JP2007136413A - Water cleaning device - Google Patents

Water cleaning device Download PDF

Info

Publication number
JP2007136413A
JP2007136413A JP2005336885A JP2005336885A JP2007136413A JP 2007136413 A JP2007136413 A JP 2007136413A JP 2005336885 A JP2005336885 A JP 2005336885A JP 2005336885 A JP2005336885 A JP 2005336885A JP 2007136413 A JP2007136413 A JP 2007136413A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
supply tank
osmosis membrane
recovery rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005336885A
Other languages
Japanese (ja)
Other versions
JP5048239B2 (en
Inventor
Hiroshi Ikeda
比呂志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARFEID KK
Original Assignee
MARFEID KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARFEID KK filed Critical MARFEID KK
Priority to JP2005336885A priority Critical patent/JP5048239B2/en
Publication of JP2007136413A publication Critical patent/JP2007136413A/en
Application granted granted Critical
Publication of JP5048239B2 publication Critical patent/JP5048239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water cleaning device which can improve a system recovery rate by circulating concentrate through a system without directly discharging it, and easily set/control the system recovery rate. <P>SOLUTION: In the water cleaning device for introducing raw water to be cleaned, supplied from a feed water tank, into a reverse osmosis membrane module to subject the raw water to membrane separation treatment, and supplying permeate to the outside of the system as cleaned water, concentrate separated from the cleaned water by the reverse osmosis membrane module is returned to the feed water tank. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、逆浸透膜を利用した浄水装置であり、更に詳細には、濃縮水をそのまま排水せずに系内を循環させることによりシステム回収率を向上させるとともに、かかるシステム回収率を容易に設定・管理することができる浄水装置に関するものである。   The present invention is a water purification apparatus using a reverse osmosis membrane. More specifically, the system recovery rate is improved by circulating the system without draining the concentrated water as it is, and the system recovery rate can be easily achieved. The present invention relates to a water purifier that can be set and managed.

従来より、水道水や地下水等の飲料水に含まれている不純物や、微生物を除去し、きれいな水を得るために、逆浸透膜を利用した浄水器が提供されている。   Conventionally, a water purifier using a reverse osmosis membrane has been provided in order to remove impurities and microorganisms contained in drinking water such as tap water and groundwater and obtain clean water.

かかる一般的な逆浸透膜において、原水から浄水が透過される割合(以下、「膜回収率」という)は8〜20%が平均値とされている。この値は、逆浸透膜の構造上、それ以上、の膜回収率とした場合に、薄膜に無機物等の汚れが付着し目詰まりを起こす可能性がある数値を膜メーカーが設定・推奨しているものであり、これ以下の膜回収率であれば、逆浸透膜に損傷を与えずに効率的に純水を透過することが可能であるとされているものである。   In such a general reverse osmosis membrane, the ratio of purified water permeating from raw water (hereinafter referred to as “membrane recovery rate”) is 8 to 20% as an average value. This value is set and recommended by the membrane manufacturer when the membrane recovery rate is higher than the reverse osmosis membrane structure. If the membrane recovery rate is less than this, it is said that pure water can be efficiently permeated without damaging the reverse osmosis membrane.

しかしながら、従来から一般に使用されている浄水器において、上のメーカーが推奨している膜回収率を厳密に守ると、原水のうち80%程度が浄水を透過した後の濃縮水となって排水されることとなり、結果的に、原水のうち20%程度しか浄水として活用されないため、非常に非経済的である。このため、メーカー推奨の値を上回る高い回収率で逆浸透膜を使用した浄水器も提供されているが、このような浄水器では、膜寿命が短くなるという問題があった。   However, if the membrane recovery rate recommended by the above manufacturer is strictly observed in the conventional water purifiers, about 80% of the raw water is drained as concentrated water after passing through the purified water. As a result, only about 20% of the raw water is used as purified water, which is very uneconomical. For this reason, although the water purifier which uses a reverse osmosis membrane with the high recovery rate which exceeds the value of a manufacturer recommendation is also provided, there existed a problem that a membrane lifetime became short in such a water purifier.

