JP6326598B2 - Fluid application system and fluid application method - Google Patents

Fluid application system and fluid application method Download PDF

Info

Publication number
JP6326598B2
JP6326598B2 JP2014012582A JP2014012582A JP6326598B2 JP 6326598 B2 JP6326598 B2 JP 6326598B2 JP 2014012582 A JP2014012582 A JP 2014012582A JP 2014012582 A JP2014012582 A JP 2014012582A JP 6326598 B2 JP6326598 B2 JP 6326598B2
Authority
JP
Japan
Prior art keywords
fluid
application
coating
amount
gradually
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014012582A
Other languages
Japanese (ja)
Other versions
JP2015139725A (en
Inventor
史昭 権藤
史昭 権藤
修一 東岸
修一 東岸
教晃 榊原
教晃 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heishin Ltd
Original Assignee
Heishin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heishin Ltd filed Critical Heishin Ltd
Priority to JP2014012582A priority Critical patent/JP6326598B2/en
Publication of JP2015139725A publication Critical patent/JP2015139725A/en
Application granted granted Critical
Publication of JP6326598B2 publication Critical patent/JP6326598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ワークに流体を吐出する塗布装置と、その塗布装置とワークとを相対的に移動させる移動手段とを備えた流体塗布システムに関する。また、塗布装置と、移動手段とを用いた流体塗布方法に関する。さらに詳しくは、閉ループ状の塗布において、繋ぎ目部(始点と終点とが接続する部分)の塗布量と定常部(繋ぎ目部を除いた部分)の塗布量との差を解消できるとともに、繋ぎ目部のエアの巻き込みを低減できる流体塗布システムおよび流体塗布方法に関する。   The present invention relates to a fluid application system including a coating device that discharges fluid to a workpiece, and a moving unit that relatively moves the coating device and the workpiece. The present invention also relates to a fluid application method using an application device and a moving means. More specifically, in closed-loop application, the difference between the application amount of the joint portion (the portion where the start point and the end point are connected) and the application amount of the steady portion (the portion excluding the joint portion) can be eliminated, and the connection The present invention relates to a fluid application system and a fluid application method that can reduce entrainment of air in eyes.

なお、別に記載がない限り、本明細書における用語の定義は次のとおりである。
「塗布量」:単位長さあたりの塗布量(g/mm)を意味する。
Unless otherwise stated, the definitions of terms in this specification are as follows.
“Coating amount”: means a coating amount (g / mm) per unit length.

自動車や電子部材、太陽電池等の製造工程で部品(ワーク)に接着剤やシール剤、絶縁剤、放熱剤、焼付き防止剤等の流体を塗布する場合がある。このワークに流体を塗布する際に流体塗布システムを用いることができる。流体塗布システムは、ワークに流体を吐出する塗布装置(例えばディスペンサー)と、その塗布装置とワークとを相対的に移動させる移動手段(例えば多関節ロボット)とを備える構成を採用できる。   Fluids such as adhesives, sealants, insulating agents, heat dissipation agents, and anti-seizure agents may be applied to parts (workpieces) in the manufacturing process of automobiles, electronic members, solar cells, and the like. A fluid application system can be used when applying fluid to the workpiece. The fluid application system can employ a configuration including an application device (for example, a dispenser) that discharges fluid to a workpiece and a moving unit (for example, an articulated robot) that relatively moves the application device and the workpiece.

塗布装置は、駆動手段(例えばモーター)と、その駆動手段の出力に応じて単位時間当たりの吐出量が変化する流体供給手段(例えばポンプやアクチュエータ)と、その流体供給手段から供給された流体をワークに吐出するノズルとを備える構成を採用できる。このような塗布装置と、移動手段とを用いてワークに流体を塗布する際に、始点側の塗布流体に終点側の塗布流体を重ね合わせて接続する(つなぐ)ことにより、閉ループ状に塗布する場合がある。   The coating apparatus includes a drive unit (for example, a motor), a fluid supply unit (for example, a pump or an actuator) whose discharge amount changes per unit time according to the output of the drive unit, and a fluid supplied from the fluid supply unit. A configuration including a nozzle for discharging the work can be employed. When applying a fluid to a workpiece using such an application device and a moving means, the application fluid on the end point side is overlapped and connected (connected) to the application fluid on the start point side to apply in a closed loop. There is a case.

図1は、閉ループ状に塗布された流体(塗布流体)の一例を模式的に示す上面図である。同図には、矩形状のワーク51と、そのワーク51の外周に沿うように塗布された塗布流体52とを示す。また、塗布の始点Sと終点Fとを矢印で指し示し、塗布方向を破線矢印で示す。閉ループ状の塗布では、同図に示すように、塗布の始点Sと塗布の終点Fとに距離を設ける。これにより、始点側の塗布流体に終点側の塗布流体を重ね合わせ、塗布流体を接続する。   FIG. 1 is a top view schematically showing an example of a fluid (application fluid) applied in a closed loop shape. In the figure, a rectangular workpiece 51 and a coating fluid 52 applied along the outer periphery of the workpiece 51 are shown. In addition, the application start point S and the end point F are indicated by arrows, and the application direction is indicated by broken line arrows. In the closed loop application, as shown in the figure, a distance is provided between the application start point S and the application end point F. Thereby, the application fluid on the end point side is superimposed on the application fluid on the start point side, and the application fluid is connected.

閉ループ状の塗布は、ワークの外周面に行われる場合もある。図2は、円柱状のワークの外周面に閉ループ状に塗布された流体の一例を模式的に示す斜視図である。同図には、円柱状のワーク54と、そのワーク54の外周面に円環状に塗布された流体52とを示す。閉ループ状の塗布をワークの外周面に行う場合も、始点側の塗布流体に終点側の塗布流体を重ね合わせることにより、塗布流体が接続される。   The closed loop application may be performed on the outer peripheral surface of the workpiece. FIG. 2 is a perspective view schematically showing an example of a fluid applied in a closed loop shape on the outer peripheral surface of a cylindrical workpiece. The figure shows a cylindrical workpiece 54 and a fluid 52 applied in an annular shape on the outer peripheral surface of the workpiece 54. Even when the closed loop coating is performed on the outer peripheral surface of the workpiece, the coating fluid is connected by superimposing the coating fluid on the end point side on the coating fluid on the start point side.

このような閉ループ状の塗布では、繋ぎ目部の塗布量が多くなる場合や、エア(空気)の巻き込みが発生する場合がある。図3は、従来の塗布流体の繋ぎ目部を示す側面図である。同図には、ワーク51と、塗布流体52とを示し、塗布方向を破線矢印で示す。同図に示すように、始点の塗布流体52cに終点の塗布流体52dが重なり合うことにより、繋ぎ目部52bが形成される。その結果、繋ぎ目部52bの塗布量が、定常部52aの塗布量と比べて多くなる場合がある。   In such a closed-loop application, the application amount of the joint portion may increase or air entrainment may occur. FIG. 3 is a side view showing a joint portion of a conventional coating fluid. In the same figure, the workpiece | work 51 and the application fluid 52 are shown, and an application | coating direction is shown with a broken-line arrow. As shown in the figure, a joint portion 52b is formed by overlapping an application fluid 52d at the end point with the application fluid 52c at the start point. As a result, the application amount of the joint portion 52b may be larger than the application amount of the steady portion 52a.

また、塗布する流体が高粘度の流体や速硬化性の流体、速乾性の流体である場合、始点の塗布流体52cの下側にエアが残留する。この残留エアが終点の塗布流体52dによって閉じ込められることにより、同図に示すように、繋ぎ目部52bにエアの巻き込み53が発生する。   In addition, when the fluid to be applied is a high-viscosity fluid, a fast-curing fluid, or a quick-drying fluid, air remains below the starting application fluid 52c. When this residual air is confined by the coating fluid 52d at the end point, air entrainment 53 occurs in the joint portion 52b as shown in FIG.

閉ループ状の塗布に関し、従来から種々の提案がなされており、例えば特許文献1がある。特許文献1では、ワークに塗布された流体の始点(塗布開始点)の位置を検出し、この検出した始点位置に合わせるように、流体の終点(塗布終了点)の位置を調整することが提案されている。始点位置の検出は、カメラによりワークを撮像し、塗布流体の始点位置が視野中心に対してなす距離を検出することにより行う。   Various proposals have heretofore been made regarding closed-loop application, for example, Patent Document 1. In Patent Document 1, it is proposed to detect the position of the start point (application start point) of the fluid applied to the workpiece and adjust the position of the end point (application end point) of the fluid so as to match the detected start point position. Has been. The detection of the start point position is performed by imaging the workpiece with a camera and detecting the distance formed by the start point position of the coating fluid with respect to the center of the visual field.

この特許文献1では、塗布装置として、供給される気体の圧力の増減によって流体の吐出を開始させたり、吐出を終了させたりするエア式ディスペンサーが用いられる。塗布開始時は、塗布ヘッドのノズルが移動開始すると同時に、塗布ヘッドの容器に気体の正の圧力が印加されてノズルからペーストが吐出開始する。その結果、始点が自然と先細り状になるとしている。   In Patent Document 1, an air-type dispenser is used as a coating device that starts or stops discharging fluid by increasing or decreasing the pressure of a supplied gas. At the start of application, the nozzle of the application head starts moving, and simultaneously, a positive gas pressure is applied to the container of the application head, and discharge of the paste starts from the nozzle. As a result, the starting point is supposed to be tapered naturally.

一方、塗布終了時は、塗布ヘッドのノズルが移動停止すると同時に、塗布ヘッドの容器に気体の正の圧力を印加するのが停止されるとともに気体の負の圧力が印加される。これにより、ノズルからのペーストの吐出が停止され、その結果、終点も自然と先細り状になるとしている。   On the other hand, at the end of coating, the nozzle of the coating head stops moving, and at the same time, the application of the positive gas pressure to the container of the coating head is stopped and the negative gas pressure is applied. As a result, the discharge of the paste from the nozzle is stopped, and as a result, the end point is naturally tapered.

このように塗布開始点および塗布終了点がいずれも先細り状の場合、前述のような塗布終点位置の調整を行うことにより、塗布流体の始点と終点を適度に重ねれば、結果として塗布流体の繋ぎ目部の幅と定常部の幅(塗布量)が均等になるとしている。   In this way, when both the application start point and the application end point are tapered, by adjusting the application end point position as described above, if the start point and end point of the application fluid are appropriately overlapped, the result of the application fluid The width of the joint portion and the width of the steady portion (application amount) are assumed to be uniform.

図4は、特許文献1の塗布方法における制御パターン例を示す模式図であり、同図(a)は経過時間と移動速度との関係、同図(b)は経過時間と単位時間当たりの吐出量との関係を示す。同図に示す制御パターンは、前記図1に示す閉ループ状の塗布の制御パターンであって、上述の特許文献1の塗布方法における塗布開始時および塗布終了時の制御パターンである。同図には、塗布の始点Sおよび終点Fを通過するタイミングをそれぞれ矢印で指し示す。   FIG. 4 is a schematic diagram showing an example of a control pattern in the coating method of Patent Document 1. FIG. 4A shows the relationship between the elapsed time and the moving speed, and FIG. 4B shows the elapsed time and the discharge per unit time. The relationship with quantity is shown. The control pattern shown in the figure is the control pattern for the closed-loop application shown in FIG. 1, and is the control pattern at the start of application and at the end of application in the application method of Patent Document 1 described above. In the figure, the timings of passing through the application start point S and end point F are indicated by arrows.

また、この特許文献1で用いられるエア式ディスペンサーでは、塗布終了時に流体の吸込を行った際に、ノズル内に引き込まれる流体の量が毎回異なり、始点位置のバラツキにつながるとされている。このため、特許文献1で提案されるような終点の調整を行うことが有効であるとされている。   Further, in the air-type dispenser used in Patent Document 1, when the fluid is sucked at the end of application, the amount of the fluid drawn into the nozzle is different every time, leading to variations in the starting point position. For this reason, it is considered effective to adjust the end point as proposed in Patent Document 1.

特許第5180925号Patent No. 5180925

前述の通り、塗布装置と移動手段とを用い、流体を閉ループ状に塗布すると、繋ぎ目部の塗布量が多くなる場合や、エア(空気)の巻き込みが発生する場合がある。そこで、前述の特許文献1では、塗布流体の始点位置を検出し、塗布の終点位置を調整することが提案されている。また、吐出開始に伴って自然に発生する先細りと吐出終了に伴って自然に発生する先細りを利用すれば、結果的に塗布流体の繋ぎ目部の幅と定常部の幅を均等にできるとしている。   As described above, when the fluid is applied in a closed loop using the application device and the moving unit, the amount of application at the joint portion may increase or air may be involved. Therefore, in the above-described Patent Document 1, it is proposed to detect the start point position of the application fluid and adjust the application end point position. In addition, if the taper that naturally occurs with the start of discharge and the taper that naturally occurs with the end of discharge are used, the width of the joint portion and the width of the steady portion of the applied fluid can be made uniform as a result. .

しかしながら、特許文献1で提案されているように塗布流体の始点位置を検出して塗布の終点位置を調整すること、すなわち、塗布の始点と塗布の終点との距離を一定にすることにより、塗布流体の繋ぎ目部の幅(塗布量)と定常部の幅(塗布量)の差を低減するには限界がある。これは、塗布開始時および塗布終了時の経過時間と吐出量の関係が、実際には前記図4(b)と相違することに起因する。   However, as proposed in Patent Document 1, the start point position of the application fluid is detected and the end point position of the application is adjusted, that is, the distance between the start point of the application and the end point of the application is made constant. There is a limit to reducing the difference between the width of the fluid joint (application amount) and the width of the stationary part (application amount). This is because the relationship between the elapsed time at the start of application and at the end of application and the discharge amount is actually different from that shown in FIG.

より具体的には、塗布開始時および塗布終了時の経過時間と吐出量の関係は、流体の特性(例えば粘性)や流体供給手段(ポンプ)の特性に影響を受け、その曲線形状や勾配、要する時間が変化する。また、流体や流体供給手段(ポンプ)によっては、塗布開始時や塗布終了時の経過時間と吐出量の関係が塗布する都度変化し、その曲線形状や勾配、要する時間がばらつく場合がある。このため、塗布開始時および塗布終了時の先細りの形状は、いずれも様々な形態が存在する。   More specifically, the relationship between the elapsed time at the start of application and at the end of application and the discharge amount is influenced by the characteristics of the fluid (for example, viscosity) and the characteristics of the fluid supply means (pump), and the curve shape and gradient, The time required changes. Also, depending on the fluid and fluid supply means (pump), the relationship between the elapsed time at the start of application or at the end of application and the discharge amount changes each time application is performed, and the curve shape, gradient, and required time may vary. For this reason, there are various forms of the tapered shape at the start of application and at the end of application.

図5は、特許文献1の塗布方法における実際の吐出量の第1パターン例を示す模式図であり、同図(a)は経過時間と単位時間当たりの吐出量との関係、同図(b)は塗布流体の繋ぎ目部を示す。同図に示す吐出量のパターン例は、前記図4に示す制御パターン例における、実際の経過時間と吐出量との関係および塗布流体の繋ぎ目部の形状を示す。同図(a)に示すように、塗布開始時に所望の吐出量となるのに要する時間と、塗布終了時に吐出が終了するのに要する時間とは、異なる場合がある。この場合、塗布流体の始点位置を検出し、塗布の終点位置を調整しても、同図(b)に示すように繋ぎ目部の塗布量が定常部の塗布量より少なくなる。   FIG. 5 is a schematic diagram showing a first pattern example of an actual discharge amount in the coating method of Patent Document 1. FIG. 5A shows the relationship between the elapsed time and the discharge amount per unit time, and FIG. ) Indicates a joint portion of the applied fluid. The discharge amount pattern example shown in the figure shows the relationship between the actual elapsed time and the discharge amount and the shape of the joint portion of the applied fluid in the control pattern example shown in FIG. As shown in FIG. 6A, the time required to reach a desired discharge amount at the start of application may differ from the time required to end discharge at the end of application. In this case, even if the start point position of the application fluid is detected and the end point position of the application is adjusted, the application amount of the joint portion is smaller than the application amount of the steady portion as shown in FIG.

図6は、特許文献1の塗布方法における実際の吐出量の第2パターン例を示す模式図であり、同図(a)は経過時間と単位時間当たりの吐出量との関係、同図(b)は塗布流体の繋ぎ目部を示す。同図に示す吐出量のパターン例は、前記図4に示す制御パターン例における、実際の経過時間と吐出量との関係および塗布流体の繋ぎ目部の形状を示す。同図(a)に示すように、塗布開始時に所望の吐出量となるのに要する時間と、塗布終了時に吐出が終了するのに要する時間とが、いずれも、長くなる場合がある。この場合、塗布流体の始点位置を検出し、塗布の終点位置を調整しても、先細りの長さに対して重なり合う長さが短くなり、同図(b)に示すように繋ぎ目部の塗布量が定常部の塗布量より少なくなる。   FIG. 6 is a schematic diagram showing a second pattern example of the actual discharge amount in the coating method of Patent Document 1. FIG. 6A shows the relationship between the elapsed time and the discharge amount per unit time, and FIG. ) Indicates a joint portion of the applied fluid. The discharge amount pattern example shown in the figure shows the relationship between the actual elapsed time and the discharge amount and the shape of the joint portion of the applied fluid in the control pattern example shown in FIG. As shown in FIG. 5A, both the time required to reach a desired discharge amount at the start of application and the time required to end discharge at the end of application may be long. In this case, even if the start point position of the application fluid is detected and the end point position of the application is adjusted, the overlapping length becomes shorter with respect to the taper length, and as shown in FIG. The amount is less than the coating amount of the stationary part.

したがって、繋ぎ目部の塗布量と定常部の塗布量との差をさらに低減することが望まれている。厳密な精度が要求される場合、特許文献1に提案される塗布方法は、特に不十分である。ここで、厳密な精度が要求される場合とは、例えば、自動車のエンジンの製造において、FIPG(Formed In Place Gasket)方式またはCIPG(Cured In Place Gasket)方式によってシール剤を塗布する場合が該当する。   Therefore, it is desired to further reduce the difference between the application amount of the joint portion and the application amount of the steady portion. When strict accuracy is required, the coating method proposed in Patent Document 1 is particularly insufficient. Here, the case where strict accuracy is required corresponds to, for example, a case where a sealing agent is applied by a FIPG (Formed In Place Gasket) method or a CIPG (Cured In Place Gasket) method in manufacturing an automobile engine. .

また、塗布する流体が高粘度の流体や速硬化性の流体、速乾性の流体である場合、始点の塗布流体52cの下側にエアが残留する。この残留エアが終点の塗布流体52dによって閉じ込められることにより、同図に示すように、繋ぎ目部52bにエアの巻き込み53が発生する。   In addition, when the fluid to be applied is a high-viscosity fluid, a fast-curing fluid, or a quick-drying fluid, air remains below the starting application fluid 52c. When this residual air is confined by the coating fluid 52d at the end point, air entrainment 53 occurs in the joint portion 52b as shown in FIG.

さらに、特許文献1に提案される方法では、カメラによって画像を撮像し、その画像を解析して始点を検出するとともに距離を算出する必要がある。このため、カメラおよび画像解析装置が必須となり、装置構成が煩雑となるとともに設備コストが増大する。   Furthermore, in the method proposed in Patent Document 1, it is necessary to capture an image with a camera, analyze the image to detect the start point, and calculate the distance. For this reason, a camera and an image analysis apparatus are indispensable, the apparatus configuration becomes complicated, and the equipment cost increases.

本発明は、このような状況に鑑みてなされたものであり、閉ループ状の塗布において、繋ぎ目部の塗布量と定常部の塗布量との差を解消できるとともに、繋ぎ目部のエアの巻き込みを低減できる流体塗布システムおよび流体塗布方法を提供することを目的とする。   The present invention has been made in view of such a situation, and in closed-loop application, the difference between the application amount of the joint portion and the application amount of the steady portion can be eliminated, and air entrainment of the joint portion is involved. It is an object of the present invention to provide a fluid application system and a fluid application method capable of reducing the above.

本発明者らは、上記課題を解決するために種々の試験を行い、鋭意検討を重ねた結果、閉ループ状の塗布において、塗布開始過程でモーターの回転数を操作等することにより、塗布量を意図的に漸次増加させることを想到した。この塗布開始過程で塗布量を漸次増加させるのに対応するように、塗布終了過程でモーターの回転数を操作等することにより、塗布量を意図的に漸次減少させることを想到した。これにより、繋ぎ目部の塗布量と定常部の塗布量との差を解消できるとともに、繋ぎ目部のエアの巻き込みを低減できる。   In order to solve the above problems, the present inventors conducted various tests, and as a result of intensive studies, in the closed-loop application, by operating the number of rotations of the motor in the application start process, the application amount is reduced. It was conceived to increase gradually intentionally. In order to cope with the gradual increase in the coating amount in the coating start process, it was conceived that the coating amount was intentionally decreased by manipulating the rotational speed of the motor in the coating end process. Thereby, while being able to eliminate the difference between the application amount of the joint portion and the application amount of the steady portion, it is possible to reduce the entrainment of air at the joint portion.

本発明は、上記の知見に基づいて完成したものであり、下記(1)〜(6)の流体塗布システム、下記(7)の流体塗布方法を要旨としている。   The present invention has been completed on the basis of the above-described findings, and has the gist of the fluid application system (1) to (6) below and the fluid application method (7) below.

(1)ワークに流体を吐出する塗布装置と、その塗布装置と前記ワークとを相対的に移動させる移動手段と、前記塗布装置および前記移動手段を制御する制御手段とを備える流体塗布システムであって、前記塗布装置が、駆動手段と、その駆動手段の出力に応じて単位時間当たりの吐出量が変化する流体供給手段とを備え、前記制御手段が、閉ループ状の塗布において、塗布開始過程で単位長さ当たりの塗布量を漸次増加させるとともに、塗布終了過程で単位長さ当たりの塗布量を漸次減少させる制御手段である、流体塗布システム。 (1) A fluid application system comprising: a coating device that discharges fluid to a workpiece; a moving unit that relatively moves the coating device and the workpiece; and a control unit that controls the coating device and the moving unit. The coating apparatus includes a driving unit and a fluid supply unit that changes a discharge amount per unit time in accordance with an output of the driving unit. A fluid application system, which is a control unit that gradually increases the application amount per unit length and gradually decreases the application amount per unit length in the process of application completion.

(2)上記(1)に記載の流体塗布システムであって、前記制御手段が、塗布開始過程で前記塗布量を漸次増加させるとともに、塗布終了過程で前記塗布量を漸次減少させることにより、前記ワークに塗布された流体において、繋ぎ目部の単位長さ当たりの塗布量を定常部の単位長さ当たりの塗布量と同等にする、流体塗布システム。 (2) In the fluid application system according to (1), the control unit gradually increases the application amount in an application start process and gradually decreases the application amount in an application end process. In a fluid applied to a workpiece, a fluid application system in which an application amount per unit length of a joint portion is made equal to an application amount per unit length of a stationary portion.

(3)上記(1)または(2)に記載の流体塗布システムであって、前記制御手段が、前記塗布量を漸次増加させる際に、前記駆動手段の出力を調整して前記吐出量を変動させることによって前記塗布量を漸次増加させるとともに、前記塗布量を漸次減少させる際に、前記駆動手段の出力を調整して前記吐出量を変動させることによって前記塗布量を漸次減少させる、流体塗布システム。 (3) In the fluid application system according to (1) or (2), when the control unit gradually increases the application amount, the output of the driving unit is adjusted to vary the discharge amount. The fluid application system gradually increases the application amount by reducing the application amount and gradually decreases the application amount by adjusting the output of the driving means and changing the discharge amount when the application amount is gradually decreased. .

(4)上記(1)または(2)に記載の流体塗布システムであって、前記制御手段が、前記塗布量を漸次増加させる際に、前記移動手段を制御して前記塗布装置と前記ワークとの相対的な移動速度を変動させることによって前記塗布量を漸次増加させるとともに、前記塗布量を漸次減少させる際に、前記移動手段を制御して前記移動速度を変動させることによって前記塗布量を漸次減少させる、流体塗布システム。 (4) In the fluid application system according to (1) or (2), when the control unit gradually increases the application amount, the control unit controls the moving unit to control the application device and the workpiece. The application amount is gradually increased by changing the relative movement speed of the ink, and the application amount is gradually changed by controlling the moving means to change the movement speed when the application amount is gradually reduced. Reduce fluid application system.

(5)上記(1)〜(4)のいずれかに記載の流体塗布システムであって、前記制御手段が、前記塗布量を漸次増加させる際に、前記塗布量を略線形状に増加させ、前記塗布量を漸次減少させる際に、前記塗布量を略線形状に減少させる、流体塗布システム。 (5) In the fluid application system according to any one of (1) to (4), when the control unit gradually increases the application amount, the application amount is increased to a substantially linear shape, A fluid application system that reduces the application amount to a substantially linear shape when gradually reducing the application amount.

(6)上記(1)〜(5)のいずれかに記載の流体塗布システムであって、前記流体供給手段が、前記駆動手段の回転数に応じて単位時間当たりの吐出量が変化する回転容積式のポンプである、流体塗布システム。 (6) The fluid application system according to any one of (1) to (5), wherein the fluid supply unit has a rotation volume in which a discharge amount per unit time varies depending on a rotation speed of the drive unit. A fluid application system, which is a pump of the type.

(7)上記(6)に記載の流体塗布システムであって、前記回転容積式のポンプが、一軸偏心ねじポンプである、流体塗布システム。 (7) The fluid application system according to (6), wherein the rotary displacement pump is a uniaxial eccentric screw pump.

(8)ワークに流体を吐出する塗布装置と、その塗布装置と前記ワークとを相対的に移動させる移動手段とを備える流体塗布システムを用い、流体を前記ワークに閉ループ状に塗布する方法であって、前記塗布装置が、駆動手段と、その駆動手段の出力に応じて単位時間当たりの吐出量が変化する流体供給手段とを備え、塗布開始過程で単位長さ当たりの塗布量を漸次増加させるとともに、塗布終了過程で単位長さ当たりの塗布量を漸次減少させる、流体塗布方法。 (8) A method of applying a fluid to the workpiece in a closed loop using a fluid application system that includes a coating device that discharges fluid to the workpiece, and a moving unit that relatively moves the coating device and the workpiece. The coating apparatus includes a driving unit and a fluid supply unit that changes a discharge amount per unit time according to an output of the driving unit, and gradually increases the coating amount per unit length in a coating start process. In addition, a fluid application method that gradually reduces the application amount per unit length in the application completion process.

本発明において「塗布量を略線形状に増加させ」とは、塗布量が線形状に増加する場合に限定されず、塗布量を線形状に増加させる際に塗布する流体の粘性や流体供給手段(ポンプ)の特性(例えば応答遅れ)による変動(ノイズ)を含むことが許容されることを意味する。また、後述するように、部分的に曲線状に増加する場合も許容され、部分的に曲線状に増加するとは、例えば塗布開始過程(漸次増加)の開始時や終了時に曲線状に増加する場合が該当する。   In the present invention, “increasing the coating amount to a substantially linear shape” is not limited to the case where the coating amount is increased to a linear shape, but the viscosity of the fluid applied when the coating amount is increased to a linear shape, or fluid supply means It means that it is allowed to include fluctuations (noise) due to characteristics (for example, response delay) of (pump). Further, as will be described later, it may be allowed to increase partially in a curved line, and partially increasing in a curved line means, for example, increasing in a curved line at the start or end of a coating start process (gradual increase). Is applicable.

一方、「塗布量を略線形状に減少させ」とは、塗布量が線形状に減少する場合に限定されず、塗布量を線形状に減少させる際に塗布する流体の粘性や流体供給手段(ポンプ)の特性による変動(ノイズ)を含むことが許容されることを意味する。また、後述するように、部分的に曲線状に減少する場合も許容され、部分的に曲線状に減少するとは、例えば塗布終了過程(漸次減少)の開始時や終了時に曲線状に減少する場合が該当する。   On the other hand, “reducing the application amount to a substantially linear shape” is not limited to the case where the application amount is reduced to a linear shape, but the viscosity of the fluid applied when the application amount is reduced to a linear shape, or fluid supply means ( It means that it is allowed to include fluctuations (noise) due to the characteristics of the pump). Also, as will be described later, it may be allowed to decrease partially in a curved line, and partially decreasing in a curved line means, for example, when decreasing in a curved line at the start or end of the coating end process (gradual decrease) Is applicable.

本発明の流体塗布システムおよび流体塗布方法は、閉ループ状の塗布において、塗布開始過程で塗布量を漸次増加させるとともに、塗布終了過程で塗布量を漸次減少させる。これにより、始点の塗布流体と終点の塗布流体とに定常部より塗布量が減少している接続部をそれぞれ形成できる。このため、繋ぎ目部が、始点の塗布流体の接続部と終点の塗布流体の接続部が重なり合う状態となり、繋ぎ目部の塗布量と定常部の塗布量との差を解消できる。また、始点の塗布流体の下側に残留するエアの量が減少するので、繋ぎ目部のエアの巻き込みを低減できる。   The fluid application system and the fluid application method of the present invention gradually increase the application amount in the application start process and gradually decrease the application amount in the application end process in the closed-loop application. Thereby, the connection part in which the application quantity is reducing from the stationary part can be formed in the application fluid at the start point and the application fluid at the end point, respectively. For this reason, the connection portion of the application fluid at the start point and the connection portion of the application fluid at the end point overlap each other at the joint portion, and the difference between the application amount of the joint portion and the application amount of the steady portion can be eliminated. In addition, since the amount of air remaining below the coating fluid at the starting point is reduced, the entrainment of air at the joint portion can be reduced.

閉ループ状に塗布された流体の一例を模式的に示す上面図である。It is a top view which shows typically an example of the fluid apply | coated in the closed loop shape. 円柱状のワークの外周面に閉ループ状に塗布された流体の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the fluid apply | coated to the outer peripheral surface of a cylindrical workpiece | work in the closed loop shape. 従来の塗布流体の繋ぎ目部を示す側面図である。It is a side view which shows the joint part of the conventional coating fluid. 特許文献1の塗布方法における制御パターン例を示す模式図であり、同図(a)は経過時間と移動速度との関係、同図(b)は経過時間と単位時間当たりの吐出量との関係を示す。It is a schematic diagram which shows the example of a control pattern in the application | coating method of patent document 1, The figure (a) is the relationship between elapsed time and a moving speed, The figure (b) is the relationship between elapsed time and the discharge amount per unit time. Indicates. 特許文献1の塗布方法における実際の吐出量の第1パターン例を示す模式図であり、同図(a)は経過時間と単位時間当たりの吐出量との関係、同図(b)は塗布流体の繋ぎ目部を示す。It is a schematic diagram which shows the 1st pattern example of the actual discharge amount in the application | coating method of patent document 1, The figure (a) is the relationship between elapsed time and the discharge amount per unit time, The figure (b) is application fluid. The joint part of is shown. 特許文献1の塗布方法における実際の吐出量の第2パターン例を示す模式図であり、同図(a)は経過時間と単位時間当たりの吐出量との関係、同図(b)は塗布流体の繋ぎ目部を示す。It is a schematic diagram which shows the 2nd pattern example of the actual discharge amount in the application | coating method of patent document 1, The figure (a) is the relationship between elapsed time and the discharge amount per unit time, The figure (b) is application fluid. The joint part of is shown. 本発明の流体塗布システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the fluid application | coating system of this invention. 本発明による塗布量の制御を適用した場合の塗布流体の繋ぎ目部を示す側面図であり、同図(a)は階段状に塗布量を増減させた場合、同図(b)は略線形状に塗布量を増減させた場合をそれぞれ示す。It is a side view which shows the joint part of the application fluid at the time of applying the control of the application quantity by this invention, The figure (a) shows the case where the application quantity is increased / decreased stepwise, The figure (b) is a rough line. The case where the application amount is increased or decreased in the shape is shown. モーターの回転数によって塗布量を増減させる場合の制御パターン例を示す模式図であり、同図(a)は経過時間と移動速度との関係、同図(b)は経過時間とモーターの回転数との関係、同図(c)は経過時間と単位時間当たりの吐出量との関係を示す。It is a schematic diagram which shows the example of a control pattern in the case of increasing / decreasing a coating amount with the rotation speed of a motor, The figure (a) is the relationship between elapsed time and a moving speed, The figure (b) is elapsed time and the rotation speed of a motor. (C) shows the relationship between the elapsed time and the discharge amount per unit time. 移動速度によって塗布量を増減させる場合の制御パターン例を示す模式図であり、同図(a)は経過時間と移動速度との関係、同図(b)は経過時間とモーターの回転数との関係、同図(c)は経過時間と単位時間当たりの吐出量との関係を示す。It is a schematic diagram which shows the example of a control pattern in the case of increasing / decreasing a coating amount with a moving speed, The same figure (a) is the relationship between elapsed time and a moving speed, The same figure (b) is the elapsed time and the rotation speed of a motor. FIG. 3C shows the relationship between the elapsed time and the discharge amount per unit time. 塗布開始過程の終了時と塗布終了過程の開始時に曲線状に塗布量を増減させる制御パターン例を示す模式図であり、同図(a)は経過時間とモーターの回転数との関係、同図(b)は経過時間と単位時間当たりの吐出量との関係、同図(c)は塗布流体の繋ぎ目部を示す。It is a schematic diagram which shows the example of a control pattern which increases / decreases coating amount at the time of completion | finish of an application | coating start process, and the application | coating end process, The figure (a) is the relationship between elapsed time and the rotation speed of a motor, the figure (B) shows the relationship between the elapsed time and the discharge amount per unit time, and FIG. 5 (c) shows the joint portion of the applied fluid. 塗布開始過程の終了時と塗布終了過程の終了時に曲線状に増減させる制御パターン例を示す模式図であり、同図(a)は経過時間とモーターの回転数との関係、同図(b)は経過時間と単位時間当たりの吐出量との関係、同図(c)は塗布流体の繋ぎ目部を示す。It is a schematic diagram which shows the example of a control pattern which increases / decreases in the shape of a curve at the time of completion | finish of an application | coating start process, and the completion | finish process of an application | coating, The figure (a) is the relationship between elapsed time and the rotation speed of a motor, The figure (b). Is the relationship between the elapsed time and the discharge amount per unit time, and FIG. 5C shows the joint portion of the applied fluid. 略線形状に塗布量を増減させる際の傾きを変更した制御パターン例を示す模式図であり、同図(a)は経過時間とモーターの回転数との関係、同図(b)は経過時間と単位時間当たりの吐出量との関係を、同図(c)は塗布流体の繋ぎ目部を示す。It is a schematic diagram which shows the example of a control pattern which changed the inclination at the time of increasing / decreasing application amount to a rough line shape, The figure (a) is the relationship between elapsed time and the rotation speed of a motor, The figure (b) is elapsed time. (C) shows the joint portion of the applied fluid. 回転容積式のポンプとして好適な一軸偏心ねじポンプの構成例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a structure of the uniaxial eccentric screw pump suitable as a rotary displacement type pump.

以下に、本発明の流体塗布システムおよび流体塗布方法について、図面を参照しながら説明する。   Hereinafter, a fluid application system and a fluid application method of the present invention will be described with reference to the drawings.

[本発明の流体塗布システムの構成例]
図7は、本発明の流体塗布システムの構成例を示す模式図である。同図に示す流体塗布システム10は、ワークに流体を吐出する塗布装置20と、その塗布装置20とワーク(図示なし)とを相対的に移動させる移動手段30と、塗布装置20および移動手段30を制御する制御手段11とを備える。
[Configuration example of fluid application system of the present invention]
FIG. 7 is a schematic diagram showing a configuration example of the fluid application system of the present invention. The fluid application system 10 shown in the figure includes an application device 20 that discharges fluid to a workpiece, a moving unit 30 that relatively moves the application device 20 and the workpiece (not shown), and the application device 20 and the movement unit 30. And control means 11 for controlling.

