JP6331140B2 - Moisture content measurement method - Google Patents

Moisture content measurement method Download PDF

Info

Publication number
JP6331140B2
JP6331140B2 JP2014179671A JP2014179671A JP6331140B2 JP 6331140 B2 JP6331140 B2 JP 6331140B2 JP 2014179671 A JP2014179671 A JP 2014179671A JP 2014179671 A JP2014179671 A JP 2014179671A JP 6331140 B2 JP6331140 B2 JP 6331140B2
Authority
JP
Japan
Prior art keywords
thin film
film sample
sample
moisture content
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014179671A
Other languages
Japanese (ja)
Other versions
JP2016053527A (en
Inventor
小川 雄一
雄一 小川
慧一郎 白神
慧一郎 白神
行三 赤宗
行三 赤宗
美穂 森田
美穂 森田
克彦 土田
克彦 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Naris Cosmetics Co Ltd
Original Assignee
Kyoto University
Naris Cosmetics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55744823&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6331140(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyoto University, Naris Cosmetics Co Ltd filed Critical Kyoto University
Priority to JP2014179671A priority Critical patent/JP6331140B2/en
Publication of JP2016053527A publication Critical patent/JP2016053527A/en
Application granted granted Critical
Publication of JP6331140B2 publication Critical patent/JP6331140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は水分量測定方法、特に角層の水分量測定法に関する。   The present invention relates to a moisture content measuring method, and more particularly to a stratum corneum moisture content measuring method.

これまで、皮膚の水分を測定するために、電気的特性を利用した方法や核磁気共鳴画像法、近赤外分光法、共焦点ラマン分光法など種々の方法が提案されてきた。しかしながら、これらの方法では、水と化粧品や皮膚外用剤に含まれる物質、あるいは皮膚中の物質の吸収スペクトルとの分離が難しいことや、角層水分以外の物質による影響を受けやすい、といった問題などがあり、化粧品が与える皮膚、特に角層の水分量への影響を知る上では従来の方法では十分であるとは言えなかった。   Until now, various methods such as a method using electrical characteristics, nuclear magnetic resonance imaging, near-infrared spectroscopy, and confocal Raman spectroscopy have been proposed for measuring skin moisture. However, with these methods, problems such as difficulty in separating water from substances contained in cosmetics and skin external preparations, or absorption spectra of substances in the skin, and being susceptible to substances other than stratum corneum moisture, etc. In view of the effects of cosmetics on the moisture content of the skin, particularly the stratum corneum, the conventional methods have not been sufficient.

ところで、0.1〜10THzの周波数を有するテラヘルツ波は水に強く吸収される特性を有する電磁波である。近年、この特性に鑑み、テラヘルツ波を用いて生体試料中の水分を測定する試みが行われている。例えば、特許文献1では、生体試料のような薄切片試料の透過率と、薄切片試料の厚さとから試料の吸収係数を求め、水分の吸収係数から薄切片試料の含有水分の体積分率を求めることが試みられている。また、非特許文献1には、皮膚表面からテラヘルツ波を照射し、皮膚を構成する各層の界面で生じたエコーパルスの強度差を測定することで、皮膚の含水量を求めることが試みられている。   By the way, the terahertz wave having a frequency of 0.1 to 10 THz is an electromagnetic wave having a characteristic of being strongly absorbed by water. In recent years, in view of this characteristic, attempts have been made to measure moisture in biological samples using terahertz waves. For example, in Patent Document 1, the absorption coefficient of a sample is obtained from the transmittance of a thin-section sample such as a biological sample and the thickness of the thin-section sample, and the volume fraction of moisture contained in the thin-section sample is calculated from the absorption coefficient of moisture. Attempts have been made to seek. Further, Non-Patent Document 1 attempts to determine the moisture content of the skin by irradiating terahertz waves from the skin surface and measuring the intensity difference of echo pulses generated at the interface of each layer constituting the skin. Yes.

しかしながら、前者の方法は生体試料の薄切片を用いる方法であるので、ヒトや動物の皮膚を傷つけることになり、好ましい方法であるとは言えない。後者の方法は皮膚を傷つけることなく測定できるので好ましい方法であるとは言えるが、この方法では空気−角層界面と角層−表皮界面の2つのエコーパルスを時間的に分離できないなどの理由により、角層の水分を測定できない。また、後者の方法では、空気−角層界面におけるエコーパルス強度から群屈折率の変化を求めて、皮膚(角層)表面における含有水分量の変化を求めているが、角層の含水量(絶対量)を測定することは困難であると言える。   However, since the former method is a method using a thin section of a biological sample, human or animal skin is injured and it cannot be said that it is a preferable method. The latter method can be said to be a preferable method because it can be measured without damaging the skin, but because this method cannot temporally separate the two echo pulses of the air-corneal interface and the stratum corneum-skin interface. , Stratum corneum moisture can not be measured. In the latter method, the change in the group refractive index is determined from the echo pulse intensity at the air-corneal layer interface, and the change in the moisture content on the skin (horny layer) surface is determined. It can be said that it is difficult to measure (absolute amount).

また、全反射する条件で試料にテラヘルツ波を入射し、その際に生じるテラヘルツ帯の表面波(エバネッセント波)と試料の相互作用によるテラヘルツ波の減衰を測定することで、試料の複素屈折率又は複素誘電率を求めることが試みられている(特許文献2、非特許文献2)。この方法は、全反射減衰分光測定法(Attenuated Total Reflection Spectroscopy:ATR法)と言われる方法である。特許文献2では、入射角条件の異なる2つのスペクトルを測定することで、透過法のような極薄い厚みの液体層を必要とすることなく試料の複素屈折率を求めている。非特許文献2では、単層の細胞層などの極薄い薄膜試料に積層された水の影響を排除すべく、薄膜試料と水の界面における反射を考慮したいわゆる二界面モデルを用いて薄膜試料の複素誘電率を求めている。   In addition, a terahertz wave is incident on the sample under total reflection conditions, and the attenuation of the terahertz wave due to the interaction between the surface wave (evanescent wave) of the terahertz band generated at that time and the sample is measured. Attempts have been made to obtain a complex dielectric constant (Patent Document 2, Non-Patent Document 2). This method is a so-called Attenuated Total Reflection Spectroscopy (ATR method). In Patent Document 2, a complex refractive index of a sample is obtained by measuring two spectra having different incident angle conditions without requiring a liquid layer having an extremely thin thickness as in the transmission method. In Non-Patent Document 2, in order to eliminate the influence of water stacked on an extremely thin thin film sample such as a single cell layer, the so-called two-interface model considering reflection at the interface between the thin film sample and water is used. The complex permittivity is obtained.

しかしながら、いずれの文献も複素屈折率又は複素誘電率が測定されたことを示しているにすぎない。また、皮膚の角層は単層の細胞層ではなく、死んだ角化細胞が複雑に積層したものであって、角層の水分量を測定する方法に利用できるかどうか分からなかった。   However, both documents only show that the complex refractive index or the complex dielectric constant was measured. In addition, the stratum corneum of the skin is not a single cell layer, but is a complex stack of dead keratinocytes, and it was not known whether it could be used in a method for measuring the water content of the stratum corneum.

特開2009−122007号公報JP 2009-122007 A 特開2008−304444号公報JP 2008-304444 A

安井ら、生体医工学、Vol.42、No.4、190−194、2004Yasui et al., Biomedical Engineering, Vol. 42, no. 4, 190-194, 2004 K. Shiraga et al., Applied Physics Letters, 102, 053702(2013)K. Shiraga et al., Applied Physics Letters, 102, 053702 (2013)

ところで、角層の厚みはヒトや動物種で異なり、個体差もある。また、ヒトの角層の厚みは部位差および個人差が大きい。テラヘルツ波の減衰はエバネッセント波の滲みだし深さとも関係し、テラヘルツ波の減衰から含水率が求められたとしても、角層のごく浅い部分の吸収しか測定していないおそれがある。また、皮膚は外側から大きく分けて、角層・表皮層・真皮層・皮下組織層という積層構造をしており、角層が薄いところでは角層下にある表皮層の水分による影響を受けるおそれもある。   By the way, the thickness of the stratum corneum varies among humans and animal species, and there are individual differences. In addition, the thickness of the human stratum corneum varies greatly between parts and individuals. The attenuation of the terahertz wave is also related to the depth of the evanescent wave, and even if the moisture content is obtained from the attenuation of the terahertz wave, only the absorption in the very shallow part of the stratum corneum may be measured. In addition, the skin is roughly divided from the outside and has a layered structure of the stratum corneum, epidermis layer, dermis layer, and subcutaneous tissue layer. Where the stratum corneum is thin, it may be affected by moisture in the epidermis layer under the stratum corneum. There is also.

