(外付液冷冷却装置)の冷媒の流れを示す模式図である。It is a schematic diagram which shows the flow of the refrigerant | coolant of the cooling device (external liquid cooling cooling device) which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る冷却装置(外付液冷冷却装置)の冷媒の流れを示す模式図である。It is a schematic diagram which shows the flow of the refrigerant | coolant of the cooling device (external liquid cooling cooling device) which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る冷却装置(外付液冷冷却装置)の冷媒の流れを示す模式図である。It is a schematic diagram which shows the flow of the refrigerant | coolant of the cooling device (external liquid cooling cooling device) which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る冷却装置(外付液冷冷却装置)の冷却部の断面図である。It is sectional drawing of the cooling part of the cooling device (external liquid cooling cooling device) which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る冷却装置(外付液冷冷却装置)の冷却部の可動を示す模式図である。It is a schematic diagram which shows the movement of the cooling part of the cooling device (external liquid cooling cooling device) which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る冷却装置(外付液冷冷却装置)の冷却部の可動を示す模式図である。It is a schematic diagram which shows the movement of the cooling part of the cooling device (external liquid cooling cooling device) which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る冷却装置(外付液冷冷却装置)の冷却部の可動を示す模式図である。It is a schematic diagram which shows the movement of the cooling part of the cooling device (external liquid cooling cooling device) which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る冷却装置(外付液冷冷却装置)の冷却部の可動を示す模式図である。It is a schematic diagram which shows the movement of the cooling part of the cooling device (external liquid cooling cooling device) which concerns on Embodiment 3 of this invention.

実施の形態1.
以下、この発明の実施の形態1について図1〜8を用いて説明する。図3(a)は図2の一点鎖線で示す断面Bにおける冷却部(冷却板)の断面図、図3(b)は図2の一点鎖線で示す断面Cにおける冷却部(冷却板)の断面図、図4は図1の一点鎖線で示す断面Aにおける冷却部(冷却板)の断面図、図5は冷却対象及び冷却対象に巻き付けられた冷却部(冷却板)の一方から見た斜視図、図6は冷却対象及び冷却対象に巻き付けられた冷却部(冷却板)の他方から見た斜視図である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. 3A is a cross-sectional view of the cooling part (cooling plate) in the cross section B indicated by the one-dot chain line in FIG. 2, and FIG. 3B is a cross-sectional view of the cooling part (cooling plate) in the cross section C indicated by the one-dot chain line in FIG. 4 is a cross-sectional view of the cooling unit (cooling plate) in the cross-section A indicated by the one-dot chain line in FIG. 1, and FIG. 5 is a perspective view of the cooling target and the cooling unit (cooling plate) wound around the cooling target. FIG. 6 is a perspective view seen from the other side of the cooling target and the cooling part (cooling plate) wound around the cooling target.

図1〜図8において、0は本願に係る冷却装置は冷却する対象物である冷却対象(冷却対象物,発熱体,帯熱体)である。冷却対象0は実施の形態1に係る冷却装置と接触している面(部分)以外は模式的に図示している。1は冷却板、2は冷却板の内部に形成され、冷媒が通過する流路である。流路2の内部で配送さ(搬送さ、流)れる冷媒は一般的なものでよい。冷媒は冷媒液を含むものとする。3は冷却板1の片面に形成された曲面部、4は冷却板1,流路2,曲面部3から構成される冷却部である。冷却部4は冷却板1,流路2,曲面部3に加えて後述する熱伝導部材3sを含めてもよい。熱伝導部材3sは、冷却部4と冷却対象0間の隙間の吸収代(しろ)として利用してもよい。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。   1 to 8, reference numeral 0 denotes a cooling target (cooling target, heating element, heating element) that is an object to be cooled by the cooling device according to the present application. The object 0 to be cooled is schematically illustrated except for the surface (part) in contact with the cooling device according to the first embodiment. 1 is a cooling plate, 2 is a flow path formed inside the cooling plate and through which a refrigerant passes. The refrigerant delivered (conveyed, flowing) inside the flow path 2 may be a general refrigerant. The refrigerant includes refrigerant liquid. 3 is a curved surface portion formed on one surface of the cooling plate 1, 4 is a cooling portion composed of the cooling plate 1, the flow path 2, and the curved surface portion 3. The cooling unit 4 may include a heat conduction member 3 s described later in addition to the cooling plate 1, the flow path 2, and the curved surface part 3. The heat conductive member 3s may be used as an absorption margin of a gap between the cooling unit 4 and the cooling target 0. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.

冷却板1は熱伝導性が良い平板で構成された第1の板(上板)1aと第2の板(下板)1bとが重なり構成されている。また、第1の板1aと第2の板1bとは締結具(締結用ねじ)1cによって固定されている。本願では、第1の板1aと第2の板1bとは金属平板で構成されている場合を例に説明するが、これに限るものではない。第1の板1aと第2の板1bには、締結具1c用の締結孔(締結用ねじ穴)1dが穿たれている。冷却板1は第1の板1aと第2の板1bとが重なり構成されている。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。   The cooling plate 1 is configured by overlapping a first plate (upper plate) 1a and a second plate (lower plate) 1b which are formed of flat plates having good thermal conductivity. The first plate 1a and the second plate 1b are fixed by a fastener (fastening screw) 1c. In the present application, the case where the first plate 1a and the second plate 1b are formed of a metal flat plate will be described as an example, but the present invention is not limited thereto. A fastening hole (fastening screw hole) 1d for the fastener 1c is formed in the first plate 1a and the second plate 1b. The cooling plate 1 is configured by overlapping a first plate 1a and a second plate 1b. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.

曲面部3は第1の板1aにおける第2の板1bと反対側に面に形成されている。流路2は、第1の板1aに形成された複数のフィン1fと第2の板1bの面との間に形成されるものを含む、第1の板1aの面と第2の板1bの面との間に形成された空間と、冷却板1(第1の板1a)に穿たれた開口2wとから構成される。換言すると、流路2と開口2wとは連通しているといえ、複数のフィン1fに挟まれた部分も流路2といえる。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。   The curved surface portion 3 is formed on the surface of the first plate 1a opposite to the second plate 1b. The flow path 2 includes the surface of the first plate 1a and the second plate 1b including those formed between the plurality of fins 1f formed on the first plate 1a and the surface of the second plate 1b. And a space formed between the surface and an opening 2w formed in the cooling plate 1 (first plate 1a). In other words, the flow path 2 and the opening 2w are in communication with each other, and the portion sandwiched between the plurality of fins 1f is also referred to as the flow path 2. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.

流路2は、第1の板1aに形成された複数のフィン1fと第2の板1bの面に設けられた窪みとの間に形成されるものでもよい。曲面部3は、柔軟性(可撓性)を有する熱伝導部材3sを介して冷却対象0と接触させるとよい。冷却対象0は曲面の放熱面を有する発熱体や帯熱体など発熱するものや熱を帯びているものである。曲面部3の曲面と冷却対象の曲面とが十分に接触することできる場合は、熱伝導部材3sを用いなくてもよい。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。   The flow path 2 may be formed between the plurality of fins 1f formed on the first plate 1a and the depressions provided on the surface of the second plate 1b. The curved surface portion 3 may be brought into contact with the object to be cooled 0 through a heat conducting member 3s having flexibility (flexibility). The object to be cooled 0 is a heating element such as a heating element or a heating element having a curved heat radiating surface or a heating element. When the curved surface of the curved surface portion 3 and the curved surface to be cooled can sufficiently come into contact with each other, the heat conducting member 3s may not be used. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.

熱伝導部材3sは、冷却対象0が、載置されたとき、又は、押し当てられたときに冷却対象0と接触する面が曲面状に変形するもの、或いは、該曲面状の面の曲率と同じ曲率の曲面を冷却対象0が載置される又は押し当てられる面を熱伝導部材3sが有するものであればよい。熱伝導部材3sの曲面は、曲面部3に載置することで生じる曲面であってもよい。これは、曲面部3の曲面に沿って熱伝導部材3sが屈曲していることを意味している。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。   When the object 0 to be cooled is placed or pressed, the heat conducting member 3 s has a surface that contacts the object 0 to be deformed into a curved surface, or the curvature of the curved surface. Any heat conductive member 3 s may be used as long as the surface to be cooled 0 is placed or pressed against the curved surface having the same curvature. The curved surface of the heat conducting member 3s may be a curved surface generated by placing the heat conducting member 3s on the curved surface portion 3. This means that the heat conducting member 3 s is bent along the curved surface of the curved surface portion 3. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.

なお、本願では、「接触」と「押し当て」とを同義的に用いるとする。これは、冷却対象0に冷却部4を接触させるだけの場合と、接触的に押し当てる場合とがあるためである。接触的に押し当てる場合とは、固定具7,固定具(固定用ねじ)7a,固定具(固定用ガイド)7b,固定部(固定用ベルト)8を用いて、冷却対象0に冷却部4を押し当てる場合や冷却対象0の自重によって冷却対象0が冷却部4に押し当てられる場合を指す。   In the present application, “contact” and “pressing” are used synonymously. This is because there are a case where only the cooling unit 4 is brought into contact with the cooling target 0 and a case where the cooling unit 4 is pressed in contact. In the case of pressing in contact, the fixing unit 7, the fixing unit (fixing screw) 7 a, the fixing unit (fixing guide) 7 b, and the fixing unit (fixing belt) 8 are used as the cooling target 4. Or a case where the cooling object 0 is pressed against the cooling unit 4 by its own weight.

