JP5849539B2 - Moisture content measuring method and moisture content measuring device - Google Patents

Moisture content measuring method and moisture content measuring device Download PDF

Info

Publication number
JP5849539B2
JP5849539B2 JP2011190537A JP2011190537A JP5849539B2 JP 5849539 B2 JP5849539 B2 JP 5849539B2 JP 2011190537 A JP2011190537 A JP 2011190537A JP 2011190537 A JP2011190537 A JP 2011190537A JP 5849539 B2 JP5849539 B2 JP 5849539B2
Authority
JP
Japan
Prior art keywords
temperature
moisture content
measured
absorption coefficient
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011190537A
Other languages
Japanese (ja)
Other versions
JP2013053864A (en
Inventor
西田 和弘
和弘 西田
天野 和彦
和彦 天野
孝一 清水
孝一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011190537A priority Critical patent/JP5849539B2/en
Publication of JP2013053864A publication Critical patent/JP2013053864A/en
Application granted granted Critical
Publication of JP5849539B2 publication Critical patent/JP5849539B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

本発明は、水分量を非侵襲的にかつ精度良く定量する水分量測定方法及び水分量測定装置に関するものである。   The present invention relates to a moisture content measuring method and a moisture content measuring device for quantifying moisture content noninvasively and with high accuracy.

従来、水分量を非侵襲的に定量する水分量測定方法として、例えば、測定対象物の含水量により赤外線吸収が変化する測定光の赤外線と、測定対象物の含水量により赤外線吸収がほとんど変化しない参照光の赤外線とを、それぞれ測定対象物に照射する。そして、測定対象物からの各赤外線の反射光量に基づいて、例えば吸光度を求め、この吸光度を水分量に換算することにより測定対象物の水分量を測定する方法が知られている(例えば、特許文献1参照)。   Conventionally, as a moisture content measuring method for non-invasively quantifying the moisture content, for example, the infrared of measurement light whose infrared absorption changes depending on the moisture content of the measurement object, and the infrared absorption hardly changes depending on the moisture content of the measurement object. The measurement object is irradiated with infrared rays of reference light, respectively. Then, based on the amount of reflected infrared light from the measurement object, for example, an absorbance is obtained, and a method of measuring the moisture content of the measurement object by converting this absorbance into a moisture content is known (for example, patents). Reference 1).

特開平10−176989号公報Japanese Patent Laid-Open No. 10-176989

しかしながら、測定対象物の構成成分のうち、赤外線を吸収する物質は水だけとは限らず、水以外の他の成分が測定対象物に含まれている場合、他の成分によっても照射した赤外線が吸収されてしまい測定誤差が大きくなるという課題があった。   However, among the constituents of the measurement target, the substance that absorbs infrared rays is not limited to water, and when the measurement target contains other components other than water, the infrared rays irradiated by other components are also included. There is a problem that measurement error increases due to absorption.

本発明は、上記の課題を解決するためになされたものであって、測定対象物に水以外の成分が含まれていても、水分量だけを精度良く測定することが可能な水分量測定装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and is a moisture content measuring apparatus capable of accurately measuring only the moisture content even when a component other than water is contained in the measurement object. The purpose is to provide.

上記の課題を解決するために、本発明の一実施形態は、以下の水分量測定方法及び水分量測定装置を採用した。
すなわち、本発明の水分量測定方法は、被測定物に含まれる水分量を測定する水分量測定方法であって、
第一の温度の前記被測定物に向けて所定の波長の光を照射し、前記被測定物の第一の吸収係数を測定する工程と、第二の温度の前記被測定物に向けて所定の波長の光を照射し、前記被測定物の第二の吸収係数を測定する工程と、予め測定された、水の温度変化に応じた吸収係数の変化量に基づいて、前記第一の吸収係数と前記第二の吸収係数から、前記被測定物の水分量を算出する工程と、を備え、前記被測定物は人体であることを特徴とする。
In order to solve the above problems, an embodiment of the present invention employs the following moisture content measuring method and moisture content measuring device.
That is, the moisture content measuring method of the present invention is a moisture content measuring method for measuring the moisture content contained in the object to be measured,
Irradiating light of a predetermined wavelength toward the object to be measured at a first temperature, measuring a first absorption coefficient of the object to be measured, and predetermined toward the object to be measured at a second temperature And measuring the second absorption coefficient of the object to be measured, and the first absorption based on the amount of change in the absorption coefficient according to the temperature change of water measured in advance. from the coefficient and the second absorption coefficient, wherein said calculating a moisture amount of the measurement object, Bei example, said object to be measured is a human body.

また、前記被測定物を前記第一の温度に調節する工程と、前記被測定物を前記第二の温度に調節する工程と、を更に備えたことを特徴とする。
また、前記被測定物に向けて照射する光の波長は、1410±20nm、または1460〜1530nmであることを特徴とする。
The method further includes the step of adjusting the object to be measured to the first temperature and the step of adjusting the object to be measured to the second temperature.
Further, the wavelength of the light irradiated toward the object to be measured is 1410 ± 20 nm or 1460-1530 nm.