本発明はこのような背景技術に鑑みてなされたものであって、本発明は、テラヘルツ波を用いて角層のような薄膜試料の水分量をできるだけ正確に測定する方法を提供することを課題とする。   The present invention has been made in view of such background art, and the present invention aims to provide a method for measuring the moisture content of a thin film sample such as a stratum corneum as accurately as possible using terahertz waves. And

本発明に係る測定方法は、テラヘルツ波全反射減衰分光法を用いた薄膜試料の水分量測定方法であって、薄膜試料に積層試料を積層した状態の測定対象物に対してテラヘルツ波をプリズムを介して前記薄膜試料側から照射してテラヘルツ波の減衰を観測する工程と、前記薄膜試料と前記積層試料の界面における反射係数を用いてテラヘルツ波の減衰を修正する工程と、当該修正されたテラヘルツ波から前記薄膜試料の吸収係数を求める工程と、を有する。   A measuring method according to the present invention is a method for measuring the amount of water in a thin film sample using terahertz wave total reflection attenuation spectroscopy, wherein a prism is used to apply a terahertz wave to a measurement object in a state where the laminated sample is laminated on the thin film sample. Irradiating from the thin film sample side to observe the attenuation of the terahertz wave, correcting the attenuation of the terahertz wave using a reflection coefficient at the interface between the thin film sample and the laminated sample, and the corrected terahertz wave Obtaining an absorption coefficient of the thin film sample from a wave.

本発明によると、テラヘルツ波を用いて角層中の水分量を測定する方法が提供される。   According to the present invention, a method for measuring the amount of water in the stratum corneum using terahertz waves is provided.

図1は二界面モデルの測定概念を示す模式図である。FIG. 1 is a schematic diagram showing a measurement concept of a two-interface model. 図2は水の吸収スペクトルを示す図である。FIG. 2 is a diagram showing an absorption spectrum of water. 図3はスクロース水溶液の吸収スペクトルを示す図である。FIG. 3 is a diagram showing an absorption spectrum of an aqueous sucrose solution. 図4はスクロース水溶液の質量含水率と吸収係数の関係を示す図であって、(a)は0.5THzでの測定結果を、(b)は1.0THzでの測定結果を示す。●は実験値を、○は文献値を示す。FIG. 4 is a graph showing the relationship between the mass water content of the aqueous sucrose solution and the absorption coefficient, where (a) shows the measurement result at 0.5 THz and (b) shows the measurement result at 1.0 THz. ● indicates experimental values and ○ indicates literature values. 図5は角層モデルの吸収スペクトルを示す図である。FIG. 5 is a diagram showing an absorption spectrum of the stratum corneum model. 図6は角層モデルを用いた質量含水率と吸収係数の関係を示す図であって、(a)は0.25THzでの測定結果を、(b)は0.5THzでの測定結果を、(c)は1.0THzでの測定結果を示す図である。FIG. 6 is a diagram showing the relationship between the mass moisture content and the absorption coefficient using the stratum corneum model, where (a) shows the measurement result at 0.25 THz, (b) shows the measurement result at 0.5 THz, (C) is a figure which shows the measurement result in 1.0 THz. 図7は誘電体薄膜に蒸留水を滴下して測定した解析結果を示す図であって、(a)は10μmの誘電体薄膜を、(b)は20μmの誘電体薄膜を、(c)は30μmの誘電体薄膜を用いた場合の解析結果である。FIG. 7 is a diagram showing analysis results obtained by dropping distilled water on a dielectric thin film, where (a) shows a 10 μm dielectric thin film, (b) shows a 20 μm dielectric thin film, and (c) shows It is an analysis result at the time of using a 30 micrometers dielectric thin film. 図8は誘電体薄膜に蒸留水を滴下して測定した解析結果を示す図であって、(d)は40μmの誘電体薄膜を、(e)は50μmの誘電体薄膜を用いた場合の解析結果である。FIG. 8 is a diagram showing an analysis result measured by dropping distilled water on a dielectric thin film, where (d) shows a 40 μm dielectric thin film, and (e) shows a case where a 50 μm dielectric thin film is used. It is a result. 図9はブタ皮膚(48時間乾燥)の吸収スペクトルを示す図である。FIG. 9 is a graph showing an absorption spectrum of pig skin (dried for 48 hours). 図10はブタ皮膚の質量含水率とストリッピング回数との関係を示す図であって、(a)は0.25THzでの測定結果を、(b)は0.5THzでの測定結果を、(c)は1.0THzでの測定結果を示す図である。FIG. 10 is a graph showing the relationship between the mass moisture content of pig skin and the number of stripping times. (A) shows the measurement result at 0.25 THz, (b) shows the measurement result at 0.5 THz, c) is a diagram showing a measurement result at 1.0 THz. 図11は二界面モデル適用後のブタ皮膚(48時間乾燥)の吸収スペクトルを示す図である。FIG. 11 shows the absorption spectrum of pig skin (dried for 48 hours) after application of the two-interface model. 図12は二界面モデル適用後のブタ皮膚の吸収係数とストリッピング回数の関係を示す図であって、(a)は0.25THzでの測定結果を、(b)は0.5THzでの測定結果を、(c)は1.0THzでの測定結果を示す図である。FIG. 12 is a graph showing the relationship between the absorption coefficient of pig skin after the application of the two-interface model and the number of stripping, where (a) shows the measurement result at 0.25 THz and (b) the measurement at 0.5 THz. (C) is a figure which shows the measurement result in 1.0 THz. 図13は二界面モデルを用いて求められた角層の複素屈折率を示す図であって、(a)はその実部を、(b)はその虚部を示す。FIG. 13 is a diagram showing the complex refractive index of the stratum corneum obtained using a two-interface model, where (a) shows its real part and (b) shows its imaginary part. 図14は二界面モデルの適用前後による吸収係数の変化を示す図であって、適用前に対する変化率を示す。(a)は0.25THzでの測定結果を、(b)は0.5THzでの測定結果を、(c)は1.0THzでの測定結果を示す図である。FIG. 14 is a diagram showing a change in absorption coefficient before and after application of the two-interface model, and shows a change rate with respect to before application. (A) shows the measurement result at 0.25 THz, (b) shows the measurement result at 0.5 THz, and (c) shows the measurement result at 1.0 THz. 図15はアルブミン水溶液の吸収スペクトルを示す図である。FIG. 15 is a diagram showing an absorption spectrum of an albumin aqueous solution. 図16はアルブミン水溶液の質量含水率と吸収係数の関係を示す図である。(a)は0.25THzでの測定結果を、(b)は0.5THzでの測定結果を、(c)は1.0THzでの測定結果を示す図である。FIG. 16 is a diagram showing the relationship between the mass water content of the aqueous albumin solution and the absorption coefficient. (A) shows the measurement result at 0.25 THz, (b) shows the measurement result at 0.5 THz, and (c) shows the measurement result at 1.0 THz. 図17は、アルブミン水溶液を角層モデルとした場合におけるブタ皮膚の質量含水率とストリッピング回数との関係(0.5THz)を示す図である。FIG. 17 is a diagram showing the relationship (0.5 THz) between the mass water content of pig skin and the number of stripping when an aqueous albumin solution is used as a stratum corneum model.

本発明に係る方法は、全反射減衰分光法において、好ましくは水分量を求めたい薄膜試料よりも大きな滲みだし深さのエバネッセント波が生じるように、薄膜試料と積層試料を含む積層体である測定対象物に対してテラヘルツ波を照射した上で、前記薄膜試料と前記積層試料の界面での反射を考慮して解析を行う方法である。薄膜試料と積層試料の界面での反射を考慮して解析する方法は既に公知でありいわゆる二界面モデルと称される(非特許文献2参照)。   In the total reflection attenuation spectroscopy, the method according to the present invention is preferably a measurement of a laminated body including a thin film sample and a laminated sample so that an evanescent wave having a greater bleed depth than that of the thin film sample whose moisture content is to be obtained is generated. This is a method of performing analysis in consideration of reflection at the interface between the thin film sample and the laminated sample after irradiating the object with terahertz waves. A method of analyzing in consideration of reflection at the interface between the thin film sample and the laminated sample is already known and is referred to as a so-called two-interface model (see Non-Patent Document 2).