また、熱伝導部材3sを曲面部3(冷却部4)の一部とみなしてもよい。この場合、曲面部3は、「熱伝導部材3sが形成された曲面部」又は「熱伝導部材3sが形成された平坦部」となる。前者の場合、前記熱伝導部材と接触する前記冷却板の面は、前述した冷却対象0による熱伝導部材3sが有する曲率以下、又は、熱伝導部材3sが元々有する曲率以下の曲率を有する曲面(曲面部3)であればよりよい。冷却対象0を冷却部4に載置する場合、熱伝導部材3sの厚みと形状は冷却対象0の重要も考慮して選択すればよい。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。   Moreover, you may consider heat conductive member 3s as a part of curved-surface part 3 (cooling part 4). In this case, the curved surface portion 3 becomes a “curved surface portion on which the heat conducting member 3 s is formed” or “a flat portion on which the heat conducting member 3 s is formed”. In the former case, the surface of the cooling plate in contact with the heat conducting member is a curved surface having a curvature equal to or less than the curvature of the heat conducting member 3s by the cooling object 0 described above or less than the curvature originally possessed by the heat conducting member 3s ( The curved surface portion 3) is better. When the cooling target 0 is placed on the cooling unit 4, the thickness and shape of the heat conducting member 3s may be selected in consideration of the importance of the cooling target 0. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.

続いて、図1〜図8において、5は冷却板1の開口2wを介して、冷却板1の流路2同士をそれぞれ接続する複数の配管、6は流路2と配管5とが形成する冷媒の循環路における送出側と流入側とに接続され、流入側から流入する冷媒を冷却して送出側から送り出すポンプ、ポンプ6は冷媒を送出するポンプ機能と冷媒を冷却する冷却機能との二つの機能を有しておればよいので、ポンプ機能と冷却機能とが別体でもよい。7は冷却対象を固定する固定具であり、固定具7aは第2の板1bにおける第1の板1aと反対側に面側から挿入され、冷却板1を固定する固定用ねじである。また、固定具7bは曲面部3上に載置する冷却対象を固定することが可能な固定用ガイドである。8は冷却板1が曲面部3を内側に向けて円環状に複数配置し、該複数の冷却板同士を固定し、冷却対象を固定するする固定部(固定用ベルト)である。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。   Subsequently, in FIGS. 1 to 8, 5 is a plurality of pipes that connect the flow paths 2 of the cooling plate 1 through the openings 2 w of the cooling plate 1, and 6 is formed by the flow path 2 and the piping 5. A pump connected to the delivery side and the inflow side in the refrigerant circulation path, which cools the refrigerant flowing in from the inflow side and sends it out from the delivery side, and the pump 6 has a pump function for sending the refrigerant and a cooling function for cooling the refrigerant. Since only one function is required, the pump function and the cooling function may be separate. Reference numeral 7 denotes a fixing tool for fixing an object to be cooled, and the fixing tool 7a is a fixing screw that is inserted from the surface side of the second plate 1b on the opposite side to the first plate 1a and fixes the cooling plate 1. The fixing tool 7b is a fixing guide capable of fixing a cooling target placed on the curved surface portion 3. Reference numeral 8 denotes a fixing portion (fixing belt) for arranging a plurality of cooling plates 1 in an annular shape with the curved surface portion 3 facing inward, fixing the plurality of cooling plates to each other, and fixing a cooling target. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.

実施の形態1に係る冷却装置(外付液冷冷却装置)の構成を図1に示す。実施の形態1に係る冷却装置の冷却部4は、第1の板1aと第2の板1bとによる金属平板内部に流路2を設け、内部を流れる冷媒と金属平板間で熱交換を行なう。金属平板間の第1の板1a側にフィン1fを形成することで、冷却対象に対する冷却効率をさらに高めることができる。流路2は開口2wを介して、冷媒を冷却するポンプ6との間を配管5で接続され、冷媒が循環する。開口2wは、第1の板1aに穿たれたものを図示しているが、開口2wは第2の板2aに穿たれ、流路2と連通するものでもよいし、開口2wは、第1の板1aに設けられた窪みと第2の板1bに設けられた窪みとが第1の板1aと第2の板1bと重ね合わせることで形成されるものでもよい。   The configuration of the cooling device (external liquid cooling device) according to Embodiment 1 is shown in FIG. The cooling unit 4 of the cooling device according to the first embodiment provides the flow path 2 inside the metal flat plate by the first plate 1a and the second plate 1b, and performs heat exchange between the refrigerant flowing inside and the metal flat plate. . By forming the fin 1f on the first plate 1a side between the metal flat plates, the cooling efficiency for the object to be cooled can be further increased. The flow path 2 is connected to the pump 6 that cools the refrigerant through the opening 2w by a pipe 5, and the refrigerant circulates. Although the opening 2w is illustrated as being drilled in the first plate 1a, the opening 2w may be drilled in the second plate 2a and communicated with the flow path 2, and the opening 2w The dent provided in the plate 1a and the dent provided in the second plate 1b may be formed by overlapping the first plate 1a and the second plate 1b.

冷却板1の例として、図2及び図3を示す。ポンプ6から冷却された冷媒が送出され、配管5を経由して、開口2wを介して、流路2に流れ込む。冷媒は、複数のフィン1fに挟まれた細長い複数の流路2を通過する過程で、熱交換により、冷却部4の曲面部3上の冷却対象から熱を奪い、流入した開口2wと反対側に設えられた開口2wから排出されて、配管5を経由して、ポンプ6に戻ってきて、ポンプ6により冷却される。熱交換のため、流入側の開口2wにおける冷媒は低温であり、流出側の開口2wにおける冷媒は高温となる。   As an example of the cooling plate 1, FIG.2 and FIG.3 is shown. The cooled refrigerant is sent out from the pump 6 and flows into the flow path 2 through the pipe 5 and the opening 2w. The refrigerant takes heat from the object to be cooled on the curved surface portion 3 of the cooling portion 4 by heat exchange in the process of passing through the plurality of elongated channels 2 sandwiched between the plurality of fins 1f, and is opposite to the flow-in opening 2w. And is returned to the pump 6 via the pipe 5 and cooled by the pump 6. Due to the heat exchange, the refrigerant in the inflow side opening 2w has a low temperature, and the refrigerant in the outflow side opening 2w has a high temperature.

流路2は、複数のフィン1fに挟まれた細長い部分(複数)と開口2wとの間に前室に相当する空間が冷却部4の内部に形成されており、この空間と開口2wとが連通している。また、実施の形態1に係る冷却装置において、配管5に可撓性(柔軟性)を有するものを使用することで、冷媒が循環するポンプ6との間及び冷却部4間を配管5が有する可撓性の範囲で、配管5を変形させることができるので、設置の自由度が高まる。   In the channel 2, a space corresponding to the front chamber is formed between the elongated portions (plurality) sandwiched between the plurality of fins 1 f and the opening 2 w inside the cooling unit 4, and the space and the opening 2 w Communicate. Moreover, in the cooling device according to the first embodiment, the pipe 5 has the flexibility (flexibility) for the pipe 5, so that the pipe 5 has the space between the pump 6 through which the refrigerant circulates and the cooling section 4. Since the pipe 5 can be deformed within a flexible range, the degree of freedom of installation is increased.

冷却板1は、第1の板1aと第2の板1bを重ね合わせて締結具1cなどで固定され、内部の流路2を冷媒が流れ、さらに、前述のように、吸熱面(曲面部3)を有する第1の板1aにフィン1fを設けることにより、冷媒と冷却板1との熱交換を促進できる構造である第2の板1bの四隅に締結用ねじ(締結具)1cの頭を配置し、締結用ねじ1cが曲面部3から突出しないようにすることで、曲面部3の冷却に有効な面積を減らすことなく、冷却板1を構成することができる。図2に示すように、第2の板1bの四隅には、締結用ねじ1cの頭が隠れるような切り欠きや窪みを形成してもよい。   The cooling plate 1 is formed by overlapping the first plate 1a and the second plate 1b and fixed by a fastener 1c or the like, the refrigerant flows through the internal flow path 2, and further, as described above, the heat absorbing surface (curved surface portion). 3) The fins 1f are provided on the first plate 1a having the structure, and the heads of the fastening screws (fasteners) 1c are provided at the four corners of the second plate 1b having a structure capable of promoting heat exchange between the refrigerant and the cooling plate 1. By disposing the fastening screws 1 c so as not to protrude from the curved surface portion 3, the cooling plate 1 can be configured without reducing the effective area for cooling the curved surface portion 3. As shown in FIG. 2, notches and depressions may be formed at the four corners of the second plate 1b so that the head of the fastening screw 1c is hidden.

実施の形態1に係る冷却装置の曲面部3に熱伝導部材3sを形成すること、具体的には、冷却板1の吸熱面(曲面部3)には、柔軟性のある高い熱伝導材料である熱伝導部材3sが接着又は密着させることで、曲面部3の曲面と冷却対象0の放熱面(曲面)の形状が一致していない場合でも、柔軟性を有する熱伝導部材3sが緩衝材となる。よって、図4に示すように、冷却部4の曲面部3と冷却対象0の放熱面との間に隙間が殆どなくなり、熱伝導部材3sを介して冷却対象0の熱が効率よく放熱される。   The heat conductive member 3s is formed on the curved surface portion 3 of the cooling device according to the first embodiment. Specifically, the heat absorbing surface (curved surface portion 3) of the cooling plate 1 is made of a flexible and highly heat conductive material. Even when the curved surface portion 3 and the heat radiation surface (curved surface) of the object to be cooled 0 do not coincide with each other by adhering or closely adhering a certain heat conducting member 3s, the flexible heat conducting member 3s is a buffer material. Become. Therefore, as shown in FIG. 4, there is almost no gap between the curved surface portion 3 of the cooling unit 4 and the heat radiating surface of the cooling target 0, and the heat of the cooling target 0 is efficiently radiated through the heat conducting member 3s. .

