JP6746109B2 - Measurement method of skin stratum corneum water content using terahertz wave - Google Patents

Measurement method of skin stratum corneum water content using terahertz wave Download PDF

Info

Publication number
JP6746109B2
JP6746109B2 JP2018235637A JP2018235637A JP6746109B2 JP 6746109 B2 JP6746109 B2 JP 6746109B2 JP 2018235637 A JP2018235637 A JP 2018235637A JP 2018235637 A JP2018235637 A JP 2018235637A JP 6746109 B2 JP6746109 B2 JP 6746109B2
Authority
JP
Japan
Prior art keywords
stratum corneum
skin
water content
water
absorption coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018235637A
Other languages
Japanese (ja)
Other versions
JP2019039938A (en
Inventor
小川 雄一
雄一 小川
慧一郎 白神
慧一郎 白神
行三 赤宗
行三 赤宗
美穂 森田
美穂 森田
克彦 土田
克彦 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Naris Cosmetics Co Ltd
Original Assignee
Kyoto University
Naris Cosmetics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65726314&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6746109(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyoto University, Naris Cosmetics Co Ltd filed Critical Kyoto University
Priority to JP2018235637A priority Critical patent/JP6746109B2/en
Publication of JP2019039938A publication Critical patent/JP2019039938A/en
Application granted granted Critical
Publication of JP6746109B2 publication Critical patent/JP6746109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は皮膚角層水分量の計測方法に関する。 The present invention relates to a method for measuring the amount of water in the skin stratum corneum.

皮膚の最外層である角層は、水分の蒸発や微生物、毒物などに対する主要な保護バリアである。角層において、水分は角層の物質透過性、可塑性などの物理的性質や、皮膚表層の角層細胞の落屑に重要な作用を有する酵素の活性を制御することが知られている(非特許文献1)。したがって、角層における水分量やその変化を詳細に知るということは、角層機能を評価するために重要である。 The outermost layer of the skin, the stratum corneum, is the main protective barrier against water evaporation and microorganisms, poisons and the like. In the stratum corneum, water is known to control physical properties such as substance permeability and plasticity of the stratum corneum, and the activity of an enzyme that has an important effect on desquamation of stratum corneum cells of the skin surface layer (non-patent document) Reference 1). Therefore, it is important to know the water content in the stratum corneum and its change in detail in order to evaluate the stratum corneum function.

角層における水分量やその変化を計測する方法として、これまでにも種々の方法が考案されている。例えば、角層の電気伝導率や静電容量、誘電率などの電気的性質が、角層中の水分量によって変化する、ということに着目し、電気的性質の測定値から相対的な角層水分量を知ろうとする装置が提案されている(特許文献1、非特許文献2、非特許文献3)。 Various methods have been devised so far for measuring the amount of water in the stratum corneum and its change. For example, paying attention to the fact that the electrical properties such as the electrical conductivity, capacitance, and dielectric constant of the stratum corneum change depending on the amount of water in the stratum corneum. An apparatus that tries to know the water content has been proposed (Patent Document 1, Non-Patent Document 2, Non-Patent Document 3).

これらの装置は皮膚を傷つけることなく、迅速かつ簡便に角層水分量を知ることができる点で有益であった。しかし、化粧品やその原料をはじめとする皮膚外用剤を塗布した状態の皮膚では、塗布物が電気の流れを阻害する、あるいは促進することにより測定値に影響を与える場合があり、必ずしも角層中の水分量のみを反映した計測値が得られるわけではない、という問題があった。 These devices were useful in that the amount of water in the stratum corneum can be quickly and easily determined without damaging the skin. However, on the skin to which external preparations for skin such as cosmetics and its raw materials have been applied, the measured value may be affected by the applied material hindering or promoting the flow of electricity. There is a problem in that it is not possible to obtain a measured value that reflects only the water content of the.

また、角層中の水分量によって近赤外線の吸収度が変化する、ということに着目し、近赤外線を利用した拡散反射分光法あるいは全反射減衰分光法(Attenuated Total Reflection Spectroscopy:ATR法)により角層水分量を計測する方法が提案されている(非特許文献4)。 In addition, focusing on the fact that the absorption of near-infrared rays changes depending on the amount of water in the stratum corneum, it is possible to measure near-infrared rays by using diffuse reflectance spectroscopy or attenuated total reflection spectroscopy (ATR method) using near-infrared rays. A method for measuring the layer water content has been proposed (Non-Patent Document 4).

これらの方法も皮膚を傷つけることなく角層水分量を知ることができる点で有益である。しかし、水の近赤外吸収スペクトルと化粧品や皮膚外用剤に含まれる物質、あるいは皮膚中の物質の吸収スペクトルとの分離が難しいことや、皮膚組織中での多重散乱やメラニン色素による吸収など、角層水分以外の物質による影響を受けやすい、といった問題があり、簡便かつ高精度に角層機能を評価するには十分な技術とは言えなかった。 These methods are also useful in that the amount of water in the stratum corneum can be known without damaging the skin. However, it is difficult to separate the near-infrared absorption spectrum of water from the absorption spectrum of substances contained in cosmetics and skin external preparations, or substances in the skin, and multiple scattering in skin tissue and absorption by melanin pigments. There is a problem that it is easily affected by substances other than water in the stratum corneum, and it cannot be said that the technique is sufficient to easily and accurately evaluate the stratum corneum function.

さらに、水を構成する水素原子の核磁気共鳴により得られる信号から皮膚中の水分量の分布を観察する方法も提案されている(非特許文献5)。核磁気共鳴を利用する方法は、皮膚を傷つけることなく水分量分布が画像として取得できるため、皮膚中のどの部位の水分量の情報を得たいか、という要望に応じてデータを取得することができる利点がある。しかし、非常に高価な装置や設備が必要であること、非常に強い磁場の中に試料をおく必要があること、皮膚に塗布する皮膚外用剤の組成によっては火傷などの事故が生じる可能性がある、といった問題があった。 Furthermore, a method of observing the distribution of water content in the skin from a signal obtained by nuclear magnetic resonance of hydrogen atoms constituting water has also been proposed (Non-Patent Document 5). With the method using nuclear magnetic resonance, the water content distribution can be acquired as an image without damaging the skin, so it is possible to acquire data according to the desire to obtain information on the water content in which part of the skin. There is an advantage that can be done. However, there is a possibility that an accident such as a burn may occur depending on the fact that very expensive equipment and facilities are required, that the sample needs to be placed in a very strong magnetic field, and the composition of the external skin preparation applied to the skin. There was such a problem.

また、皮膚中の水分量によってラマン散乱の強度が変化するということに着目し、共焦点レーザー顕微ラマン分光装置の使用により、皮膚中の水分量の分布を計測する方法が提案されている(非特許文献6)。この方法では、角層を水とタンパクからなるものと仮定し、水を構成するOH基に由来するOH伸縮振動に基づくラマン散乱強度とタンパクを構成するCH3基に由来するCH3伸縮振動に基づくラマン散乱強度の比から、試料表面からの深さによる検出強度の変化を補正することで、各深さ地点での水分量を重量パーセントで表すことを可能にしている。しかしながら、化粧品や皮膚外用剤を塗布した状態の皮膚では、塗布物中にもCH3伸縮振動を有する物質が含まれていることがほとんどであるため、CH3伸縮振動によるラマン散乱強度を用いた補正が、正しい水分重量パーセントを与えないことがあるという問題があった。 In addition, focusing on the fact that the intensity of Raman scattering changes depending on the amount of water in the skin, a method for measuring the distribution of the amount of water in the skin by using a confocal laser scanning Raman spectroscope has been proposed (non- Patent Document 6). In this way, the stratum corneum was assumed to consist of water and protein, the CH 3 stretching vibration derived from the CH 3 group constituting the Raman scattering intensity and protein based on OH stretching vibration derived from the OH group constituting the water By correcting the change in the detected intensity due to the depth from the sample surface from the ratio of the Raman scattering intensities based on it, it becomes possible to express the water content at each depth point in weight percent. However, in the case of cosmetics or skin to which an external preparation for skin has been applied, the substance that has CH 3 stretching vibration is almost always contained in the applied product, so the Raman scattering intensity by CH 3 stretching vibration was used. The problem was that the correction would not give the correct moisture weight percent.