図1は当該二界面モデルの説明図である。全反射減衰分光法では、テラヘルツ波はATRプリズム(以下「プリズム」と称する。)表面と薄膜試料との界面で全反射する条件でプリズムに入射し、プリズム表面と薄膜試料の界面で反射されたテラヘルツ波は図示しない検出装置で観測される。このとき、反射テラヘルツ波の電場強度E~outは、数式1に示すように入射テラヘルツ波の電場強度Einに係数aを掛けたものとして表される。二界面モデルを用いない場合、係数aにはプリズムと薄膜試料の界面でのフレネル反射係数r~12が用いられ、E~out=r~12×Einの関係が成り立つとして解析が行われる。一方、二界面モデルを用いた場合は、薄膜試料と積層試料の界面でも当該界面でのフレネル反射係数r~23に比例した減衰があるとして取り扱い、この減衰による影響を除くことで薄膜試料における減衰を取り出して解析する。このために、係数aにはプリズムと薄膜試料の界面でのフレネル反射係数r~12に、薄膜試料と積層試料の界面でのフレネル反射係数r~23を考慮した全体の反射係数r~123が用いられ、E~out=r~123×Einの関係が成り立つとして解析が行われる。つまり、二界面モデルを用いた解析では、プリズムと薄膜試料の界面でのフレネル反射係数r~12を薄膜試料と積層試料の界面でのフレネル反射係数r~23で修正した全体の反射係数r~123が用いられる。言い換えると、二界面モデルは、観測されたテラヘルツ波の減衰を薄膜試料と積層試料の界面でのフレネル反射係数を用いて修正したモデルであると言える。薄膜試料の含水量の算出に必要な薄膜試料の吸収係数αは、下記に述べるように、検出装置で観測された反射スペクトルと位相差スペクトルから全体の反射係数r~123を算出し、算出された全体の反射係数r~123から薄膜試料の複素屈折率n~2を算出することで求められる。 FIG. 1 is an explanatory diagram of the two-interface model. In total reflection attenuation spectroscopy, the terahertz wave is incident on the prism under the condition of total reflection at the interface between the surface of the ATR prism (hereinafter referred to as “prism”) and the thin film sample, and is reflected at the interface between the prism surface and the thin film sample. The terahertz wave is observed by a detection device (not shown). In this case, the electric field strength E ~ out of the reflected terahertz wave is represented as multiplied by coefficient a to the electric field strength E in the incident terahertz wave as shown in Equation 1. If not using a two-interface model, the coefficients a prism and the Fresnel reflection coefficient at the interface of the thin film sample r ~ 12 is used, the analysis relation holds and to the E ~ out = r ~ 12 × E in is performed. On the other hand, when the two-interface model is used, the interface between the thin film sample and the laminated sample is treated as having an attenuation proportional to the Fresnel reflection coefficient r- 23 at the interface, and the attenuation of the thin film sample is eliminated by removing the influence of this attenuation. Is taken out and analyzed. For this reason, the coefficient a has a Fresnel reflection coefficient r ~ 12 at the interface between the prism and the thin film sample, and an overall reflection coefficient r ~ 123 considering the Fresnel reflection coefficient r ~ 23 at the interface between the thin film sample and the laminated sample. used, analysis is performed by the relation E ~ out = r ~ 123 × E in holds. In other words, in the analysis using the two-interface model, the Fresnel reflection coefficient r ~ 12 at the interface between the prism and the thin film sample is corrected by the Fresnel reflection coefficient r ~ 23 at the interface between the thin film sample and the laminated sample. 123 is used. In other words, it can be said that the two-interface model is a model obtained by correcting the attenuation of the observed terahertz wave using the Fresnel reflection coefficient at the interface between the thin film sample and the laminated sample. The absorption coefficient α of the thin film sample necessary for calculating the water content of the thin film sample is calculated by calculating the overall reflection coefficient r to 123 from the reflection spectrum and the phase difference spectrum observed by the detector as described below. Further, the complex refractive index n ~ 2 of the thin film sample is calculated from the total reflection coefficient r ~ 123 .

(数1)
E~out = a×Ein (1≧a≧0)
(Equation 1)
E ~ out = a × E in (1 ≧ a ≧ 0)

ここでプリズムの屈折率をn1、薄膜試料の複素屈折率をn~2、積層試料の複素屈折率をn~3、テラヘルツ波の入射角をθとすると、薄膜試料と積層試料の界面でのフレネル反射係数r~23は次の数式2で示される。 Here, when the refractive index of the prism is n 1 , the complex refractive index of the thin film sample is n to 2 , the complex refractive index of the laminated sample is n to 3 and the incident angle of the terahertz wave is θ, at the interface between the thin film sample and the laminated sample. The Fresnel reflection coefficient r ~ 23 is expressed by the following equation 2.

また、薄膜試料とプリズムの界面のフレネル反射係数r~12は数式3で表されるので、薄膜試料の厚みをdとすると、2つの界面が存在するときの全体の反射係数r~123は、次の数式4で示される。 Further, since the Fresnel reflection coefficient r ~ 12 at the interface between the thin film sample and the prism is expressed by Equation 3, when the thickness of the thin film sample is d, the overall reflection coefficient r ~ 123 when there are two interfaces is It is expressed by the following formula 4.

ここで、試料がテラヘルツ波の吸収を有する物質の場合、プリズム表面にある試料の厚さをt、試料の吸収係数をαとすると、反射テラヘルツ波から観測されるATRスペクトルの吸収強度A(t)は次の数式5の関係で示される。なお、エバネッセント波の滲みだし深さdpは、入射波の電場強度が1/eに減衰する深さであり、入射テラヘルツ波の波長λ、プリズムの屈折率n1、試料の屈折率n~2、プリズム表面に対する入射角θによって一義的に決まる。 Here, when the sample is a substance having absorption of terahertz waves, if the thickness of the sample on the prism surface is t and the absorption coefficient of the sample is α, the absorption intensity A (t of the ATR spectrum observed from the reflected terahertz wave ) Is represented by the following equation (5). The evanescent wave oozing depth d p is a depth at which the electric field intensity of the incident wave is attenuated to 1 / e, the wavelength λ of the incident terahertz wave, the refractive index n 1 of the prism, and the refractive index n˜ of the sample. 2. It is uniquely determined by the incident angle θ with respect to the prism surface.

一方、吸収のある物質における電磁波の伝搬は複素屈折率n~を用いて表せられる。複素屈折率n~は物質の消衰係数κを用いて数式6で示されるが、消衰係数κと当該物質の吸収係数αは数式7に示す比例関係にあることが知られている。なお、数式6中、nは物質の屈折率、iは虚数単位である。   On the other hand, the propagation of electromagnetic waves in a substance having absorption can be expressed using a complex refractive index n˜. The complex refractive index n˜ is expressed by Equation 6 using the extinction coefficient κ of the substance. It is known that the extinction coefficient κ and the absorption coefficient α of the substance have a proportional relationship shown in Expression 7. In Equation 6, n is the refractive index of the substance, and i is an imaginary unit.

つまり、ATRスペクトルの吸収強度A(t)は吸収係数αと比例し(数式5)、吸収係数αは消衰係数κと比例する(数式7)という関係にある。従って、ATRスペクトルの吸収強度A(t)を直接測定することや物質の消衰係数κを求めることで吸収係数αが求められる。   That is, the absorption intensity A (t) of the ATR spectrum is proportional to the absorption coefficient α (Equation 5), and the absorption coefficient α is proportional to the extinction coefficient κ (Equation 7). Therefore, the absorption coefficient α can be obtained by directly measuring the absorption intensity A (t) of the ATR spectrum or by obtaining the extinction coefficient κ of the substance.