つまり、熱伝導部材3sにより、冷却対象0の放熱面と曲面部3とお形状に差異があっても、熱伝導部材3sが冷却対象0の放熱面の形状をある程度は吸収することができるため、放熱面と吸熱面(曲面部3)間の細かな位置決めが不必要となり、接触面積を常に十分確保でき、安定した冷却能力が得られる。また、曲面以外にも、凹凸形状をもつ表面の場合においても熱伝導部材3sが凹凸の隙間に入り込むことにより、接触面積を稼ぐことができ、十分な熱交換を期待できる。なお、冷却対象0の放熱面との熱伝導部材3sの接触面とが、非粘着の性質を持つことで、実施の形態1に係る冷却装置を必要な時にのみ接触させ冷却し、不必要なときには取り外すことができる。   That is, even if there is a difference in the shape of the heat radiation surface of the cooling target 0 and the curved surface portion 3 by the heat conduction member 3s, the heat conduction member 3s can absorb the shape of the heat radiation surface of the cooling target 0 to some extent. Fine positioning between the heat-radiating surface and the heat-absorbing surface (curved surface portion 3) is unnecessary, and a sufficient contact area can be secured at all times, and a stable cooling capacity can be obtained. Further, in addition to the curved surface, even in the case of a surface having an uneven shape, the heat conductive member 3s enters the uneven space, whereby the contact area can be increased, and sufficient heat exchange can be expected. Since the contact surface of the heat conducting member 3s with the heat radiating surface of the object to be cooled 0 has non-adhesive properties, the cooling device according to the first embodiment is brought into contact and cooled only when necessary, and is unnecessary. Sometimes it can be removed.

実施の形態1に係る冷却装置によって冷却する対象である冷却対象0の発熱量が、より大きいときは、金属(熱伝導部材)である冷却板1と比較して熱伝導部材3sの熱抵抗が大きくなるため、冷却板1の曲面部3の形状を冷却対象0の放熱面の形状に近づけ、熱伝導部材3sの厚さを薄くし、接触又は載置させることにより、熱抵抗を小さくし、冷却能力を向上できる。   When the heat generation amount of the cooling object 0 that is the object to be cooled by the cooling device according to the first embodiment is larger, the thermal resistance of the heat conducting member 3s is higher than that of the cooling plate 1 that is a metal (heat conducting member). Therefore, the thermal resistance is reduced by bringing the shape of the curved surface portion 3 of the cooling plate 1 closer to the shape of the heat radiating surface of the object to be cooled 0, reducing the thickness of the heat conducting member 3s, and contacting or placing it. Cooling capacity can be improved.

特に、熱伝導部材と接触する前記冷却板の面は、前述した冷却対象0による熱伝導部材3sが有する曲率以下、又は、熱伝導部材3sが元々有する曲率以下の曲率を有する曲面(曲面部3)であれば、図4に記載のとおり、熱伝導部材3sの端部(縁端)での撓みを少なくすることができるので、冷却対象0と熱伝導部材3sとの接触をより確実にすることができる。これは、熱伝導部材3sの端部(縁端)に向かうにつれ、曲面部3と熱伝導部材3sとの距離が広がっていき、押しつぶされた熱伝導部材3sの逃げ場となる空間が生じ得るためである。   In particular, the surface of the cooling plate in contact with the heat conducting member has a curved surface (curved surface portion 3) having a curvature equal to or less than the curvature of the heat conducting member 3s according to the object to be cooled 0 or less than the curvature originally possessed by the heat conducting member 3s. 4), as described in FIG. 4, it is possible to reduce the bending at the end portion (edge) of the heat conducting member 3 s, thereby further ensuring the contact between the cooling target 0 and the heat conducting member 3 s. be able to. This is because the distance between the curved surface portion 3 and the heat conducting member 3s increases toward the end portion (edge) of the heat conducting member 3s, and a space can be created as a refuge for the crushed heat conducting member 3s. It is.

実施の形態1に係る冷却装置は、冷却装置の吸熱面に柔軟性のある高熱伝導材料(熱伝導部材3s)を接着させることにより、放熱面側の曲面形状にかかわらず容易に運用可能なものである。また、実施の形態1に係る冷却装置は、空冷では対応できない高い発熱量をもつ発熱体に対して、容易に運用可能なものである。   The cooling device according to the first embodiment can be easily operated regardless of the curved surface shape on the heat radiating surface side by adhering a flexible high heat conductive material (the heat conducting member 3s) to the heat absorbing surface of the cooling device. It is. In addition, the cooling device according to Embodiment 1 can be easily operated with respect to a heating element having a high calorific value that cannot be handled by air cooling.

ここで、実施の形態1に係る冷却装置によって、冷却対象0を冷却板1に固定する場合について説明する。まず、図5及び図6を用いて、固定部(固定用ベルト)8による固定態様を説明し、次に、図7及び図8を用いて、固定具(固定用ねじ)7a又は固定具(固定用ガイド)7bによる固定態様を説明する。なお、いずれの固定態様においても、柔軟性のある熱伝導部材3sを用いると、熱伝導部材3sが変形し、冷却板1と冷却対象0との適宜隙間を埋めるため、冷却板1と冷却対象0との厳密な位置決めの必要はなく、常に安定した冷却能力を発揮できる。   Here, the case where the cooling target 0 is fixed to the cooling plate 1 by the cooling device according to the first embodiment will be described. First, the fixing mode by the fixing portion (fixing belt) 8 will be described with reference to FIGS. 5 and 6, and then the fixing tool (fixing screw) 7 a or the fixing tool (fixing screw ( A fixing mode by the fixing guide 7b will be described. In any of the fixing modes, if the heat conducting member 3s having flexibility is used, the heat conducting member 3s is deformed and fills an appropriate gap between the cooling plate 1 and the cooling target 0, so that the cooling plate 1 and the cooling target are used. Strict positioning with zero is not necessary, and a stable cooling capacity can always be exhibited.

まず、図5及び図6を用いて、固定部(固定用ベルト)8による固定態様を説明する。図5及び図6に示すように、冷却部4の背面(冷却板1の冷却対象側と反対の面,第2の板1bにおける第1の板1bと接触する面とは反対面)に固定用ベルト8を通すことができる構造を持たせる。これによって、冷却対象0が柱状のものである場合、複数の冷却部4(図5及び図6では4つであるが、これに限るものではない)を冷却対象0の周囲に配置して、複数の冷却部4を含む固定用ベルト8で冷却対象0を縛ることにより、複数の冷却部4を冷却対象0に固定できるので、冷却対象0の周囲から冷却することができる。   First, with reference to FIG. 5 and FIG. 6, a fixing mode by the fixing portion (fixing belt) 8 will be described. As shown in FIG.5 and FIG.6, it fixes to the back surface of the cooling part 4 (The surface opposite to the cooling object side of the cooling plate 1, the surface opposite to the surface which contacts the 1st board 1b in the 2nd board 1b). A structure that allows the belt 8 to pass therethrough is provided. Thereby, when the cooling target 0 is a columnar one, a plurality of cooling units 4 (four in FIG. 5 and FIG. 6 but not limited thereto) are arranged around the cooling target 0, Since the plurality of cooling units 4 can be fixed to the cooling target 0 by binding the cooling target 0 with the fixing belt 8 including the plurality of cooling units 4, the cooling target 0 can be cooled from the periphery.

図5及び図6に示すように、複数の冷却部4である冷却部4a,冷却部4b,冷却部4c,冷却部4dは、それぞれ、配管5で接続され、冷却部4aとポンプ6,冷却部4dとポンプ6も配管5で接続されている。ポンプ6で冷却された冷媒は、冷却部4a→配管5→冷却部4b→配管5→冷却部4c→配管5→冷却部4dと配送され、熱交換により、それぞれ冷却部4a,冷却部4b,冷却部4c,冷却部4dの曲面部3上の冷却対象0から熱を奪い、冷媒は冷却部4dから配管5を通ってポンプ6へ戻る。   As shown in FIGS. 5 and 6, the cooling unit 4 a, the cooling unit 4 b, the cooling unit 4 c, and the cooling unit 4 d, which are a plurality of cooling units 4, are connected by a pipe 5, respectively. The part 4 d and the pump 6 are also connected by a pipe 5. The refrigerant cooled by the pump 6 is delivered to the cooling unit 4a → the piping 5 → the cooling unit 4b → the piping 5 → the cooling unit 4c → the piping 5 → the cooling unit 4d, and by heat exchange, the cooling unit 4a and the cooling unit 4b, respectively. Heat is taken from the cooling target 0 on the curved surface portion 3 of the cooling unit 4c and the cooling unit 4d, and the refrigerant returns from the cooling unit 4d to the pump 6 through the pipe 5.

このため、冷媒は配送される過程で低温から高温になるので、冷却部4dにおける熱交換の度合いが低いことがある場合は、配管5の長さを長く取り、配管から放熱されるようにしたり、図5及び図6に記載の冷却装置を冷却対象0に二列巻きつけ、冷媒の流れを一方と他方とでは範囲になるようにしたりすればよい。   For this reason, since the refrigerant goes from a low temperature to a high temperature in the process of delivery, if the degree of heat exchange in the cooling unit 4d is sometimes low, the length of the pipe 5 is increased so that the heat is radiated from the pipe. 5 and FIG. 6 may be wound in two rows around the object to be cooled so that the flow of the refrigerant falls within the range between one and the other.

また、配管5に可撓性(柔軟性)を有するものを使用することで、冷媒が循環するポンプ6との間及び冷却部4間を配管5が有する可撓性の範囲で、配管5を変形させることができるので、固定用ベルト8で冷却対象0を縛ることにより、冷却部4a,冷却部4b,冷却部4c,冷却部4d間の距離が大きく変わる場合でも、配管5が変形することで、冷却部4a,冷却部4b,冷却部4c,冷却部4d間の距離が変ることによる悪影響を減ずることができる。   In addition, by using a pipe 5 having flexibility (flexibility), the pipe 5 is within a flexible range in which the pipe 5 has between the pump 6 through which the refrigerant circulates and between the cooling parts 4. Since the object to be cooled is bound by the fixing belt 8, the pipe 5 is deformed even when the distance between the cooling part 4a, the cooling part 4b, the cooling part 4c, and the cooling part 4d changes greatly. Thus, adverse effects due to changes in the distance between the cooling unit 4a, the cooling unit 4b, the cooling unit 4c, and the cooling unit 4d can be reduced.