そこで、かかる膜回収率を規定値以上に上げることなく、浄水装置全体の回収効率を向上し、浄水装置全体としての、原水から生成される浄水の総量の割合(以下、「システム回収率」という)を向上させることが求められており、既にこのような装置がいくつか知られている。   Therefore, without increasing the membrane recovery rate above the specified value, the recovery efficiency of the entire water purification device is improved, and the ratio of the total amount of purified water generated from raw water as the entire water purification device (hereinafter referred to as “system recovery rate”) ) And a number of such devices are already known.

具体的には、最も簡単にシステム回収率を向上させる手段として、逆浸透膜モジュールの数を増やして直列配置する単段式システム(図1参照)が知られている。また、逆浸透膜モジュールの数に制約がある場合は、逆浸透膜モジュールより排出された濃縮水の一部を供給水に還元する再循環環状流路システムなどが知られている(図2参照)。   Specifically, a single-stage system (see FIG. 1) in which the number of reverse osmosis membrane modules is increased and arranged in series is known as the simplest means for improving the system recovery rate. In addition, when the number of reverse osmosis membrane modules is limited, a recirculation annular channel system that reduces a part of the concentrated water discharged from the reverse osmosis membrane module to supply water is known (see FIG. 2). ).

しかしながら、従来の単段式システム浄水器の場合、複数の逆浸透膜モジュールを使用する必要があり、再循環環状流路システム浄水器の場合は、逆浸透膜モジュールに循環に必要な水量を供給するためにもポンプの容量を大きくする必要があった。したがって装置も大がかりなものになり、結果的にコスト高となってしまうと共に、一般家庭用としては利用が難しいという欠点を有するものであった。   However, in the case of a conventional single-stage system water purifier, it is necessary to use a plurality of reverse osmosis membrane modules. In the case of a recirculation annular channel system water purifier, the amount of water required for circulation is supplied to the reverse osmosis membrane module. In order to do so, it was necessary to increase the capacity of the pump. Therefore, the apparatus becomes large-scale, resulting in high costs and disadvantages that it is difficult to use for general household use.

ところで、このシステム回収率は経済性(コスト)を左右することはもちろん、結果物として得られる浄水の水質や、逆浸透膜の寿命を決定する要因として、非常に重要なファクターとなっている。   By the way, this system recovery rate is very important as a factor that determines the quality of the purified water obtained as a result and the life of the reverse osmosis membrane, as well as the economy (cost).

しかしながら、従来の単段式システム浄水器や、再循環環状流路システム浄水器などでは、かかるシステム回収率を前もって設定しておくことは非常に困難であった。   However, in the conventional single-stage system water purifier, recirculation annular channel system water purifier, and the like, it is very difficult to set such a system recovery rate in advance.

すなわち、システム回収率を決定する要因としては、ポンプの容量、膜回収率などの内的要因とともに、供給水(水道水)の水質、水圧、温度などの外的要因も考慮に入れなければならず、更に、このうち、外的要因は常に安定しているとは限らないので、安定したシステム回収率を維持するためには、様々な要素を考慮し、適切な回収率を保つよう、管理しなければならなかった。   In other words, factors that determine the system recovery rate must take into account internal factors such as pump capacity and membrane recovery rate as well as external factors such as water quality (tap water), water pressure, and temperature. In addition, among these factors, external factors are not always stable. Therefore, in order to maintain a stable system recovery rate, various factors must be considered and management should be performed to maintain an appropriate recovery rate. Had to do.

さらに、従来の再循環環状流路システム浄水器の場合、逆浸透膜モジュールから排出された濃縮水の一部のみ系内に還送され、その他の濃縮水は系外に排出されるため、これら濃縮水の流量の調整という新たな変動要因が加わり、よって、システム回収率を設定・管理するためには、上記要因に加え、濃縮水の流量バランスを制御しなければならなかった。   Furthermore, in the case of the conventional recirculation annular channel system water purifier, only a part of the concentrated water discharged from the reverse osmosis membrane module is returned into the system, and the other concentrated water is discharged out of the system. In order to set and manage the system recovery rate, in addition to the above factors, the flow rate balance of the concentrated water had to be controlled.