テラヘルツ波と呼ばれる0.1〜10テラヘルツの電磁波は光波と電波の中間領域に位置する。テラヘルツ波は良好な物質透過性を有する、人体に対して安全に利用できる、生体組織内での散乱が小さい、水による吸収が非常に大きい、という特徴を持つ。これらの特徴に着目して、近年、テラヘルツ波を用いて水の分布の画像化や分光計測を行うことが試みられている。例えば、テラヘルツ波時間領域分光法を利用して、皮膚組織を構成する角層、表皮、真皮、皮下組織角層の各群屈折率の違いから生じる群屈折率不連続面で生じるテラヘルツ波のエコーパルスの強度情報から水分量を計測する方法が提案されている(非特許文献7)。 Electromagnetic waves of 0.1 to 10 terahertz called terahertz waves are located in the intermediate region between light waves and radio waves. Terahertz waves have good material permeability, can be safely used by the human body, have small scattering in living tissues, and have extremely large absorption by water. Focusing on these characteristics, in recent years, attempts have been made to image the distribution of water and perform spectroscopic measurement using terahertz waves. For example, using terahertz wave time-domain spectroscopy, echoes of terahertz waves generated on the discontinuity surface of the group refractive index caused by the difference in the group refractive index of the stratum corneum, the epidermis, the dermis, and the stratum corneum of the subcutaneous tissue that make up the skin tissue. A method of measuring the amount of water based on pulse intensity information has been proposed (Non-Patent Document 7).

この方法は空気―角層界面から得られるエコーパルスの強度を用いて角層水分量を推定する方法であるが、明瞭な界面が形成されていない角層―表皮境界面からのエコーが得られにくいことや、テラヘルツ波のパルス幅に対する角層の薄さのため、角層内部の水分に関する情報を精度良く得ることが困難であることなどの課題が残されていた。 This method is to estimate the water content of the stratum corneum using the intensity of the echo pulse obtained from the air-stratum corneum interface, but echoes are obtained from the stratum corneum-skin interface where no clear interface is formed. It is difficult to obtain, and due to the thinness of the stratum corneum with respect to the pulse width of the terahertz wave, it remains difficult to obtain information on the water content inside the stratum corneum with high accuracy.

また、全反射する条件で試料にテラヘルツ波を入射し、その際に生じるテラヘルツ帯の表面波(エバネッセント波)と試料の相互作用によるテラヘルツ波の減衰を測定することで、試料の複素屈折率又は複素誘電率を求めることが試みられている(特許文献2、非特許文献8)。特許文献2では、入射角条件の異なる2つのスペクトルを測定することで、透過法のように極薄い厚みの液体層を必要とすることなく試料の複素屈折率を求めている。非特許文献8では、単層の細胞層などの極薄い薄膜試料に積層された水の影響を排除すべく、薄膜試料と水の界面における反射を考慮したいわゆる二界面モデルを用いて薄膜試料の複素誘電率を求めている。 In addition, by measuring the attenuation of the terahertz wave due to the interaction between the surface wave (evanescent wave) in the terahertz band and the sample generated by injecting the terahertz wave under the condition of total reflection, the complex refractive index of the sample or Attempts have been made to obtain a complex dielectric constant (Patent Document 2, Non-Patent Document 8). In Patent Document 2, by measuring two spectra with different incident angle conditions, the complex refractive index of the sample is obtained without requiring a liquid layer having an extremely thin thickness unlike the transmission method. In Non-Patent Document 8, in order to eliminate the influence of water laminated on an ultrathin thin film sample such as a single cell layer, a so-called two-interface model that considers reflection at the interface between the thin film sample and water is used to measure the thin film sample. The complex permittivity is calculated.

しかしながら、いずれの文献も複素屈折率又は複素誘電率が測定されたことを示しているにすぎない。また、皮膚の角層は単層の細胞層ではなく、死んだ角化細胞が複雑に積層したものであって、角層の水分量を測定する方法に利用できるかどうか分からなかった。 However, both documents merely show that the complex refractive index or complex permittivity was measured. Further, the stratum corneum of the skin is not a single cell layer but a complex stack of dead keratinocytes, and it was not known whether it could be used for a method for measuring the amount of water in the stratum corneum.

特公昭63−19016号公報Japanese Patent Publication No. 63-19016 特開2008−304444号公報JP, 2008-304444, A

Rawlings A et al., The effect of glycerol and humidity on desmosome degradation in stratum corneum., Arch Dermatol Res, 287, 457-64, 1995.Rawlings A et al., The effect of glycerol and humidity on desmosome degradation in stratum corneum., Arch Dermatol Res, 287, 457-64, 1995. Tagami H et al., Evaluation of the skin surface hydration in vivo by electrical measurement., J Invest Dermatol, 75, 500-7, 1980.Tagami H et al., Evaluation of the skin surface hydration in vivo by electrical measurement., J Invest Dermatol, 75, 500-7, 1980. 橋本久美子 et al., 角層水分量測定における高周波伝導度測定装置およびCorneometerの比較., 香粧会誌, 11, 252-8, 1987.Kumiko Hashimoto et al., Comparison of high-frequency conductivity measuring device and corneometer for measuring water content in the stratum corneum., Journal of Kosho, 11, 252-8, 1987. Potts RO et al., A noninvasive in vivo technique to quantitatively measure water concentration of the stratum corneum using attenuated total-reflectance infrared spectroscopy., Arch Dermatol Res, 277, 489-95, 1985.Potts RO et al., A noninvasive in vivo technique to quantitatively measure water concentration of the stratum corneum using attenuated total-reflectance infrared spectroscopy., Arch Dermatol Res, 277, 489-95, 1985. Mirrashed F et al., In vivo quantitative analysis of the effect of hydration (immersion and Vaseline treatment) in skin layers using high-resolution MRI and magnetization transfer contrast. Skin Research and Technology, 10, 14-22, 2004.Mirrashed F et al., In vivo quantitative analysis of the effect of hydration (immersion and Vaseline treatment) in skin layers using high-resolution MRI and magnetization transfer contrast. Skin Research and Technology, 10, 14-22, 2004. Caspers PJ et al., In vivo confocal Raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles., J Invest Dermatol, 116, 434-42, 2001.Caspers PJ et al., In vivo confocal Raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles., J Invest Dermatol, 116, 434-42, 2001. 安井武史 et al., テラヘルツ電磁波パルスを用いた非接触・局所皮膚水分量測定の開発, 生体医工学, 42, 390-4, 2004.Takeshi Yasui et al., Development of non-contact and local skin water content measurement using terahertz electromagnetic pulse, Biomedical engineering, 42, 390-4, 2004. K. Shiraga et al., Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region., Applied Physics Letters, 102, 053702, 2013.K. Shiraga et al., Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region., Applied Physics Letters, 102, 053702, 2013.

ところで、ATR法を用いて測定する場合、皮膚の表面でテラヘルツ波が全反射する必要がある。全反射する条件は、入射側の媒質の屈折率と出射側の媒質の屈折率及び入射角とで一義的に決定される。つまり、ATR測定条件は、テラヘルツ波の入射角と、皮膚と接触させるプリズム(出射側の媒質)の屈折率及びプリズムと接触させる角層(入射側の媒質)の屈折率に依存する。 By the way, when the measurement is performed using the ATR method, the terahertz wave needs to be totally reflected on the surface of the skin. The condition for total reflection is uniquely determined by the refractive index of the medium on the incident side, the refractive index of the medium on the emitting side, and the incident angle. That is, the ATR measurement condition depends on the incident angle of the terahertz wave, the refractive index of the prism (medium on the output side) that is in contact with the skin, and the refractive index of the stratum corneum (medium on the incident side) that is in contact with the prism.