なお、図5及び図6は、冷却部4が曲面部3を内側に向けて円環状に複数配置し、該複数の冷却部4(冷却部4a,冷却部4b,冷却部4c,冷却部4d)同士を固定する固定部8によって冷却対象0を固定している状態を示しているともいえる。また、図5には、ポンプ6→配管5→冷却部4a,冷却部4b→配管5→冷却部4c,冷却部4d→配管5→ポンプ6の配管5の接続が図示されている。図6には、冷却部4a→配管5→冷却部4b,冷却部4c→配管5→冷却部4dの配管5の接続が図示されている。つまり、図5及び図6は、冷却対象0の一方及び他方から見た斜視図になっている。   5 and 6, a plurality of cooling units 4 are arranged in an annular shape with the curved surface portion 3 facing inward, and the plurality of cooling units 4 (cooling unit 4a, cooling unit 4b, cooling unit 4c, cooling unit 4d). It can also be said that the cooling target 0 is fixed by the fixing portion 8 that fixes the two. Further, FIG. 5 illustrates the connection of the pump 6 → the pipe 5 → the cooling unit 4a, the cooling unit 4b → the pipe 5 → the cooling unit 4c, and the cooling unit 4d → the pipe 5 → the pipe 5 of the pump 6. FIG. 6 illustrates the connection of the piping 5 of the cooling unit 4a → the piping 5 → the cooling unit 4b and the cooling unit 4c → the piping 5 → the cooling unit 4d. That is, FIG.5 and FIG.6 is the perspective view seen from one side and the other of the cooling target 0. FIG.

もちろん、一つの冷却部4を固定用ベルト8によって、冷却対象0に固定してもよい。但し、この場合、固定用ベルト8が冷却対象0に直接的に接触しないようにするか、接触する場合は、冷却対象0と固定用ベルト8とが接触する部分が固定用ベルト8に対して悪影響が出ない程度の温度であるか、固定用ベルト8に耐熱素材を用いる必要がある。   Of course, one cooling unit 4 may be fixed to the object to be cooled 0 by the fixing belt 8. However, in this case, the fixing belt 8 is prevented from coming into direct contact with the object 0 to be cooled, or when it is in contact, the portion where the object 0 to be cooled and the fixing belt 8 are in contact with the fixing belt 8. It is necessary to use a heat-resistant material for the fixing belt 8 or a temperature that does not adversely affect the fixing belt 8.

次に、図7及び図8を用いて、固定具(固定用ねじ)7a又は固定具(固定用ガイド)7bによる固定態様を説明する。図7に示すように、冷却部4に固定用ねじ7aなどの取り付け穴を設けることで、必要時に固定用ねじ7aを取り付けて冷却部4を冷却対象0に固定(姿勢支持)できる。図7のように、固定用ねじ7aと締結用ねじ1cを共有(一体化)することで、固定用ねじ7aの取り付け穴も締結用ねじ穴1dも共用(一体化)することができ、曲面部3(平坦部3)や熱伝導部材3sの面積を広く取ることができる。   Next, with reference to FIG. 7 and FIG. 8, a fixing mode by the fixing tool (fixing screw) 7 a or the fixing tool (fixing guide) 7 b will be described. As shown in FIG. 7, by providing attachment holes such as fixing screws 7a in the cooling unit 4, the fixing unit 7a can be attached when necessary to fix the cooling unit 4 to the object to be cooled 0 (posture support). As shown in FIG. 7, by sharing (integrating) the fixing screw 7a and the fastening screw 1c, it is possible to share (integrate) both the mounting hole of the fixing screw 7a and the fastening screw hole 1d. The area of the portion 3 (flat portion 3) and the heat conducting member 3s can be increased.

また、冷却対象0の放熱面に固定用ねじ7a(締結用ねじ1c)などの取り付け穴を設けることで、固定用ねじ7a(締結用ねじ1c)を冷却対象0へ挿入して、より強固に固定してもよい。換言すると、図6に記載の冷却部4は、第2の板1bにおける第1の板1aと反対側に面側から挿入される固定具7aによって冷却対象0に固定されたものであるといえる。   Further, by providing mounting holes such as the fixing screw 7a (fastening screw 1c) on the heat radiating surface of the cooling target 0, the fixing screw 7a (fastening screw 1c) is inserted into the cooling target 0 to be stronger. It may be fixed. In other words, it can be said that the cooling unit 4 shown in FIG. 6 is fixed to the object to be cooled 0 by the fixture 7a inserted from the surface side on the opposite side to the first plate 1a in the second plate 1b. .

図8に示すように、冷却対象0又は冷却部4に、予め固定用ガイド7bを設けることで、固定用ガイド7bによって冷却対象0に冷却部4が固定されたものであるといえる。固定用ガイド7bを冷却対象0に形成した場合は、必要時に二枚の固定用ガイド7bの間に冷却部4を挿入して冷却対象0を冷却することができる。固定用ガイド7bを冷却部4に形成した場合は、冷却対象0の放熱面に固定用ガイド7bの取り付け穴又は固定用ガイド7bの取り付け溝を設けることで、曲面部3上に載置する冷却対象0、又は、曲面部3に押し当てる冷却対象0を固定することが可能である。   As shown in FIG. 8, it can be said that the cooling unit 4 is fixed to the cooling target 0 by the fixing guide 7b by providing the fixing guide 7b in advance on the cooling target 0 or the cooling unit 4. When the fixing guide 7b is formed on the cooling target 0, the cooling target 0 can be cooled by inserting the cooling unit 4 between the two fixing guides 7b when necessary. In the case where the fixing guide 7b is formed in the cooling part 4, the cooling to be placed on the curved surface part 3 by providing an attachment hole for the fixing guide 7b or an attachment groove for the fixing guide 7b on the heat radiating surface of the object 0 to be cooled. It is possible to fix the target 0 or the cooling target 0 to be pressed against the curved surface portion 3.

実施の形態1に係る冷却装置は、冷却板1の内部に形成され、冷媒が通過する流路2、冷却板1の片面に形成された柔軟性を有する熱伝導部材3sからなる冷却部4を備えたものともいえる。   The cooling device according to the first embodiment includes a cooling unit 4 formed inside the cooling plate 1 and including a flow path 2 through which a refrigerant passes and a heat conduction member 3s having flexibility formed on one surface of the cooling plate 1. It can be said that it was prepared.

実施の形態2.
この実施の形態2は、実施の形態1に係る冷却装置の冷却部4(冷却板1)を複数用いた場合(図5及び図6に記載のものと異なるもの)を説明する。よって、実施の形態2では実施の形態1と異なる部分を中心に説明を行い、実施の形態2では実施の形態1及び2で共通する部分の説明は省略している場合がある。
Embodiment 2. FIG.
In the second embodiment, a case where a plurality of cooling units 4 (cooling plates 1) of the cooling device according to the first embodiment are used (different from those shown in FIGS. 5 and 6) will be described. Therefore, the second embodiment will be described with a focus on parts different from the first embodiment, and in the second embodiment, the description of the parts common to the first and second embodiments may be omitted.

発明の実施の形態2について、図9〜図13を用いて説明する。図10(a)は図9の一点鎖線で示す断面Dにおける冷却部(冷却板)の断面図、図10(b)は図10(a)に記載の冷却対象0に冷却部4(冷却板1)を接触させたときの断面図、図11(a)は図9の一点鎖線で示す断面Eにおける冷却部(冷却板)の断面の近傍図、図11(b)は図11(a)に記載の複数の冷却部4(冷却板1)を接続する配管5の接続形態の別構成を示す図、図12は図11(a)に記載の冷却部4(冷却板1)群を複数組形成して、複数の冷却部4のうち、所定の数(9つ)ごとに異なる系統で配管5をそれぞれ配設したもの示す図、図13は図11(b)に記載の冷却部4(冷却板1)群を複数組形成して、複数の冷却部4のうち、所定の数(9つ)ごとに異なる系統で配管5をそれぞれ配設したもの示す図である。また、図11,図12,図13に示す点線矢印は、配管5内を流れる冷媒の進行方向を指している。図12及び図13は、図9の一点鎖線で示す断面Eにおける冷却部(冷却板)の断面の近傍図に相当する図である。   Embodiment 2 of the invention will be described with reference to FIGS. 10A is a cross-sectional view of the cooling unit (cooling plate) in the cross section D indicated by the alternate long and short dash line in FIG. 9, and FIG. 10B is the cooling unit 4 (cooling plate) in the cooling target 0 described in FIG. FIG. 11A is a cross-sectional view of the cooling section (cooling plate) in the cross section E indicated by the alternate long and short dash line in FIG. 9, and FIG. 11B is FIG. 11A. The figure which shows another structure of the connection form of the piping 5 which connects the some cooling part 4 (cooling plate 1) as described in FIG. 12, FIG. 12 shows multiple cooling part 4 (cooling plate 1) groups as described in FIG. FIG. 13 is a diagram showing a plurality of cooling units 4 in which a plurality of cooling units 4 are arranged and pipes 5 are arranged in different systems for every predetermined number (9), and FIG. 13 shows the cooling unit 4 shown in FIG. (Cooling plate 1) A plurality of groups are formed, and among the plurality of cooling units 4, a plurality of pipes 5 are arranged in different systems for each predetermined number (9). It is. Moreover, the dotted line arrows shown in FIGS. 11, 12, and 13 indicate the traveling direction of the refrigerant flowing in the pipe 5. 12 and 13 are diagrams corresponding to the vicinity of the cross section of the cooling section (cooling plate) in the cross section E indicated by the alternate long and short dash line in FIG. 9.

図9〜図13において、9は複数の冷却部4をマトリックス(行列)状に配列し、少なくとも二つの冷却部4(冷却板1)の一方を他方に対し、傾斜させて支持する支持部(架台)、支持部9によって、大型の冷却対象0の放熱面(曲面)に、前述の少なくとも二つの冷却部4(冷却板1)の一方を他方に対し、傾斜した冷却部4(冷却板1)を対応させることができる。10は支持部9の冷却部4が形成された側と反対側に形成され、支持部9を昇降させて、冷却部4と冷却対象0との距離を変更することが可能な昇降部である。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。   9 to 13, reference numeral 9 denotes a support portion (in which a plurality of cooling portions 4 are arranged in a matrix) and one of at least two cooling portions 4 (cooling plate 1) is inclined and supported with respect to the other. The cooling unit 4 (cooling plate 1) is inclined with respect to one of the at least two cooling units 4 (cooling plate 1) with respect to the other on the heat radiation surface (curved surface) of the large cooling target 0 by the support unit 9 and the support unit 9. ). Reference numeral 10 denotes an elevating unit which is formed on the side opposite to the side where the cooling unit 4 is formed of the support unit 9 and can raise and lower the support unit 9 to change the distance between the cooling unit 4 and the object 0 to be cooled. . In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.