反射後のATRスペクトルはテラヘルツ時間領域分光法により観測できる。この方法では、取得したテラヘルツ波の時間波形をフーリエ変換することで反射スペクトルと位相差スペクトルが得られる。エバネッセント波の滲みだし深さdpが試料の厚さtよりも大きい場合には、反射スペクトルR(ω)と位相差スペクトルΦ(ω)はそれぞれ次の数式8及び数式9で示される。また、薄膜試料と積層試料の界面でのフレネル反射係数r~23は数式2、プリズムと試料の界面におけるフレネル反射係数r~12は数式3、全体の反射係数r~123は数式4でそれぞれ示される。従って、テラヘルツ時間領域分光法により得られた反射スペクトルR(ω)と位相差スペクトルΦ(ω)から、数式2、数式3、数式4と数式8、数式9の連立方程数の解を求めることで薄膜試料の複素屈折率n~2が求められる。数式8及び数式9においてrrefは測定対象物が載置しない場合のフレネル反射係数である。そして求められた複素屈折率n~2の虚部(消衰係数κ)と数式7から、薄膜試料の吸収係数αが求められる。すなわち、本発明に係る計測方法はテラヘルツ波出射面であるプリズム表面に測定対象物である試料(薄膜試料に積層試料が積層された試料)を接触させながらテラヘルツ波を照射して得られる反射スペクトル及び位相差スペクトルを計測する工程と、得られた反射スペクトル及び位相差スペクトルとから試料の吸収係数αを算出する工程とを備え、吸収係数αの算出にあたり、プリズムと薄膜試料の界面でのフレネル反射係数r~12と薄膜試料と積層試料の界面でのフレネル反射係数r~23とから求められた全体の反射係数r~123が用いられる方法でもある。さらに言い換えると、薄膜試料に積層試料を積層した状態の測定対象物に対してテラヘルツ波を前記薄膜試料側からプリズムを介して前記薄膜試料側から照射して時間領域スペクトルを測定する工程と、前記積層試料の複素屈折率と前記プリズムの屈折率と前記薄膜試料の厚みを用いて、積層状態にある測定対象物の反射係数を算出する工程と、前記測定された時間領域スペクトルと前記算出した測定対象物の反射係数から、前記薄膜試料の吸収係数を求める工程とを有する方法であるとも言える。なお、反射係数r~123や薄膜試料の複素屈折率n~2の算出に必要となる薄膜試料の厚さdや積層試料の複素屈折率n~3は実測値であり、推定値であり、文献値などであり得る。 The ATR spectrum after reflection can be observed by terahertz time domain spectroscopy. In this method, a reflection spectrum and a phase difference spectrum are obtained by performing Fourier transform on the acquired time waveform of the terahertz wave. When the penetration depth d p of the evanescent wave is larger than the thickness t of the sample, the reflection spectrum R (ω) and the phase difference spectrum Φ (ω) are expressed by the following equations 8 and 9, respectively. Further, Fresnel reflection coefficient r ~ 23 at the interface between the thin film sample and the laminated sample is expressed by Expression 2, Fresnel reflection coefficient r ~ 12 at the prism / sample interface is expressed by Expression 3, and the overall reflection coefficient r ~ 123 is expressed by Expression 4. It is. Therefore, from the reflection spectrum R (ω) and the phase difference spectrum Φ (ω) obtained by the terahertz time domain spectroscopy, the solutions of the continuous cubic numbers of Equation 2, Equation 3, Equation 4, Equation 8, and Equation 9 are obtained. Thus, the complex refractive index n ~ 2 of the thin film sample is obtained. In Equations 8 and 9, r ref is the Fresnel reflection coefficient when the measurement object is not placed. Then the complex refractive index n ~ 2 of the imaginary part (extinction coefficient kappa) and Equation 7 obtained, the absorption coefficient of the thin film sample α is obtained. That is, the measurement method according to the present invention is a reflection spectrum obtained by irradiating a terahertz wave while bringing a sample (a sample in which a laminated sample is laminated on a thin film sample) into contact with a prism surface that is a terahertz wave emitting surface. And measuring the phase difference spectrum and calculating the absorption coefficient α of the sample from the obtained reflection spectrum and phase difference spectrum, and calculating the absorption coefficient α, the Fresnel at the interface between the prism and the thin film sample. It is also a method in which the overall reflection coefficient r to 123 obtained from the reflection coefficient r to 12 and the Fresnel reflection coefficient r to 23 at the interface between the thin film sample and the laminated sample is used. In other words, the step of measuring the time domain spectrum by irradiating the thin film sample with the terahertz wave from the thin film sample side through the prism from the thin film sample side with respect to the measurement object in a state where the laminated sample is laminated; Using the complex refractive index of the laminated sample, the refractive index of the prism, and the thickness of the thin film sample, a step of calculating a reflection coefficient of the measurement object in the laminated state, the measured time domain spectrum, and the calculated measurement It can also be said that the method has a step of obtaining the absorption coefficient of the thin film sample from the reflection coefficient of the object. It should be noted that the thickness d of the thin film sample and the complex refractive index n- 3 of the laminated sample necessary for calculating the reflection coefficient r- 123 and the complex refractive index n- 2 of the thin film sample are actually measured values and estimated values. It can be a literature value or the like.

上記で求められた吸収係数αは薄膜試料の吸収係数を表すが、テラヘルツ波は水による吸収が非常に大きく、水以外の物質に吸収をほとんど示さないので、水を含む薄膜試料では、上記で求められた吸収係数αは薄膜試料が含む水分による吸収を表すと言える。特に当該薄膜試料に水分を含む積層試料が積層された場合には、二界面モデルを適用することによって積層試料が含む水分による影響が排除される。   The absorption coefficient α obtained above represents the absorption coefficient of the thin film sample. However, since the terahertz wave is extremely absorbed by water and hardly shows absorption by substances other than water, It can be said that the obtained absorption coefficient α represents absorption due to moisture contained in the thin film sample. In particular, when a laminated sample containing moisture is laminated on the thin film sample, the influence of moisture contained in the laminated sample is eliminated by applying the two-interface model.

本発明における測定対象物は薄膜試料を含む対象物である。測定対象物は薄膜試料と薄膜試料に積層された積層試料を含む積層体であり、測定時に薄膜試料に対して積層試料を載置した対象物でもあり得る。積層体は薄膜試料と積層試料からなる2層積層体に限らず、2以上の積層試料を含む多層積層体でもありえる。また、積層試料は水を含む液体、例えば水溶液でもあり得る。積層体である測定対象物として例えばヒトや動物の皮膚が例示される。皮膚は上記のように最外層から角層、表皮層などが積層された構造を有しており、角層を薄膜試料、その他の層を積層試料として扱える。皮膚に適用した場合、皮膚組織や体毛を構成するタンパク質や脂質、血液成分などによる吸収の影響を受けることがなく、しかも表皮層の水分による影響が可能な限り排除された状態で角層の水分量が測定される。本発明では、薄膜試料と積層試料の間に明確な界面を有する対象物が好適であると言えるが、必ずしも明確な界面を有しない対象物でも差し支えない。なお、本発明において薄膜試料の厚みは特に制限はなく、その厚みは例えば約1mm以下であり、0.5mm以下であり、0.1mm以下である。   The measurement object in the present invention is an object including a thin film sample. The measurement object is a laminated body including a thin film sample and a laminated sample laminated on the thin film sample, and may be an object on which the laminated sample is placed on the thin film sample during measurement. The laminate is not limited to a two-layer laminate including a thin film sample and a laminate sample, and may be a multilayer laminate including two or more laminate samples. The laminated sample may also be a liquid containing water, such as an aqueous solution. Examples of the measurement object that is a laminate include human and animal skins. As described above, the skin has a structure in which the horny layer, the skin layer, and the like are laminated from the outermost layer, and the horny layer can be handled as a thin film sample and the other layers as a laminated sample. When applied to the skin, the stratum corneum moisture is not affected by the absorption of proteins, lipids, blood components, etc. that make up the skin tissue and hair, and the influence of moisture on the epidermis is eliminated as much as possible. The quantity is measured. In the present invention, it can be said that an object having a clear interface between the thin film sample and the laminated sample is suitable, but an object having no clear interface may be used. In the present invention, the thickness of the thin film sample is not particularly limited, and the thickness is, for example, about 1 mm or less, 0.5 mm or less, and 0.1 mm or less.