しかしながら、皮膚は、角層・表皮層・真皮層・皮下組織層という積層構造をしており、角層下にある表皮層の水分による影響を受けるおそれがあるなどという理由から、これまでのところ、角層の屈折率を正確に測定する方法は知られておらず、角層の屈折率は不明であるというのが実情であった。従って、任意に設定した条件では入射したテラヘルツ波が全反射しているかどうか不明であり、角層において全反射する条件を正確に把握することができなかった。 However, the skin has a layered structure consisting of the stratum corneum, epidermis layer, dermis layer, and subcutaneous tissue layer, and it may be affected by moisture in the epidermis layer below the stratum corneum, so far. However, there is no known method for accurately measuring the refractive index of the stratum corneum, and the reality is that the refractive index of the stratum corneum is unknown. Therefore, it is not known whether the incident terahertz wave is totally reflected under the arbitrarily set conditions, and it is not possible to accurately grasp the condition for total reflection in the stratum corneum.

本発明はこのような背景技術に鑑みてなされたものであって、本発明は、テラヘルツ波を用いて角層の水分量を測定する方法を提供することを課題とする。 The present invention has been made in view of such background art, and an object of the present invention is to provide a method for measuring the water content of the stratum corneum using terahertz waves.

本発明の計測方法は、テラヘルツ波を用いた全反射減衰分光法により皮膚角層水分量を計測する方法であって、テラヘルツ波出射面であるプリズム表面に皮膚表面を接触させてテラヘルツ波を照射して吸収係数を求める工程を有することを特徴とする。 The measuring method of the present invention is a method for measuring the amount of water in the stratum corneum of the skin by total reflection attenuation spectroscopy using a terahertz wave, and irradiates a terahertz wave by bringing the skin surface into contact with the prism surface that is the terahertz wave emitting surface. And a step of obtaining an absorption coefficient.

本発明によると、テラヘルツ波を用いて皮膚角層の水分量を簡単に測定できる。 According to the present invention, the amount of water in the stratum corneum of the skin can be easily measured using terahertz waves.

図1は本発明の測定概念を示す模式図である。FIG. 1 is a schematic diagram showing the measurement concept of the present invention. 図2は二界面モデルの測定概念を示す模式図である。FIG. 2 is a schematic diagram showing the measurement concept of the two-interface model. 図3は水の吸収スペクトルを示す図である。FIG. 3 is a diagram showing an absorption spectrum of water. 図4はスクロース水溶液の吸収スペクトルを示す図である。FIG. 4 is a diagram showing an absorption spectrum of an aqueous sucrose solution. 図5はスクロース水溶液の質量含水率と吸収係数の関係を示す図であって、(a)は0.5THzでの測定結果を、(b)は1.0THzでの測定結果を示す。●は実験値を、○は文献値を示す。FIG. 5 is a diagram showing the relationship between the mass moisture content of the sucrose aqueous solution and the absorption coefficient, where (a) shows the measurement results at 0.5 THz and (b) shows the measurement results at 1.0 THz. ● indicates experimental value and ○ indicates literature value. 図6は角層モデルの吸収スペクトルを示す図である。FIG. 6 is a diagram showing an absorption spectrum of the stratum corneum model. 図7は角層モデルを用いた質量含水率と吸収係数の関係を示す図であって、(a)は0.25THzでの測定結果を、(b)は0.5THzでの測定結果を、(c)は1.0THzでの測定結果を示す図である。FIG. 7 is a diagram showing the relationship between the mass moisture content and the absorption coefficient using the stratum corneum model. (a) shows the measurement result at 0.25 THz, (b) shows the measurement result at 0.5 THz, (C) is a figure which shows the measurement result in 1.0 THz. 図8はブタ皮膚(48時間乾燥)の吸収スペクトルを示す図である。FIG. 8 is a diagram showing an absorption spectrum of pig skin (dried for 48 hours). 図9はブタ皮膚の質量含水率とストリッピング回数の関係を示す図であって、(a)は0.25THzでの測定結果を、(b)は0.5THzでの測定結果を、(c)は1.0THzでの測定結果を示す図である。FIG. 9 is a diagram showing the relationship between the mass moisture content of pig skin and the number of times of stripping. (a) shows the measurement result at 0.25 THz, (b) shows the measurement result at 0.5 THz, (c) ) Is a diagram showing a measurement result at 1.0 THz. 図10は二界面モデル適用後のブタ皮膚(48時間乾燥)の吸収スペクトルを示す図である。FIG. 10 is a diagram showing an absorption spectrum of porcine skin (dry for 48 hours) after applying the two-interface model. 図11は二界面モデル適用後のブタ皮膚の吸収係数とストリッピング回数との関係を示す図であって、(a)は0.25THzでの測定結果を、(b)は0.5THzでの測定結果を、(c)は1.0THzでの測定結果を示す図である。FIG. 11 is a diagram showing the relationship between the absorption coefficient of pig skin and the number of strippings after the application of the two-interface model. (a) shows the measurement results at 0.25 THz, and (b) shows the results at 0.5 THz. (C) is a figure which shows the measurement result at 1.0 THz. 図12は二界面モデルを用いて求められたブタ角層の複素屈折率を示す図の一例であって、(a)はその実部を、(b)はその虚部を示す。FIG. 12 is an example of a diagram showing the complex refractive index of the pig stratum corneum obtained using the two-interface model, where (a) shows its real part and (b) shows its imaginary part. 図13は二界面モデルの適用前後による吸収係数の変化を示す図であって、適用前に対する変化率を示す。(a)は0.25THzでの測定結果を、(b)は0.5THzでの測定結果を、(c)は1.0THzでの測定結果を示す図である。FIG. 13 is a diagram showing changes in the absorption coefficient before and after the application of the two-interface model, showing the rate of change before the application. (A) is a figure which shows the measurement result in 0.25 THz, (b) shows the measurement result in 0.5 THz, (c) is a figure which shows the measurement result in 1.0 THz. 図14はアルブミン水溶液の吸収スペクトルを示す図である。FIG. 14 is a diagram showing an absorption spectrum of an albumin aqueous solution. 図15はアルブミン水溶液の質量含水率と吸収係数の関係を示す図である。(a)は0.25THzでの測定結果を、(b)は0.5THzでの測定結果を、(c)は1.0THzでの測定結果を示す図である。FIG. 15 is a diagram showing the relationship between the mass water content of an aqueous albumin solution and the absorption coefficient. (A) is a figure which shows the measurement result in 0.25 THz, (b) shows the measurement result in 0.5 THz, (c) is a figure which shows the measurement result in 1.0 THz. 図16は、アルブミン水溶液を角層モデルとした場合におけるブタ皮膚の質量含水率とストリッピング回数との関係(0.5THz)を示す図である。FIG. 16 is a diagram showing the relationship (0.5 THz) between the mass water content of pig skin and the number of strippings when an albumin aqueous solution is used as a stratum corneum model.

本発明の計測方法は、テラヘルツ波を用いた全反射減衰分光法により皮膚角層水分量を計測する方法であって、テラヘルツ波出射面であるプリズム表面に皮膚表面を接触させてテラヘルツ波を照射して皮膚の吸収係数を求める工程を有する。 The measuring method of the present invention is a method for measuring the amount of water in the stratum corneum of the skin by total reflection attenuation spectroscopy using a terahertz wave, and irradiates a terahertz wave by bringing the skin surface into contact with the prism surface that is the terahertz wave emitting surface. Then, there is a step of obtaining a skin absorption coefficient.

図1は本発明の測定概念を示す模式図である。全反射減衰分光法では、テラヘルツ波はATRプリズム(以下「プリズム」と称する。)表面と皮膚表面との界面で全反射する条件でプリズムに入射され、プリズム表面と皮膚表面の界面で反射されたテラヘルツ波は図示しない検出装置で観測される。このとき、反射テラヘルツ波の電場強度E~outは、数式1に示すように入射テラヘルツ波の電場強度Einとプリズムと皮膚表面の界面でのフレネル反射係数r~12との積で表され、E~out=r~12×Einの関係が成り立つとして解析が行われる。フレネル反射係数r~12は次の数式2により求められる。ここで、数式2中、n1はプリズムの屈折率、n~2は皮膚の複素屈折率、θはテラヘルツ波の入射角である。 FIG. 1 is a schematic diagram showing the measurement concept of the present invention. In the total reflection attenuation spectroscopy, the terahertz wave is incident on the prism under the condition of total reflection at the interface between the ATR prism (hereinafter referred to as “prism”) surface and the skin surface, and reflected at the interface between the prism surface and the skin surface. The terahertz wave is observed by a detector (not shown). At this time, the electric field intensity E to out of the reflected terahertz wave is represented by the product of the electric field intensity E in of the incident terahertz wave and the Fresnel reflection coefficient r to 12 at the interface between the prism and the skin surface, as shown in Equation 1. analysis relationship holds and to the E ~ out = r ~ 12 × E in is performed. The Fresnel reflection coefficient r~ 12 is obtained by the following mathematical formula 2. Here, in Equation 2, n 1 is the refractive index of the prism, n 2 is the complex refractive index of the skin, and θ is the incident angle of the terahertz wave.