本発明の水分量測定装置は、前記各項記載の水分量測定方法を用いて、被測定物の水分量を測定し、前記被測定物は人体であることを特徴とする。
また、前記被測定物を前記第一の温度および前記第二の温度に調節する温度調節手段を更に備えたことを特徴とする。
The moisture content measuring apparatus of the present invention is characterized in that the moisture content of the object to be measured is measured using the moisture content measuring method described in each of the above items, and the object to be measured is a human body .
Further, the apparatus further comprises temperature adjusting means for adjusting the object to be measured to the first temperature and the second temperature.

また、前記被測定物の温度を検出する温度センサーを更に備えたことを特徴とする。    Further, a temperature sensor for detecting the temperature of the object to be measured is further provided.

本発明の水分量測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the moisture content measuring apparatus of this invention. 水分量測定装置を構成する測定端末の一例を示す斜視図である。It is a perspective view which shows an example of the measuring terminal which comprises a moisture content measuring apparatus. 人の皮膚組織の断面を示す模式図である。It is a schematic diagram which shows the cross section of a human skin tissue. 本発明の水分量測定装置が水分量を測定する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which the moisture content measuring apparatus of this invention measures a moisture content. 水の吸収係数と温度との関係を示すグラフである。It is a graph which shows the relationship between the absorption coefficient of water and temperature. 本発明の水分量測定装置が水分量を測定する動作を示す別な実施形態のフローチャートである。It is a flowchart of another embodiment which shows the operation | movement which the moisture content measuring apparatus of this invention measures a moisture content.

本発明の水分量測定装置及び水分量測定方法を実施するための形態について説明する。
本発明では、水分量測定装置の観測対象として人の手のひらの皮膚に含まれる水分量を測定する場合を例に取り説明する。
The form for implementing the moisture content measuring apparatus and moisture content measuring method of this invention is demonstrated.
In the present invention, the case where the moisture content contained in the skin of a human palm is measured as an observation target of the moisture content measuring apparatus will be described as an example.

[第1の実施形態]
図1は、本発明の第1の実施形態の水分量測定装置の構成を示す概略ブロック図である。
この水分量測定装置100は、第一の溶質を溶解させた溶液中の水分量を、吸光光度法によって正確に測定可能なものであり、演算部101、記憶部102、表示部103、計測光強度取得部(測定部)104と、照射部105および受光部106からなる光ユニット107と、温度調節手段108および温度センサー109からなる温度ユニット111とを備えている。このうち、光ユニット107と温度ユニット111とから測定端末110が構成される。
[First Embodiment]
FIG. 1 is a schematic block diagram showing the configuration of the moisture content measuring apparatus according to the first embodiment of the present invention.
The water content measuring apparatus 100 can accurately measure the water content in a solution in which a first solute is dissolved by an absorptiometry, and includes a calculation unit 101, a storage unit 102, a display unit 103, and measurement light. An intensity acquisition unit (measurement unit) 104, an optical unit 107 including an irradiation unit 105 and a light receiving unit 106, and a temperature unit 111 including a temperature adjusting unit 108 and a temperature sensor 109 are provided. Among these, the measurement terminal 110 is constituted by the optical unit 107 and the temperature unit 111.

この水分量測定装置100は、例えば、皮膚(観測対象)に存在する体液(試料:溶液)を構成する成分のうち、溶質を除いた水分量とを測定(定量)することができる。   For example, the moisture content measuring apparatus 100 can measure (quantify) the moisture content excluding the solute among the components constituting the body fluid (sample: solution) present in the skin (observation target).

計測光強度取得部(測定部)104は、第一の試料、即ち、皮膚(観測対象)の吸収係数(μ(λ))を測定する。 The measurement light intensity acquisition unit (measurement unit) 104 measures the absorption coefficient (μ a (λ)) of the first sample, that is, the skin (observation target).

光源である照射部(光源)105は、皮膚(観測対象)に向けて所定の波長の光を照射する。こうした照射部(光源)105は、例えば、レーザー光源から構成されればよい。照射部105は、例えば、水の吸収係数の温度変動が大きい波長、1410±20nm、または1460〜1530nmの光源であれば良い。    An irradiation unit (light source) 105 that is a light source irradiates light of a predetermined wavelength toward the skin (observation target). Such an irradiation unit (light source) 105 may be configured by a laser light source, for example. The irradiation part 105 should just be a light source with a wavelength with a large temperature fluctuation of the water absorption coefficient, 1410 ± 20 nm, or 1460-1530 nm, for example.

温度調節手段108は、例えば、測定対象を加温するヒータープレート、あるいは測定対象を加温、冷却できるペルチェ素子などから構成されていればよい。また、温度センサー109は測定対象の表面温度を検出する放射温度センサーや半導体温度センサーなどから構成されていればよい。   The temperature adjusting means 108 may be configured by, for example, a heater plate that heats the measurement target, or a Peltier element that can heat and cool the measurement target. The temperature sensor 109 only needs to be composed of a radiation temperature sensor, a semiconductor temperature sensor, or the like that detects the surface temperature of the measurement target.