昇降部10はジャッキやウインチなどの一般的な昇降機構であればなんでもよい。また、冷却時に冷却部4へ冷却対象0の自重が掛からない場合は、昇降部10は簡易的なものでもよい。本願では、昇降部10の形状は、模式的に図示する。また、本願でいう昇降部とは単に上下運動するものではなく、冷却部4と冷却対象0との距離を変更することが可能な機構を指すとする。つまり、昇降部10を伸縮部10と称してもよい。   The elevating unit 10 may be any general elevating mechanism such as a jack or winch. Further, when the cooling unit 4 does not bear the weight of the cooling target 0 during cooling, the lifting unit 10 may be simple. In the present application, the shape of the elevating unit 10 is schematically illustrated. Moreover, the raising / lowering part as used in this application does not simply move up and down, but points out the mechanism which can change the distance of the cooling part 4 and the cooling object 0. FIG. That is, the elevating unit 10 may be referred to as the telescopic unit 10.

複数の冷却部4の流路2はそれぞれ配管5により連結されている。実施の形態2に係る冷却装置においても、配管5に可撓性(柔軟性)を有するものを使用することで、冷媒が循環するポンプ6との間及び冷却部4間を配管5が有する可撓性の範囲で、配管5を変形させることができるので、設置の自由度が高まる。   The flow paths 2 of the plurality of cooling units 4 are connected to each other by pipes 5. Also in the cooling device according to the second embodiment, by using a pipe 5 having flexibility (flexibility), the pipe 5 can have a space between the pump 6 through which the refrigerant circulates and between the cooling sections 4. Since the pipe 5 can be deformed within the flexibility range, the degree of freedom of installation is increased.

図9に示すように、冷却部4を複数、冷却対象0の放熱面に沿ってマトリックス状に配置し、それぞれ冷却板1(冷却部4)間を配管5で接続することで、大型の冷却板を模擬することができる。また、冷却対象0の放熱面である曲面に対応する曲面は、二つの冷却部4の一方を他方に対し、傾斜させて支持することで得ることができる。そして、これらの冷却板1(冷却部4)群を冷却対象0の放熱面に接触させることにより、放熱面全体を冷却できる。   As shown in FIG. 9, a large number of cooling units 4 are arranged in a matrix along the heat radiation surface of the object to be cooled 0, and the cooling plates 1 (cooling units 4) are connected by pipes 5, respectively. You can simulate a board. Moreover, the curved surface corresponding to the curved surface which is the heat radiating surface of the object 0 to be cooled can be obtained by supporting one of the two cooling units 4 while being inclined with respect to the other. And the whole heat radiating surface can be cooled by making these cooling plate 1 (cooling part 4) groups contact the heat radiating surface of the cooling object 0. FIG.

冷却部4の枚数は、図9に図示するように行方向に3枚、列方向に3枚の9枚だけでなく、冷却対象0と冷却部1(冷却部4)の大きさに応じて適宜選択可能であり、大きな放熱面に対しては冷却板の大型化に加え冷却板の数を増やすことで対応でき、複雑な形状の放熱面に対しては、より多くの小型の冷却部4を用いることで対応できる。冷却対象0の放熱面の形状を考慮した支持部9(架台9)を設ける。つまり、冷却対象0の放熱面である曲面の直線的に模擬した構造や、冷却対象0の放熱面である曲面と同じ曲面を支持部9に形成する。図9及び図10は、冷却対象0の放熱面である曲面の直線的に模擬した構造を有する支持部9(架台9)を示している。   As shown in FIG. 9, the number of the cooling units 4 is not only three in the row direction and three in the column direction, but also according to the size of the cooling target 0 and the cooling unit 1 (cooling unit 4). It can be selected as appropriate, and can cope with a large heat dissipation surface by increasing the number of cooling plates in addition to an increase in the size of the cooling plate, and more compact cooling units 4 for a heat dissipation surface having a complicated shape. It can respond by using. A support portion 9 (base 9) is provided in consideration of the shape of the heat dissipation surface of the cooling target 0. That is, the support portion 9 is formed with a linearly simulated structure of a curved surface that is a heat dissipation surface of the cooling target 0 or a curved surface that is the same as the curved surface that is the heat dissipation surface of the cooling target 0. 9 and 10 show a support portion 9 (base 9) having a linearly simulated structure of a curved surface that is a heat radiating surface of the object 0 to be cooled.

図10では、複数設けた冷却部4ごとに冷却対象0の放熱面に接触させる昇降機構(昇降部10)をそれぞれ形成させるのではなく、冷却対象0の放熱面の形状を考慮した支持部9(架台9)を設け、その上に複数の冷却部4を設置し(図9,図10(a))、支持部9のみを昇降部10で押し上げることで、全冷却板1(冷却部4)を同時に接触させることができる(図10(b))。もちろん、複数設けた冷却部4ごとに冷却対象0の放熱面に接触させる昇降機構(昇降部10)を形成してもよいが、図9及び図10に記載の昇降部10のようにすることで、複数の冷却部4の押し上げ構造が簡素化され、冷却対象0に対する冷却部4の着脱が容易となる。   In FIG. 10, the elevating mechanism (elevating unit 10) for contacting the heat radiating surface of the cooling target 0 is not formed for each of the plurality of cooling units 4, but the supporting unit 9 considering the shape of the heat radiating surface of the cooling target 0 is used. (Stand 9) is provided, and a plurality of cooling units 4 are installed thereon (FIGS. 9 and 10A), and only the support unit 9 is pushed up by the lifting unit 10, so that the entire cooling plate 1 (cooling unit 4) is provided. ) Can be contacted simultaneously (FIG. 10B). Of course, an elevating mechanism (elevating unit 10) that makes contact with the heat radiating surface of the cooling target 0 may be formed for each of the plurality of cooling units 4 provided, but the elevating unit 10 shown in FIGS. 9 and 10 is used. Thus, the push-up structure of the plurality of cooling units 4 is simplified, and the cooling unit 4 can be easily attached to and detached from the cooling target 0.

さらに、冷却対象0の放熱面の形状を考慮した支持部9(架台9)を設けているので、冷却部4の形状を統一することが容易であるので、冷却部4の製作コストを低減できる。また、支持部9の形状を放熱面の形状に対応させ、冷却対象0が、載置されたとき、又は、押し当てられたときに冷却対象0と接触する面が曲面状に変形するもの、或いは、該曲面状の面の曲率と同じ曲率の曲面を冷却対象0が載置される又は押し当てられる面を熱伝導部材3sが有するものであれば、熱伝導部材3sの厚さを小さくし、熱抵抗を下げることにより、より高い冷却能力を得ることができる。   Furthermore, since the support portion 9 (the gantry 9) is provided in consideration of the shape of the heat radiating surface of the cooling target 0, it is easy to unify the shape of the cooling portion 4, so that the manufacturing cost of the cooling portion 4 can be reduced. . Further, the shape of the support portion 9 is made to correspond to the shape of the heat radiating surface, and when the cooling target 0 is placed or pressed, the surface that contacts the cooling target 0 is deformed into a curved surface, Alternatively, if the heat conducting member 3s has a curved surface having the same curvature as that of the curved surface, the heat conducting member 3s has a surface on which the cooling target 0 is placed or pressed, the thickness of the heat conducting member 3s is reduced. By reducing the thermal resistance, a higher cooling capacity can be obtained.

図10に複数の冷却部4間をつなぐ配管5接続構造の例を示す。図10(a)は、複数の冷却部4を配管5で直列に接続した例であり、模擬した大型の冷却板内の温度は、配管5のルートに沿って入口から出口に向かうにつれ冷媒の温度が高くなる。よって、冷却対象0の放熱面の温度が高い部分に接触させる冷却部4を配管5の出口近傍になるように接続し、放熱面の温度が比較的低い部分に、接触させる冷却部4を配管5の入口近傍になるように接続すれば、効率よく冷却できる。   FIG. 10 shows an example of a pipe 5 connection structure that connects a plurality of cooling units 4. FIG. 10A is an example in which a plurality of cooling units 4 are connected in series by pipes 5, and the temperature in the simulated large cooling plate is changed along the route of the pipes 5 from the inlet to the outlet. The temperature rises. Therefore, the cooling unit 4 that is brought into contact with the portion where the temperature of the heat dissipation surface of the cooling target 0 is high is connected so as to be in the vicinity of the outlet of the pipe 5, and the cooling unit 4 that is brought into contact with the portion where the temperature of the heat dissipation surface is relatively low is connected to the pipe. If it connects so that it may become 5 inlet_port | entrance vicinity, it can cool efficiently.

一方、図10(b)は、複数の冷却部4を配管5で並列に接続することにより、模擬した大型の冷却板内の冷媒の温度分布が入口側で低温、出口側で高温となり、冷却部4と同一形状の1枚の大型の冷却板を模擬した構造を有する冷却装置になる。以上より、冷却対象0の放熱面の温度分布に合わせて、冷却部4間の配管5の接続を決定することにより、効率的に冷却を行うことができる。   On the other hand, in FIG. 10B, by connecting a plurality of cooling units 4 in parallel by the pipe 5, the temperature distribution of the refrigerant in the simulated large cooling plate becomes low on the inlet side and high on the outlet side. The cooling device has a structure simulating one large cooling plate having the same shape as the portion 4. As described above, it is possible to efficiently perform the cooling by determining the connection of the pipe 5 between the cooling units 4 according to the temperature distribution of the heat radiating surface of the cooling target 0.