(数1)
E~out=r~12×Ein
(Equation 1)
E~ out = r~ 12 x E in

ここで、テラヘルツ波の吸収を有する物質の場合、プリズム表面にある試料の厚さをt、試料の吸収係数をαとすると、反射テラヘルツ波から観測されるATRスペクトルの吸収強度A(t)は次の数式3の関係で示されるが、試料の厚さtがエバネッセント波の滲みだし深さdpよりも十分に大きいとき(t→∞)、ATRスペクトルの吸収強度A(∞)は数式4の関係で示され、吸収強度A(∞)はエバネッセント波の滲みだし深さdpと比例する。なお、エバネッセント波の滲みだし深さdpは、数式5に示すように入射波の電場強度が1/eに減衰する深さであり、入射テラヘルツ波の波長λ、プリズムの屈折率n1、試料の屈折率n2、プリズム表面に対する入射角θによって一義的に決まる。
Here, in the case of a substance having absorption of terahertz waves, assuming that the thickness of the sample on the prism surface is t and the absorption coefficient of the sample is α, the absorption intensity A(t) of the ATR spectrum observed from the reflected terahertz wave is When the thickness t of the sample is sufficiently larger than the seeping depth d p of the evanescent wave (t→∞), the absorption intensity A(∞) of the ATR spectrum is expressed by the following Equation 3 The absorption intensity A(∞) is proportional to the seeping depth d p of the evanescent wave. The seepage depth d p of the evanescent wave is the depth at which the electric field strength of the incident wave is attenuated to 1/e as shown in Equation 5, the wavelength λ of the incident terahertz wave, the refractive index n 1 of the prism, It is uniquely determined by the refractive index n 2 of the sample and the incident angle θ with respect to the prism surface.

また、ATRスペクトルの吸収強度A(t)はエバネッセント波の滲みだし深さdp、すなわち入射テラヘルツ波の波長λに依存するので、ATRスペクトルを波長λで割る処理を行うATR補正により波長λによるピーク強度の均一化が図られる。 Further, since the absorption intensity A(t) of the ATR spectrum depends on the seeping depth d p of the evanescent wave, that is, the wavelength λ of the incident terahertz wave, the absorption intensity A(t) depends on the wavelength λ by the ATR correction for dividing the ATR spectrum by the wavelength λ. The peak intensity is made uniform.

一方、吸収のある物質における電磁波の伝搬は複素屈折率n~を用いて表せられる。複素屈折率n~は物質の消衰係数κを用いて数式6で示されるが、消衰係数κと当該物質の吸収係数αは数式7に示す比例関係にあることが知られている。なお、数式6中、nは物質の屈折率、iは虚数単位である。 On the other hand, the propagation of an electromagnetic wave in a substance having absorption is represented by a complex refractive index n~. The complex index of refraction n~ is expressed by Equation 6 using the extinction coefficient κ of the substance, and it is known that the extinction coefficient κ and the absorption coefficient α of the substance have a proportional relationship shown in Equation 7. In Expression 6, n is the refractive index of the substance, and i is the imaginary unit.

つまり、試料の厚さtがエバネッセント波の滲みだし深さdpよりも十分に大きい場合には、ATRスペクトルA(∞)は吸収係数αと比例し(数式4)、吸収係数αは消衰係数κと比例する(数式7)という関係にある。従って、ATRスペクトルの吸収強度A(t)を直接測定することや、物質の消衰係数κを求めることで吸収係数αが求められる。 That is, when the thickness t of the sample is sufficiently larger than the seeping depth d p of the evanescent wave, the ATR spectrum A(∞) is proportional to the absorption coefficient α (equation 4), and the absorption coefficient α is extinction. There is a relationship that is proportional to the coefficient κ (Equation 7). Therefore, the absorption coefficient α can be obtained by directly measuring the absorption intensity A(t) of the ATR spectrum or by obtaining the extinction coefficient κ of the substance.

反射後のATRスペクトルはテラヘルツ時間領域分光法により観測できる。この方法では、取得したテラヘルツ波の時間波形をフーリエ変換することで反射スペクトルと位相差スペクトルを得る。試料の厚さtがエバネッセント波の滲みだし深さdpよりも十分に大きい場合には、反射スペクトルR(ω)と位相差スペクトルΦ(ω)はそれぞれ次の数式8及び数式9で示される。また、プリズムと試料の界面におけるフレネルの反射係数r~12は数式2で示される。従って、テラヘルツ時間領域分光法により得られた反射スペクトルR(ω)と位相差スペクトルΦ(ω)から、数式2と数式8、数式9の連立方程数の解を求めることで試料の複素屈折率n2~が求められる。なお、数式8及び数式9中のrrefは試料が載置しない場合のフレネル反射係数である。そして求められた複素屈折率n2~の虚部(消衰係数κ)と数式7から、物質の吸収係数αが求められる。すなわち、本発明の計測方法はテラヘルツ波出射面であるプリズム表面に皮膚を接触させながらテラヘルツ波を照射して得られる反射スペクトル及び位相差スペクトルを計測する工程と、得られた反射スペクトル及び位相差スペクトルとから角層の吸収係数を算出する工程とを備える。 The ATR spectrum after reflection can be observed by terahertz time domain spectroscopy. In this method, a reflection spectrum and a phase difference spectrum are obtained by Fourier transforming the acquired time waveform of the terahertz wave. When the thickness t of the sample is sufficiently larger than the seepage depth d p of the evanescent wave, the reflection spectrum R(ω) and the phase difference spectrum Φ(ω) are represented by the following Equations 8 and 9, respectively. .. In addition, the Fresnel reflection coefficient r 12 at the interface between the prism and the sample is expressed by Equation 2. Therefore, the complex index of refraction of the sample is obtained by obtaining the solution of the simultaneous equations of Equations 2, 8 and 9 from the reflection spectrum R(ω) and the phase difference spectrum Φ(ω) obtained by the terahertz time domain spectroscopy. n 2 ~ is required. Note that r ref in the equations 8 and 9 is the Fresnel reflection coefficient when the sample is not placed. Then, the absorption coefficient α of the substance is obtained from the imaginary part (extinction coefficient κ) of the obtained complex refractive index n 2 ~ and the mathematical expression 7. That is, the measurement method of the present invention is a step of measuring the reflection spectrum and the phase difference spectrum obtained by irradiating the terahertz wave while contacting the skin with the prism surface, which is the terahertz wave emission surface, and the obtained reflection spectrum and the phase difference. Calculating the absorption coefficient of the stratum corneum from the spectrum.

本発明の計測方法では皮膚を測定対象物としていることから上記で求められた吸収係数αは皮膚の吸収係数を表すことになるが、テラヘルツ波は水による吸収が非常に大きく、皮膚組織や体毛を構成するタンパク質や脂質、血液成分などによる吸収の影響を受けにくいことから、上記で求められた吸収係数αは皮膚の水分による吸収を表すと言える。 In the measurement method of the present invention, since the skin is the measurement target, the absorption coefficient α obtained above represents the absorption coefficient of the skin, but the terahertz wave has a very large absorption by water, and skin tissue and body hair. The absorption coefficient α obtained above can be said to represent absorption by skin moisture, because it is less susceptible to absorption by proteins, lipids, blood components, and the like that make up.