図2に水分量測定装置を構成する測定端末の一例を示す。
図2に示す測定端末110は、例えば全体がシャワーヘッド状の小型の測定端末であり、測定者が把持部121を保持し、略円形の測定面110aを被測定対象、例えば人体の腕部や顔面に押し当てて測定を行う。
測定面110aには、照射部105および受光部106と、温度調節手段108および温度センサー109とが露呈されている。
こうした測定端末110のを人体の腕部や顔面に押し当て、体液中の溶質濃度、水分量(溶媒濃度)を測定する。
FIG. 2 shows an example of a measurement terminal constituting the moisture content measuring apparatus.
The measurement terminal 110 shown in FIG. 2 is a small measurement terminal having a showerhead shape as a whole, for example. Measure against the face.
The irradiation unit 105 and the light receiving unit 106, the temperature adjusting unit 108, and the temperature sensor 109 are exposed on the measurement surface 110a.
The measurement terminal 110 is pressed against the arm or face of a human body, and the solute concentration and water content (solvent concentration) in the body fluid are measured.

演算部101は、水(溶媒)の吸収係数(μaw(λ, T))、および観測対象の吸収係数(μ(λ))に基づいて、溶媒の体積分率(V)即ち水分量を算出する。こうした演算部101は、例えば、CPU、メモリーなどから構成されていればよい。また、受光部106は、例えば、光が皮膚によって後方散乱した光を受光すればよい。 Based on the absorption coefficient (μ aw (λ, T)) of water (solvent) and the absorption coefficient (μ a (λ)) of the observation target, the calculation unit 101 calculates the volume fraction (V w ) of the solvent, that is, the water content. Calculate the amount. Such a calculation unit 101 may be configured by, for example, a CPU, a memory, and the like. In addition, the light receiving unit 106 may receive, for example, light that is backscattered by the skin.

ここで、水分量の観測対象の一例である人の皮膚組織の構造について説明する。
図3は、人の皮膚組織の断面を示す模式図であり、皮膚31は、表皮層32と、真皮層(任意の層)33と、皮下組織34の3層により構成されている。
表皮層32は、最も外側にある厚み0.2mm〜0.3mmの薄い層で、概ね水を60%程度、蛋白質、脂質等を含有する層であり、角質層、顆粒層、有棘層、底層等を含む。
Here, the structure of a human skin tissue, which is an example of a water content observation target, will be described.
FIG. 3 is a schematic diagram showing a cross-section of human skin tissue. The skin 31 is composed of three layers, an epidermis layer 32, a dermis layer (arbitrary layer) 33, and a subcutaneous tissue 34.
The epidermis layer 32 is a thin layer having a thickness of 0.2 mm to 0.3 mm on the outermost side, and is a layer containing about 60% of water, protein, lipid, etc., stratum corneum, granule layer, spiny layer, Including bottom layer.

真皮層33は、表皮層32下に形成される厚み0.5mm〜2mmの層で、概ね水を60%程度、蛋白質、脂質を含有する層であり、この真皮層33内には神経、毛根、皮脂腺、汗腺、毛包、血管、リンパ管等が存在する。
皮下組織34は、真皮層33下に形成される厚み1〜3mmの層で、大部分が概ね脂質を90%以上含み、残部が測定対象となる水(水分)からなる皮下脂肪でできている。
The dermis layer 33 is a layer formed under the epidermis layer 32 and having a thickness of 0.5 mm to 2 mm. The dermis layer 33 is a layer containing approximately 60% of water, protein, and lipid. There are sebaceous glands, sweat glands, hair follicles, blood vessels, lymphatic vessels and the like.
The subcutaneous tissue 34 is a layer having a thickness of 1 to 3 mm formed under the dermis layer 33. The subcutaneous tissue 34 is mostly made of subcutaneous fat containing approximately 90% or more of lipids and the balance being water (water) to be measured. .

水分量測定装置100を用いた水分量の測定方法としては、例えば、照射部(光源)105及び受光部106を所定の入出射間距離Wをおいて皮膚31の表面に密着させ、この密着状態で照射部105から皮膚31の表面に光を照射し、この光が皮膚31内の組織により反射され、この反射光が照射部105及び受光部106に向かって散乱する光(後方散乱した光)を受光部106で検出する。   As a method for measuring the amount of water using the water content measuring apparatus 100, for example, the irradiation unit (light source) 105 and the light receiving unit 106 are brought into close contact with the surface of the skin 31 with a predetermined inter-irradiation distance W. Irradiates light onto the surface of the skin 31 from the irradiation unit 105, and this light is reflected by the tissue in the skin 31, and the reflected light is scattered toward the irradiation unit 105 and the light receiving unit 106 (back scattered light). Is detected by the light receiving unit 106.

次に、水分量測定装置100の動作、即ち、本発明の水分量測定方法を説明する。
水分量測定装置100は、水分量を測定する前に、予め、水の吸収係数の温度特性と皮膚内を伝搬する光の光路長を算出し、記憶部102に記憶させておく。水の吸収係数の温度特性は、予め測定しておくか、既存のデータを利用すればよい(S6)。また、光路長は、モンテカルロシミュレーション等によって算出することができる。
Next, the operation of the water content measuring apparatus 100, that is, the water content measuring method of the present invention will be described.
The moisture content measuring apparatus 100 calculates the temperature characteristics of the water absorption coefficient and the optical path length of light propagating through the skin in advance and measures the moisture content, and stores them in the storage unit 102 in advance. The temperature characteristic of the water absorption coefficient may be measured in advance or existing data may be used (S6). The optical path length can be calculated by Monte Carlo simulation or the like.