特開2005−279614号JP-A-2005-279614

そこで本発明は、従来の浄水装置のかかる欠点を克服し、濃縮水をそのまま排水せずに系内を循環させることによりシステム回収率を向上させるとともに、かかるシステム回収率を容易に設定・管理することができる浄水装置の提供をその課題とするものである。   Therefore, the present invention overcomes such disadvantages of the conventional water purification apparatus, improves the system recovery rate by circulating the system without draining the concentrated water as it is, and easily sets and manages the system recovery rate. An object of the present invention is to provide a water purifier that can be used.

本発明は、上記のシステム回収率を向上させるという課題を解決するものであり、給水タンクから供給される浄水用原水を逆浸透膜モジュールに導入して膜分離処理し、透過水を浄水として系外に供給する浄水装置において、前記逆浸透膜モジュールで浄水と分離された濃縮水を前記給水タンクに還送することを特徴とする浄水装置である。   The present invention solves the above-mentioned problem of improving the system recovery rate, introduces raw water for purification supplied from a water supply tank into a reverse osmosis membrane module, performs membrane separation treatment, and uses permeate as purified water. In the water purification apparatus supplied to the outside, the concentrated water separated from the purified water by the reverse osmosis membrane module is returned to the water supply tank.

また本発明は、上記のシステム回収率を容易に設定・管理することができるという課題を解決するものであり、前記給水タンクからの浄水用原水の供給を、浄水用原水の量により制御することを特徴とする浄水装置である。   Further, the present invention solves the problem that the system recovery rate can be easily set and managed, and the supply of the raw water for purification from the water supply tank is controlled by the amount of the raw water for purification. It is a water purifier characterized by.

本発明の浄水装置は、逆浸透膜モジュールより排出された濃縮水を全て給水タンクに還送することにより、従来は排水として処理されていた濃縮水を、再度逆浸透膜モジュールに供給するための原水として再利用することで、システム回収率を向上することができるというものである。   The water purifier of the present invention supplies all the concentrated water discharged from the reverse osmosis membrane module to the water supply tank, thereby supplying the concentrated water that has been treated as wastewater to the reverse osmosis membrane module again. By reusing it as raw water, the system recovery rate can be improved.

更に、本発明の浄水装置は、給水タンク内からの浄水用原水の供給を浄水用原水の量により制御するので、原水から透過される浄水あるいは濃縮水の割合を容易に設定することが可能であり、よって、様々な要素を考慮することなく、システム回収率を容易に設定・管理することができるものである。   Furthermore, since the water purification apparatus of the present invention controls the supply of raw water for water purification from the water supply tank by the amount of raw water for water purification, it is possible to easily set the ratio of purified water or concentrated water permeated from the raw water. Therefore, the system recovery rate can be easily set and managed without considering various factors.

以下、本発明の浄水装置の一実施態様を、図面に基づいて具体的に説明する。なお、本発明はこれら実施態様に何ら制約されるものではない。   Hereinafter, one embodiment of the water purifier of the present invention will be specifically described with reference to the drawings. Note that the present invention is not limited to these embodiments.

図3は本実施態様に係る浄水装置の処理フローの概略を示す図面である。図中、1は給水タンクを、2は送水ポンプを、3はプレフィルターを、4は逆浸透膜モジュールを、5は流量調整バルブを、11は取水パイプを、11aは取水口を示し、更に、L1は給水ラインを、L2は還送ラインを、L3は系外供給ラインをそれぞれ示す。また、Aは取水限界線を示す。   FIG. 3 is a drawing showing an outline of the processing flow of the water purifier according to this embodiment. In the figure, 1 is a water supply tank, 2 is a water supply pump, 3 is a pre-filter, 4 is a reverse osmosis membrane module, 5 is a flow adjustment valve, 11 is a water intake pipe, 11a is a water intake, , L1 indicates a water supply line, L2 indicates a return line, and L3 indicates an external supply line. Moreover, A shows a water intake limit line.

図3に示すように、本実施態様に係る浄水装置は、給水タンク1から給水ラインL1を介して、送水ポンプ2、プレフィルター3、逆浸透膜モジュール4がそれぞれ連通されている。この逆浸透膜モジュール4は、系外供給ラインL3を介して給水口(図示せず)に接続する一方、還送ラインL2を介して、流量調整バルブ5および給水タンク1へとそれぞれ連通されている。   As shown in FIG. 3, in the water purifier according to this embodiment, the water supply pump 2, the prefilter 3, and the reverse osmosis membrane module 4 are communicated from the water supply tank 1 via the water supply line L <b> 1. The reverse osmosis membrane module 4 is connected to a water supply port (not shown) via an external supply line L3, and is connected to a flow rate adjusting valve 5 and a water supply tank 1 via a return line L2. Yes.