また、実施の形態2に係る冷却装置は、配管5が、複数の冷却部4(冷却板1)のうち、所定の数ごとに異なる系統で配設してもよいが、系統ごとの冷却部4(冷却板1)の枚数や行方向及び列方向の枚数は互いにそろえておく方が実用的である。この例を図12及び13に示す一系統が行方向に3枚、列方向に3枚の9枚の冷却部4(冷却板1)を有する場合を用いて説明する。図12及び13から分かるように、隣り合う系統同士の冷媒の流れる方向が異なるものとなっているので、模擬した大型の冷却板内の冷媒の温度分布が入口側で低温、出口側で高温となることが隣り合う系統同士で、ある程度は相殺されるので、全体的に、均一若しくは均一に近い冷却機能を得ることができる。   In the cooling device according to the second embodiment, the piping 5 may be arranged in different systems for each predetermined number of the plurality of cooling units 4 (cooling plates 1). It is practical to align the number of 4 (cooling plate 1) and the number of rows and columns. This example will be described using the case where one system shown in FIGS. 12 and 13 has nine cooling units 4 (cooling plates 1) in the row direction and three in the column direction. As can be seen from FIGS. 12 and 13, the refrigerant flow directions in adjacent systems are different, so the refrigerant temperature distribution in the simulated large cooling plate is low on the inlet side and high on the outlet side. This is offset to some extent between adjacent systems, so that a uniform or nearly uniform cooling function can be obtained as a whole.

なお、図13に示す配列では、隣り合う系統同士の冷媒の流れる方向が、列方向では、冷却部4の配列だけで、隣り合う系統同士の冷媒の流れる方向が異なるものなるが、行方向では、冷却部4の配列だけでは、そうならないので、図13における系統1の冷媒流入側と系統3の冷媒流出側との配管を同じ方向(側)に曲がったものを使用することで、隣り合う系統同士の冷媒の流れる方向が異なるものとする必要がある。同じく、図13における系統2の冷媒流出側と系統4の冷媒流入側との配管を同じ方向(側)に曲がったものを使用することで、隣り合う系統同士の冷媒の流れる方向が異なるものとする必要がある。   In the arrangement shown in FIG. 13, the flow direction of the refrigerant between the adjacent systems is different only in the arrangement of the cooling units 4 in the column direction, but the flow direction of the refrigerant between the adjacent systems is different in the row direction. This is not the case with the arrangement of the cooling units 4 alone, so the pipes on the refrigerant inflow side of the system 1 and the refrigerant outflow side of the system 3 in FIG. It is necessary to make the flow direction of the refrigerant between the systems different. Similarly, by using pipes bent in the same direction (side) on the refrigerant outflow side of system 2 and the refrigerant inflow side of system 4 in FIG. There is a need to.

全体的に、均一若しくは均一に近い冷却機能を得ることは、系統数を増やせば増やすほど効果が高まる。よって、構造の複雑化とトレードオフして系統数を決定すればよい。なお、図12及び図13では、配管5の系統は4つとしているがこれに限るものではない。また、各系統の配管5が全て同じポンプ6に接続されていてもよいし、各系統の配管5ごとに異なるポンプ6に接続されていてもよい。   Overall, obtaining a uniform or nearly uniform cooling function increases as the number of systems increases. Therefore, the number of systems may be determined in a trade-off with the complexity of the structure. In FIG. 12 and FIG. 13, the number of systems of the pipe 5 is four, but the present invention is not limited to this. Moreover, all the piping 5 of each system | strain may be connected to the same pump 6, and may be connected to the pump 6 different for every piping 5 of each system | strain.

実施に形態2に係る冷却装置は、冷却板1の内部に形成され、冷媒が通過する流路2、冷却板1の片面に形成された柔軟性を有する熱伝導部材3sからなる冷却部4と、複数の冷却部4をマトリックス状に配列し、少なくとも二つの冷却板1の一方を他方に対し、傾斜させて支持する支持部9と、複数の冷却部4の流路を連結する配管5とを備えたものともいえる。熱伝導部材3sによる冷却部4と冷却対象0間の隙間の吸収代(しろ)を超える放熱面をもつ大型の冷却対象0の場合、もしくは大型の冷却対象0に対し1枚の大型の冷却部4の作成が困難である場合に好適なものといえる。   The cooling device according to Embodiment 2 is formed inside the cooling plate 1, the flow path 2 through which the refrigerant passes, and the cooling unit 4 including the flexible heat conductive member 3 s formed on one surface of the cooling plate 1, A plurality of cooling units 4 arranged in a matrix, and a support unit 9 that supports one of at least two cooling plates 1 with an inclination relative to the other, and a pipe 5 that connects the flow paths of the plurality of cooling units 4, It can be said that it was equipped with. In the case of a large cooling object 0 having a heat dissipation surface exceeding the absorption allowance of the gap between the cooling part 4 and the cooling object 0 by the heat conducting member 3s, or one large cooling part for the large cooling object 0 This can be said to be suitable when it is difficult to create 4.

実施の形態3.
この発明の実施の形態3について、図14〜図18を用いて説明する。実施の形態3は、実施の形態1に係る冷却装置の冷却部4(冷却板1)を複数用いた場合(図5及び図6に記載のものと異なるもの)を説明する。よって、実施の形態3では実施の形態1と異なる部分を中心に説明を行い、実施の形態1及び3で共通する部分の説明は省略している場合がある。なお、実施の形態2に係る冷却装置に、複数の冷却部4の支持角度を所定の範囲で変更が可能なものとする支持角度可変部が追加されたものが、実施の形態3に係る冷却装置に相当する。よって、実施の形態3では実施の形態2と異なる部分を中心に説明を行い、実施の形態3では、実施の形態2及び3で共通する部分の説明は省略している場合がある。図14の点線内は、一つの冷却部4を拡大したものである。
Embodiment 3 FIG.
Embodiment 3 of the present invention will be described with reference to FIGS. In the third embodiment, a case where a plurality of cooling units 4 (cooling plates 1) of the cooling device according to the first embodiment are used (different from those shown in FIGS. 5 and 6) will be described. Therefore, the third embodiment will be described with a focus on the parts different from the first embodiment, and the description of the parts common to the first and third embodiments may be omitted. Note that the cooling device according to the second embodiment is provided with a support angle variable unit that can change the support angles of the plurality of cooling units 4 within a predetermined range. It corresponds to a device. Therefore, the third embodiment will be described with a focus on portions that are different from the second embodiment, and in the third embodiment, the description of the portions common to the second and third embodiments may be omitted. The dotted line in FIG. 14 is an enlarged view of one cooling unit 4.

図14〜18において、11は複数の冷却部4(冷却部1)の支持角度を所定の範囲で変更が可能なものとする支持部(支持角度可変部)であり、支持部11(支持角度可変部11)は、冷却部4(冷却部1の背面)をボールジョイント11jとサスペンション12とにより支持するものであり、冷却部4(冷却部1)を支持する機構としては、実施の形態2における支持部9の一部に相当する。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。   14-18, 11 is a support part (support angle variable part) which can change the support angle of the some cooling part 4 (cooling part 1) in the predetermined range, and the support part 11 (support angle) The variable unit 11) supports the cooling unit 4 (the back surface of the cooling unit 1) by the ball joint 11j and the suspension 12, and a mechanism for supporting the cooling unit 4 (cooling unit 1) is described in the second embodiment. This corresponds to a part of the support portion 9 in FIG. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.

図14〜18では、ボールジョイントのボール部分を冷却部4側に配置されたものを図示しているが、ボールジョイントのボール部分を支持部9側に配置してもよい。ボールジョイントのボール部分を支持部9側に配置した場合は、サスペンション12の長さ分だけ、冷却部4の支持角度を変更する所定の範囲を広げることができる。また、ボールジョイントのボール部分を冷却部4側に配置した場合は、冷却部4の支持角度を変更する所定の範囲は狭まるが、複数の冷却部4を密にマトリックス状に配列することができる。冷却部4が可動するので、それぞれ冷却板1(冷却部4)間を柔軟性のある配管5で接続することで、大型の冷却板を模擬する。   In FIGS. 14 to 18, the ball portion of the ball joint disposed on the cooling portion 4 side is illustrated, but the ball portion of the ball joint may be disposed on the support portion 9 side. When the ball portion of the ball joint is arranged on the support portion 9 side, the predetermined range for changing the support angle of the cooling portion 4 can be expanded by the length of the suspension 12. In addition, when the ball portion of the ball joint is disposed on the cooling unit 4 side, a predetermined range for changing the support angle of the cooling unit 4 is narrowed, but a plurality of cooling units 4 can be arranged in a dense matrix. . Since the cooling unit 4 is movable, a large cooling plate is simulated by connecting the cooling plates 1 (cooling units 4) with flexible pipes 5 respectively.

実施の形態3に係る冷却装置は、図14に示すように、冷却部4の底面(背面)にボールジョイント11jとサスペンション12が取り付き、それぞれの冷却板1(冷却部4)のサスペンション12は、一つの支持部9に設置されている。この支持部9には、実施の形態2と同様に、昇降部10(伸縮部10)が形成されている。冷却部4は、ボールジョイント11jとサスペンション12により、冷却部4の回転と高さ方向の調整ができる構造となっている。また、冷却板1間を柔軟性のある配管5で接続することで、冷却板は周囲の冷却板の姿勢に拘束されずに自由に動くことができる。   As shown in FIG. 14, the cooling device according to Embodiment 3 has a ball joint 11j and a suspension 12 attached to the bottom surface (back surface) of the cooling unit 4, and the suspension 12 of each cooling plate 1 (cooling unit 4) It is installed on one support part 9. As in the second embodiment, the support portion 9 is formed with an elevating portion 10 (expandable portion 10). The cooling unit 4 has a structure in which the cooling unit 4 can be rotated and adjusted in the height direction by the ball joint 11 j and the suspension 12. Further, by connecting the cooling plates 1 with a flexible pipe 5, the cooling plates can move freely without being restricted by the posture of the surrounding cooling plates.