図4は、水分量測定装置を用いて水分量、および溶質濃度を測定する際の動作を示すフローチャートである。
まず、ユーザー(被測定者)は、水分量測定装置100の測定端末110を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により水分量測定装置100を動作させる。水分量測定装置100は、まず、測定面110aに接した皮膚を温度調節手段108によって第一の測定温度T1になるように加温、または冷却する(S1)。
FIG. 4 is a flowchart showing an operation when measuring the water content and the solute concentration using the water content measuring apparatus.
First, a user (a person to be measured) places the measurement terminal 110 of the moisture content measuring device 100 on the skin such as a wrist and operates the moisture content measuring device 100 by pressing a measurement start switch (not shown) or the like. First, the moisture content measuring apparatus 100 heats or cools the skin in contact with the measurement surface 110a by the temperature adjusting means 108 so that the first measurement temperature T1 is reached (S1).

温度センサー109によって皮膚の表面温度を測定し続け、測定温度T1に達したら、照射部105は、皮膚31に向けて、波長λの光を照射する。波長λは、例えば、1410±20nm、または1460〜1530nmである。被測定物の水分量を算出する誤差を低減するため吸収係数差が±0.01を超える範囲の波長を用いることが望ましい。   The surface temperature of the skin is continuously measured by the temperature sensor 109, and when the temperature reaches the measurement temperature T1, the irradiation unit 105 irradiates the skin 31 with light having a wavelength λ. The wavelength λ is, for example, 1410 ± 20 nm, or 1460-1530 nm. In order to reduce the error in calculating the moisture content of the object to be measured, it is desirable to use a wavelength in which the difference in absorption coefficient exceeds ± 0.01.

測定時に照射される光は、1種類の波長λの光、また2波長以上の光を順次照射する構成であればよい。
照射部105が光を照射すると、受光部106は、照射部105から照射され皮膚31によって後方散乱された光を受光(測定)する(S2)。
The light irradiated at the time of measurement should just be the structure which irradiates one kind of light of wavelength (lambda) 1 , and light of 2 wavelengths or more sequentially.
When the irradiation unit 105 emits light, the light receiving unit 106 receives (measures) the light emitted from the irradiation unit 105 and backscattered by the skin 31 (S2).

次いで、受光部106が受光を完了すると、記憶部102が記憶する波長の光路長情報から、皮膚の光路長を取得する。また演算部101は、皮膚の吸収係数を算出すればよい。   Next, when the light receiving unit 106 completes the light reception, the optical path length of the skin is acquired from the optical path length information of the wavelength stored in the storage unit 102. Moreover, the calculating part 101 should just calculate the absorption coefficient of skin.

温度T1での吸収係数を測定したら、今度は測定面110aに接した皮膚を温度調節手段108によって第二の測定温度T2になるように加温、または冷却する(S3)。   When the absorption coefficient at the temperature T1 is measured, this time, the skin in contact with the measurement surface 110a is heated or cooled by the temperature adjusting means 108 to the second measurement temperature T2 (S3).

温度センサー109によって皮膚の表面温度を測定し続け、測定温度T2に達したら、照射部105は、皮膚31に向けて、波長λの光を照射する。   When the surface temperature of the skin is continuously measured by the temperature sensor 109 and reaches the measurement temperature T <b> 2, the irradiation unit 105 irradiates the skin 31 with light having a wavelength λ.

測定時に照射される光は、1種類の波長λの光、また2波長以上の光を順次照射する構成であればよい。
照射部105が光を照射すると、受光部106は、照射部105から照射され皮膚31によって後方散乱された光を受光(測定)する(S4)。
The light irradiated at the time of measurement should just be the structure which irradiates one kind of light of wavelength (lambda) 1 , and light of 2 wavelengths or more sequentially.
When the irradiation unit 105 emits light, the light receiving unit 106 receives (measures) the light emitted from the irradiation unit 105 and backscattered by the skin 31 (S4).

次いで、受光部106が受光を完了すると、記憶部102が記憶する波長の光路長情報から、皮膚の光路長を取得する。また演算部101は、皮膚の吸収係数を算出すればよい。   Next, when the light receiving unit 106 completes the light reception, the optical path length of the skin is acquired from the optical path length information of the wavelength stored in the storage unit 102. Moreover, the calculating part 101 should just calculate the absorption coefficient of skin.

次いで、これら温度T1における吸収係数、温度T2における吸収係数、および図5に示す超純水の1℃あたりの吸収係数の変化を示すグラフを参照して、水分量(体積分率)、溶質濃度を求める(S5)。   Next, referring to the absorption coefficient at the temperature T1, the absorption coefficient at the temperature T2, and the graph showing the change in the absorption coefficient per 1 ° C. of ultrapure water shown in FIG. 5, the water content (volume fraction), the solute concentration Is obtained (S5).