上記の図3に示す浄水装置による浄水製造では、まず、給水タンク1に蓄えられた原水を、送水ポンプ2により逆浸透膜モジュール4に向けて送水する。そして、逆浸透膜モジュール4の前段に設けられたプレフィルター3により前処理される。このプレフィルター3を通すことにより、原水からサビ等の約5μm以上の不溶物や、トリハロメタン、トリクロロメチレン等のハロゲン化炭素や、塩素および臭気源となる有機物が除去される。   In the purified water production by the water purification apparatus shown in FIG. 3, first, raw water stored in the water supply tank 1 is fed toward the reverse osmosis membrane module 4 by the water feed pump 2. And it pre-processes by the pre filter 3 provided in the front | former stage of the reverse osmosis membrane module 4. FIG. By passing through the prefilter 3, insoluble matter such as rust and the like such as rust, halogenated carbon such as trihalomethane and trichloromethylene, chlorine, and organic matter that becomes an odor source are removed from the raw water.

次いで、このプレフィルター3の処理水は、逆浸透膜モジュール4に送り込まれ、ここで逆浸透膜処理が行われる。この処理により、塩類、あるいは微生物、ウイルス等の0.0001μm以上の物質が除去され、不純物をほぼ含まない浄水が得られる。この逆浸透膜モジュール4に使用される逆浸透膜素材としては、酢酸セルロース系、ポリアミド系、架橋ポリアミン系、架橋ポリエーテル系、スルホン化ポリスルホン等の素材が挙げられる。また、膜のエレメント構造としては、スパイラル型、中空糸型、チューブ型などが挙げられる。本発明において、逆浸透膜モジュールとしては、何れの種類の膜を使用してもよく、例えば、市販の膜を適宜選択して使用することが出来る。   Next, the treated water of the prefilter 3 is sent to the reverse osmosis membrane module 4 where the reverse osmosis membrane treatment is performed. By this treatment, 0.0001 μm or more of substances such as salts or microorganisms and viruses are removed, and purified water substantially free of impurities is obtained. Examples of the reverse osmosis membrane material used in the reverse osmosis membrane module 4 include materials such as cellulose acetate, polyamide, crosslinked polyamine, crosslinked polyether, and sulfonated polysulfone. Examples of the membrane element structure include a spiral type, a hollow fiber type, and a tube type. In the present invention, any kind of membrane may be used as the reverse osmosis membrane module. For example, a commercially available membrane can be appropriately selected and used.

かかる前処理および逆浸透膜処理により得られた浄水は、逆浸透膜モジュール4より系外供給ラインL3を介して給水口(図示せず)に送られ、前記給水口からコップ、ボトル等の容器へと供給、利用される。一方、逆浸透膜モジュール4において、浄水と分離された濃縮水は、逆浸透膜モジュール4より還送ラインL2を介し、流量調整バルブ5を経て給水タンク1へ還送される。この給水タンク1へ還送された濃縮水は、再び、浄水用の原水として、上記と同様にしてプレフィルター3および逆浸透モジュール4で前処理および逆浸透膜処理が行われ、その一部は浄水として系外に供給され、残りは濃縮水として再度給水タンク1へ還送される。   The purified water obtained by the pretreatment and the reverse osmosis membrane treatment is sent from the reverse osmosis membrane module 4 to the water supply port (not shown) via the external supply line L3, and from the water supply port, containers such as cups and bottles Supplied and used. On the other hand, the concentrated water separated from the purified water in the reverse osmosis membrane module 4 is returned to the water supply tank 1 from the reverse osmosis membrane module 4 via the return line L2 and the flow rate adjustment valve 5. The concentrated water returned to the water supply tank 1 is again subjected to pretreatment and reverse osmosis membrane treatment in the prefilter 3 and the reverse osmosis module 4 in the same manner as described above as raw water for purification. The purified water is supplied out of the system, and the remainder is returned to the water supply tank 1 again as concentrated water.