本発明において用いられるテラヘルツ波の周波数はテラヘルツ帯の周波数帯域である0.1〜10THzである。本発明において、測定対象である薄膜試料の厚さ方向全域における含水量を測定するには、生じたエバネッセント波の滲みだし深さが薄膜試料の厚みよりも深いことが好ましい。従って、エバネッセント波の滲みだし深さが薄膜試料の厚みよりも大きくなるように、薄膜試料の厚みに適切なテラヘルツ波の周波数帯域が選択される。エバネッセント波の滲みだし深さdpは、数式10に示されるようにテラヘルツ波の波長λに比例し、その周波数に反比例する関係にある。低周波数側では滲みだし深さdpが大きくなるので、低周波側のテラヘルツ波が好ましい。また、下記に述べるように、テラヘルツ波の周波数が高くなるほど水の吸収係数αが大きくなるので感度がよくなるが、周波数が高くなると滲みだし深さdが小さくなりすぎて角層水分量が十分に反映されない傾向にある。一方、低周波数側ではエバネッセント波の滲みだし深さdpが大きくなりすぎ、二界面モデルによっても補正が足りず、薄膜試料ではなくそれに積層された積層試料による吸収が主体となるおそれがある。例えば、皮膚角層の厚さは10〜70μm程度であるので、皮膚角層の水分量の測定では、その周波数の上限は5.0THzであり、3.0THzであり、2.0THzであり、1.5THz以下であり、1.0THzであり得る。 The frequency of the terahertz wave used in the present invention is 0.1 to 10 THz which is a frequency band of the terahertz band. In the present invention, in order to measure the moisture content in the entire thickness direction of the thin film sample to be measured, it is preferable that the depth of the evanescent wave generated is deeper than the thickness of the thin film sample. Therefore, the frequency band of the terahertz wave appropriate for the thickness of the thin film sample is selected so that the depth of evanescent wave bleeding is greater than the thickness of the thin film sample. The depth d p of the evanescent wave oozing is proportional to the wavelength λ of the terahertz wave and inversely proportional to the frequency as shown in Equation 10. Since the bleeding depth d p increases on the low frequency side, a terahertz wave on the low frequency side is preferable. As described below, the higher the frequency of the terahertz wave, the higher the sensitivity because the water absorption coefficient α increases, but the higher the frequency, the more the bleeding depth d p becomes smaller and the horny layer moisture content is sufficient. Tend not to be reflected. On the other hand, the evanescent wave oozing depth d p becomes too large on the low frequency side, and correction is not sufficient even with the two-interface model, and there is a possibility that the absorption is mainly caused by the laminated sample laminated on the thin film sample. For example, since the thickness of the skin stratum corneum is about 10 to 70 μm, the upper limit of the frequency in the measurement of the moisture content of the skin stratum corneum is 5.0 THz, 3.0 THz, and 2.0 THz, 1.5 THz or less, and may be 1.0 THz.

プリズムの屈折率(材質)やテラヘルツ波の入射角は適宜調整できる。具体的には、シリコン(n=3.4)やMgO(n=3.1)が好ましい。また、全反射するための条件は少なくとも出射側の媒質の屈折率が入射側の媒質の屈折率よりも大きいことである。つまり、プリズムの屈折率は薄層試料の屈折率よりも大きいことが必要である。従って、皮膚への照射を考えた場合、測定に用いるテラヘルツ波の周波数によっても異なるが、概ね1THzより低周波数側では少なくとも2.0以上、好ましくは2.5以上、望ましくは3.0以上の屈折率を、また、概ね1THzよりも高周波帯域では2.0以上の屈折率を有するプリズムが用いられる。つまり、3.0以上の屈折率を有する上記シリコンやMgOのプリズムであれば0.1THz以上のテラヘルツ波を用いることができる。これは、下記に述べるように本発明者らの実測によると、0.1THz以上のテラヘルツ波を照射した場合、ブタ皮膚の角層の複素屈折率の実部は約2.5以下にあることが判明したことに基づく(図13参照)。さらに詳しく言えば、皮膚をストリッピングして得られる表皮層について測定して得られる複素屈折率と角層の厚みを用いて二界面モデルを適用することで算出した角層の複素屈折率から決定され得る。上記のとおり、複素屈折率の算出に際して必要となる角層の厚みは、実測値を用いることもできるが、ストリッピング回数からその厚みを求めてもよく、また、文献値など利用してもよい。なお、ヒトへの適用に際して、ヒトの皮膚以外に、ブタなどのモデル動物の皮膚を用いて算出してもよい。特に、ブタ皮膚はヒト皮膚の組成や構造とよく似ており、ヒト皮膚の角層の複素屈折率とブタ皮膚の角層のそれとはほぼ同程度であると言えるからである。入射角はプリズムの屈折率やテラヘルツ波の周波数によっても異なり、全反射条件を満たす角度に設定される。   The refractive index (material) of the prism and the incident angle of the terahertz wave can be adjusted as appropriate. Specifically, silicon (n = 3.4) and MgO (n = 3.1) are preferable. Further, the condition for total reflection is that at least the refractive index of the medium on the exit side is larger than the refractive index of the medium on the incident side. That is, the refractive index of the prism needs to be larger than the refractive index of the thin layer sample. Therefore, when considering irradiation on the skin, it varies depending on the frequency of the terahertz wave used for the measurement, but is generally at least 2.0 or more, preferably 2.5 or more, desirably 3.0 or more at a frequency lower than 1 THz. A prism having a refractive index of 2.0 or higher is used in a high-frequency band of about 1 THz. In other words, if the silicon or MgO prism has a refractive index of 3.0 or more, a terahertz wave of 0.1 THz or more can be used. As described below, according to the actual measurement by the present inventors, when the terahertz wave of 0.1 THz or more is irradiated, the real part of the complex refractive index of the stratum corneum of the pig skin is about 2.5 or less. (See FIG. 13). More specifically, it is determined from the complex refractive index of the stratum corneum calculated by applying a two-interface model using the complex refractive index obtained by measuring the skin layer obtained by stripping the skin and the thickness of the stratum corneum. Can be done. As described above, the thickness of the stratum corneum necessary for calculating the complex refractive index can be measured, but the thickness may be obtained from the number of stripping, or the literature value may be used. . For application to humans, calculation may be performed using model animal skin such as pigs in addition to human skin. In particular, porcine skin is very similar to the composition and structure of human skin, and it can be said that the complex refractive index of the stratum corneum of human skin is almost the same as that of porcine skin. The incident angle varies depending on the refractive index of the prism and the frequency of the terahertz wave, and is set to an angle that satisfies the total reflection condition.

求められた吸収係数αは薄膜試料の水分量を反映した値であるところ、算出された吸収係数αから薄膜試料の相対的な水分量を知ることができる。また、吸収係数αは物質のモル濃度と比例関係にあることから、吸収係数αから物質のモル濃度が求められる。すなわち、既知の質量含水量と吸収係数αの関係を利用して、求められた吸収係数αから薄膜試料の質量含水量(含水率)が求められる。例えば、皮膚の角層を測定する場合には、質量含水量が既知である角層モデルを用いて計測された吸収係数αとの対比により求めることができる。角層モデルは任意のモデルが用いられる。角層は死んだ角化細胞が重層化したものであるので、例えば、皮膚より採取したタンパク成分のパウダーを圧縮して得られたシートに水分を含ませたシートモデル、角層はタンパクと水で構成されると仮定したアルブミンタンパク水溶液からなるモデルが例示される。   The obtained absorption coefficient α is a value reflecting the moisture content of the thin film sample, and the relative moisture content of the thin film sample can be known from the calculated absorption coefficient α. Since the absorption coefficient α is proportional to the molar concentration of the substance, the molar concentration of the substance can be obtained from the absorption coefficient α. That is, using the relationship between the known mass water content and the absorption coefficient α, the mass water content (water content) of the thin film sample is obtained from the obtained absorption coefficient α. For example, when measuring the stratum corneum of the skin, it can be obtained by comparison with the absorption coefficient α measured using a stratum corneum model whose mass water content is known. An arbitrary model is used as the stratum corneum model. Since the stratum corneum is a layer of dead keratinocytes, for example, a sheet model obtained by compressing protein component powder collected from the skin and containing moisture, the stratum corneum is composed of protein and water. The model which consists of an albumin protein aqueous solution assumed to be comprised is illustrated.