支持部9を昇降部10で押し上げることにより、複数の冷却部4がそれぞれ、ボールジョイント11jにより冷却部4が冷却対象0の放熱面に沿う向きに回転(首振り)し、サスペンション12により冷却部4が高さ方向に適宜移動するため、支持部9を押し上げる動作のみで全冷却板1が自動的に放熱面に沿うように接触し、冷却を行うことができる。また、冷却板1を小さくし、数を増やすことで、より複雑な形状に対応できる。   When the support unit 9 is pushed up by the elevating unit 10, each of the plurality of cooling units 4 is rotated (swinged) in the direction along the heat radiating surface of the object 0 to be cooled by the ball joint 11 j, and the cooling unit is cooled by the suspension 12. Since 4 moves appropriately in the height direction, all the cooling plates 1 can automatically come into contact with the heat radiating surface by only the operation of pushing up the support portion 9 and can be cooled. Moreover, it can respond to a more complicated shape by making the cooling plate 1 small and increasing the number.

次に、実施の形態3に係る冷却装置において、配管5が可撓性を有することで得られる効果を図15〜図18を用いて説明する。図15に示す冷却部4(冷却板1)の位置を冷却部4が冷却対象0の放熱面に沿う向きの定常状態とする。図15では配管5は屈曲していない。図16は、実施の形態3に係る冷却装置の隣り合う冷却部4が180°以内の角度を持って互いに傾斜している場合を示しており、このような位置関係に隣り合う冷却部4が配置されても、配管5が下方に屈曲することで、配管の冷媒搬送に支障をきたさない。   Next, in the cooling device according to the third embodiment, effects obtained by the piping 5 having flexibility will be described with reference to FIGS. The position of the cooling unit 4 (cooling plate 1) shown in FIG. 15 is set to a steady state in which the cooling unit 4 is oriented along the heat radiation surface of the object 0 to be cooled. In FIG. 15, the pipe 5 is not bent. FIG. 16 shows a case where the adjacent cooling units 4 of the cooling device according to Embodiment 3 are inclined with respect to each other at an angle of 180 ° or less, and the adjacent cooling units 4 are in such a positional relationship. Even if it arrange | positions, the piping 5 will bend downward, and it will not interfere with refrigerant | coolant conveyance of piping.

図17は、実施の形態3に係る冷却装置の隣り合う冷却部4が180°以上の角度を持って互いに傾斜している場合を示しており、このような位置関係に隣り合う冷却部4が配置されても、配管5が上方に屈曲することで、配管の冷媒搬送に支障をきたさない。   FIG. 17 shows a case where the adjacent cooling units 4 of the cooling device according to Embodiment 3 are inclined with each other at an angle of 180 ° or more, and the adjacent cooling units 4 are in such a positional relationship. Even if it arrange | positions, the piping 5 will bend upward, and it will not interfere with refrigerant | coolant conveyance of piping.

図18は、実施の形態3に係る冷却装置の隣り合う冷却部4が同じ方向に傾斜している場合を示しており、このような位置関係に隣り合う冷却部4が配置されても、配管5がS字状に屈曲することで、配管の冷媒搬送に支障をきたさない。   FIG. 18 shows a case where the adjacent cooling units 4 of the cooling device according to the third embodiment are inclined in the same direction. Even if the adjacent cooling units 4 are arranged in such a positional relationship, the piping is arranged. Since 5 is bent in an S shape, it does not hinder the refrigerant conveyance of the piping.

図16,図17,図18に示す配管5の屈曲形状は、あくまでも一例であり、配管の材料や冷媒の流入によっては異なる例もありうる。また、図15では、配管5が直線状になっているもの図示しているが、図16に示す配管5のように屈曲した(垂れ下がった)状態を冷却部4が冷却対象0の放熱面に沿う向きの定常状態としてもよい。   The bent shape of the pipe 5 shown in FIGS. 16, 17, and 18 is merely an example, and may be different depending on the material of the pipe and the inflow of the refrigerant. Further, in FIG. 15, the pipe 5 is illustrated as being linear, but the cooling unit 4 is in a state of being bent (hanging down) like the pipe 5 illustrated in FIG. It is good also as the steady state of the direction which follows.

実施の形態2及び3に係る冷却装置(外付液冷冷却装置)において、熱伝導部材3sを使用する場合、複数の冷却部4(冷却板1)に亘って、一枚の熱伝導部材3sを載置(接着)させてもよい。もちろん、実施の形態1に係る冷却装置(外付液冷冷却装置)において、複数の冷却部4(冷却板1)を使用する場合も同様である(例えば、図5に記載の冷却装置)。   In the cooling device (external liquid cooling device) according to the second and third embodiments, when the heat conductive member 3s is used, the single heat conductive member 3s extends over the plurality of cooling units 4 (cooling plates 1). May be placed (adhered). Of course, the same applies to the case where a plurality of cooling units 4 (cooling plates 1) are used in the cooling device (external liquid cooling device) according to the first embodiment (for example, the cooling device shown in FIG. 5).

以上、実施の形態1〜3に係る冷却装置(外付液冷冷却装置)は、熱伝導部材3sを使用した場合、冷却板1上に柔軟性があり、さらに片面非粘着の特性をもつ高熱伝導材料(熱伝導部材3s)を接着させ、冷却板1を介して熱伝導部材3sを曲面もしくは凹凸形状などの放熱面をもつ冷却対象0に接触させることにより、熱伝導部材3sが冷却対象0と冷却板1との隙間を埋め、常に十分な熱交換面積を確保でき、取り外し可能なものであるといえる。   As described above, the cooling devices (external liquid cooling devices) according to the first to third embodiments are flexible on the cooling plate 1 when the heat conducting member 3s is used, and further have a high temperature with non-adhesive properties on one side. The conductive material (thermal conductive member 3s) is bonded, and the thermal conductive member 3s is brought into contact with the cooling target 0 having a heat radiating surface such as a curved surface or an uneven shape through the cooling plate 1, whereby the thermal conductive member 3s is cooled. It can be said that the gap between the cooling plate 1 and the cooling plate 1 is filled, a sufficient heat exchange area can be secured at all times, and it can be removed.

実施の形態1〜3に係る冷却装置(外付液冷冷却装置)を構成する冷却板1の吸熱面に柔軟性のある熱伝導部材3sを接着させる。さらに、冷却対象0の放熱面に接触する側を非粘着の材料を選定することによって、接触後、取り外しを容易に行うことができる。接触する材料が柔軟であるため、放熱面側の曲面の形状にかかわらず、十分な接触面積を得ることができ、高い冷却性能の実現が可能である。よって、実施の形態1〜3に係る発明では、容易に運用可能な高性能な外付の液冷冷却装置を構成できる。さらに、複数の冷却板を発熱体に沿って並べ、冷却板間を柔軟性のある配管5で接続することにより、大型の冷却板1を模擬でき、大型の冷却対象0に対して冷却可能となる。   A flexible heat conducting member 3s is bonded to the heat absorbing surface of the cooling plate 1 constituting the cooling device (external liquid cooling device) according to the first to third embodiments. Further, by selecting a non-adhesive material on the side that contacts the heat radiating surface of the cooling target 0, it is possible to easily remove the contact after the contact. Since the contacting material is flexible, a sufficient contact area can be obtained regardless of the shape of the curved surface on the heat radiating surface side, and high cooling performance can be realized. Therefore, in the invention according to the first to third embodiments, a high-performance external liquid cooling / cooling device that can be easily operated can be configured. Furthermore, by arranging a plurality of cooling plates along the heating element and connecting the cooling plates with flexible pipes 5, it is possible to simulate the large cooling plate 1 and to cool the large cooling target 0. Become.

実施の形態1〜3に係る冷却装置(外付液冷冷却装置)では、熱伝導部材3sを使用した場合、冷却板1(曲面部3)を冷却対象0に接触させる際に、熱伝導部材3sを冷却板1(曲面部3)と冷却対象0との間に挟みこむようにしてもよい。つまり、冷却板1(曲面部3)と熱伝導部材3sとが別体になっていてもよい。また、冷却対象0の放熱面、つまり、冷却板1(曲面部3)と接触する面において冷却対象0に熱伝導部材3sを形成してもよい。もちろん、実施の形態2及び3に係る冷却装置(外付液冷冷却装置)における複数の冷却部4(冷却板1)に亘って、一枚の熱伝導部材3sを冷却板1(曲面部3)と冷却対象0との間に挟みこむようにしてもよい。   In the cooling device (external liquid cooling device) according to the first to third embodiments, when the heat conducting member 3s is used, when the cooling plate 1 (curved surface portion 3) is brought into contact with the object to be cooled 0, the heat conducting member. 3s may be sandwiched between the cooling plate 1 (curved surface portion 3) and the object to be cooled 0. That is, the cooling plate 1 (curved surface portion 3) and the heat conducting member 3s may be separated. Further, the heat conducting member 3s may be formed on the cooling target 0 on the heat radiating surface of the cooling target 0, that is, the surface in contact with the cooling plate 1 (curved surface portion 3). Of course, the single heat conducting member 3s is connected to the cooling plate 1 (curved surface portion 3) over the plurality of cooling portions 4 (cooling plate 1) in the cooling devices (external liquid cooling device) according to the second and third embodiments. ) And the object 0 to be cooled.

実施の形態1〜3に係る冷却装置(外付液冷冷却装置)は、冷却板1の内部に形成され、冷媒が通過する流路2、冷却板1の片面に形成された、柔軟性を有する熱伝導部材3s、又は、曲面部3からなる冷却部4、或いは、冷却板1の内部に形成され、冷媒が通過する流路2、冷却板1の片面に形成された曲面部3と該曲面部3に形成された柔軟性を有する熱伝導部材3sからなる冷却部4を備えたものといえる。   The cooling device (external liquid cooling device) according to the first to third embodiments is formed inside the cooling plate 1 and has a flexibility formed on one side of the cooling plate 1 and the flow path 2 through which the refrigerant passes. The heat conducting member 3 s or the cooling part 4 composed of the curved surface part 3 or the curved surface part 3 formed on one side of the cooling plate 1 and the flow path 2 through which the coolant passes, It can be said that the cooling part 4 which consists of the heat conductive member 3s which has the flexibility formed in the curved surface part 3 was provided.