なお、図5に示す超純水の1℃あたりの吸収係数の変化は、予め測定しておくか、既存のデータを利用すればよい(S6)。   Note that the change in absorption coefficient per 1 ° C. of ultrapure water shown in FIG. 5 may be measured in advance or existing data may be used (S6).

例えば、溶液(体液相当の溶液)として水と1種類の溶質の場合、吸収係数と水および溶質の体積分率との関係は式(1)で表される。   For example, in the case of water and one kind of solute as the solution (solution corresponding to body fluid), the relationship between the absorption coefficient and the volume fraction of water and solute is expressed by equation (1).

Figure 0005849539
Figure 0005849539

但し、数1において
μ(λ,T):測定対象の吸収係数
μag(λ):波長λにおける溶質の吸収係数
μaw(λ,T):波長λ、温度Tにおける水の吸収係数
:溶質の体積分率
:水の体積分率
こうした式(1)に基づいて、2つの温度(T1,T2)から水の体積分率(水分量)、溶質の体積分率との関係は式(2)で表される。なお、この式(1)において、μag(λ)(波長λにおける溶質の吸収係数)は極めて小さい値のため、実質的に温度変化はしないものと見なして式(2)を導き出した。
In Equation 1, μ a (λ, T): absorption coefficient of measurement object μ ag (λ): absorption coefficient of solute at wavelength λ μ aw (λ, T): absorption coefficient V of water at wavelength λ, temperature T g : Volume fraction of solute V w : Volume fraction of water Based on these equations (1), the volume fraction of water (water content) and the volume fraction of solute from two temperatures (T1, T2) The relationship is expressed by equation (2). In this equation (1), since μ ag (λ) (absorption coefficient of solute at wavelength λ) is an extremely small value, equation (2) is derived assuming that the temperature does not substantially change.

Figure 0005849539
Figure 0005849539

但し、数2において
T1:第一の測定温度
T2:第二の測定温度
μ(λ,T):測定対象の温度T1における吸収係数
μ(λ,T):測定対象の温度T2における吸収係数
μaw(λ,T):波長λ、温度T1における水の吸収係数
μaw(λ,T):波長λ、温度T2における水の吸収係数
:溶質の体積分率
:水の体積分率
(∂/∂T)μaw(λ):水の1℃あたりの吸収係数の変化
However, in Equation 2, T1: first measurement temperature T2: second measurement temperature μ a (λ, T 1 ): absorption coefficient μ a (λ, T 2 ) at measurement target temperature T1: measurement target temperature T2 Absorption coefficient μ aw (λ, T 1 ): Wavelength λ, Water absorption coefficient at temperature T 1 μ aw (λ, T 2 ): Water absorption coefficient at wavelength λ, temperature T 2 V g : Solute volume fraction V w : volume fraction of water (∂ / ∂T) μ aw (λ): change in absorption coefficient per 1 ° C. of water

超純水の1℃あたりの吸収係数の変化を加味した式(2)に工程S1,S2でそれぞれ得られた温度T1における吸収係数、および温度T2における吸収係数を適用することによって、水の体積分率(水分量)と溶質の体積分率とを算出する。
そして、得られた水の体積分率(水分量)を水分量測定装置100の表示部103、例えばモニター画面やプリンターに出力すればよい(S7)。
By applying the absorption coefficient at the temperature T1 obtained in steps S1 and S2 and the absorption coefficient at the temperature T2 to the formula (2) that takes into account the change in the absorption coefficient per 1 ° C. of ultrapure water, the volume of water Calculate the fraction (water content) and the volume fraction of the solute.
Then, the obtained water volume fraction (water content) may be output to the display unit 103 of the water content measuring apparatus 100, for example, a monitor screen or a printer (S7).

なお、上述した実施形態では、1種類の溶質の吸収係数を適用しているが、水以外の含まれる溶質全体の特性、即ち含まれる溶質全体の吸収係数を適用しても良い。   In the above-described embodiment, the absorption coefficient of one kind of solute is applied, but the characteristics of the entire solute other than water, that is, the absorption coefficient of the entire solute included may be applied.

[第2の実施形態]
図6は、水分量測定装置を用いて水分量、および溶質濃度を測定する別な実施形態のフローチャートである。
まず、ユーザー(被測定者)は、水分量測定装置100の測定端末110を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により水分量測定装置100を動作させる。水分量測定装置100は、温度センサー109によって皮膚の表面温度(T1)を測定してから、皮膚31に向けて、波長λの光を照射する。波長λは、例えば、1410±20nm、または1460〜1530nmである。被測定物の水分量を算出する誤差を低減するため吸収係数差が±0.01を超える範囲の波長を用いることが望ましい
[Second Embodiment]
FIG. 6 is a flowchart of another embodiment in which a moisture content and a solute concentration are measured using a moisture content measurement device.
First, a user (a person to be measured) places the measurement terminal 110 of the moisture content measuring device 100 on the skin such as a wrist and operates the moisture content measuring device 100 by pressing a measurement start switch (not shown) or the like. The moisture content measuring apparatus 100 measures the surface temperature (T1) of the skin with the temperature sensor 109 and then irradiates the skin 31 with light having a wavelength λ. The wavelength λ is, for example, 1410 ± 20 nm, or 1460-1530 nm. In order to reduce the error in calculating the moisture content of the object to be measured, it is desirable to use a wavelength with a difference in absorption coefficient exceeding ± 0.01.