以下、本発明を下記の実施例に基づいてより具体的に説明するが、本発明は下記の実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on the following Example, this invention is not limited by the following Example.

〔水の吸収係数の測定〕
角層の水分を測定するにあたり、まず水の吸収係数αを測定した。測定に用いたテラヘルツ全反射型減衰分光測定器のATRモジュールはシリコン(n=3.4)のプリズムを備え、入射角は57°である(以下同じ)。プリズム表面に水を滴下して測定した。なお、参照は空気とした。その結果を図2に示した。
[Measurement of water absorption coefficient]
In measuring the moisture in the stratum corneum, first, the water absorption coefficient α was measured. The ATR module of the terahertz total reflection attenuation spectrometer used for the measurement has a silicon (n = 3.4) prism, and the incident angle is 57 ° (the same applies hereinafter). Measurement was performed by dropping water on the prism surface. The reference was air. The results are shown in FIG.

次に、含水率の異なるスクロース水溶液を測定し、その吸収係数αとスクロース水溶液の質量含水率(スクロース濃度)との関係を調べた。プリズム表面に1mLのスクロース水溶液を滴下して測定した。その結果を図3及び図4に示す。この結果から、スクロース水溶液の質量含水率と吸収係数αは比例することが確認された(図4)。このときの決定係数Rは例えば0.5THz、1.0THzでそれぞれ0.99以上であり、0.5THzにおける吸収係数は文献値(Keiichiro Shiraga et al., Food Chemistry,140,315-320,2013)とほぼ一致した。 Next, sucrose aqueous solutions having different moisture contents were measured, and the relationship between the absorption coefficient α and the mass moisture content (sucrose concentration) of the sucrose aqueous solution was examined. Measurement was performed by dropping 1 mL of a sucrose aqueous solution onto the prism surface. The results are shown in FIGS. From this result, it was confirmed that the mass water content of the sucrose aqueous solution and the absorption coefficient α were proportional (FIG. 4). The coefficient of determination R 2 is for example 0.5THz at this time, and at each 0.99 or more at 1.0 THz, the absorption coefficient at 0.5THz literature value (Keiichiro Shiraga et al., Food Chemistry, 140,315-320, 2013).

〔角層モデルにおける水の吸収係数〕
角層モデルを用いて角質モデルに含まれる水の吸収係数を測定した。皮膚真皮より採取した間質成分のパウダー(hide powder non-chromated, SIGMA社製)をプレスして得られたシートを角層モデル(シートモデル)とした。0.12gのパウダーに294Pa又は589Paの圧力を2秒間加えることを3回繰り返してシートを作製した。当該シートに200〜500μLの蒸留水を滴下して、湿度100%の容器内で48時間静置して、シート内に水分を均質に行き渡らせた。含水率は、測定直後の湿潤質量と70℃で24時間乾燥後の乾燥質量とから算出した。
[Water absorption coefficient in the stratum corneum model]
The water absorption coefficient contained in the stratum corneum model was measured using the stratum corneum model. A sheet obtained by pressing interstitial powder (hide powder non-chromated, manufactured by SIGMA) collected from the skin dermis was used as a stratum corneum model (sheet model). Applying a pressure of 294 Pa or 589 Pa to 0.12 g of powder for 2 seconds was repeated 3 times to produce a sheet. 200 to 500 μL of distilled water was dropped onto the sheet, and left in a container with a humidity of 100% for 48 hours, so that moisture was uniformly distributed in the sheet. The water content was calculated from the wet mass immediately after measurement and the dry mass after drying at 70 ° C. for 24 hours.

得られたシートをプリズムに載置して、重石を載せて測定を行った。その結果を図5及び図6に示した。図6に示すように質量含水率と吸収係数は比例し、吸収係数から角層モデル中の含水率を算出できることが示された。   The obtained sheet was placed on a prism, and a weight was placed on the sheet for measurement. The results are shown in FIGS. As shown in FIG. 6, it was shown that the mass moisture content and the absorption coefficient are proportional, and the moisture content in the stratum corneum model can be calculated from the absorption coefficient.

〔二界面モデルを用いた解析〕
次に二界面モデルによる解析を試みた。プリズム上に、厚さ10μmの誘電体薄膜(日東電工社製)を、厚みが10μm、20μm、30μm、40μm、50μmとなるように貼り付け、その上に1mLの蒸留水を滴下し、図1に示すように2つの界面(プリズムと誘電体薄膜の界面及び誘電体薄膜と水の積層との界面)が存在するようにした。また、誘電体薄膜はエバネッセント波の滲みだし深さよりも十分に深くなるような厚さになるまでプリズムに貼り付けて測定した。この測定から、誘電体薄膜の吸収係数を求めた。その結果を図7及び図8に示した。低周波側においては二界面モデルを用いて求めた計算値と、実際に用いた誘電体薄膜の吸収係数はほぼ一致していたが、誘電体薄膜の厚みが40μm、50μmの時には誘電体薄膜単体の測定値よりも高周波側で小さい値となった。この結果から、滲み出し深さdpが薄膜の厚さよりも大きくなるような周波数帯のテラヘルツ波を用いれば、二界面モデルにより薄膜の水分を正確に測定できると考えられる。また、誘電体膜上の水分の影響も排除されていると言える。
[Analysis using a two-interface model]
Next, an analysis using a two-interface model was attempted. A dielectric thin film (manufactured by Nitto Denko Corporation) having a thickness of 10 μm is pasted on the prism so as to have a thickness of 10 μm, 20 μm, 30 μm, 40 μm, and 50 μm, and 1 mL of distilled water is dropped on the dielectric film. As shown in FIG. 2, there are two interfaces (the interface between the prism and the dielectric thin film and the interface between the dielectric thin film and the water stack). In addition, the dielectric thin film was measured by being attached to the prism until the thickness became sufficiently deeper than the depth of evanescent wave bleeding. From this measurement, the absorption coefficient of the dielectric thin film was determined. The results are shown in FIGS. On the low frequency side, the calculated value obtained using the two-interface model and the absorption coefficient of the actually used dielectric thin film were almost the same, but when the thickness of the dielectric thin film was 40 μm or 50 μm, the dielectric thin film alone The value was smaller on the high frequency side than the measured value. From this result, it is considered that the moisture of the thin film can be accurately measured by the two-interface model if a terahertz wave in a frequency band in which the oozing depth d p is larger than the thickness of the thin film is used. It can also be said that the influence of moisture on the dielectric film is also eliminated.

〔ブタ皮膚の含水量の測定〕
二界面モデルを適用するに先だって、二界面モデルを用いずにブタの角質層の含水量を求めた。その後、ストリッピングによる水分量の変化を測定した。凍結されたブタ皮膚(2cm×2cm)を室温(約20℃)で解凍した後、皮膚の側面を粘着テープで覆った状態で室温(約20℃)に48時間放置して乾燥状態にした。次に、この乾燥状態の皮膚に2mLの蒸留水を含ませた紙製ウエス(商品名「キムワイプ」、日本製紙クレア社製)を150秒間載せて放置した。その後、皮膚表面を紙製ウエスで軽く拭き、含水後の皮膚とした。また、測定後にセロハンテープを用いたストリッピングし、25回のストリッピングになるまで測定を繰り返した。このストリッピングでは1回のストリッピングによって1層の角層(厚さとして約1μm)が剥離され、25回のストリッピングではほぼ角層が除去されていると考えられる。
[Measurement of water content of pig skin]
Prior to applying the two-interface model, the water content of the stratum corneum of pigs was determined without using the two-interface model. Then, the change in the amount of water due to stripping was measured. The frozen porcine skin (2 cm × 2 cm) was thawed at room temperature (about 20 ° C.) and then left to dry at room temperature (about 20 ° C.) for 48 hours with the side of the skin covered with an adhesive tape. Next, a paper waste (trade name “Kimwipe”, manufactured by Nippon Paper Claire Co., Ltd.) containing 2 mL of distilled water was placed on the dried skin for 150 seconds and left standing. Thereafter, the surface of the skin was lightly wiped with a paper waste cloth to obtain water-containing skin. In addition, stripping using a cellophane tape was performed after the measurement, and the measurement was repeated until 25 stripping was performed. In this stripping, it is considered that one stratum corneum (thickness of about 1 μm) is peeled off by one stripping, and the stratum corneum is almost removed by stripping 25 times.