本発明においては、プリズムと皮膚表面の界面においてテラヘルツ波が全反射する条件で、テラヘルツ波が出射される。ここで、テラヘルツ波の入射角は、0°よりも大きく90°よりも小さな角度であるので、全反射する条件は、プリズムの屈折率は少なくとも角層の複素屈折率と同じかそれ以上であることが必要となる。下記に述べるように本発明者の実測によると、0.1THz以上のテラヘルツ波を照射した場合、ブタ皮膚の角層の複素屈折率の実部は約2.5以下にあることが判明した。これは、角層の下層にある表皮層と角層との界面で生じる反射係数を考慮した下記に述べるいわゆる二界面モデルを用いて算出することで確認された。つまり、表皮層の複素屈折率と角層の厚みを用いて二界面モデルを適用することで、角層の複素屈折率が算出され得る。なお、算出に用いられる表皮層の複素屈折率は、例えば、ストリッピングによって角質を除去することで得られる表皮層を、ATR法で測定することで得られる。また、角層の厚みは、実測値をもちいることもできるが、ストリッピング回数をその厚みとしてもよく、また、推定値を利用してもよい。 In the present invention, the terahertz wave is emitted under the condition that the terahertz wave is totally reflected at the interface between the prism and the skin surface. Here, since the incident angle of the terahertz wave is larger than 0° and smaller than 90°, the condition for total reflection is that the refractive index of the prism is at least equal to or higher than the complex refractive index of the stratum corneum. Will be required. As will be described below, according to the actual measurement by the present inventor, it has been found that the real part of the complex refractive index of the stratum corneum of pig skin is about 2.5 or less when the terahertz wave of 0.1 THz or more is irradiated. This was confirmed by calculation using the so-called two-interface model described below, which takes into account the reflection coefficient occurring at the interface between the epidermis layer below the stratum corneum and the stratum corneum. That is, the complex refractive index of the stratum corneum can be calculated by applying the two-interface model using the complex refractive index of the skin layer and the thickness of the stratum corneum. The complex refractive index of the epidermal layer used for the calculation can be obtained, for example, by measuring the epidermal layer obtained by removing the keratin by stripping by the ATR method. The thickness of the stratum corneum may be measured, but the number of times of stripping may be used as the thickness, or an estimated value may be used.

ブタ皮膚はヒトの皮膚とその組成や構造がよく似ており、ヒト皮膚の角層の複素屈折率とブタ皮膚の角層のそれとはほぼ同程度であると言える。従って、プリズムの屈折率は、測定に用いるテラヘルツ波の周波数によっても異なるが、概ね1THzより低周波数側では少なくとも2.0以上、好ましくは2.5以上、望ましくは3.0以上の屈折率を、また、概ね1THzよりも高周波帯域では2.0以上の屈折率を有するプリズムが用いられる。つまり、3.0以上の屈折率を有するプリズムであれば0.1THz以上のテラヘルツ波を用いて測定できる。このような屈折率を有するプリズムであれば、その材質は問われず、適宜選択される。例えば、その材質はシリコン(n=3.4)であり、MgO(n=3.1)であり得る。また、入射角はプリズムの屈折率やテラヘルツ波の周波数によっても異なり、全反射条件を満たす角度に設定される。 Pig skin is very similar in composition and structure to human skin, and it can be said that the complex refractive index of the horny layer of human skin and that of the horny layer of porcine skin are almost the same. Therefore, the refractive index of the prism varies depending on the frequency of the terahertz wave used for measurement, but at a frequency lower than about 1 THz, at least 2.0 or more, preferably 2.5 or more, and preferably 3.0 or more is desired. In addition, a prism having a refractive index of 2.0 or more is used in a frequency band higher than about 1 THz. That is, a prism having a refractive index of 3.0 or higher can be measured using a terahertz wave of 0.1 THz or higher. As long as the prism has such a refractive index, its material is not limited and may be appropriately selected. For example, the material may be silicon (n=3.4) and MgO (n=3.1). The incident angle also depends on the refractive index of the prism and the frequency of the terahertz wave, and is set to an angle that satisfies the condition of total reflection.

本発明において照射され得るテラヘルツ波は、テラヘルツ波領域の電磁波であればよく、その周波数帯の下限は例えば0.1THzであり、0.25THzであり、0.5THzであり、1.0THzであり得る。また、その上限は例えば10.0THzであり、5.0THzであり、3.0THzであり、2.0THzであり得る。なお、下記に述べるように、テラヘルツ波の周波数が高くなるほど水の吸収係数αが大きくなるので感度がよくなるが、周波数が高くなると滲みだし深さdが小さくなりすぎて角層水分量が十分に反映されない傾向にある。一方、エバネッセント波の滲みだし深さdpは、数式5に示すようにテラヘルツ波の波長λに比例し、その周波数に反比例する関係にあるので、低周波数側では滲みだし深さdpが大きくなる。従って、低周波数側では角層下にある表皮層における吸収が主体となり、角層の吸収係数αを反映しているとは言えなくなる。このような観点からすると、0.1THz以上3.0THzのテラヘルツ波が好ましい。 The terahertz wave that can be irradiated in the present invention may be any electromagnetic wave in the terahertz wave region, and the lower limit of the frequency band is, for example, 0.1 THz, 0.25 THz, 0.5 THz, 1.0 THz. obtain. Further, the upper limit thereof may be 10.0 THz, 5.0 THz, 3.0 THz, and 2.0 THz, for example. As described below, the higher the frequency of the terahertz wave, the higher the absorption coefficient α of water and the better the sensitivity. However, the higher the frequency, the more the exudation depth d p becomes too small and the amount of water in the stratum corneum is sufficient. Tend not to be reflected in. On the other hand, the bleeding depth d p of the evanescent wave is proportional to the wavelength λ of the terahertz wave and is inversely proportional to the frequency thereof, as shown in Formula 5, so that the bleeding depth d p is large on the low frequency side. Become. Therefore, on the low frequency side, the absorption in the epidermis layer below the stratum corneum is the main component, and it cannot be said that the absorption coefficient α of the stratum corneum is reflected. From this point of view, the terahertz wave of 0.1 THz or more and 3.0 THz is preferable.

求められた吸収係数αは角層の水分量を反映した値であるところ、算出された吸収係数αから角層の相対的な水分量を知ることができる。また、吸収係数αは物質のモル濃度と比例関係にあることから、吸収係数αから物質のモル濃度が求められる。すなわち、既知の質量含水量と吸収係数αの関係を利用して、求められた吸収係数αから角層の質量含水量(含水率)が求められる。角層の質量含水量を求める場合には、例えば質量含水量が既知である角層モデルを用いて計測された吸収係数αとの対比により求めることができる。角層モデルは任意のモデルが用いられる。角層は死んだ角化細胞が重層化したものであるので、例えば、皮膚より採取したタンパク成分のパウダーを圧縮して得られたシートに水分を含ませたシートモデル、角層はタンパクと水で構成されると仮定したアルブミンタンパク水溶液からなるモデルが例示される。 Since the obtained absorption coefficient α is a value that reflects the water content of the stratum corneum, the relative water content of the stratum corneum can be known from the calculated absorption coefficient α. Further, since the absorption coefficient α is proportional to the molar concentration of the substance, the molar concentration of the substance can be obtained from the absorption coefficient α. That is, the mass water content (water content) of the stratum corneum is obtained from the obtained absorption coefficient α using the known relationship between the mass water content and the absorption coefficient α. When the mass water content of the stratum corneum is obtained, for example, it can be obtained by comparison with the absorption coefficient α measured using a stratum corneum model whose mass water content is known. An arbitrary model is used as the stratum corneum model. Since the stratum corneum is a layered structure of dead keratinocytes, for example, a sheet model obtained by compressing a powder of protein component collected from the skin to obtain moisture, and a stratum corneum containing protein and water. An example is a model consisting of an aqueous solution of albumin protein that is assumed to be composed of