測定時に照射される光は、1種類の波長λの光、また2波長以上の光を順次照射する構成であればよい。
照射部105が光を照射すると、受光部106は、照射部105から照射され皮膚31によって後方散乱された光を受光(測定)する(S10)。
The light irradiated at the time of measurement should just be the structure which irradiates the light of one kind of wavelength (lambda), and the light more than 2 wavelengths sequentially.
When the irradiation unit 105 emits light, the light receiving unit 106 receives (measures) the light emitted from the irradiation unit 105 and backscattered by the skin 31 (S10).

次いで、受光部106が受光を完了すると、記憶部102が記憶する波長の光路長情報から、皮膚の光路長を取得する。また演算部101は、温度T1における皮膚の吸収係数を算出すればよい。   Next, when the light receiving unit 106 completes the light reception, the optical path length of the skin is acquired from the optical path length information of the wavelength stored in the storage unit 102. Moreover, the calculating part 101 should just calculate the absorption coefficient of the skin in temperature T1.

温度T1での吸収係数を測定したら、測定対象の温度がT1からT2に自然変化するまで一定時間経過させる(S11)。   When the absorption coefficient at the temperature T1 is measured, a fixed time elapses until the temperature of the measurement object naturally changes from T1 to T2 (S11).

再び水分量測定装置100は、温度センサー109によって皮膚の表面温度(T2)を測定してから、皮膚31に向けて、波長λの光を照射する。   The water content measuring apparatus 100 again measures the surface temperature (T2) of the skin with the temperature sensor 109 and then irradiates the skin 31 with light having a wavelength λ.

測定時に照射される光は、1種類の波長λの光、また2波長以上の光を順次照射する構成であればよい。
照射部105が光を照射すると、受光部106は、照射部105から照射され皮膚31によって後方散乱された光を受光(測定)する(S12)。
The light irradiated at the time of measurement should just be the structure which irradiates the light of one kind of wavelength (lambda), and the light more than 2 wavelengths sequentially.
When the irradiation unit 105 emits light, the light receiving unit 106 receives (measures) the light emitted from the irradiation unit 105 and backscattered by the skin 31 (S12).

次いで、受光部106が受光を完了すると、記憶部102が記憶する波長の光路長情報から、皮膚の光路長を取得する。また演算部101は、温度T2における皮膚の吸収係数を算出すればよい。   Next, when the light receiving unit 106 completes the light reception, the optical path length of the skin is acquired from the optical path length information of the wavelength stored in the storage unit 102. Moreover, the calculating part 101 should just calculate the absorption coefficient of the skin in temperature T2.

次いで、これら温度T1における吸収係数、温度T2における吸収係数、および図5に示す超純水の1℃あたりの吸収係数の変化を示すグラフを参照して、水分量(体積分率)、溶質濃度を求める(S13)。   Next, referring to the absorption coefficient at the temperature T1, the absorption coefficient at the temperature T2, and the graph showing the change in the absorption coefficient per 1 ° C. of ultrapure water shown in FIG. 5, the water content (volume fraction), the solute concentration Is obtained (S13).

なお、図5に示す超純水の1℃あたりの吸収係数の変化は、予め測定しておくか、既存のデータを利用すればよい(S14)。   The change in absorption coefficient per 1 ° C. of ultrapure water shown in FIG. 5 may be measured in advance or existing data may be used (S14).

例えば、溶液(体液相当の溶液)として水と1種類の溶質の場合、吸収係数と水および溶質の体積分率との関係は式(3)で表される。   For example, in the case of water and one kind of solute as the solution (solution corresponding to body fluid), the relationship between the absorption coefficient and the volume fraction of water and solute is expressed by equation (3).

Figure 0005849539
Figure 0005849539

但し、数3において
μ(λ,T):測定対象の吸収係数
μag(λ):波長λにおける溶質の吸収係数
μaw(λ,T):波長λ、温度Tにおける水の吸収係数
:溶質の体積分率
:水の体積分率
こうした式(3)に基づいて、2つの温度(T1,T2)から水の体積分率(水分量)、溶質の体積分率との関係は式(4)で表される。なお、この式(3)において、μag(λ)(波長λにおける溶質の吸収係数)は極めて小さい値のため、実質的に温度変化はしないものと見なして式(4)を導き出した。
In Equation 3, μ a (λ, T): absorption coefficient of measurement object μ ag (λ): absorption coefficient of solute at wavelength λ μ aw (λ, T): absorption coefficient of water V at wavelength λ, temperature T g: volume fraction of solute V w: the volume fraction of water based on this equation (3), two temperatures (T1, T2) from the volume fraction of water (water content), the volume fraction of the solute The relationship is expressed by equation (4). In this equation (3), since μ ag (λ) (absorption coefficient of solute at wavelength λ) is an extremely small value, equation (4) is derived assuming that the temperature does not substantially change.