ブタ皮膚をプリズム上に載置し、重石を載せて測定を行った。含水率は、測定した吸収係数から、実施例2で得られた吸収係数と質量含水率の関係を示すグラフを用いて算出した。その結果を図9及び図10に示した。水やスクロース水溶液の場合と同様に、得られた吸収係数は高周波側で大きくなる傾向を示した。ストリッピングを重ねるにつれブタ皮膚の含水量は一次的に減少したが、その後増加する傾向を示した。乾燥後の皮膚に極めて短時間で吸水させた結果、最表層では吸水が生じたが、続く中間層部分では水が十分に吸水されずに含水率が低い状態となっており、皮膚の深い部分では十分に乾燥されなかった結果、高い含水率のままであったためと考えられる。   The pig skin was placed on a prism, and the measurement was performed with a weight. The moisture content was calculated from the measured absorption coefficient using a graph showing the relationship between the absorption coefficient obtained in Example 2 and the mass moisture content. The results are shown in FIG. 9 and FIG. As in the case of water or an aqueous sucrose solution, the obtained absorption coefficient tended to increase on the high frequency side. As the stripping was repeated, the water content of the pig skin decreased temporarily, but then tended to increase. As a result of water absorption in the dried skin in a very short time, water absorption occurred in the outermost layer, but in the subsequent intermediate layer, water was not sufficiently absorbed and the moisture content was low, and the deep part of the skin In this case, it was considered that the moisture content remained high as a result of insufficient drying.

〔二界面モデルを適用したブタ皮膚(角層)の含水量の測定〕
実施例4で得られた計測データから二界面モデルを用いてブタ皮膚の角層の吸収係数と質量含水量を算出した。その結果を図11及び図12に示した。また、角層の吸収係数を算出するために導出された角層の複素屈折率n~2の屈折率n(実部)及び消衰係数κ(虚部)と周波数の関係を示す図の一例を図13に示す。なお、二界面モデルにおいて反射係数r~123の計算に必要となるブタ皮膚の角層厚さdは30μmと仮定した。また、表皮層の複素屈折率n~3には、実施例4において25回のストリッピングを行ったときの複素屈折率を用いた。
[Measurement of water content of pig skin (horny layer) using two-interface model]
From the measurement data obtained in Example 4, the absorption coefficient and the mass water content of the stratum corneum of pig skin were calculated using a two-interface model. The results are shown in FIG. 11 and FIG. An example of a diagram showing the relationship between the refractive index n (real part) and extinction coefficient κ (imaginary part) of the complex refractive index n ~ 2 of the stratum corneum derived to calculate the absorption coefficient of the stratum corneum and the frequency. Is shown in FIG. In the two-interface model, the stratum corneum thickness d of pig skin necessary for calculating the reflection coefficient r to 123 was assumed to be 30 μm. As the complex refractive index n to 3 of the skin layer, the complex refractive index obtained by stripping 25 times in Example 4 was used.

図13に示すように角層の複素屈折率n~2の実部は2.5以下にあることが測定された。また、皮膚の吸収係数やストリッピング回数と吸収係数の関係は、実施例4と同じ傾向を示した。一方、二界面モデルの適用の有無について検討すると、図14に示すように、二界面モデルを適用した場合には皮膚の吸収係数は全体として小さくなる傾向を示し、低周波側において高周波側に比べて小さくなった。低周波側ではエバネッセント波の滲みだし深さは大きくなり、表皮層の影響が排除された結果であると言える。また、適用の有無による吸収係数の変化は高周波数側の方が低周波数側よりも小さかった。 As shown in FIG. 13, it was measured that the real part of the complex refractive index n- 2 of the stratum corneum was 2.5 or less. The relationship between the absorption coefficient of the skin and the number of stripping times and the absorption coefficient showed the same tendency as in Example 4. On the other hand, when examining whether or not the two-interface model is applied, as shown in FIG. 14, when the two-interface model is applied, the skin absorption coefficient tends to be smaller as a whole, and compared with the high frequency side on the low frequency side. Became smaller. It can be said that the evanescent wave oozes deeper on the low frequency side, and the effect of the skin layer is eliminated. Further, the change in the absorption coefficient depending on the presence or absence of application was smaller on the high frequency side than on the low frequency side.

〔水溶性アルブミン溶液を用いた角層モデル〕
実施例2で用いた角層モデルは空隙の存在のために質量含水率が30%以下の水分量が測定できないことが懸念された。そこで、空隙が存在しないモデルとして質量濃度(w/w%)既知の水溶性アルブミンの水溶液を用いて同様の測定を行った。図15に吸収係数と周波数の関係を示す。また、図16に吸収係数と質量含水率の関係を示す。また、実施例4で得られた計測データから二界面モデルを用いて求めた質量含水率とストリッピング回数との関係を図17に示した。図16における質量含水率と吸収係数の関係は次の数式11から導いた。数式11において、MWは水の質量、MDはアルブミンの質量、Vは水溶液の体積、WMは水の質量濃度である。テラヘルツ帯において吸収係数の大きさは水分子のモル濃度と線形関係にあると考えられるが、アルブミン水溶液においては、質量含水率の算出には水分子の質量だけでなくアルブミンの質量も考慮すべきであり、質量含水率はモル濃度に比例しない。一方、アルブミン濃度が上昇した(質量含水率が低下した)ときの水の吸収係数の低下幅はアルブミンの増加量(吸収が無視できるほど小さい)に比例すると考えられるので、アルブミン濃度と水の吸収係数にも線形関係が成り立つと考えられる。そうすると、水の濃度及びアルブミン濃度は、A、B、C、Dを定数として、それぞれ数式12、数式13として表すことができる。そこで、測定された吸収係数と水の質量濃度、測定された吸収係数とアルブミンの質量濃度をそれぞれ一次関数で近似することでA、B、C、Dを求め、図16に示す関係(検量線)を得た。
[Chorn layer model using water-soluble albumin solution]
There was a concern that the stratum corneum model used in Example 2 could not measure a moisture content with a mass moisture content of 30% or less due to the presence of voids. Therefore, the same measurement was performed using an aqueous solution of water-soluble albumin having a known mass concentration (w / w%) as a model without voids. FIG. 15 shows the relationship between the absorption coefficient and the frequency. FIG. 16 shows the relationship between the absorption coefficient and the mass moisture content. Moreover, the relationship between the mass moisture content calculated | required using the 2 interface model from the measurement data obtained in Example 4 and stripping frequency was shown in FIG. The relationship between the mass moisture content and the absorption coefficient in FIG. In Equation 11, M W is the mass of water, the M D mass of albumin, V is the volume of the aqueous solution, is W M is the mass concentration of water. In the terahertz band, the absorption coefficient is considered to have a linear relationship with the molar concentration of water molecules, but in an albumin aqueous solution, not only the mass of water molecules but also the mass of albumin should be considered in calculating the mass water content. The mass moisture content is not proportional to the molar concentration. On the other hand, the decrease in the absorption coefficient of water when albumin concentration increases (mass moisture content decreases) is considered to be proportional to the increase in albumin (absorption is negligibly small), so albumin concentration and water absorption It is considered that the coefficient also has a linear relationship. If it does so, the density | concentration of water and albumin density | concentration can be represented as Numerical formula 12 and Numerical formula 13, respectively, using A, B, C, and D as constants. Accordingly, A, B, C, and D are obtained by approximating the measured absorption coefficient and the mass concentration of water, and the measured absorption coefficient and the albumin mass concentration by linear functions, respectively, and the relationship shown in FIG. )

アルブミン水溶液を角層モデルとして利用することで、空隙の影響が低減され、質量含水率が30%以下の場合でも角層の水分量を測定できた。また、この検量線から質量含水量とストリッピング回数との関係を求めたところ、実施例5と同様な傾向であった。   By using the albumin aqueous solution as a stratum corneum model, the effect of voids was reduced, and the water content of the stratum corneum could be measured even when the mass moisture content was 30% or less. Further, when the relationship between the mass water content and the number of stripping was determined from this calibration curve, the same tendency as in Example 5 was observed.