0・・冷却対象(冷却対象物,発熱体,帯熱体)、1・・冷却板、4a・・第1の板(上板)、1b・・第2の板(下板)、1c・・締結具(締結用ねじ)、1d・・締結孔(締結用ねじ穴)、1f・・フィン、2・・流路、2w・・開口、3・・曲面部(熱伝導部材3sが形成された曲面部,熱伝導部材3sが形成された平坦部)、3s・・熱伝導部材、4・・冷却部、5・・配管、6・・ポンプ、7・・固定具、7a・・固定具(固定用ねじ)、7b・・固定具(固定用ガイド)、8・・固定部(固定用ベルト)、9・・支持部(架台)、10・・昇降部(ジャッキ,ウインチ,伸縮部)、11・・支持部(支持角度可変部)、11j・・ボールジョイント、12・・サスペンション。 0..Cooling object (cooling object, heating element, heating element), 1..Cooling plate, 4a..First plate (upper plate), 1b..Second plate (lower plate), 1c. · Fasteners (fastening screws), 1d · · Fastening holes (fastening screw holes), 1f · · Fins · · · Channels, 2w · · Openings · · · Curved portions (3s of heat conducting member is formed Curved surface part, flat part on which heat conducting member 3s is formed), 3s .. heat conducting member, 4 .. cooling part, 5 .. piping, 6 .. pump, 7 .. fixing tool, 7 a. (Screw for fixing), 7b ... Fixing tool (fixing guide), 8 ... Fixing part (fixing belt), 9 ... Supporting part (frame), 10 ... Lifting part (jack, winch, expansion / contraction part) , 11.. Support part (support angle variable part), 11 j... Ball joint, 12.

Claims (7)

第1の板と第2の板とが重なり構成された冷却板と、この冷却板の内部に形成され、冷媒が通過する流路と、前記第1の板における前記第2の板と反対側面に形成された曲面部と、複数の前記冷却板の前記流路を連結して前記冷媒の循環路を形成し、可撓性を有する配管とを備え、
前記冷却板は、柱状である冷却対象の放熱面のうち任意の位置に前記曲面部を内側に向けて円環状に複数配置され、該複数の冷却板を含めて前記冷却板の形状に沿って変形する固定用ベルトによって前記冷却対象が縛られ、
前記配管は、前記冷却板において前記固定用ベルトと接触する面と交差する面に形成された開口を介して前記流路と接続された冷却装置。
A cooling plate in which the first plate and the second plate are configured to overlap each other, a flow path formed inside the cooling plate, through which the refrigerant passes, and the opposite side of the first plate to the second plate comprising of a curved portion formed on the surface, and connecting the channel of the plurality of cooling plates to form a circulation path of the refrigerant, and a pipe having flexibility,
A plurality of the cooling plates are arranged in an annular shape with the curved surface portion facing inward at an arbitrary position of the heat radiation surface to be cooled in a columnar shape, and include the plurality of cooling plates along the shape of the cooling plate. the cooling target is bound by a fixing belt deformation,
The said piping is a cooling device connected with the said flow path through the opening formed in the surface which cross | intersects the surface which contacts the said fixing belt in the said cooling plate .
前記流路は、前記第1の板に形成された複数のフィンと前記第2の板の面との間に形成されるものである請求項1に記載の冷却装置。   The cooling device according to claim 1, wherein the flow path is formed between a plurality of fins formed on the first plate and a surface of the second plate. 冷却板と、この冷却板の内部に形成され、冷媒が通過する流路と、前記冷却板の片面に形成された曲面部と、複数の前記冷却板の前記流路を連結して前記冷媒の循環路を形成し、可撓性を有する配管とを備え、
前記冷却板は、柱状である冷却対象の放熱面のうち任意の位置に前記曲面部を内側に向けて円環状に複数配置され、該複数の冷却板を含めて前記冷却板の形状に沿って変形する固定用ベルトによって前記冷却対象が縛られ、
前記配管は、前記冷却板において前記固定用ベルトと接触する面と交差する面に形成された開口を介して前記流路と接続された冷却装置。
A cooling plate, a flow path formed inside the cooling plate, through which the refrigerant passes, a curved surface portion formed on one side of the cooling plate, and the flow paths of the cooling plates are connected to each other. Forming a circulation path, and having a flexible pipe ,
A plurality of the cooling plates are arranged in an annular shape with the curved surface portion facing inward at an arbitrary position of the heat radiation surface to be cooled in a columnar shape, and include the plurality of cooling plates along the shape of the cooling plate. the cooling target is bound by a fixing belt deformation,
The said piping is a cooling device connected with the said flow path through the opening formed in the surface which cross | intersects the surface which contacts the said fixing belt in the said cooling plate .
前記開口は、前記冷却板において前記固定用ベルトと接触する面と交差する面であって、  The opening is a surface intersecting a surface of the cooling plate that contacts the fixing belt,
かつ、前記円環状に複数配列された前記冷却板のうち隣り合う前記冷却板同士が対向する面と交差する面に、  And in the surface intersecting the surface where the adjacent cooling plates are opposed to each other among the cooling plates arranged in a ring shape,
形成された請求項1から請求項3のいずれか1項に記載の冷却装置。The cooling device according to any one of claims 1 to 3, wherein the cooling device is formed.
前記冷却板は、前記曲面部の反対の面に前記固定用ベルトを通すことができる構造を有する請求項1から請求項4のいずれか1項に記載の冷却装置。  The cooling device according to any one of claims 1 to 4, wherein the cooling plate has a structure that allows the fixing belt to pass through a surface opposite to the curved surface portion. 前記曲面部は、柔軟性を有する熱伝導部材を介して冷却対象と接触するものである請求項1から請求項5のいずれか1項に記載の冷却装置。  The cooling device according to any one of claims 1 to 5, wherein the curved surface portion is in contact with an object to be cooled through a heat conductive member having flexibility. 前記熱伝導部材は、冷却対象が、載置されたとき、又は、押し当てられたときに前記冷却対象と接触する面が曲面状に変形し、或いは、該曲面状の面の曲率と同じ曲率の曲面を前記冷却対象が載置される又は押し当てられる面を前記熱伝導部材が有し、  When the object to be cooled is placed or pressed against the surface to be cooled, the surface that contacts the object to be cooled is deformed into a curved surface, or the same curvature as the curvature of the curved surface. The heat conducting member has a surface on which the object to be cooled is placed or pressed against the curved surface of
前記熱伝導部材と接触する前記冷却板の面は、前記熱伝導部材の曲面状の面の曲率以下の曲率を有する曲面である請求項6に記載の冷却装置。  The cooling device according to claim 6, wherein a surface of the cooling plate in contact with the heat conducting member is a curved surface having a curvature equal to or less than a curvature of a curved surface of the heat conducting member.
JP2017024553A 2017-02-14 2017-02-14 Cooling system Active JP6332493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017024553A JP6332493B2 (en) 2017-02-14 2017-02-14 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024553A JP6332493B2 (en) 2017-02-14 2017-02-14 Cooling system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012200737A Division JP6194504B2 (en) 2012-09-12 2012-09-12 Cooling system

Publications (2)

Publication Number Publication Date
JP2017122571A JP2017122571A (en) 2017-07-13
JP6332493B2 true JP6332493B2 (en) 2018-05-30

Family

ID=59306015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024553A Active JP6332493B2 (en) 2017-02-14 2017-02-14 Cooling system

Country Status (1)

Country Link
JP (1) JP6332493B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115279049B (en) * 2022-09-29 2023-01-13 江油星联电子科技有限公司 High-efficient cooling arrangement of circuit board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463691U (en) * 1990-10-09 1992-05-29
JPH06213573A (en) * 1993-01-12 1994-08-02 Nkk Corp Cooled duct
JPH06260782A (en) * 1993-03-02 1994-09-16 Mitsubishi Electric Corp Electronic apparatus
JP3097409B2 (en) * 1993-08-04 2000-10-10 石川島播磨重工業株式会社 Contact type cooler
JP3390648B2 (en) * 1998-01-06 2003-03-24 株式会社タクマ Furnace wall structure of electric melting furnace and furnace body cooling method
JP2011208814A (en) * 2010-03-27 2011-10-20 Hitachi Computer Peripherals Co Ltd Water-cooling jacket

Also Published As

Publication number Publication date
JP2017122571A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
US20180017334A1 (en) Flexible Heat Sink Thermoelective Device
CN100466893C (en) Heat radiating apparatus
US7600558B2 (en) Cooler
US20130175021A1 (en) Servo amplifier with heat sink having two sets of heat-releasing plates perpendicular to each other
US20180076375A1 (en) Distributed thermoelectric module with flexible dimensions
TWI465885B (en) Heat sink
US20140090809A1 (en) Cooling device
JP2007234744A (en) Refrigerator and electronic apparatus
US20210051815A1 (en) Cooling device for dissipating heat from an object
US11112186B2 (en) Heat pipe heatsink with internal structural support plate
JP7118186B2 (en) Heat dissipation device
US20170023306A1 (en) Layered heat pipe structure for cooling electronic component
US11193718B2 (en) Heat dissipation unit and heat dissipation device using same
JP6332493B2 (en) Cooling system
US20180335231A1 (en) Dual heat pipe thermoelectric cooler
US20150168031A1 (en) Heat exchanger with thermoelectric elements
JP6194504B2 (en) Cooling system
EP3518072B1 (en) Heat transferring module
US20180010860A1 (en) Multi-pipe three-dimensional plusating heat pipe
JPH07243782A (en) Heat pipe type radiator
CN105722370A (en) Heat radiation module
US20120234515A1 (en) Cooling unit and electronic apparatus system
CN101287347A (en) Heat pipe radiating device
JP3776065B2 (en) Heat pipe type cooling system
US11519674B2 (en) Gravity high-efficiency heat dissipation apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R151 Written notification of patent or utility model registration

Ref document number: 6332493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250