Figure 0005849539
Figure 0005849539

但し、数4において
T1:第一の測定温度
T2:第二の測定温度
μ(λ,T):測定対象の温度T1における吸収係数
μ(λ,T):測定対象の温度T2における吸収係数
μaw(λ,T):波長λ、温度T1における水の吸収係数
μaw(λ,T):波長λ、温度T2における水の吸収係数
:溶質の体積分率
:水の体積分率
(∂/∂T)μaw(λ):水の1℃あたりの吸収係数の変化
However, in Equation 4, T1: first measurement temperature T2: second measurement temperature μ a (λ, T 1 ): absorption coefficient μ a (λ, T 2 ) at measurement target temperature T1: measurement target temperature T2 Absorption coefficient μ aw (λ, T 1 ): Wavelength λ, Water absorption coefficient at temperature T 1 μ aw (λ, T 2 ): Water absorption coefficient at wavelength λ, temperature T 2 V g : Solute volume fraction V w : volume fraction of water (∂ / ∂T) μ aw (λ): change in absorption coefficient per 1 ° C. of water

超純水の1℃あたりの吸収係数の変化を加味した式(4)に工程S1,S2でそれぞれ得られた温度T1における吸収係数、および温度T2における吸収係数を適用することによって、水の体積分率(水分量)と溶質の体積分率とを算出する。
そして、得られた水の体積分率(水分量)を水分量測定装置100の表示部103、例えばモニター画面やプリンターに出力すればよい(S15)。
By applying the absorption coefficient at temperature T1 obtained in steps S1 and S2 and the absorption coefficient at temperature T2 to Equation (4) that takes into account the change in absorption coefficient per 1 ° C. of ultrapure water, the volume of water Calculate the fraction (water content) and the volume fraction of the solute.
Then, the obtained water volume fraction (water content) may be output to the display unit 103 of the water content measuring apparatus 100, for example, a monitor screen or a printer (S15).

なお、この実施形態においても、1種類の溶質の吸収係数を適用しているが、水以外の含まれる溶質全体の特性、即ち含まれる溶質全体の吸収係数を適用しても良い。   In this embodiment, the absorption coefficient of one kind of solute is applied, but the characteristics of the entire solute other than water, that is, the absorption coefficient of the entire solute included may be applied.

以上のように、本発明によれば、複数の温度の測定対象の吸収係数をそれぞれ測定することによって、溶液(被測定対象)に含まれる水(溶液)以外の物質(溶質)による光の吸収の影響を除外し、高精度に水分量の測定が可能になる。   As described above, according to the present invention, light is absorbed by a substance (solute) other than water (solution) contained in a solution (measurement target) by measuring absorption coefficients of a plurality of temperature measurement targets. The water content can be measured with high accuracy.

31…皮膚(観測対象)、100…水分量測定装置(濃度定量装置)、102…記憶部、103…表示部、104…計測光強度取得部、105…照射部(光源)、106…受光部、108…温度調節手段、109…温度センサー。

DESCRIPTION OF SYMBOLS 31 ... Skin (observation object), 100 ... Water content measuring device (concentration quantification device), 102 ... Memory | storage part, 103 ... Display part, 104 ... Measurement light intensity acquisition part, 105 ... Irradiation part (light source), 106 ... Light receiving part 108 ... Temperature adjusting means, 109 ... Temperature sensor.

Claims (6)

被測定物に含まれる水分量を測定する水分量測定方法であって、
第一の温度の前記被測定物に向けて所定の波長の光を照射し、前記被測定物の第一の吸収係数を測定する工程と、
第二の温度の前記被測定物に向けて所定の波長の光を照射し、前記被測定物の第二の吸収係数を測定する工程と、
予め測定された、水の温度変化に応じた吸収係数の変化量に基づいて、前記第一の吸収係数と前記第二の吸収係数から、前記被測定物の水分量を算出する工程と、
を備え
前記被測定物は人体であることを特徴とする水分量測定方法。
A moisture content measuring method for measuring the moisture content contained in a measured object,
Irradiating light of a predetermined wavelength toward the object to be measured at a first temperature, and measuring a first absorption coefficient of the object to be measured;
Irradiating light of a predetermined wavelength toward the object to be measured at a second temperature, and measuring a second absorption coefficient of the object to be measured;
Calculating the moisture content of the object to be measured from the first absorption coefficient and the second absorption coefficient based on the amount of change of the absorption coefficient according to the temperature change of water measured in advance;
Equipped with a,
The method for measuring moisture content, wherein the object to be measured is a human body .
前記被測定物を前記第一の温度に調節する工程と、前記被測定物を前記第二の温度に調節する工程と、を更に備えたことを特徴とする請求項1記載の水分量測定方法。   The method of measuring moisture content according to claim 1, further comprising: adjusting the object to be measured to the first temperature; and adjusting the object to be measured to the second temperature. . 前記被測定物に向けて照射する光の波長は、1410±20nm、または1460〜1530nmであることを特徴とする請求項1または2記載の水分量測定方法。   The water content measuring method according to claim 1 or 2, wherein the wavelength of light irradiated toward the object to be measured is 1410 ± 20 nm or 1460 to 1530 nm. 請求項1ないし3何れか1項記載の水分量測定方法を用いて、被測定物の水分量を測定し、
前記被測定物は人体であることを特徴とする水分量測定装置。
Using the moisture content measuring method according to any one of claims 1 to 3, the moisture content of the object to be measured is measured ,
The moisture content measuring apparatus, wherein the object to be measured is a human body .
前記被測定物を前記第一の温度および前記第二の温度に調節する温度調節手段を更に備えたことを特徴とする請求項4記載の水分量測定装置。   The moisture content measuring apparatus according to claim 4, further comprising temperature adjusting means for adjusting the object to be measured to the first temperature and the second temperature. 前記被測定物の温度を検出する温度センサーを更に備えたことを特徴とする請求項4または5記載の水分量測定装置。   The water content measuring apparatus according to claim 4 or 5, further comprising a temperature sensor for detecting a temperature of the object to be measured.
JP2011190537A 2011-09-01 2011-09-01 Moisture content measuring method and moisture content measuring device Expired - Fee Related JP5849539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190537A JP5849539B2 (en) 2011-09-01 2011-09-01 Moisture content measuring method and moisture content measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190537A JP5849539B2 (en) 2011-09-01 2011-09-01 Moisture content measuring method and moisture content measuring device