本発明は薄膜試料中の水分量を測定する新たな測定法を提供する。   The present invention provides a new measurement method for measuring the amount of water in a thin film sample.

Claims (6)

テラヘルツ波全反射減衰分光法を用いた薄膜試料の水分量測定方法であって、
薄膜試料に積層試料を積層した状態の測定対象物に対してテラヘルツ波をプリズムを介して前記薄膜試料側から照射してテラヘルツ波の減衰を観測する工程と、
前記薄膜試料と前記積層試料の界面における反射係数を用いてテラヘルツ波の減衰を修正する工程と、
当該修正されたテラヘルツ波から前記薄膜試料の吸収係数を求める工程と、
を有する薄膜試料中の水分量測定方法。
A method for measuring a moisture content of a thin film sample using terahertz wave total reflection attenuation spectroscopy,
Irradiating a terahertz wave from a side of the thin film sample to the measurement object in a state where the laminated sample is laminated on the thin film sample, and observing the attenuation of the terahertz wave;
Correcting the attenuation of the terahertz wave using a reflection coefficient at the interface between the thin film sample and the laminated sample;
Obtaining an absorption coefficient of the thin film sample from the modified terahertz wave;
Method for measuring water content in thin film sample having
テラヘルツ波全反射減衰分光法を用いた薄膜試料の水分量測定方法であって、
薄膜試料に積層試料を積層した状態の測定対象物に対してテラヘルツ波を前記薄膜試料側からプリズムを介して前記薄膜試料側から照射して時間領域スペクトルを測定する工程と、
前記積層試料の複素屈折率と前記プリズムの屈折率と前記薄膜試料の厚みを用いて、積層状態にある測定対象物の反射係数を算出する工程と、
前記測定された時間領域スペクトルと前記算出した測定対象物の反射係数から、前記薄膜試料の吸収係数を求める工程と、
を有する薄膜の水分量測定方法。
A method for measuring a moisture content of a thin film sample using terahertz wave total reflection attenuation spectroscopy,
Irradiating terahertz waves from the thin film sample side through the prism from the thin film sample side to the measurement object in a state where the laminated sample is laminated on the thin film sample, and measuring a time domain spectrum;
Using the complex refractive index of the laminated sample, the refractive index of the prism, and the thickness of the thin film sample, calculating the reflection coefficient of the measurement object in the laminated state;
Obtaining an absorption coefficient of the thin film sample from the measured time domain spectrum and the calculated reflection coefficient of the measurement object;
Method for measuring moisture content of thin film having
前記薄膜試料の厚みよりも大きな滲みだし深さを有するエバネッセント波を生じる周波数帯のテラヘルツ波を照射する請求項1又は2に記載の水分測定方法。   The moisture measuring method according to claim 1 or 2, wherein a terahertz wave in a frequency band that generates an evanescent wave having a oozing depth larger than a thickness of the thin film sample is irradiated. 前記測定対象物は皮膚であって、前記薄膜試料は皮膚の角層、前記積層試料は皮膚の表皮層である請求項1〜3の何れか1項に記載の水分量測定方法。   The moisture content measuring method according to claim 1, wherein the measurement object is skin, the thin film sample is a stratum corneum of skin, and the laminated sample is a skin epidermis layer. 屈折率が2.0以上であるプリズムを用いる請求項4に記載の水分量測定方法。   The moisture content measuring method according to claim 4, wherein a prism having a refractive index of 2.0 or more is used. 既知の含水率と吸収係数の相関関係から、前記薄膜試料の含水率を求める工程をさらに有する請求項1〜5の何れか1項に記載された水分量測定方法。   The moisture content measuring method according to any one of claims 1 to 5, further comprising a step of obtaining a moisture content of the thin film sample from a correlation between a known moisture content and an absorption coefficient.
JP2014179671A 2014-09-03 2014-09-03 Moisture content measurement method Active JP6331140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014179671A JP6331140B2 (en) 2014-09-03 2014-09-03 Moisture content measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014179671A JP6331140B2 (en) 2014-09-03 2014-09-03 Moisture content measurement method

Publications (2)

Publication Number Publication Date
JP2016053527A JP2016053527A (en) 2016-04-14
JP6331140B2 true JP6331140B2 (en) 2018-05-30

Family

ID=55744823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014179671A Active JP6331140B2 (en) 2014-09-03 2014-09-03 Moisture content measurement method

Country Status (1)

Country Link
JP (1) JP6331140B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102564009B1 (en) * 2017-11-20 2023-08-07 현대자동차주식회사 Device and method for water-proofing test of vehicle
CN109444085A (en) * 2018-12-18 2019-03-08 深圳先进技术研究院 A kind of near field THz wave spectrum imaging system and method
JP7095648B2 (en) * 2019-04-15 2022-07-05 横河電機株式会社 Measuring device and measuring method
CN112945877B (en) * 2021-01-30 2022-11-04 中国海洋大学 Underwater hyperspectral correction system based on double overwater and underwater platforms and working method thereof
JP2022154998A (en) * 2021-03-30 2022-10-13 横河電機株式会社 Measuring device and measurement method
CN113433077B (en) * 2021-06-11 2023-12-19 大连海事大学 Method for obtaining oil film attenuation coefficient based on oil film relative thickness
CN114162065A (en) * 2021-08-17 2022-03-11 南昌大学 Terahertz wave-based feed water content detection method and system
CN115753284B (en) * 2022-11-23 2023-08-15 华北电力大学(保定) Device for preparing thermal insulation material sample with specific water content

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996428B2 (en) * 2007-11-16 2012-08-08 独立行政法人理化学研究所 Apparatus and method for measuring moisture content in thin section sample
JP5028529B2 (en) * 2008-10-14 2012-09-19 国立大学法人東北大学 Sample analysis method
JP2011232290A (en) * 2010-04-30 2011-11-17 Pola Chem Ind Inc Skin horny layer component measurement method using terahertz wave
JP6161867B2 (en) * 2011-11-17 2017-07-12 株式会社アドバンテスト Lubricant spreading analysis device, method, program, recording medium

Also Published As

Publication number Publication date
JP2016053527A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
JP6331140B2 (en) Moisture content measurement method
JP6454498B2 (en) Method for measuring skin stratum corneum moisture content using terahertz waves
Cherkasova et al. Noninvasive blood glucose monitoring in the terahertz frequency range
Smolyanskaya et al. Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods
Bowman et al. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas
Sabino et al. The optical properties of mouse skin in the visible and near infrared spectral regions
Pickwell et al. In vivo study of human skin using pulsed terahertz radiation
Reid et al. Accuracy and resolution of THz reflection spectroscopy for medical imaging
JP3500259B2 (en) Photoacoustic signal measuring device
Förster et al. Confocal Raman microspectroscopy for evaluating the stratum corneum removal by 3 standard methods
Kolesnikov et al. THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents
Yamaguchi et al. Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy
CN106535760A (en) Non-invasive substance analysis
Pany et al. Effect of physical and chemical hair removal methods on skin barrier function in vitro: consequences for a hydrophilic model permeant
Vohra et al. Pulsed terahertz reflection imaging of tumors in a spontaneous model of breast cancer
Bashkatov et al. Measurement of glucose diffusion coefficients in human tissues
Cherkasova et al. Studying human and animal skin optical properties by terahertz time-domain spectroscopy
Guseva et al. Optical properties of human nails in THz frequency range
JP6781424B2 (en) Method of measuring skin stratum corneum water content using terahertz waves
Gusev et al. Study of glucose concentration influence on blood optical properties in THz frequency range
Kolesnikov et al. In-vitro terahertz spectroscopy of rat skin under the action of dehydrating agents
JP5400483B2 (en) Component concentration analyzer and component concentration analysis method
JP6746109B2 (en) Measurement method of skin stratum corneum water content using terahertz wave
JP5849539B2 (en) Moisture content measuring method and moisture content measuring device
Goryachuk et al. Influence of creatinine and triglycerides concentrations on blood optical properties of diabetics in THz frequency range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180412

R150 Certificate of patent or registration of utility model

Ref document number: 6331140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250