また、低周波側においてはエバネッセント波の滲みだし深さdpが角層の厚さdよりも大きくなり、表皮層の水分による影響を受けることが考えられる。従って、非特許文献8に記載された二界面モデルを適用して、補正された反射係数r~123を求めて、吸収係数αを求めることもできる。二界面モデルは、図2に示すように薄膜試料に積層試料が積層した状態で測定した場合に、プリズムと薄層試料との界面における反射係数r~12に変えて、薄層試料と積層試料との界面における反射係数r~23を考慮した全体の反射係数(補正された反射係数)r~123を用いるモデルを意味する。つまり、薄膜試料と積層試料の界面でも当該界面でのフレネル反射係数r~23に比例した減衰があるとして取り扱い、この減衰を除くことで薄膜試料における減衰を取り出して解析する。皮膚は極めて薄い角層に表皮層が積層された構造を有するので角層と表皮層との間に界面が存在するものと考えられる。そこで、この界面における反射係数r~23を考慮すれば、エバネッセント波が角層の厚さより滲みだした場合の誤差を小さくできる。 Further, on the low frequency side, the seeping depth d p of the evanescent wave becomes larger than the thickness d of the stratum corneum, which is considered to be affected by the moisture of the epidermis layer. Therefore, the absorption coefficient α can be obtained by applying the two-interface model described in Non-Patent Document 8 to obtain the corrected reflection coefficients r to 123 . The two-interface model is a thin-layered sample and a laminated-layered sample in which the reflection coefficient r to 12 at the interface between the prism and the thin-layered sample is changed when the laminated-layered sample is stacked on the thin-film sample as shown in FIG. It means a model using the total reflection coefficient (corrected reflection coefficient) r to 123 in consideration of the reflection coefficients r to 23 at the interface with and. That is, the interface between the thin film sample and the laminated sample is treated as having attenuation proportional to the Fresnel reflection coefficient r to 23 at the interface, and the attenuation in the thin film sample is taken out and analyzed by removing this attenuation. Since the skin has a structure in which the epidermis layer is laminated on the extremely thin stratum corneum, it is considered that there is an interface between the stratum corneum and the epidermis layer. Therefore, if the reflection coefficients r to 23 at this interface are taken into consideration, the error when the evanescent wave seeps out from the thickness of the stratum corneum can be reduced.

角層と表皮層の界面における反射係数r~23は数式10により求められ、補正された反射係数r~123は次の数式11で求められる。また、吸収係数αは上記数式8、数式9において、反射係数r~12の代わりに補正された反射係数r~123を代入し、数式2、数式10、数式11と数式8、数式9の連立方程数の解を求めることで得られる。この補正に必要となる角層の厚さdや表皮層の複素屈折率n~3は実測値であり、推定値であり、文献値などであり得る。 The reflection coefficient r~ 23 at the interface between the stratum corneum and the skin layer is calculated by the mathematical expression 10, and the corrected reflection coefficient r~ 123 is calculated by the following mathematical expression 11. Further, as the absorption coefficient α, the corrected reflection coefficients r to 123 are substituted in place of the reflection coefficients r to 12 in the above formulas 8 and 9, and the simultaneous formulas (2), (10), (11) and (8) are used. It can be obtained by finding the solution of the number of steps. The thickness d of the stratum corneum and the complex refractive index n 3 of the skin layer necessary for this correction are actually measured values, estimated values, and may be literature values.

また、二界面モデルを適用する場合、エバネッセント波の滲みだし深さdpが角層の厚さdよりも小さい場合には補正による誤差が生じるため、エバネッセント波の滲みだし深さdpが角層の厚さdよりも大きくなる周波数帯が用いられる。例えば、好ましくは3THz以下であり、2THz以下であり、さらに好ましくは1.5THz以下、望ましくは1THz以下のテラヘルツ波であり得る。 Further, when the two-interface model is applied, if the seeping depth d p of the evanescent wave is smaller than the thickness d of the stratum corneum, an error occurs due to the correction, and thus the seeping depth d p of the evanescent wave is Frequency bands are used that are greater than the layer thickness d. For example, it can be a terahertz wave of preferably 3 THz or less, 2 THz or less, more preferably 1.5 THz or less, and desirably 1 THz or less.

このように本発明の測定方法を用いることにより数十μmといった極めて薄い角層の水分量を、皮膚を傷付けることなく簡便に測定することができる。 As described above, by using the measuring method of the present invention, an extremely thin water content of the stratum corneum such as several tens of μm can be easily measured without damaging the skin.

以下、本発明を下記の実施例に基づいてより具体的に説明するが、本発明は下記の実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically based on the following examples, but the present invention is not limited to the following examples.

〔水の吸収係数の測定〕
角層の水分を測定するにあたり、まず水の吸収係数αを測定した。測定に用いたテラヘルツ全反射型減衰分光測定器は、ATRモジュールとしてSi(n=3.42)のプリズムを備え、入射角は57°である(以下同じ)。プリズム表面に水を滴下して測定した。なお、参照は空気とした。その結果を図3に示した。
[Measurement of absorption coefficient of water]
In measuring the water content of the stratum corneum, the absorption coefficient α of water was first measured. The terahertz total reflection type attenuation spectrophotometer used for the measurement is equipped with a Si (n=3.42) prism as an ATR module and has an incident angle of 57° (hereinafter the same). Water was dropped on the prism surface for measurement. The reference was air. The result is shown in FIG.

次に、含水率の異なるスクロース水溶液を測定し、その吸収係数αとスクロース水溶液の質量含水率(スクロース濃度)との関係を調べた。プリズム表面に1mLのスクロース水溶液を滴下して測定した。その結果を図4及び図5に示す。この結果から、スクロース水溶液の質量含水率と吸収係数αは比例することが確認された(図5)。このときの決定係数Rは例えば0.5THz、1.0THz帯でそれぞれ0.99以上であり、0.5THzにおける吸収係数は文献値(Keiichiro Shiraga et al., Food Chemistry,140,315-320,2013)とほぼ一致した。 Next, sucrose aqueous solutions having different water contents were measured, and the relationship between the absorption coefficient α and the mass water content (sucrose concentration) of the sucrose aqueous solution was investigated. The measurement was performed by dropping 1 mL of an aqueous sucrose solution on the prism surface. The results are shown in FIGS. 4 and 5. From this result, it was confirmed that the mass water content of the sucrose aqueous solution and the absorption coefficient α are proportional (FIG. 5). The coefficient of determination R 2 at this time is, for example, 0.99 or more in the 0.5 THz and 1.0 THz bands, respectively, and the absorption coefficient at 0.5 THz is a literature value (Keiichiro Shiraga et al., Food Chemistry, 140, 315-320). , 2013).

〔角層モデルにおける水の吸収係数〕
角層モデルを用いて角質モデルに含まれる水の吸収係数を測定した。皮膚真皮より採取した間質成分のパウダー(hide powder non-chromated, SIGMA社製)をプレスして得られたシートを角層モデル(シートモデル)とした。0.12gのパウダーに294Pa又は589Paの圧力を2秒間加えることを3回繰り返してシートを作製した。当該シートに200〜500μLの蒸留水を滴下して、湿度100%の容器内で48時間静置して、シート内に水分を均質に行き渡らせた。含水率は、測定直後の湿潤質量と70℃で24時間乾燥後の乾燥質量とから算出した。
[Water absorption coefficient in the stratum corneum model]
The absorption coefficient of water contained in the stratum corneum model was measured using the stratum corneum model. A sheet obtained by pressing a powder of interstitial components (hide powder non-chromated, manufactured by SIGMA) collected from the skin dermis was used as a stratum corneum model (sheet model). A sheet was prepared by repeatedly applying a pressure of 294 Pa or 589 Pa to 0.12 g of powder for 2 seconds three times. 200 to 500 μL of distilled water was added dropwise to the sheet, and the sheet was allowed to stand still in a container having a humidity of 100% for 48 hours so that the sheet was evenly spread with water. The water content was calculated from the wet mass immediately after the measurement and the dry mass after drying at 70° C. for 24 hours.

得られたシートをプリズムに載置して、重石を載せて測定を行った。その結果を図6及び図7に示した。図7に示すように質量含水率と吸収係数は比例し、吸収係数から質量含水率を求められることが示された。 The obtained sheet was placed on a prism, and weights were placed on the prism for measurement. The results are shown in FIGS. 6 and 7. As shown in FIG. 7, it was shown that the mass water content and the absorption coefficient are proportional, and the mass water content can be calculated from the absorption coefficient.

〔ブタ皮膚の含水量の測定〕
ブタの皮膚を用いて、ブタの角質層の含水量を測定し、その後ストリッピングによる含水量の変化を測定した。凍結されたブタ皮膚(2cm×2cm)を室温(約20℃)で解凍した後、皮膚の側面を粘着テープで覆った状態で室温(約20℃)に48時間放置して乾燥状態にした。次に、この乾燥状態の皮膚に2mLの蒸留水を含ませた紙製ウエス(商品名「キムワイプ」、日本製紙クレア社製)を150秒間載せて放置した。その後、皮膚表面を紙製ウエスで軽く拭き、含水後の皮膚とした。また、測定後にセロハンテープを用いたストリッピングにより角層を除去しながら測定し、25回のストリッピングになるまで測定を繰り返した。このストリッピングでは1回のストリッピングによって1層の角層(厚さとして約1μm)が剥離され、25回のストリッピングではほぼ角層が除去されていると考えられる。
[Measurement of water content of pig skin]
The water content of the stratum corneum of the pig was measured using the skin of the pig, and then the change in the water content due to stripping was measured. Frozen pig skin (2 cm×2 cm) was thawed at room temperature (about 20° C.), and then left to dry at room temperature (about 20° C.) for 48 hours with the side of the skin covered with adhesive tape. Then, a paper waste cloth (trade name "Kimwipe", manufactured by Nippon Paper Clare Co., Ltd.) containing 2 mL of distilled water was placed on the dried skin for 150 seconds and left to stand. After that, the surface of the skin was lightly wiped with a paper waste to obtain water-containing skin. In addition, after the measurement, the measurement was performed while removing the stratum corneum by stripping using cellophane tape, and the measurement was repeated until stripping was performed 25 times. In this stripping, it is considered that one layer of the stratum corneum (thickness of about 1 μm) was peeled off by one stripping, and the stratum corneum was almost removed by the stripping of 25 times.

ブタ皮膚をプリズム上に載置し、重石を載せて測定を行った。含水率は、測定した吸収係数から、実施例2で得られた吸収係数と質量含水率の関係を示すグラフを用いて算出した。その結果を図8及び図9に示した。水やスクロース水溶液の場合と同様に、皮膚の吸収係数は高周波側で大きくなる傾向を示した。ストリッピングを重ねるにつれブタ皮膚の含水量は一次的に減少したが、その後増加する傾向を示した。乾燥後の皮膚に極めて短時間で吸水させた結果、最表層では吸水が生じたが、続く中間層部分では水が十分に吸水されずに含水率が低い状態となっており、皮膚の深い部分では十分に乾燥されなかった結果、高い含水率のままであったためと考えられる。この測定条件においては、エバネッセント波の滲みだし深さdpは約70〜10μmと計算され、ブタ皮膚の角層の水分量が測定されているものと考えられる。これらの測定結果は、前記ブタ皮膚の含水状態を反映しているだけでなく、角層には水分勾配があるとの報告(Wu J et al., Confocal Raman microspectroscopy of stratum corneum : apre-clinical validation study, International Journal of Cosmetic Science, 30, 1, 47-56, 2008. : Egawa M et al., In vivo Estimation of Stratum Corneum Thickness from Water Concentration Profiles Obtained with Raman Spectroscopy, Acta Dermato Venereologica, 87, 4-8, 2007)とも一致しており、本発明に係る方法は妥当性のある方法であると言える。このように、本発明においては角層のような極めて薄い薄膜試料中の水分量又は水分量の変化を的確に捉えることができる。 The pig skin was placed on the prism, and a weight was placed on the prism for measurement. The water content was calculated from the measured absorption coefficient using a graph showing the relationship between the absorption coefficient and the mass water content obtained in Example 2. The results are shown in FIGS. 8 and 9. Similar to water and sucrose aqueous solution, the skin absorption coefficient tended to increase on the high frequency side. The water content of pig skin decreased with increasing stripping, but it tended to increase thereafter. As a result of water being absorbed into the skin after drying for an extremely short time, water absorption occurred in the outermost layer, but the water content was not sufficiently absorbed in the subsequent middle layer part, and the water content was low, and the deep skin part It is considered that the water content remained high as a result of not being dried sufficiently. Under this measurement condition, the evanescent wave seepage depth d p is calculated to be about 70 to 10 μm, and it is considered that the water content of the horny layer of pig skin is measured. These measurement results not only reflect the water content of the pig skin, but also report that there is a water gradient in the stratum corneum (Wu J et al., Confocal Raman microspectroscopy of stratum corneum: apre-clinical validation. study, International Journal of Cosmetic Science, 30, 1, 47-56, 2008.: Egawa M et al., In vivo Estimation of Stratum Corneum Thickness from Water Concentration Profiles Obtained with Raman Spectroscopy, Acta Dermato Venereologica, 87, 4-8 , 2007), and it can be said that the method according to the present invention is a valid method. As described above, in the present invention, it is possible to accurately grasp the amount of water or the change in the amount of water in an extremely thin thin film sample such as the stratum corneum.

〔二界面モデルを適用したブタ皮膚(角層)の含水量の測定〕
実施例3で得られた計測データから二界面モデルを用いてブタ皮膚の角層の吸収係数と質量含水量を算出した。その結果を図10及び図11に示した。また、角層の吸収係数を算出するために導出された角層の複素屈折率n~2の屈折率n(実部)及び消衰係数κ(虚部)と周波数の関係を示す図の一例を図12に示す。なお、二界面モデルにおいて反射係数r~123の計算に必要となるブタ皮膚の角層厚さdは30μmと仮定した。また、表皮層の複素屈折率n~3には、実施例3において25回のストリッピングを行ったときの複素屈折率を用いた。
[Measurement of Water Content of Pig Skin (Corneum) Using Two-Interface Model]
From the measurement data obtained in Example 3, the absorption coefficient and the mass water content of the horny layer of pig skin were calculated using a two-interface model. The results are shown in FIGS. 10 and 11. In addition, an example of a diagram showing the relationship between the refractive index n (real part) and extinction coefficient κ (imaginary part) of the complex refractive index n to 2 of the stratum corneum derived to calculate the absorption coefficient of the stratum corneum Is shown in FIG. The horny layer thickness d of porcine skin required for calculation of the reflection coefficients r to 123 in the two-interface model was assumed to be 30 μm. Further, the complex refractive index n to 3 of the skin layer is the complex refractive index after 25 strippings in Example 3.

図12に示すように角層の複素屈折率n~2の実部は2.5以下にあることが測定された。また、皮膚の吸収係数やストリッピング回数と吸収係数の関係は、実施例3と同じ傾向を示した。一方、二界面モデルの適用の有無について検討すると、図13に示すように、二界面モデルを適用した場合には皮膚の吸収係数は全体として小さくなる傾向を示し、低周波側において高周波側に比べて小さくなった。低周波側ではエバネッセント波の滲みだし深さは大きくなり、表皮の影響が排除された結果であると言える。また、適用の有無による吸収係数の変化は高周波数側の方が低周波数側よりも小さかった。 As shown in FIG. 12, the real part of the complex refractive index n~ 2 of the stratum corneum was measured to be 2.5 or less. Further, the skin absorption coefficient and the relationship between the stripping frequency and the absorption coefficient showed the same tendency as in Example 3. On the other hand, considering whether the two-interface model is applied or not, as shown in FIG. 13, when the two-interface model is applied, the skin absorption coefficient tends to be small as a whole, and the low-frequency side has a tendency to be smaller than the high-frequency side. Became smaller. It can be said that this is a result of the influence of the epidermis being eliminated because the evanescent wave seepage depth becomes larger on the low frequency side. In addition, the change in absorption coefficient depending on the application was smaller on the high frequency side than on the low frequency side.

〔水溶性アルブミン溶液を用いた角層モデル〕
実施例2で用いた角層モデルは空隙の存在のために質量含水率が30%以下の水分量が測定できないことが懸念された。そこで、空隙が存在しないモデルとして質量濃度(w/w%)既知の水溶性アルブミンの水溶液を用いて同様の測定を行った。図14に吸収係数と周波数の関係を示す。また、図15に吸収係数と質量含水率の関係を示す。また、実施例3で得られた計測データから二界面モデルを用いて求めた質量含水率とストリッピング回数との関係を図16に示した。図15における質量含水率と吸収係数の関係は次の数式12から導いた。数式12において、MWは水の質量、MDはアルブミンの質量、Vは水溶液の体積、WMは水の質量濃度である。テラヘルツ帯において吸収係数の大きさは水分子のモル濃度と線形関係にあると考えられるが、アルブミン水溶液においては、質量含水率の算出には水分子の質量だけでなくアルブミンの質量も考慮すべきであり、質量含水率はモル濃度に比例しない。一方、アルブミン濃度が上昇した(質量含水率が低下した)ときの水の吸収係数の低下幅はアルブミンの増加量(吸収が無視できるほど小さい)に比例すると考えられるので、アルブミン濃度と水の吸収係数にも線形関係が成り立つと考えられる。そうすると、水の濃度及びアルブミン濃度は、A、B、C、Dを定数として、それぞれ数式13、数式14として表すことができる。そこで、測定された吸収係数と水の質量濃度、測定された吸収係数とアルブミンの質量濃度をそれぞれ一次関数で近似することでA、B、C、Dを求め、図15に示す関係(検量線)を得た。
[Corneum model using water-soluble albumin solution]
It was feared that the stratum corneum model used in Example 2 could not measure a water content having a mass water content of 30% or less due to the presence of voids. Therefore, the same measurement was performed using an aqueous solution of water-soluble albumin with a known mass concentration (w/w%) as a model in which voids do not exist. FIG. 14 shows the relationship between the absorption coefficient and the frequency. Further, FIG. 15 shows the relationship between the absorption coefficient and the mass water content. Further, FIG. 16 shows the relationship between the mass moisture content obtained from the measurement data obtained in Example 3 using the two-interface model and the number of strippings. The relationship between the mass moisture content and the absorption coefficient in FIG. 15 was derived from the following Equation 12. In Formula 12, M W is the mass of water, M D is the mass of albumin, V is the volume of the aqueous solution, and W M is the mass concentration of water. In the terahertz band, the magnitude of the absorption coefficient is considered to have a linear relationship with the molar concentration of water molecules, but in an aqueous albumin solution, not only the mass of water molecules but also the mass of albumin should be considered when calculating the water content by mass. And the mass water content is not proportional to the molar concentration. On the other hand, when the albumin concentration increases (mass water content decreases), the decrease range of the water absorption coefficient is considered to be proportional to the increase amount of albumin (absorption is small enough to be ignored). It is considered that the coefficient also has a linear relationship. Then, the concentration of water and the concentration of albumin can be expressed by Equations 13 and 14 with A, B, C, and D as constants, respectively. Therefore, A, B, C, and D are obtained by approximating the measured absorption coefficient and the mass concentration of water, and the measured absorption coefficient and the mass concentration of albumin by a linear function, respectively, and the relationship shown in FIG. ) Got.

アルブミン水溶液を角層モデルとして利用することで、空隙の影響が低減され、質量含水率が30%以下の場合でも角層の水分量を測定できた。また、この検量線から質量含水量とストリッピング回数との関係を求めたところ、実施例4と同様な傾向であった。 By using the albumin aqueous solution as a stratum corneum model, the influence of voids was reduced, and the moisture content of the stratum corneum could be measured even when the mass water content was 30% or less. Further, when the relationship between the mass water content and the stripping frequency was determined from this calibration curve, the same tendency as in Example 4 was obtained.

本発明は皮膚角層の水分量を測定する新たな測定法を提供する。 The present invention provides a new measurement method for measuring the water content of the stratum corneum.

Claims (4)

テラヘルツ波を用いた全反射減衰分光法により皮膚角層水分量を計測する方法であって、 テラヘルツ波出射面であるプリズム表面に皮膚表面を接触させて、周波数が0.1THz以上1.5THz以下のテラヘルツ波を照射して吸収係数を求める工程を有することを特徴とする皮膚角層水分量の計測方法。 A method of measuring the water content of the stratum corneum of the skin by total reflection attenuation spectroscopy using terahertz waves, where the skin surface is brought into contact with the prism surface, which is the terahertz wave emission surface, and the frequency is 0.1 THz or more and 1.5 THz or less. A method for measuring the amount of water in the stratum corneum of the skin, comprising the step of irradiating the terahertz wave to determine the absorption coefficient. 前記プリズムの屈折率が、2.0以上である請求項1に記載の計測方法。 The measuring method according to claim 1 , wherein the refractive index of the prism is 2.0 or more. 前記プリズムの屈折率が、3.0以上である請求項1に記載の計測方法。 The measurement method according to claim 1 , wherein the refractive index of the prism is 3.0 or more. 前記求められた吸収係数と、水分量が既知である皮膚モデルを用いて測定された吸収係数との対比から角層の水分量を求める工程をさらに有する請求項1〜3の何れか1項に記載の計測方法。 The method according to any one of claims 1 to 3 , further comprising a step of obtaining a water content of the stratum corneum from a comparison between the obtained absorption coefficient and an absorption coefficient measured using a skin model having a known water content. The measurement method described.
JP2018235637A 2018-12-17 2018-12-17 Measurement method of skin stratum corneum water content using terahertz wave Active JP6746109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018235637A JP6746109B2 (en) 2018-12-17 2018-12-17 Measurement method of skin stratum corneum water content using terahertz wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018235637A JP6746109B2 (en) 2018-12-17 2018-12-17 Measurement method of skin stratum corneum water content using terahertz wave

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014179672A Division JP6454498B2 (en) 2014-09-03 2014-09-03 Method for measuring skin stratum corneum moisture content using terahertz waves

Publications (2)

Publication Number Publication Date
JP2019039938A JP2019039938A (en) 2019-03-14
JP6746109B2 true JP6746109B2 (en) 2020-08-26

Family

ID=65726314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235637A Active JP6746109B2 (en) 2018-12-17 2018-12-17 Measurement method of skin stratum corneum water content using terahertz wave

Country Status (1)

Country Link
JP (1) JP6746109B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117942062A (en) * 2024-03-27 2024-04-30 天津大学四川创新研究院 Skin barrier damage detection system and method based on terahertz wave band

Also Published As

Publication number Publication date
JP2019039938A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6454498B2 (en) Method for measuring skin stratum corneum moisture content using terahertz waves
Alekseev et al. Human skin permittivity determined by millimeter wave reflection measurements
Pickwell et al. In vivo study of human skin using pulsed terahertz radiation
Nikitkina et al. Terahertz radiation and the skin: a review
Cole et al. Terahertz imaging and spectroscopy of human skin in vivo
JP6331140B2 (en) Moisture content measurement method
Cherkasova et al. Noninvasive blood glucose monitoring in the terahertz frequency range
Wallace et al. Terahertz pulsed spectroscopy of human basal cell carcinoma
Egawa et al. In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy
Wan et al. Analytical modeling for the optical properties of the skin with in vitro and in vivo applications
Nazarov et al. Terahertz time-domain spectroscopy of biological tissues
Anderson et al. Optical radiation transfer in the human skin and applications in in vivo remittance spectroscopy
Berry et al. Optical properties of tissue measured using terahertz-pulsed imaging
Li et al. Detecting melanoma with a terahertz spectroscopy imaging technique
Kolesnikov et al. THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents
JPH10160711A (en) Photoacoustic signal measuring device
Lindley-Hatcher et al. Evaluation of in vivo THz sensing for assessing human skin hydration
Egawa et al. Determining water content in human nails with a portable near-infrared spectrometer
JP6746109B2 (en) Measurement method of skin stratum corneum water content using terahertz wave
Guseva et al. Optical properties of human nails in THz frequency range
JP6781424B2 (en) Method of measuring skin stratum corneum water content using terahertz waves
Yakimov et al. Comparative analysis of the methods for quantitative determination of water content in skin from diffuse reflectance spectroscopy data
Viator et al. Spectra from 2.5–15 µm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin
Edwardson et al. The use of FT-IR for the determination of stratum corneum hydration in vitro and in vivo
Lipscomb et al. Determination of the optical properties of melanin-pigmented human skin equivalents using terahertz time-domain spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6746109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250