Publications (2)

Publication Number Publication Date
JP2013053864A JP2013053864A (en) 2013-03-21
JP5849539B2 true JP5849539B2 (en) 2016-01-27

Family

ID=48130994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190537A Expired - Fee Related JP5849539B2 (en) 2011-09-01 2011-09-01 Moisture content measuring method and moisture content measuring device

Country Status (1)

Country Link
JP (1) JP5849539B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838517B2 (en) 2011-06-21 2016-01-06 セイコーエプソン株式会社 Concentration determination device, concentration determination method
JP6454498B2 (en) * 2014-09-03 2019-01-16 国立大学法人京都大学 Method for measuring skin stratum corneum moisture content using terahertz waves
JP2019025056A (en) * 2017-07-31 2019-02-21 株式会社ジーシー Laser treatment apparatus and laser treatment apparatus control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327638A (en) * 1993-05-27 1994-11-29 Copal Co Ltd Apparatus for inspection of skin
JPH07325053A (en) * 1994-05-31 1995-12-12 Shimadzu Corp Moisture measuring device
JPH11183377A (en) * 1997-12-17 1999-07-09 Matsushita Electric Ind Co Ltd Optical content meter
US6662030B2 (en) * 1998-05-18 2003-12-09 Abbott Laboratories Non-invasive sensor having controllable temperature feature
JP4751271B2 (en) * 2006-08-11 2011-08-17 東芝メディカルシステムズ株式会社 Photoacoustic analysis method and photoacoustic analysis apparatus for measuring the concentration of an analyte in a specimen tissue
US8180419B2 (en) * 2006-09-27 2012-05-15 Nellcor Puritan Bennett Llc Tissue hydration estimation by spectral absorption bandwidth measurement
JP4996428B2 (en) * 2007-11-16 2012-08-08 独立行政法人理化学研究所 Apparatus and method for measuring moisture content in thin section sample
WO2011074217A1 (en) * 2009-12-18 2011-06-23 パナソニック株式会社 Component concentration meter, component concentration measurement method, shipping inspection system, and health management system

Also Published As

Publication number Publication date
JP2013053864A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
CN101346099B (en) A non-invasive system and method for measuring skin hydration of a subject
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
EP1774902A1 (en) Blood glucose measurement device and metabolic rate measurement device
US9055869B2 (en) Methods and systems for photoacoustic signal processing
US20130109941A1 (en) Methods and systems for photoacoustic signal processing
JP2000037355A (en) Method for measuring glucose concentration and apparatus therefor
US20130109947A1 (en) Methods and systems for continuous non-invasive blood pressure measurement using photoacoustics
JP2005013273A (en) Blood sugar level measuring device
JP5674093B2 (en) Concentration determination apparatus, concentration determination method, and program
Bornmyr et al. Skin temperature changes and changes in skin blood flow monitored with laser Doppler flowmetry and imaging: a methodological study in normal humans
US9332936B2 (en) Concentration determination apparatus and concentration determination method for detecting an absorbance of living body tissue based on a light intensity and measuring a concentration of a measured component contained in living body tissue
JP5849539B2 (en) Moisture content measuring method and moisture content measuring device
JP2016010717A (en) Concentration quantification apparatus
JP5866910B2 (en) Concentration measuring method and concentration measuring apparatus
JP5521199B2 (en) Concentration determination apparatus, concentration determination method, and program
US9370323B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2012021812A (en) Concentration assaying device, and concentration assaying method and program
JP5761708B2 (en) Concentration determination method and concentration determination apparatus
JP6966028B1 (en) Component measuring device and component measuring method
US20180070884A1 (en) Noninvasive measurement of analyte concentration using methods and systems of post-balancing
JP2011167257A (en) Chiral material detector and method of detecting chiral material
JP5626880B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2013140126A (en) Concentration assaying device, concentration assaying method and program
JP7411349B2 (en) Glucose measuring device and glucose measuring method
JP5818038B2 (en) Concentration determination apparatus, concentration determination method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5849539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees