JP6327306B2 - Membrane separation methane fermentation treatment apparatus and membrane separation methane fermentation treatment method - Google Patents

Membrane separation methane fermentation treatment apparatus and membrane separation methane fermentation treatment method Download PDF

Info

Publication number
JP6327306B2
JP6327306B2 JP2016178109A JP2016178109A JP6327306B2 JP 6327306 B2 JP6327306 B2 JP 6327306B2 JP 2016178109 A JP2016178109 A JP 2016178109A JP 2016178109 A JP2016178109 A JP 2016178109A JP 6327306 B2 JP6327306 B2 JP 6327306B2
Authority
JP
Japan
Prior art keywords
membrane
methane fermentation
tank
liquid
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016178109A
Other languages
Japanese (ja)
Other versions
JP2016203176A (en
Inventor
英也 白石
英也 白石
新井 喜明
喜明 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2016178109A priority Critical patent/JP6327306B2/en
Publication of JP2016203176A publication Critical patent/JP2016203176A/en
Application granted granted Critical
Publication of JP6327306B2 publication Critical patent/JP6327306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、廃液中の有機物質をメタン発酵して処理する膜分離メタン発酵処理装置及び膜分離メタン発酵処理方法に関する。   The present invention relates to a membrane-separated methane fermentation treatment apparatus and a membrane-separated methane fermentation treatment method for treating an organic substance in a waste liquid by methane fermentation.

浄化槽汚泥、下水汚泥、し尿、生ゴミ、食品系廃棄物などの有機物質を含有する廃液の処理にメタン発酵処理と膜ろ過処理とを併用した膜分離メタン発酵処理を行うことが知られている(例えば、特許文献1−4)。   It is known to perform membrane-separated methane fermentation using methane fermentation and membrane filtration in combination with wastewater containing organic substances such as septic tank sludge, sewage sludge, human waste, garbage, and food waste. (For example, patent documents 1-4).

膜分離メタン発酵処理では、ろ過膜により固液分離を行うため、ろ過処理を続けるうちに分離対象の固形物(SS)が膜表面及び膜内部に付着残留し、膜孔の閉塞や狭窄によりろ過性能が低下するおそれがある。   In the membrane separation methane fermentation process, solid-liquid separation is performed using a filtration membrane. As the filtration process is continued, the solid matter (SS) to be separated remains on the membrane surface and inside the membrane, and filtration is performed by blocking or narrowing the membrane pores. Performance may be reduced.

このようなろ過膜の目詰まり(ファウリング)の原因としては、膜面へのSSが堆積することや、ろ過処理に供される被処理液中の無機成分が不溶解性物質を形成して膜内(細孔)部に析出することが挙げられる。被処理液中の析出しやすい無機成分としては、例えば、硫化鉄などの金属硫化物やリン酸マグネシウムアンモニウム(MAP)などが知られている。   The cause of such clogging (fouling) of the filtration membrane is that SS is deposited on the membrane surface, or inorganic components in the liquid to be treated used for the filtration treatment form insoluble substances. It may be precipitated in the film (pores). Known inorganic components that are likely to precipitate in the liquid to be treated include metal sulfides such as iron sulfide and magnesium ammonium phosphate (MAP).

膜面へのSSの堆積に対しては、ろ過膜の下方に散気装置を設け、この散気装置から散気した気泡のエアリフト作用で発生する上向流を掃流としてろ過膜の膜間の流路をクロスフローで流通させて膜面を洗浄している(例えば、特許文献1,2)。   For the deposition of SS on the membrane surface, an air diffuser is provided below the filter membrane, and the upward flow generated by the air lift action of the air bubbles diffused from the air diffuser is used as a sweeping flow between the membranes of the filter membrane. The membrane surface is washed by cross-flow through the flow path (for example, Patent Documents 1 and 2).

一方、無機成分の膜内への析出に対しては、ろ過膜を定期的に薬剤にて洗浄する方法や、無機成分と錯体を形成する有機酸を被処理液に注入する方法によりろ過膜を洗浄している(例えば、特許文献3)。   On the other hand, for precipitation of inorganic components into the membrane, filter membranes can be removed by periodically washing the membrane with chemicals or by injecting organic acids that form complexes with inorganic components into the liquid to be treated. Washing (for example, Patent Document 3).

特開2001−170631号公報JP 2001-170631 A 特開2010−207762号公報JP 2010-207762 A 特開2000−61274号公報JP 2000-61274 A 特開2010−207700号公報JP 2010-207700 A

しかしながら、ろ過膜を定期的に薬剤で洗浄するためには、洗浄時にろ過操作を停止しなくてはならず、膜分離メタン発酵処理装置の稼働率が低下するおそれが生じる。また、錯体を形成する薬剤を注入する場合には、薬剤のコスト及び薬剤注入作業などのメンテナンスコストが増大するおそれがある。   However, in order to periodically wash the filtration membrane with a chemical, the filtration operation must be stopped at the time of washing, which may reduce the operating rate of the membrane separation methane fermentation treatment apparatus. Moreover, when inject | pouring the chemical | medical agent which forms a complex, there exists a possibility that maintenance cost, such as a chemical | medical agent cost and chemical | medical agent injection | pouring operation | work, may increase.

上記事情に鑑み、本発明は、膜分離メタン発酵処理における、ろ過膜の目詰まりの抑制に貢献する技術の提供を目的としている。   In view of the above circumstances, an object of the present invention is to provide a technique that contributes to suppression of clogging of a filtration membrane in membrane separation methane fermentation treatment.

上記目的を達成する本発明の膜分離メタン発酵処理装置の一態様は、メタン発酵を行うメタン発酵槽と、メタン発酵槽の被処理液が供給され、この被処理液からろ液を分離する膜ろ過槽と、を有する膜分離メタン発酵処理装置において、被処理液を前記メタン発酵槽の設定温度よりも高い温度に加温してから膜ろ過槽に供給することを特徴としている。   One aspect of the membrane separation methane fermentation treatment apparatus of the present invention that achieves the above object is a methane fermentation tank for performing methane fermentation and a membrane for separating the filtrate from the treatment liquid supplied with the treatment liquid of the methane fermentation tank. A membrane separation methane fermentation treatment apparatus having a filtration tank is characterized in that the liquid to be treated is heated to a temperature higher than the set temperature of the methane fermentation tank and then supplied to the membrane filtration tank.

また、上記目的を達成する本発明の膜分離メタン発酵処理方法は、メタン発酵を行うメタン発酵槽と、メタン発酵槽の被処理液が供給され、この被処理液からろ液を分離する膜ろ過槽と、を有する膜分離メタン発酵処理装置による膜分離メタン発酵処理方法であって、被処理液を前記メタン発酵槽の設定温度よりも高い温度に加温してから膜ろ過槽に供給することを特徴としている。   Further, the membrane separation methane fermentation treatment method of the present invention that achieves the above object is a methane fermentation tank for performing methane fermentation and a membrane filtration for separating the filtrate from the liquid to be treated, which is supplied with the liquid to be treated in the methane fermentation tank. A membrane separation methane fermentation treatment method using a membrane separation methane fermentation treatment apparatus having a tank, wherein the liquid to be treated is heated to a temperature higher than the set temperature of the methane fermentation tank and then supplied to the membrane filtration tank It is characterized by.

以上の発明によれば、膜分離メタン発酵処理における、ろ過膜の目詰まりの抑制に貢献することができる。   According to the above invention, it can contribute to suppression of clogging of the filtration membrane in the membrane separation methane fermentation treatment.

本発明の実施形態1に係る膜分離メタン発酵処理装置の概略図である。It is the schematic of the membrane separation methane fermentation processing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る膜分離メタン発酵処理装置の概略図である。It is the schematic of the membrane separation methane fermentation processing apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る膜分離メタン発酵処理装置の概略図である。It is the schematic of the membrane separation methane fermentation processing apparatus which concerns on Embodiment 3 of this invention. 参考例に係る膜分離メタン発酵処理装置の概略図である。It is the schematic of the membrane separation methane fermentation processing apparatus which concerns on a reference example. 被処理液の温度が20℃における、セラミック平膜の膜差圧の経時変化を示す特性図である。It is a characteristic view which shows a time-dependent change of the film differential pressure | voltage of a ceramic flat film in case the temperature of a to-be-processed liquid is 20 degreeC. 被処理液の温度が40℃における、セラミック平膜の膜差圧の経時変化を示す特性図である。It is a characteristic view which shows a time-dependent change of the film differential pressure | voltage of a ceramic flat film in case the temperature of a to-be-processed liquid is 40 degreeC.

本発明の実施形態に係る膜分離メタン発酵処理装置及び膜分離メタン発酵処理方法について図を参照して詳細に説明する。   A membrane separation methane fermentation treatment apparatus and a membrane separation methane fermentation treatment method according to an embodiment of the present invention will be described in detail with reference to the drawings.

[実施形態1]
図1は、本発明の実施形態1に係る膜分離メタン発酵処理装置の概略図である。図1に示すように、実施形態1に係る膜分離メタン発酵処理装置1は、メタン発酵槽2、膜ろ過槽3、熱交換器4を有する。
[Embodiment 1]
FIG. 1 is a schematic diagram of a membrane separation methane fermentation treatment apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the membrane separation methane fermentation treatment apparatus 1 according to Embodiment 1 includes a methane fermentation tank 2, a membrane filtration tank 3, and a heat exchanger 4.

メタン発酵槽2は、メタン菌によるメタン発酵を行う。メタン発酵槽2には、被処理液が供給される配管5と、メタン発酵槽2を循環する被処理液の一部を膜ろ過槽3へ供給する供給配管6が設けられる。この供給配管6には、循環ポンプ7及び熱交換器4が設けられる。なお、配管5には、必要に応じて熱交換器(図示せず)が設けられ、メタン発酵槽2に供給される被処理液が加温される。   The methane fermentation tank 2 performs methane fermentation with methane bacteria. The methane fermentation tank 2 is provided with a pipe 5 to which the liquid to be treated is supplied and a supply pipe 6 for supplying a part of the liquid to be treated circulating through the methane fermentation tank 2 to the membrane filtration tank 3. The supply pipe 6 is provided with a circulation pump 7 and a heat exchanger 4. The pipe 5 is provided with a heat exchanger (not shown) as necessary, and the liquid to be treated supplied to the methane fermentation tank 2 is heated.

メタン発酵槽2での発酵法として、例えば、36〜38℃で発酵を行う中温発酵法と、50〜60℃で発酵を行う高温発酵法がある。高温発酵法は、高温メタン菌が、36〜38℃で活性が大きくなる中温メタン菌と比較して2〜3倍の活性を有しており、高温メタン菌でメタン発酵を行うことで分解速度の向上と消化率の向上を図ることができる。このように、高温発酵法は有機物の分解効率が高いので、メタン発酵槽2を小さくできる。高温発酵法は高速処理が可能であるが、通常、温度が高いとメタン菌の死滅速度が上昇し、特に高温側で60℃を超えた場合には、著しくメタン菌が死滅することとなる。このため、高温発酵法では、メタン発酵槽2内の温度を常時一定範囲内に管理して、高温によるメタン菌の死滅を防いでいる。   As a fermentation method in the methane fermentation tank 2, there are, for example, a medium temperature fermentation method in which fermentation is performed at 36 to 38 ° C and a high temperature fermentation method in which fermentation is performed at 50 to 60 ° C. In the high-temperature fermentation method, the high-temperature methane bacteria have 2-3 times the activity as compared with the medium-temperature methane bacteria whose activity increases at 36 to 38 ° C., and the decomposition rate is achieved by performing methane fermentation with the high-temperature methane bacteria. Can be improved and digestibility can be improved. Thus, since the high temperature fermentation method has high decomposition efficiency of organic matter, the methane fermentation tank 2 can be made small. The high-temperature fermentation method is capable of high-speed treatment, but usually, the higher the temperature, the higher the killing speed of the methane bacteria, and particularly when the temperature exceeds 60 ° C. on the high temperature side, the methane bacteria will be markedly killed. For this reason, in the high temperature fermentation method, the temperature in the methane fermentation tank 2 is always managed within a certain range to prevent the death of methane bacteria due to high temperature.

熱交換器4は、膜ろ過槽3に供給される被処理液を加温する。熱交換器4として、例えば、温水を循環して熱交換を行うスパイラル熱交換器などが用いられる。熱交換器4は、被処理液を加温できる周知の熱交換器が選択して用いられ、特に、詰まりにくく、耐食性に優れたものが好ましい。   The heat exchanger 4 warms the liquid to be processed supplied to the membrane filtration tank 3. As the heat exchanger 4, for example, a spiral heat exchanger that performs heat exchange by circulating hot water is used. As the heat exchanger 4, a well-known heat exchanger that can heat the liquid to be treated is selected and used, and in particular, a heat exchanger 4 that is not easily clogged and excellent in corrosion resistance is preferable.

膜ろ過槽3は、メタン発酵槽2を循環する被処理液の一部が供給され、被処理液のろ過処理を行う。膜ろ過槽3の下部には、被処理液が供給される供給配管6が設けられ、膜ろ過槽3の上部には、膜ろ過槽3からオーバーフローする被処理液とともにスクラビング用の気体をメタン発酵槽2に返送する返送配管8が設けられる。また、膜ろ過槽3の被処理液に浸漬してろ過膜9が設けられ、このろ過膜9の下方に散気装置10が設けられる。   The membrane filtration tank 3 is supplied with a part of the liquid to be treated that circulates in the methane fermentation tank 2, and performs filtration of the liquid to be treated. In the lower part of the membrane filtration tank 3, a supply pipe 6 for supplying the liquid to be treated is provided. In the upper part of the membrane filtration tank 3, the gas for scrubbing with the liquid to be treated overflowing from the membrane filtration tank 3 is subjected to methane fermentation. A return pipe 8 for returning to the tank 2 is provided. Moreover, the membrane 9 is provided by being immersed in the liquid to be treated in the membrane filtration tank 3, and the air diffuser 10 is provided below the membrane 9.

ろ過膜9は、膜ろ過槽3内の被処理液のろ過を行う。ろ過膜9には、吸引ろ過されたろ液が排出される排出配管11が設けられる。つまり、排出配管11には、図示省略の吸引ポンプが設けられ、この吸引ポンプで被処理液に浸漬されたろ過膜9を吸引することで、ろ過膜9で吸引ろ過されたろ液が排出配管11を通って系外に移送される。ろ過膜9のろ過面積は、設計ろ過流量に基づいて適宜設定される。ろ過膜9は、例えば、セラミック平膜である。セラミック平膜を複数設ける場合は、膜面を対向させて各セラミック平膜を並列して設け、この並列に設けられたセラミック平膜間を被処理液が流通するようにセラミック平膜が膜ろ過槽3内に配置される。なお、ろ過膜9は、セラミック平膜に限定されるものではなく、有機中空糸膜、有機平膜、無機平膜、無機単管膜などを用いることができる。ろ過膜9の材質としては、セラミックの他に、セルロース、ポリオレフィン、ポリスルホン、PVDF(ポリビニリデンフロライド)、PTFE(ポリ四フッ化エチレン)などが例示される。また、ろ過膜9に形成される孔径は、固液分離の対象となる物質の粒径に応じて選択される。例えば、活性汚泥の固液分離に用いるならば、0.5μm以下の孔径を有するろ過膜が用いられ、また、浄水のろ過のように、除菌が必要な場合は0.1μm以下の孔径を有するろ過膜9が用いられる。   The filtration membrane 9 filters the liquid to be treated in the membrane filtration tank 3. The filtration membrane 9 is provided with a discharge pipe 11 through which the filtrate filtered through suction is discharged. That is, the suction pipe 11 is provided with a suction pump (not shown), and the suction membrane filtered by the suction pump is used to suck the filtrate filtered by the filtration membrane 9. Through the system. The filtration area of the filtration membrane 9 is appropriately set based on the design filtration flow rate. The filtration membrane 9 is a ceramic flat membrane, for example. When multiple ceramic flat membranes are provided, each ceramic flat membrane is provided in parallel with the membrane surfaces facing each other, and the ceramic flat membrane is subjected to membrane filtration so that the liquid to be treated flows between the ceramic flat membranes provided in parallel. Arranged in the tank 3. The filtration membrane 9 is not limited to a ceramic flat membrane, and an organic hollow fiber membrane, an organic flat membrane, an inorganic flat membrane, an inorganic single tube membrane, or the like can be used. Examples of the material of the filtration membrane 9 include cellulose, polyolefin, polysulfone, PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene) and the like in addition to ceramic. Moreover, the pore diameter formed in the filtration membrane 9 is selected according to the particle diameter of the substance to be subjected to solid-liquid separation. For example, if it is used for solid-liquid separation of activated sludge, a filtration membrane having a pore size of 0.5 μm or less is used, and when sterilization is required, such as filtration of purified water, a pore size of 0.1 μm or less is used. A filtration membrane 9 is used.

散気装置10は、ろ過膜9の下方に設けられ、ろ過膜9のスクラビングを行う。散気装置10としては、例えば、配管に適当な間隔をあけて散気孔が形成されたものが用いられ、メタン発酵槽2で発生した気体が曝気ブロア12により供給される。散気装置10は、ろ過膜9にスクラビング用の気体を供給できるものであれば適宜周知の散気装置を用いればよいが、膜ろ過槽3内の被処理液は有機物濃度や粘度が高いので、散気孔の目詰まりや散気量の減少が生じにくい散気装置を用いることが好ましい。   The air diffuser 10 is provided below the filtration membrane 9 and scrubs the filtration membrane 9. As the air diffuser 10, for example, a pipe in which air diffused holes are formed at an appropriate interval is used, and the gas generated in the methane fermentation tank 2 is supplied by the aeration blower 12. As the diffuser 10, any known diffuser may be used as long as it can supply the scrubbing gas to the filtration membrane 9. However, the liquid to be treated in the membrane filtration tank 3 has a high organic matter concentration and viscosity. It is preferable to use an air diffuser that is less likely to clog the air holes and reduce the amount of air diffused.

実施形態1に係る膜分離メタン発酵処理装置1では、メタン発酵槽2を循環する被処理液が加温されて膜ろ過槽3の下部から供給される。膜ろ過槽3に供給された被処理液は散気装置10のスクラビングによる上昇流に乗ってろ過膜9を通過し、ろ過膜9で被処理液の固液分離が行われる。ろ過膜9を通過後の被処理液のオーバーフロー分は膜ろ過槽3の上部にて回収されるスクラビング用の気体とともに返送配管8を通ってメタン発酵槽2に返送される。なお、返送配管8は、被処理液のオーバーフロー分の返送専用とし、メタン発酵槽2へのスクラビング用の気体の返送は、別途メタン発酵槽2と膜ろ過槽3に連通管を設けて行ってもよい。   In the membrane separation methane fermentation treatment apparatus 1 according to the first embodiment, the liquid to be treated circulating in the methane fermentation tank 2 is heated and supplied from the lower part of the membrane filtration tank 3. The liquid to be treated supplied to the membrane filtration tank 3 rides on the upward flow generated by scrubbing the air diffuser 10 and passes through the filtration membrane 9, where the liquid to be treated is separated into solid and liquid. The overflow of the liquid to be treated after passing through the filtration membrane 9 is returned to the methane fermentation tank 2 through the return pipe 8 together with the scrubbing gas recovered at the upper part of the membrane filtration tank 3. The return pipe 8 is dedicated to returning the overflow of the liquid to be treated, and the gas for scrubbing to the methane fermentation tank 2 is returned by separately providing a communication pipe in the methane fermentation tank 2 and the membrane filtration tank 3. Also good.

[膜分離メタン発酵処理装置の温度制御]
ここで、実施形態1に係る膜分離メタン発酵処理装置1の温度制御方法について説明する。
[Temperature control of membrane separation methane fermentation treatment equipment]
Here, the temperature control method of the membrane separation methane fermentation treatment apparatus 1 according to Embodiment 1 will be described.

膜分離メタン発酵処理装置1では、メタン発酵槽2、熱交換器4、膜ろ過槽3の温度がそれぞれ制御される。メタン発酵槽2の槽内設定温度をT1(℃)とし、メタン発酵槽2の容積をV1(m3)とする。また、熱交換器4の制御温度をT2(℃)とし、熱交換器4による供給熱エネルギーをJ(J/hr)、熱交換器4の循環量をQ(m3/hr)とする。そして、膜ろ過槽3の管理温度をT3(℃)とする。膜ろ過槽3には、熱交換器4で加温された被処理液が供給されるので、T3≒T2である。 In the membrane separation methane fermentation treatment apparatus 1, the temperatures of the methane fermentation tank 2, the heat exchanger 4, and the membrane filtration tank 3 are controlled. The set temperature inside the methane fermentation tank 2 is T 1 (° C.), and the volume of the methane fermentation tank 2 is V 1 (m 3 ). The control temperature of the heat exchanger 4 is T 2 (° C.), the heat energy supplied by the heat exchanger 4 is J (J / hr), and the circulation amount of the heat exchanger 4 is Q (m 3 / hr). . Then, the control temperature of the membrane filtration tank 3 and T 3 (° C.). Since the liquid to be treated heated by the heat exchanger 4 is supplied to the membrane filtration tank 3, T 3 ≈T 2 .

メタン発酵槽2で、中温発酵を行う場合、メタン発酵槽2内の温度が、36〜38℃の範囲内となるように制御される。例えば、37℃を設定温度T1として、この設定温度T1を管理目標とした熱交換器4の加温制御が行われる。また、メタン発酵槽2で、高温発酵を行う場合、メタン発酵槽2内の温度が、50〜60℃の範囲内となるように制御される。例えば、55℃を設定温度T1として、この設定温度T1を管理目標として熱交換器4の加温制御が行われる。 When performing intermediate temperature fermentation in the methane fermentation tank 2, the temperature in the methane fermentation tank 2 is controlled to be in the range of 36 to 38 ° C. For example, as the set temperatures T 1 and 37 ° C., warming control for the setting temperature T 1 of the heat exchanger 4 and the management target is executed. Moreover, when performing high temperature fermentation with the methane fermenter 2, it controls so that the temperature in the methane fermenter 2 may be in the range of 50-60 degreeC. For example, as the set temperatures T 1 and 55 ° C., warming control of the heat exchanger 4 is made to this setting temperatures T 1 as the management target.

メタン発酵槽2での発酵温度を維持するのに必要とされる熱エネルギーを熱交換器4から供給する場合、熱交換器4から供給する供給熱エネルギーJは、メタン発酵槽2へ流入する被処理液の加温エネルギーと膜ろ過槽3から流出するろ液による損失熱エネルギー、外気温との関係にて変動する放熱による損失(各槽の外壁・配管などから)などのエネルギー収支から決定される。   When the heat energy required to maintain the fermentation temperature in the methane fermentation tank 2 is supplied from the heat exchanger 4, the supplied heat energy J supplied from the heat exchanger 4 is supplied to the methane fermentation tank 2. It is determined from the energy balance such as the loss of heat energy due to the heating energy of the treatment liquid and the filtrate flowing out from the membrane filtration tank 3, and the loss due to heat dissipation that varies depending on the ambient temperature (from the outer walls and piping of each tank). The

そして、メタン発酵槽2の容積V1、循環量Qにより決定されるメタン発酵槽2内の被処理液の入替え率である循環比率(Q/V1)を適切に制御(循環量Qを適切に制御)することで、メタン発酵槽2内の設定温度T1と熱交換器4の制御温度T2との温度差(ΔT=T2−T1)を維持したシステム制御を行うことができる。例えば、ΔTを5℃程度とすることができる。 Then, the circulation rate (Q / V 1 ) that is the replacement rate of the liquid to be treated in the methane fermentation tank 2 determined by the volume V 1 of the methane fermentation tank 2 and the circulation amount Q is appropriately controlled (the circulation amount Q is appropriately adjusted). Control) to maintain the temperature difference (ΔT = T 2 −T 1 ) between the set temperature T 1 in the methane fermentation tank 2 and the control temperature T 2 of the heat exchanger 4. . For example, ΔT can be set to about 5 ° C.

一般的に、化合物の溶解度は、液温が高くなるほど(溶解度)が高くなるので、ΔTは、大きくするほどろ過膜に析出する結晶(リン成分などの無機成分の結晶)を抑制する効果がある。制御温度T2は、ろ過膜9のメンテナンス周期やメタン菌が生存できる温度(例えば、60℃を超えない範囲内)などを考慮して設定される。 In general, the solubility of a compound increases as the liquid temperature increases (solubility). Therefore, as ΔT is increased, there is an effect of suppressing crystals (crystals of inorganic components such as phosphorus components) deposited on the filtration membrane. . Control temperature T 2 is maintenance cycle and methane bacteria can survive temperatures of the membrane 9 (e.g., within a period not exceeding 60 ° C.) is set in consideration of the.

しかし、循環量Qが少なくなり循環比率が小さくなる場合には、供給熱エネルギーJを一定とするために、熱交換器4の制御温度T2をより高く設定してΔTを大きくする必要がある。その結果、熱交換器4を通過後の被処理液の温度が60℃を超えた場合には、著しくメタン菌が死滅する。高温発酵法の場合、制御温度T2がメタン菌が生存できる温度を超える場合が想定されるが、被処理液の温度が上昇することで、メタン菌の増殖速度も著しく増加する。よって、循環比率(Q/V1)が小さく、高温発酵法によりメタン発酵を行う場合には、制御温度T2を60℃以上に設定可能であり、メタン菌の死滅する速度とメタン菌の増殖速度とのバランスを考慮して、ΔTが決定される。 However, when the circulation amount Q decreases and the circulation ratio decreases, in order to keep the supplied heat energy J constant, it is necessary to set the control temperature T 2 of the heat exchanger 4 higher and increase ΔT. . As a result, when the temperature of the liquid to be processed after passing through the heat exchanger 4 exceeds 60 ° C., the methane bacteria are remarkably killed. In the case of the high-temperature fermentation method, it is assumed that the control temperature T 2 exceeds the temperature at which the methane bacterium can survive, but the growth rate of the methane bacterium significantly increases as the temperature of the liquid to be treated increases. Therefore, when the circulation ratio (Q / V 1 ) is small and methane fermentation is performed by a high temperature fermentation method, the control temperature T 2 can be set to 60 ° C. or higher, and the rate at which methane bacteria are killed and the growth of methane bacteria ΔT is determined in consideration of the balance with the speed.

なお、膜分離メタン発酵処理装置1では、膜ろ過槽3におけるろ液取り出しに支障のない範囲で循環量Qを設定すればよく、必要となる供給熱エネルギー量Jは、すべて熱交換器4にて供給する必要はない。そのため、別途加温専用の熱交換器を併設して、複数の熱交換器によりメタン発酵槽2を加温し、熱交換器4が供給する熱エネルギーだけでは不足する熱エネルギー量を補う形態としてもよい。   In the membrane separation methane fermentation treatment apparatus 1, the circulation amount Q may be set within a range that does not hinder filtrate removal in the membrane filtration tank 3, and all the necessary supply heat energy J is transferred to the heat exchanger 4. Need not be supplied. Therefore, a heat exchanger dedicated to heating is separately provided, the methane fermentation tank 2 is heated by a plurality of heat exchangers, and the heat energy supplied by the heat exchanger 4 is compensated for the amount of heat energy that is insufficient. Also good.

以上のように、実施形態1に係る膜分離メタン発酵処理装置1によれば、膜ろ過槽3に供給される被処理液をメタン発酵槽2の設定温度よりも高い温度となるように加温することで、リン成分などの無機物質の結晶がろ過膜9に析出することを抑制し、ろ過膜9の透水性を維持することができる。   As mentioned above, according to the membrane separation methane fermentation processing apparatus 1 which concerns on Embodiment 1, it heats the to-be-processed liquid supplied to the membrane filtration tank 3 so that it may become temperature higher than the preset temperature of the methane fermentation tank 2. FIG. By doing so, it can suppress that the crystal | crystallization of inorganic substances, such as a phosphorus component, deposits on the filtration membrane 9, and the water permeability of the filtration membrane 9 can be maintained.

ろ過膜9の目詰まりを抑制することで、ろ過膜9に析出した無機物質を洗浄する洗浄工程を行う周期を長くすることができ、膜分離メタン発酵処理装置1の稼働率が向上する。さらに、ろ過膜9の洗浄を行う薬剤のコスト及び薬剤注入作業などのメンテナンスコストを低減することができる。   By suppressing clogging of the filtration membrane 9, it is possible to lengthen the period of performing the washing step for washing the inorganic substance deposited on the filtration membrane 9, and the operation rate of the membrane separation methane fermentation treatment apparatus 1 is improved. Furthermore, the cost of the chemical | medical agent which wash | cleans the filtration membrane 9, and maintenance costs, such as chemical | medical agent injection | pouring operation | work, can be reduced.

また、膜ろ過槽3に加温した被処理液を供給することで、膜ろ過槽3内の温度制御を容易に行うことができる。   Moreover, the temperature control in the membrane filtration tank 3 can be easily performed by supplying the liquid to be treated to the membrane filtration tank 3.

[実施形態2]
図2は、本発明の実施形態2に係る膜分離メタン発酵処理装置13の概略図である。実施形態2に係る膜分離メタン発酵処理装置13は、メタン発酵槽2から膜ろ過槽3供給される被処理液にろ過膜9のスクラビングを行う気体を混合すること以外は、実施形態1に係る膜分離メタン発酵処理装置1と同じである。よって、実施形態1に係る膜分離メタン発酵処理装置1と同じ構成については、同じ符号を付し、その詳細な説明を省略する。
[Embodiment 2]
FIG. 2 is a schematic diagram of a membrane separation methane fermentation treatment apparatus 13 according to Embodiment 2 of the present invention. The membrane separation methane fermentation treatment apparatus 13 according to Embodiment 2 relates to Embodiment 1 except that a gas for scrubbing the filtration membrane 9 is mixed with the liquid to be treated supplied from the methane fermentation tank 2 to the membrane filtration tank 3. It is the same as the membrane separation methane fermentation treatment apparatus 1. Therefore, about the same structure as the membrane separation methane fermentation processing apparatus 1 which concerns on Embodiment 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.

図2に示すように、実施形態2に係る膜分離メタン発酵処理装置13は、メタン発酵槽2、膜ろ過槽3、熱交換器4を有する。   As shown in FIG. 2, the membrane separation methane fermentation treatment apparatus 13 according to Embodiment 2 includes a methane fermentation tank 2, a membrane filtration tank 3, and a heat exchanger 4.

メタン発酵槽2を循環する被処理液の一部を膜ろ過槽3へ供給する供給配管6には、循環ポンプ7及び熱交換器4が設けられる。また、供給配管6には気体供給配管14が接続され、メタン発酵槽2で発生した気体が曝気ブロア12により供給配管6に供給される。そして、加温された被処理液とスクラビング用の気体を混合した気液混合物が膜ろ過槽3の下部から供給される。   A circulation pipe 7 and a heat exchanger 4 are provided in the supply pipe 6 that supplies a part of the liquid to be treated circulating in the methane fermentation tank 2 to the membrane filtration tank 3. A gas supply pipe 14 is connected to the supply pipe 6, and the gas generated in the methane fermentation tank 2 is supplied to the supply pipe 6 by the aeration blower 12. And the gas-liquid mixture which mixed the liquid to be processed and the scrubbing gas is supplied from the lower part of the membrane filtration tank 3.

膜ろ過槽3には、ろ過膜9が設けられ、このろ過膜9の下方には、散気板15が設けられる。散気板15は供給配管6から供給された気液混合物を分散させる。気液混合物が分散板15で分散されることで、供給配管6から供給される被処理液とスクラビング用の気体がろ過膜9により均等に供給される。   The membrane filtration tank 3 is provided with a filtration membrane 9, and a diffuser plate 15 is provided below the filtration membrane 9. The diffuser plate 15 disperses the gas-liquid mixture supplied from the supply pipe 6. Since the gas-liquid mixture is dispersed by the dispersion plate 15, the liquid to be processed and the scrubbing gas supplied from the supply pipe 6 are supplied uniformly by the filtration membrane 9.

以上のように、実施形態2に係る膜分離メタン発酵処理装置13によれば、膜ろ過槽3に供給される被処理液にスクラビング用の気体を混合することで、実施形態1に係る膜分離メタン発酵処理装置1の効果に加えて、膜ろ過槽3内の攪拌が十分に行われるとともに、ろ過膜9面を流通する膜面流速を確保することができる。   As described above, according to the membrane separation methane fermentation treatment apparatus 13 according to the second embodiment, the scrubbing gas is mixed with the liquid to be treated supplied to the membrane filtration tank 3, thereby performing the membrane separation according to the first embodiment. In addition to the effect of the methane fermentation treatment apparatus 1, the membrane filtration tank 3 is sufficiently stirred, and the membrane surface flow velocity that circulates through the surface of the filtration membrane 9 can be secured.

[実施形態3]
図3は、本発明の実施形態3に係る膜分離メタン発酵処理装置16の概略図である。実施形態3に係る膜分離メタン発酵処理装置16は、供給配管6から膜ろ過槽3に供給される気液混合物が加温後に膜ろ過槽3に供給されること以外は、実施形態2に係る膜分離メタン発酵処理装置13と同じである。よって、実施形態2に係る膜分離メタン発酵処理装置13と同じ構成については、同じ符号を付し、その詳細な説明を省略する。
[Embodiment 3]
FIG. 3 is a schematic view of a membrane separation methane fermentation treatment apparatus 16 according to Embodiment 3 of the present invention. The membrane separation methane fermentation treatment apparatus 16 according to Embodiment 3 is according to Embodiment 2 except that the gas-liquid mixture supplied from the supply pipe 6 to the membrane filtration tank 3 is supplied to the membrane filtration tank 3 after heating. This is the same as the membrane separation methane fermentation treatment apparatus 13. Therefore, about the same structure as the membrane separation methane fermentation processing apparatus 13 which concerns on Embodiment 2, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.

図3に示すように、実施形態3に係る膜分離メタン発酵処理装置16は、メタン発酵槽2、膜ろ過槽3、熱交換器4を有する。   As shown in FIG. 3, the membrane separation methane fermentation treatment apparatus 16 according to the third embodiment includes a methane fermentation tank 2, a membrane filtration tank 3, and a heat exchanger 4.

メタン発酵槽2を循環する被処理液の一部を膜ろ過槽3へ供給する供給配管6には気体供給配管14が接続され、メタン発酵槽2で発生した気体が曝気ブロア12により供給配管6に供給される。また、供給配管6には、循環ポンプ7及び熱交換器4が設けられる。この熱交換器4は、気体供給配管14が接続部される接続部(混合点)より下流に設けられる。   A gas supply pipe 14 is connected to the supply pipe 6 for supplying a part of the liquid to be treated circulating in the methane fermentation tank 2 to the membrane filtration tank 3, and the gas generated in the methane fermentation tank 2 is supplied by the aeration blower 12 to the supply pipe 6. To be supplied. The supply pipe 6 is provided with a circulation pump 7 and a heat exchanger 4. The heat exchanger 4 is provided downstream from a connection portion (mixing point) to which the gas supply pipe 14 is connected.

つまり、供給配管6の接続部でメタン発酵槽2から膜ろ過槽3に供給される被処理液とスクラビング用の気体が混合され、この気液混合物が熱交換器4で加温された後、膜ろ過槽3の下部から供給される。   That is, after the liquid to be processed and the scrubbing gas supplied from the methane fermentation tank 2 to the membrane filtration tank 3 are mixed at the connection portion of the supply pipe 6 and this gas-liquid mixture is heated in the heat exchanger 4, It is supplied from the lower part of the membrane filtration tank 3.

膜ろ過槽3には、ろ過膜9が設けられ、このろ過膜9の下方には、散気板15が設けられる。散気板15は供給配管6から供給された気液混合物を分散させ、被処理液とスクラビング用の気体がろ過膜9に均等に供給される。   The membrane filtration tank 3 is provided with a filtration membrane 9, and a diffuser plate 15 is provided below the filtration membrane 9. The diffuser plate 15 disperses the gas-liquid mixture supplied from the supply pipe 6, and the liquid to be processed and the scrubbing gas are supplied uniformly to the filtration membrane 9.

以上のように、実施形態3に係る膜分離メタン発酵処理装置16によれば、熱交換器4により温度制御された気液混合物が膜ろ過槽3に供給されるので、被処理液とスクラビング用の気体との温度差の影響を受けず膜ろ過槽3に所定の温度に制御された気液混合物を供給することができる。その結果、実施形態2に係る膜分離メタン発酵処理装置13の効果に加えて、安定したろ過操作を行うことができる。   As described above, according to the membrane separation methane fermentation treatment apparatus 16 according to the third embodiment, since the gas-liquid mixture whose temperature is controlled by the heat exchanger 4 is supplied to the membrane filtration tank 3, the liquid to be treated and the scrubbing The gas-liquid mixture controlled to a predetermined temperature can be supplied to the membrane filtration tank 3 without being affected by the temperature difference from the other gas. As a result, in addition to the effect of the membrane separation methane fermentation treatment apparatus 13 according to the second embodiment, a stable filtration operation can be performed.

[参考例]
発明者らは、図4に示す参考例に係る膜分離メタン発酵処理装置17で実下水処理場の消化汚泥を用いた膜ろ過試験を行い、被処理液の液温とセラミック平膜23の膜差圧との関係について検討した。
[Reference example]
The inventors conducted a membrane filtration test using digested sludge from an actual sewage treatment plant using the membrane separation methane fermentation treatment apparatus 17 according to the reference example shown in FIG. 4, and the liquid temperature of the liquid to be treated and the membrane of the ceramic flat membrane 23. The relationship with differential pressure was examined.

膜分離メタン発酵処理装置17は、原液槽18と、膜ろ過槽19と、ろ過水槽20とを有する。   The membrane separation methane fermentation treatment apparatus 17 includes a stock solution tank 18, a membrane filtration tank 19, and a filtered water tank 20.

原液槽18の被処理液には、調温コントローラにより制御されるクーラとヒータを浸漬し、被処理液の温度が20℃(または40℃)となるように温度制御を行った。原液槽18の被処理液を原液供給ポンプ21で膜ろ過槽19へ4.5〜1.0m/dで供給し、膜ろ過槽19からのオーバーフローは、返送配管22を通して原液槽18へ返流した。   A cooler and a heater controlled by a temperature controller were immersed in the liquid to be processed in the stock solution tank 18, and the temperature was controlled so that the temperature of the liquid to be processed was 20 ° C. (or 40 ° C.). The liquid to be treated in the stock solution tank 18 is supplied to the membrane filtration tank 19 at 4.5 to 1.0 m / d by the stock solution supply pump 21, and overflow from the membrane filtration tank 19 is returned to the stock solution tank 18 through the return pipe 22. did.

膜ろ過槽19は、アクリル製であり、幅100mm×奥行50mm×高さ500mm(有効容積2.5L)のものを用いた。膜ろ過槽19の被処理液に浸漬してセラミック平膜23を設け、セラミック平膜23の下方にスクラビング用のエアの散気を行う散気管24を設けた。エアポンプ25で散気管24にエアを供給してセラミック平膜23のスクラビングを行い、セラミック平膜23をろ過吸引ポンプ26により吸引し、ろ過流速0.3〜1.0m/dで被処理液のろ過を実施した。セラミック平膜23の膜面積は、0.036m2であり、その仕様を表1に示す。 The membrane filtration tank 19 was made of acrylic, and used one having a width of 100 mm, a depth of 50 mm, and a height of 500 mm (effective volume 2.5 L). A ceramic flat membrane 23 was provided by immersing in the liquid to be treated in the membrane filtration tank 19, and a diffuser tube 24 for aeration of scrubbing air was provided below the ceramic flat membrane 23. The air pump 25 supplies air to the diffuser tube 24 to scrub the ceramic flat membrane 23, the ceramic flat membrane 23 is sucked by the filtration suction pump 26, and the liquid to be treated is filtered at a filtration flow rate of 0.3 to 1.0 m / d. Filtration was performed. The film area of the ceramic flat film 23 is 0.036 m 2 , and its specifications are shown in Table 1.

Figure 0006327306
Figure 0006327306

セラミック平膜23の膜差圧は、圧力計PI(長野計器株式会社製、型式GC61−174)で測定し、セラミック平膜23のろ過流量は、流量計FI(株式会社キーエンス製、型式FD−SS02A)で計測した。   The differential pressure of the ceramic flat membrane 23 is measured with a pressure gauge PI (manufactured by Nagano Keiki Co., Ltd., model GC61-174), and the filtration flow rate of the ceramic flat membrane 23 is measured by a flow meter FI (manufactured by Keyence Corporation, model FD- SS02A).

試験に用いた消化汚泥は、都市下水を処理する下水処理場の消化槽の出口から採取し、目開き2mmのスリットを通過させて夾雑物を除去したものを供試汚泥として、原液槽18に供給した。供試汚泥の性状を表2に示す。また、原液槽18から膜ろ過槽19に供給される被処理液及び、セラミック平膜23でろ過されたろ液(ろ過水槽20のろ液)の性状を表3に示す。   Digested sludge used for the test was collected from the digestion tank outlet of the sewage treatment plant that treats municipal sewage, passed through a slit with a mesh opening of 2 mm to remove impurities, and used as the test sludge in the stock solution tank 18. Supplied. Table 2 shows the properties of the test sludge. Table 3 shows the properties of the liquid to be treated supplied from the stock solution tank 18 to the membrane filtration tank 19 and the filtrate filtered through the ceramic flat membrane 23 (filtrate of the filtered water tank 20).

Figure 0006327306
Figure 0006327306

Figure 0006327306
Figure 0006327306

表2及び表3の項目における記号は、それぞれ、COD:化学的酸素要求量、BOD:生物化学的酸素要求量、T−N:全窒素量、T−P:全リン量、TS:全固形物量、VS:焼却減量である。   Symbols in the items of Table 2 and Table 3 are respectively COD: chemical oxygen demand, BOD: biochemical oxygen demand, TN: total nitrogen content, TP: total phosphorus content, TS: total solid Quantity, VS: Incineration loss.

セラミック平膜23におけるろ過処理は、原液供給ポンプ21を動作させて被処理液を膜ろ過槽19に供給し、エアポンプ25で散気管24にエアを供給してセラミック平膜23のスクラビング(25〜100m/d)を行いながら、ろ過吸引ポンプ26を動作させて行った。ろ過処理を10分行う毎に1分間セラミック平膜23の逆洗浄工程を行った。逆洗浄工程は、動作時の状態から、ろ過吸引ポンプ26を停止し、返送ポンプ27で、ろ過水槽20のろ液をセラミック平膜23に返液(0.3〜1.0m/d)して行った。   In the filtration process in the ceramic flat membrane 23, the raw liquid supply pump 21 is operated to supply the liquid to be processed to the membrane filtration tank 19, and the air pump 25 supplies air to the diffuser tube 24 to scrub the ceramic flat membrane 23 (25 to 25). 100 m / d), the filtration suction pump 26 was operated. Every time the filtration treatment was performed for 10 minutes, the back washing process of the ceramic flat membrane 23 was performed for 1 minute. In the back washing process, the filtration suction pump 26 is stopped from the state at the time of operation, and the return pump 27 returns the filtrate in the filtered water tank 20 to the ceramic flat membrane 23 (0.3 to 1.0 m / d). I went.

図5は、原液槽18の温度を20℃に設定した場合のろ過処理時間に対するセラミック平膜23の膜差圧及び膜ろ過槽19の被処理液の温度の関係を示す特性図である。また、図6は、原液槽18の温度を40℃に設定した場合のろ過処理時間に対するセラミック平膜23の膜差圧及び膜ろ過槽19の被処理液の温度の関係を示す特性図である。なお、図5、6では、周期的にセラミック平膜23の膜差圧が低下しているが、これは、セラミック平膜23の逆洗浄を行った後の膜差圧である。   FIG. 5 is a characteristic diagram showing the relationship between the pressure difference of the ceramic flat membrane 23 and the temperature of the liquid to be treated in the membrane filtration tank 19 with respect to the filtration time when the temperature of the stock solution tank 18 is set to 20 ° C. FIG. 6 is a characteristic diagram showing the relationship between the membrane differential pressure of the ceramic flat membrane 23 and the temperature of the liquid to be treated in the membrane filtration tank 19 with respect to the filtration time when the temperature of the stock solution tank 18 is set to 40 ° C. . In FIGS. 5 and 6, the film differential pressure of the ceramic flat film 23 periodically decreases. This is the film differential pressure after the ceramic flat film 23 is back-washed.

図5に示すように、原液槽18の温度を20℃に設定した場合、セラミック平膜23の膜差圧は、18kPaから徐々に増加し、最終的(ろ過操作継続時間約240分間)には87kPaまで上昇した。そして、ろ過処理工程−逆洗浄工程周期の11分間で、セラミック平膜23の膜差圧の変動が激しく不安定であった。また、膜ろ過槽19の温度は、原液槽18の制御温度と同じ20℃付近であった。   As shown in FIG. 5, when the temperature of the stock solution tank 18 is set to 20 ° C., the membrane differential pressure of the ceramic flat membrane 23 gradually increases from 18 kPa, and finally (filtration operation duration time is about 240 minutes). It rose to 87 kPa. And the fluctuation | variation of the film | membrane differential pressure | voltage of the ceramic flat film 23 was violently unstable in 11 minutes of the filtration process process-backwashing process period. Moreover, the temperature of the membrane filtration tank 19 was around 20 ° C., which is the same as the control temperature of the stock solution tank 18.

このように、実際のメタン発酵槽の中温発酵温度(37℃)より低い温度にて、ろ過処理を行うと、セラミック平膜23の逆洗浄工程の影響が大きく、逆洗浄工程を行うことでセラミック平膜23の膜差圧が大きく減少する。   Thus, when the filtration treatment is performed at a temperature lower than the medium temperature fermentation temperature (37 ° C.) of the actual methane fermenter, the influence of the back washing process of the ceramic flat membrane 23 is large, and the ceramic is obtained by performing the back washing process. The membrane differential pressure of the flat membrane 23 is greatly reduced.

一方、図6に示すように、原液槽18の温度を40℃に設定した場合、セラミック平膜23の膜差圧は4kPaでほぼ一定(ろ過操作継続時間約240分間)で安定していた。そして、膜ろ過槽19の温度は、原液槽18の制御温度とほぼ同じ40℃であった。   On the other hand, as shown in FIG. 6, when the temperature of the stock solution tank 18 was set to 40 ° C., the membrane differential pressure of the ceramic flat membrane 23 was 4 kPa and was almost constant (filtering operation duration time was about 240 minutes) and was stable. And the temperature of the membrane filtration tank 19 was 40 degreeC substantially the same as the control temperature of the stock solution tank 18. FIG.

このように、実際のメタン発酵槽の中温発酵温度(37℃)と同じ程度の温度でろ過処理を行うと、ろ過処理によるセラミック平膜23の膜差圧の上昇が少なく、逆洗浄工程を行うことでセラミック平膜23の膜差圧はほとんど変化しない。   Thus, when the filtration process is performed at the same temperature as the intermediate temperature fermentation temperature (37 ° C.) of the actual methane fermenter, the increase in the membrane differential pressure of the ceramic flat membrane 23 due to the filtration process is small, and the back washing process is performed. Thus, the film differential pressure of the ceramic flat film 23 hardly changes.

図5、図6に示したように、膜ろ過槽19内の温度差により、ろ過処理継続時間に対するセラミック平膜23の膜差圧の挙動が大きく異なる。   As shown in FIG. 5 and FIG. 6, the behavior of the membrane differential pressure of the ceramic flat membrane 23 with respect to the filtration processing duration varies greatly depending on the temperature difference in the membrane filtration tank 19.

膜差圧の挙動に影響を及ぼす因子として、被処理液の粘度の影響が想定される。一般的に液体の粘度は温度が上昇すると低下する。つまり、膜ろ過槽19内の温度が高いほど、被処理液の粘度が低下して、レイノルズ数の値も高くなる。しかし、レイノルズ数の値の変化は、セラミック平膜23の膜差圧の変化に対して、それほど顕著な数値の差とならなかった。   As a factor affecting the behavior of the membrane differential pressure, the effect of the viscosity of the liquid to be treated is assumed. In general, the viscosity of a liquid decreases with increasing temperature. That is, the higher the temperature in the membrane filtration tank 19, the lower the viscosity of the liquid to be treated and the higher the Reynolds number. However, the change in the value of the Reynolds number was not so significant as to the change in the film differential pressure of the ceramic flat film 23.

表2に示すように、下水汚泥等には、多量のリンが含まれていることが知られており、下水や下水汚泥からのリンの回収・活用の研究開発が進められている。また、表3に示すように、ろ過水槽20のろ液でも高い濃度のリンが含まれている。ゆえに、セラミック平膜23の透水性を低下させる要因は、被処理液中に含まれるリン成分によるセラミック平膜23の閉塞であるものと考えられる。   As shown in Table 2, it is known that sewage sludge and the like contain a large amount of phosphorus, and research and development of recovery and utilization of phosphorus from sewage and sewage sludge is being promoted. Moreover, as shown in Table 3, the filtrate in the filtered water tank 20 also contains high concentration of phosphorus. Therefore, it is thought that the factor which reduces the water permeability of the ceramic flat membrane 23 is the blockage of the ceramic flat membrane 23 by the phosphorus component contained in a to-be-processed liquid.

よって、リン成分などの無機成分の析出によるセラミック平膜23の閉塞を低減することで、セラミック平膜23の膜差圧の上昇を抑制することができるものと考えられる。   Therefore, it is considered that the increase in the film differential pressure of the ceramic flat film 23 can be suppressed by reducing the blockage of the ceramic flat film 23 due to the precipitation of inorganic components such as phosphorus components.

これら無機成分は、薬剤を用いて除去することができる。しかし、リン成分などの無機成分を薬剤で除去する場合、付着した無機成分の結晶を除去することはできても、セラミック平膜23に無機成分の結晶が付着すること抑制することはできない。セラミック平膜23に付着した無機成分は、結晶成長の核となり無機成分の結晶の成長速度を増加させ、セラミック平膜23の閉塞を促進する。   These inorganic components can be removed using a drug. However, when an inorganic component such as a phosphorus component is removed with a chemical, the attached inorganic component crystals can be removed, but the inorganic component crystals cannot be prevented from adhering to the ceramic flat film 23. The inorganic component adhering to the ceramic flat film 23 becomes the nucleus of crystal growth, increases the growth rate of crystals of the inorganic component, and promotes the blockage of the ceramic flat film 23.

これに対して、本発明の実施形態に係る膜分離メタン発酵処理装置1,13,16は、ろ過膜9に供給される被処理液を加温しているので、ろ過膜9のろ過に供される被処理液中の無機成分の溶解度が高くなる。その結果、ろ過膜9に無機成分が析出することを抑制するだけでなく、ろ過膜9に無機成分の結晶が付着することを抑制することができる。つまり、ろ過膜9の膜差圧の増加をより低減することができる。   On the other hand, since the membrane separation methane fermentation processing apparatus 1,13,16 which concerns on embodiment of this invention is heating the to-be-processed liquid supplied to the filtration membrane 9, it uses for filtration of the filtration membrane 9. The solubility of the inorganic component in the liquid to be treated is increased. As a result, not only the inorganic component can be prevented from depositing on the filtration membrane 9 but also the inorganic component crystals can be prevented from adhering to the filtration membrane 9. That is, an increase in the membrane differential pressure of the filtration membrane 9 can be further reduced.

1,13,16,17…膜分離メタン発酵処理装置
2,18…メタン発酵槽
3,19…膜ろ過槽
4…熱交換器(加温手段)
5…配管
6…供給配管
7…循環ポンプ
8,22…返送配管
9…ろ過膜
10…散気装置
11…排出配管
12…曝気ブロア
14…気体供給配管
15…散気板
20…ろ過水槽
21…原液供給ポンプ
23…セラミック平膜
24…散気管
25…エアポンプ
26…ろ過吸引ポンプ
27…返送ポンプ
DESCRIPTION OF SYMBOLS 1,13,16,17 ... Membrane separation methane fermentation processing apparatus 2,18 ... Methane fermentation tank 3,19 ... Membrane filtration tank 4 ... Heat exchanger (heating means)
DESCRIPTION OF SYMBOLS 5 ... Pipe 6 ... Supply pipe 7 ... Circulation pumps 8, 22 ... Return pipe 9 ... Filtration membrane 10 ... Air diffuser 11 ... Exhaust pipe 12 ... Aeration blower 14 ... Gas supply pipe 15 ... Diffuser plate 20 ... Filtration water tank 21 ... Stock solution supply pump 23 ... Ceramic flat membrane 24 ... Aeration pipe 25 ... Air pump 26 ... Filtering suction pump 27 ... Return pump

Claims (8)

メタン発酵を行うメタン発酵槽と、
当該メタン発酵槽の被処理液が供給され、この被処理液からろ液を分離する膜ろ過槽と、
前記膜ろ過槽に供給される被処理液を前記メタン発酵槽の設定温度よりも高い温度に加温する加温手段と、
前記膜ろ過槽に設けられたろ過膜の洗浄を行う洗浄手段と、
前記膜ろ過槽の被処理液を前記メタン発酵槽に返送する返送配管と、
を有し、
前記加温手段は、前記膜ろ過槽の前段において前記メタン発酵槽の温度制御に必要な熱量の全部を供給して、前記メタン発酵槽の温度を制御する
ことを特徴とする膜分離メタン発酵処理装置。
A methane fermentation tank for methane fermentation,
A membrane filtration tank that is supplied with the liquid to be treated of the methane fermentation tank and separates the filtrate from the liquid to be treated;
A heating means for heating the liquid to be treated supplied to the membrane filtration tank to a temperature higher than the set temperature of the methane fermentation tank;
A cleaning means for cleaning the filtration membrane provided in the membrane filtration tank;
A return pipe for returning the liquid to be treated of the membrane filtration tank to the methane fermentation tank;
Have
Membrane separation methane fermentation process characterized in that the heating means supplies all of the amount of heat necessary for temperature control of the methane fermentation tank before the membrane filtration tank to control the temperature of the methane fermentation tank apparatus.
前記加温手段で加温された被処理液は、前記膜ろ過槽から排出される被処理液と混合されることなく、前記膜ろ過槽に供給される
ことを特徴とする請求項1に記載の膜分離メタン発酵処理装置。
The to-be-processed liquid heated by the said heating means is supplied to the said membrane filtration tank, without being mixed with the to-be-processed liquid discharged | emitted from the said membrane filtration tank. Membrane separation methane fermentation treatment equipment.
前記洗浄手段は、前記ろ過膜をスクラビングするための曝気ブロアを有し、前記ろ過膜をスクラビングする気体は、前記膜ろ過槽に供給される被処理液に混合され、この気液混合物が前記膜ろ過槽に供給される
ことを特徴とする請求項1または請求項2に記載の膜分離メタン発酵処理装置。
The cleaning means has an aeration blower for scrubbing the filtration membrane, and a gas for scrubbing the filtration membrane is mixed with a liquid to be treated supplied to the membrane filtration tank, and this gas-liquid mixture is mixed with the membrane. The membrane separation methane fermentation treatment apparatus according to claim 1, wherein the apparatus is supplied to a filtration tank.
前記加温手段は、前記気液混合物を加温して前記膜ろ過槽に供給する
ことを特徴とする請求項3に記載の膜分離メタン発酵処理装置。
The membrane separation methane fermentation treatment apparatus according to claim 3, wherein the heating means warms the gas-liquid mixture and supplies the mixture to the membrane filtration tank.
前記洗浄手段は、前記曝気ブロアに加えて、さらに前記ろ過膜の逆洗浄を行う逆洗浄手段を有する
ことを特徴とする請求項3または請求項4に記載の膜分離メタン発酵処理装置。
The membrane-separated methane fermentation treatment apparatus according to claim 3 or 4, wherein the cleaning unit further includes a reverse cleaning unit that performs reverse cleaning of the filtration membrane in addition to the aeration blower.
メタン発酵を行うメタン発酵槽と、当該メタン発酵槽の被処理液が供給され、この被処理液からろ液を分離する膜ろ過槽と、前記膜ろ過槽に供給される被処理液を加温する加温手段と、前記膜ろ過槽に設けられたろ過膜の洗浄を行う洗浄手段と、前記膜ろ過槽の被処理液を前記メタン発酵槽に返送する返送配管と、を有する膜分離メタン発酵処理装置による膜分離メタン発酵処理方法であって、
前記加温手段から、前記膜ろ過槽の前段において前記メタン発酵槽の温度制御に必要な熱量の全部を供給し、前記膜ろ過槽に供給される被処理液を前記メタン発酵槽の設定温度よりも高い温度に加温して、前記メタン発酵槽の温度を制御する
ことを特徴とする膜分離メタン発酵処理方法。
A methane fermentation tank for performing methane fermentation, a treatment liquid of the methane fermentation tank, a membrane filtration tank for separating the filtrate from the treatment liquid, and a treatment liquid supplied to the membrane filtration tank are heated. Membrane separation methane fermentation having heating means for cleaning, cleaning means for cleaning the filtration membrane provided in the membrane filtration tank, and a return pipe for returning the liquid to be treated of the membrane filtration tank to the methane fermentation tank A membrane separation methane fermentation treatment method using a treatment device,
From the heating means, supply all the amount of heat necessary for temperature control of the methane fermentation tank in the previous stage of the membrane filtration tank, and the liquid to be treated supplied to the membrane filtration tank from the set temperature of the methane fermentation tank A membrane-separated methane fermentation treatment method, wherein the temperature of the methane fermentation tank is controlled by heating to a higher temperature.
前記加温手段で加温された被処理液を、前記膜ろ過槽から排出される被処理液と混合することなく、前記膜ろ過槽に供給する
ことを特徴とする請求項6に記載の膜分離メタン発酵処理方法。
7. The membrane according to claim 6, wherein the liquid to be treated heated by the heating means is supplied to the membrane filtration tank without being mixed with the liquid to be treated discharged from the membrane filtration tank. Separate methane fermentation treatment method.
前記膜ろ過槽は、所定の周期で、ろ過処理工程と前記膜ろ過槽に設けられたろ過膜の逆洗浄を行う逆洗浄工程とを繰り返す
ことを特徴とする請求項6または請求項7に記載の膜分離メタン発酵処理方法。
The said membrane filtration tank repeats the filtration process process and the backwashing process which performs the backwashing of the filtration membrane provided in the said membrane filtration tank with a predetermined period, The Claim 6 or Claim 7 characterized by the above-mentioned. Membrane separation methane fermentation treatment method.
JP2016178109A 2016-09-13 2016-09-13 Membrane separation methane fermentation treatment apparatus and membrane separation methane fermentation treatment method Active JP6327306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178109A JP6327306B2 (en) 2016-09-13 2016-09-13 Membrane separation methane fermentation treatment apparatus and membrane separation methane fermentation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178109A JP6327306B2 (en) 2016-09-13 2016-09-13 Membrane separation methane fermentation treatment apparatus and membrane separation methane fermentation treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012176568A Division JP2014034003A (en) 2012-08-09 2012-08-09 Membrane separation methane fermentation apparatus and membrane separation methane fermentation method

Publications (2)

Publication Number Publication Date
JP2016203176A JP2016203176A (en) 2016-12-08
JP6327306B2 true JP6327306B2 (en) 2018-05-23

Family

ID=57486444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178109A Active JP6327306B2 (en) 2016-09-13 2016-09-13 Membrane separation methane fermentation treatment apparatus and membrane separation methane fermentation treatment method

Country Status (1)

Country Link
JP (1) JP6327306B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6971639B2 (en) * 2017-06-05 2021-11-24 株式会社東芝 Sludge treatment system and sludge treatment method
JP7421496B2 (en) * 2018-12-21 2024-01-24 国立大学法人高知大学 Wastewater treatment equipment and wastewater treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160194A (en) * 1986-01-07 1987-07-16 Ebara Res Co Ltd Methane fermentation of organic aqueous solution
JP5439344B2 (en) * 2010-11-16 2014-03-12 株式会社東芝 Membrane separation biological treatment equipment

Also Published As

Publication number Publication date
JP2016203176A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP2014034003A (en) Membrane separation methane fermentation apparatus and membrane separation methane fermentation method
JP5308028B2 (en) Cleaning method for air diffuser
JP2014188442A (en) Operation method of organic wastewater treatment apparatus and organic wastewater treatment apparatus
JP2016175006A (en) Water purifying apparatus
JP6327306B2 (en) Membrane separation methane fermentation treatment apparatus and membrane separation methane fermentation treatment method
CN109607965A (en) A kind of system and method for sewage treatment plant tail water advanced nitrogen dephosphorization
JP2012086149A (en) Membrane filtering method
JP7021461B2 (en) Water treatment method, water treatment equipment and control method of addition of cake layer forming substance to raw water
JP2011078889A (en) Filter member cleaning system
JP2007196126A (en) Membrane filtration system
KR102380257B1 (en) The water treatment system for fish breeding by applying membrane filtration process
JP5448287B2 (en) Membrane separation activated sludge treatment equipment
CN205115196U (en) Circulative cooling discharge water recycle device
CN205099464U (en) Sewage treatment device based on MBR membrane is used
KR100920177B1 (en) Membrane separation system for the advanced treatment of nitrogen and phosphorus in wastewater and heating and cooling system with such system
JP2010046561A (en) Sludge dehydrating and concentrating method and apparatus thereof
CN209397022U (en) A kind of high-concentration organic wastewater concentration processing unit
JP6467886B2 (en) Waste water treatment method and waste water treatment system
JP2008221190A (en) Wastewater treatment apparatus
JP5627322B2 (en) Waste water treatment system and waste water treatment method
JP4335193B2 (en) Method and apparatus for treating organic wastewater
JP2007136413A (en) Water cleaning device
JP5016827B2 (en) Membrane separation activated sludge treatment method
JP2014008474A (en) Pond water circulation hybrid purification method and pond water circulation hybrid purification system
JP6264095B2 (en) Membrane module cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150