上記の一連のサイクルを繰り返す結果、給水タンク1内の残量は、自然蒸発などを考慮しなければ、(浄水装置運転前における原水の総量)−(浄水として系外に供給された総量)になる。本実施態様では、かかる給水タンク1内の残量が、取水パイプ11の取水口11a部分に接する水位である取水限界線Aよりも低い水位に達すると、取水口11aからの取水ができなくなるため、その時点において給水タンク1からの取水が中止される。すなわち、給水タンク内からの浄水用原水の供給を浄水用原水の量により制御することが可能となるのである。   As a result of repeating the above series of cycles, the remaining amount in the water supply tank 1 is (total amount of raw water before operation of the water purification apparatus) − (total amount supplied outside the system as purified water) unless natural evaporation or the like is considered. Become. In the present embodiment, when the remaining amount in the water supply tank 1 reaches a water level lower than the intake limit line A, which is the water level in contact with the intake port 11a portion of the intake pipe 11, water intake from the intake port 11a cannot be performed. At that time, water intake from the water supply tank 1 is stopped. That is, it becomes possible to control the supply of the raw water for water purification from the water supply tank by the amount of the raw water for water purification.

制御の基準となる取水限界線Aは、例えば、取水口11aの位置(高さ)の設定により決めることができ、かかる位置(高さ)設定は、単純に、取水パイプ11の給水タンク1に対する取り付け位置を上下すればよい。このような方法の他、給水タンク1内外に水位センサーを設けて、給水タンク1内の残量が任意の水位になった時点で、給水タンク1からの取水が中止されるようにしてもよい。   The intake limit line A, which is a reference for control, can be determined, for example, by setting the position (height) of the intake port 11a, and such position (height) setting is simply relative to the water supply tank 1 of the intake pipe 11. What is necessary is just to raise and lower an attachment position. In addition to such a method, a water level sensor may be provided inside and outside the water supply tank 1, and water intake from the water supply tank 1 may be stopped when the remaining amount in the water supply tank 1 reaches an arbitrary water level. .

給水タンク1からの取水が中止された後、該給水タンク内に残存した浄水用原水を系外に排出し、該タンクに新たに浄水用原水を補給する。この処理は、手動で行っても良いし、あるいは自動化することも可能である。但し、自動化する場合は、該給水タンク内に残存した浄水用原水を系外に自動排出した後、原水を自動供給するために、あらかじめ、給水タンク1に排水管および給水管を接続しておく必要がある。   After the water intake from the water supply tank 1 is stopped, the raw water for purification remaining in the water supply tank is discharged out of the system, and the raw water for purification is newly supplied to the tank. This process may be performed manually or may be automated. However, in the case of automation, a drain pipe and a water supply pipe are connected in advance to the water supply tank 1 in order to automatically supply the raw water after automatically discharging the raw water for purification remaining in the water supply tank out of the system. There is a need.

本発明の浄水装置においては、濃縮水は系外に排出されることなく給水タンク1へ還送され、再度浄水用原水となるので、給水タンク1内の原水の全溶解性物質(Total Dissolved Solids)濃度(以下、「TDS濃度」という)は、原水より透過された浄水が、系外に供給されるにつれて高くなる。従って、原水のTDS濃度が極端に高まって、膜のつまりおよび、浄水の水質に影響が出る前に、給水タンク1からの取水および浄水処理を中止する必要があり、よって、システム回収率の設定・管理は重要となるのである。   In the water purifier of the present invention, the concentrated water is returned to the water supply tank 1 without being discharged out of the system and becomes raw water for water purification again, so that the total dissolved substances (Total Dissolved Solids) in the water supply tank 1 ) Concentration (hereinafter referred to as “TDS concentration”) becomes higher as purified water permeated from raw water is supplied out of the system. Therefore, before the TDS concentration of the raw water is extremely increased and the clogging of the membrane and the quality of the purified water are affected, it is necessary to stop the water intake from the water supply tank 1 and the water purification treatment.・ Management is important.

次に、本発明の浄水装置における、システム回収率の設定方法について説明する。まず、システム回収率を50%と設定する場合は、取水口11aの位置(高さ)の設定を、給水タンク1満量時のちょうど半分の水位に該当する位置に設定すればよい。このように設定することにより、給水タンク1内の原水のうち、総量の50%に相当する量が浄水として系外に供給された時点で、給水タンク1からの取水が中止および浄水処理が中止される。その結果、原水と浄水の割合が5:5となり、システム回収率50%を達成することができる。   Next, the system recovery rate setting method in the water purifier of the present invention will be described. First, when the system recovery rate is set to 50%, the position (height) of the water intake port 11a may be set to a position corresponding to exactly half the water level when the water tank 1 is full. By setting in this way, when the amount corresponding to 50% of the total amount of raw water in the water supply tank 1 is supplied outside the system as purified water, the water intake from the water supply tank 1 is stopped and the water purification treatment is stopped. Is done. As a result, the ratio of raw water to purified water is 5: 5, and a system recovery rate of 50% can be achieved.

システム回収率の設定を変更するには、取水口11aの位置(高さ)の設定を変更するだけでよい。すなわち、システム回収率を70%と設定する場合は、取水口11aの位置(高さ)の設定を、給水タンク1満量時のちょうど3割の水位に該当する位置に設定すればよい。かかる方法によれば、ポンプの容量、膜回収率、供給水(水道水)の水質、水圧、温度等の、様々な要素を考慮することなく容易にシステム回収率を設定・変更することが可能となる。   In order to change the setting of the system recovery rate, it is only necessary to change the setting of the position (height) of the intake port 11a. That is, when the system recovery rate is set to 70%, the position (height) of the intake port 11a may be set to a position corresponding to exactly 30% of the water level when the water supply tank 1 is full. According to this method, it is possible to easily set and change the system recovery rate without considering various factors such as pump capacity, membrane recovery rate, water quality of supply water (tap water), water pressure, temperature, etc. It becomes.

なお、本発明の浄水装置において、膜回収率や浄水の生産効率(時間あたりの生成量)は、流量調整バルブ5を調整して、濃縮水の流量を調整することにより可能である。しかしながら、本発明の浄水装置は閉じられた循環系であるので、かかる膜回収率や浄水の生産効率の変更により、システム回収率は影響をうけないことはいうまでもない。   In the water purifier of the present invention, the membrane recovery rate and the purified water production efficiency (the amount generated per hour) can be adjusted by adjusting the flow rate adjusting valve 5 to adjust the flow rate of the concentrated water. However, since the water purifier of the present invention is a closed circulation system, it goes without saying that the system recovery rate is not affected by the change in the membrane recovery rate or the purified water production efficiency.

試 験 例:
図1に示す構成の浄水装置を用い、これを連続して運転した時の、浄水および濃縮水のTDS濃度と、原水の全溶解性物質のなかで逆浸透膜を通過しないものの百分率(以下、「除去率」という)を測定した。
Test example:
When the water purification apparatus having the structure shown in FIG. 1 is used and continuously operated, the TDS concentration of purified water and concentrated water and the percentage of the total soluble substances of raw water that do not pass through the reverse osmosis membrane (hereinafter, "Removal rate") was measured.

この測定は、給水タンクの水量が20リットルの状態で開始し、原水のTDS濃度が112.8ppm、原水温度19℃、膜回収率16.2%、システム回収率75%という条件のもと行われ、浄水が1リットル分離生成される(給水タンク内の水量が1リットル減少する)ごとに、浄水および濃縮水のTDS濃度(表中では、「R.O.TDS」および「排水TDS」と表記する)と除去率を測定した。この結果を表1に示す。   This measurement starts with a water tank volume of 20 liters, under conditions of TDS concentration of raw water of 112.8 ppm, raw water temperature of 19 ° C., membrane recovery rate of 16.2%, and system recovery rate of 75%. Every time 1 liter of purified water is separated and produced (the amount of water in the water supply tank is reduced by 1 liter), the TDS concentration of purified water and concentrated water (in the table, “R.O.TDS” and “drainage TDS” And the removal rate was measured. The results are shown in Table 1.

Figure 2007136413
Figure 2007136413

この試験結果から、タンク内の水量が減少するにつれ、原水のTDS濃度が高くなっていくことが見て取れるが、除去率はほぼ98〜99%の範囲を維持しており、よって浄水のTDS濃度も多少高くはなるものの、当初の原水TDS(112.8ppm)の2.2ないし5.7%の範囲のTDS濃度に収まっており、浄水機能は問題がないことが明らかとなった。   From this test result, it can be seen that as the amount of water in the tank decreases, the TDS concentration of the raw water increases, but the removal rate is maintained in the range of approximately 98-99%, so the TDS concentration of purified water is also Although it is a little higher, the TDS concentration is within the range of 2.2 to 5.7% of the original raw water TDS (112.8 ppm), and it became clear that there is no problem with the water purification function.

以上説明した本発明の浄水装置は、種々の特徴を有するものである。すなわち、システム中に設けられた給水タンクの存在により、TDSの上昇傾向が緩やかであり、かつ、定期的に原水を交換するため、TDS自体も低下するので、RO膜に対する負担が少ないものである。また、給水タンクの存在により、従来のRO膜を使用する浄水器では必須とされていた水温変動時の排水量や、圧力調整が不要となり、システム回収率を固定することが可能となる。   The water purifier of the present invention described above has various features. That is, due to the presence of the water supply tank provided in the system, the TDS rises gradually, and since the raw water is periodically exchanged, the TDS itself also decreases, so the burden on the RO membrane is small. . In addition, the presence of the water supply tank eliminates the need to adjust the amount of drainage and pressure when the water temperature fluctuates, which is essential for a conventional water purifier using an RO membrane, and makes it possible to fix the system recovery rate.

以上説明したように、本発明に係る浄水装置はシステム回収率を向上させるとともに、かかるシステム回収率を容易に設定・管理することができるものであるが、通常の運転時において外部からの給水を必要としない循環システムを採用しているため、給水管を設置するのが困難な場所においても、例えば、自立式給水ステーションとして浄水を供給することが可能となる。   As described above, the water purifier according to the present invention can improve the system recovery rate and can easily set and manage the system recovery rate. Since a circulation system that is not required is adopted, it is possible to supply purified water as a self-supporting water supply station, for example, even in a place where it is difficult to install a water supply pipe.

従来の単段式システムConventional single-stage system 従来の再循環環状流路システムConventional recirculation annular channel system 本発明に係る浄水装置の処理フローの概略図Schematic of processing flow of water purification apparatus according to the present invention

符号の説明Explanation of symbols

1 … … 給水タンク
2 … … 送水ポンプ
3 … … プレフィルター
4 … … 逆浸透膜モジュール
5 … … 流量調整バルブ
11 … … 取水パイプ
11a… … 取水口
L1 … … 給水ライン
L2 … … 還送ライン
L3 … … 系外供給ライン
A … … 取水限界線
以 上
DESCRIPTION OF SYMBOLS 1 ...... Water supply tank 2 ...... Water feed pump 3 ...... Pre-filter 4 ...... Reverse osmosis membrane module 5 ...... Flow control valve 11 ...... Water intake pipe 11a ...... Water intake L1 ...... Water supply line L2 ...... Return line L3 …… Off-system supply line A…… intake limit line
more than

Claims (4)

給水タンクから供給される浄水用原水を逆浸透膜モジュールに導入して膜分離処理し、透過水を浄水として系外に供給する浄水装置において、前記逆浸透膜モジュールで浄水と分離された濃縮水を前記給水タンクに還送することを特徴とする浄水装置。   Concentrated water separated from purified water by the reverse osmosis membrane module in a water purification apparatus that introduces raw water for purification supplied from a water supply tank into a reverse osmosis membrane module, performs membrane separation treatment, and supplies permeate as purified water to the outside of the system Is returned to the water supply tank. 前記給水タンクからの浄水用原水の供給を、浄水用原水の量により制御することを特徴とする請求項1記載の浄水装置。   The water purifier according to claim 1, wherein the supply of the raw water for water purification from the water supply tank is controlled by the amount of the raw water for water purification. 浄水用原水の量による制御が、前記給水タンク中での取水口の高さを任意に設定し、該タンク内の水位が該取水口の高さを下回った時点で供給を中止することにより行うことを特徴とする請求項2記載の浄水装置。   Control by the amount of raw water for water purification is performed by arbitrarily setting the height of the water intake in the water supply tank and stopping the supply when the water level in the tank falls below the height of the water intake The water purifier according to claim 2. 前記給水タンクが、該タンク内の濃縮水を系外に自動排水し、系外より原水を自動補充する手段を設けたことを特徴とする請求項1ないし請求項3の何れかの項記載の浄水装置。
4. The water supply tank according to claim 1, further comprising means for automatically draining concentrated water in the tank out of the system and automatically replenishing raw water from outside the system. Water purification device.
JP2005336885A 2005-11-22 2005-11-22 Water purifier Active JP5048239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336885A JP5048239B2 (en) 2005-11-22 2005-11-22 Water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336885A JP5048239B2 (en) 2005-11-22 2005-11-22 Water purifier

Publications (2)

Publication Number Publication Date
JP2007136413A true JP2007136413A (en) 2007-06-07
JP5048239B2 JP5048239B2 (en) 2012-10-17

Family

ID=38199902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336885A Active JP5048239B2 (en) 2005-11-22 2005-11-22 Water purifier

Country Status (1)

Country Link
JP (1) JP5048239B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175703A1 (en) * 2015-04-30 2016-11-03 Lim Tsia Yong Device for salvaging ro water filter waste water
JP2017501421A (en) * 2014-01-09 2017-01-12 清▲華▼大学 Method and apparatus for treating radioactive wastewater
US11684892B2 (en) 2016-12-01 2023-06-27 Pentair Residential Filtration, Llc Water filtration system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584586A (en) * 1978-09-20 1980-06-25 Mitsubishi Heavy Ind Ltd Treatment of waste water
JPS59183807A (en) * 1983-04-04 1984-10-19 Asahi Chem Ind Co Ltd Membrane filtration
JPS6295189A (en) * 1985-10-23 1987-05-01 Toray Ind Inc Purified water generator
JPH07300688A (en) * 1994-04-28 1995-11-14 Hitachi Ltd Regenerating treatment device for antifreeze
JP2001252660A (en) * 2000-03-10 2001-09-18 Toray Ind Inc Fresh water generating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584586A (en) * 1978-09-20 1980-06-25 Mitsubishi Heavy Ind Ltd Treatment of waste water
JPS59183807A (en) * 1983-04-04 1984-10-19 Asahi Chem Ind Co Ltd Membrane filtration
JPS6295189A (en) * 1985-10-23 1987-05-01 Toray Ind Inc Purified water generator
JPH07300688A (en) * 1994-04-28 1995-11-14 Hitachi Ltd Regenerating treatment device for antifreeze
JP2001252660A (en) * 2000-03-10 2001-09-18 Toray Ind Inc Fresh water generating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501421A (en) * 2014-01-09 2017-01-12 清▲華▼大学 Method and apparatus for treating radioactive wastewater
WO2016175703A1 (en) * 2015-04-30 2016-11-03 Lim Tsia Yong Device for salvaging ro water filter waste water
US11684892B2 (en) 2016-12-01 2023-06-27 Pentair Residential Filtration, Llc Water filtration system and method

Also Published As

Publication number Publication date
JP5048239B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP4363703B2 (en) Fresh water generation method
JP6690197B2 (en) Method and system for treating wastewater containing organic matter
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
JP2007130523A (en) Membrane washing method for water treatment system
US20150375174A1 (en) Integrated ultrafiltration and reverse osmosis desalination systems
JP2011088053A (en) Equipment and method for desalination treatment
CN105481164A (en) Tobacco-waste-water processing technology
US20220234930A1 (en) Method for Purifying Contaminated Water
JP2010012434A (en) Structure of mbr+ro system and operation method for the system
JP5048239B2 (en) Water purifier
JP2000189963A (en) Fresh water making and production of fresh water
JP2006272218A (en) Two-stage membrane filtration system and operation method of two-stage membrane filtration system
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
TW201704157A (en) Membrane separation active sludge treatment method and membrane separation active sludge treatment system
US20020011438A1 (en) Water purification treatment apparatus with large pore size filter membrane unit
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
KR101256704B1 (en) System and Method for Filtering
WO2012057176A1 (en) Water-treatment method and desalinization method
JP6467886B2 (en) Waste water treatment method and waste water treatment system
JP7122761B2 (en) water purification system
JP2010207804A (en) Fresh water generator and fresh water generating method
CN206751574U (en) A kind of medicinal purified water processing system
JP2017042741A (en) Water purifier
JP2005254192A (en) Membrane separator and membrane separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081023

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250