塗布装置20は、駆動手段であるモーター22と、流体供給手段であるポンプ21と、ポンプの先端に装着されたノズル23とを備える。ポンプ21は、モーター22の出力(回転数)に応じて単位時間当たりの吐出量が変化する。また、ポンプ21が吐出する流体は、ノズル23を経由してワークに塗布される。モーター22は、その回転数や向き(正転または逆転)の命令を受信するとともに、実際の回転数を送信するため、制御手段11とケーブルで接続されている。   The coating apparatus 20 includes a motor 22 that is a driving unit, a pump 21 that is a fluid supply unit, and a nozzle 23 that is attached to the tip of the pump. The discharge amount per unit time of the pump 21 changes according to the output (rotation speed) of the motor 22. The fluid discharged from the pump 21 is applied to the workpiece via the nozzle 23. The motor 22 is connected to the control means 11 via a cable in order to receive a command of its rotational speed and direction (forward or reverse) and to transmit the actual rotational speed.

塗布装置20のポンプ21は、配管25を介して流体汲み上げ装置24と接続されている。流体汲み上げ装置24は、ドラム缶といった容器26に貯留されている流体(図示なし)を汲み上げ、配管25(例えばフレキシブルホース)を流通させてポンプ21に供給する。   The pump 21 of the coating device 20 is connected to a fluid pumping device 24 via a pipe 25. The fluid pumping device 24 pumps a fluid (not shown) stored in a container 26 such as a drum, and distributes the piping 25 (for example, a flexible hose) to supply it to the pump 21.

同図に示す流体塗布システム10は、多関節ロボットによって移動手段30が構成されており、その多関節ロボット30の動作は制御手段11によって制御される。多関節ロボット30が具備するアームの先端には塗布装置20が装着されている。同図に示す流体塗布システム10は、ワーク(図示なし)を固定する一方で、多関節ロボット30によってポンプ21を移動させることにより、塗布装置20とワークとの相対的な移動を実現する。制御手段11は、多関節ロボット30ともケーブルで接続されており、多関節ロボット30に信号を送信するとともに、多関節ロボット30の移動速度や位置情報等が制御手段11に送信される。   In the fluid application system 10 shown in the figure, the moving means 30 is constituted by an articulated robot, and the operation of the articulated robot 30 is controlled by the control means 11. A coating device 20 is attached to the tip of the arm of the articulated robot 30. The fluid application system 10 shown in the figure fixes a work (not shown) while moving the pump 21 by the articulated robot 30 to realize relative movement between the application device 20 and the work. The control means 11 is also connected to the articulated robot 30 with a cable, and transmits a signal to the articulated robot 30 and also transmits the movement speed, position information, etc. of the articulated robot 30 to the control means 11.

本発明の流体塗布システムが備える制御手段11は、閉ループ状の塗布において、塗布開始過程で塗布量を漸次増加させるとともに、塗布終了過程で塗布量を漸次減少させる。また、本発明の流体塗布方法は、塗布開始過程で塗布量を漸次増加させるとともに、塗布終了過程で塗布量を漸次減少させる。   The control means 11 provided in the fluid application system of the present invention gradually increases the application amount in the application start process and gradually decreases the application amount in the application end process in the closed-loop application. The fluid application method of the present invention gradually increases the application amount in the application start process and gradually decreases the application amount in the application end process.

以下に、本発明の流体塗布システムが備える制御手段11によって実現される塗布量の制御、および、本発明の流体塗布方法により行う塗布量の制御について詳述する。以下では、これらの塗布量の制御を総称して本発明による塗布量の制御ともいう。   Below, the control of the coating amount realized by the control means 11 provided in the fluid coating system of the present invention and the control of the coating amount performed by the fluid coating method of the present invention will be described in detail. Hereinafter, the control of the coating amount is collectively referred to as the coating amount control according to the present invention.

本発明による塗布量の制御は、閉ループ状の塗布における塗布開始過程および塗布終了過程を対象とし、換言すると、繋ぎ目部を対象とする。このため、定常部は、従来法によって塗布量を制御すればよい。   The application amount control according to the present invention targets the application start process and the application end process in closed-loop application, in other words, the joint part. For this reason, what is necessary is just to control a coating amount by a conventional method for a stationary part.

図8は、本発明による塗布量の制御を適用した場合の塗布流体の繋ぎ目部を示す側面図であり、同図(a)は階段状に塗布量を増減させた場合、同図(b)は略線形状に塗布量を増減させた場合をそれぞれ示す。同図には、ワーク51と、塗布流体52とを示し、塗布方向を破線矢印で示す。   FIG. 8 is a side view showing the joint portion of the application fluid when the application amount control according to the present invention is applied. FIG. 8A shows a case where the application amount is increased or decreased stepwise. ) Shows a case where the coating amount is increased or decreased in a substantially linear shape. In the same figure, the workpiece | work 51 and the application fluid 52 are shown, and an application | coating direction is shown with a broken-line arrow.

本発明による塗布量の制御は、塗布開始過程で塗布量を漸次増加させる。この塗布量の漸次増加は、例えば、モーターの回転数(min-1)を操作することや、移動速度(mm/s)を操作することによって実現できる。これにより、始点の塗布流体52cに接続部52eが形成され、その接続部52eは先端に近づくのに伴って厚さが漸次薄くなったり、幅が漸次細くなったりする。 The control of the coating amount according to the present invention gradually increases the coating amount in the coating start process. The gradual increase in the coating amount can be realized, for example, by manipulating the motor rotation speed (min −1 ) or manipulating the moving speed (mm / s). Thereby, the connection part 52e is formed in the application fluid 52c at the starting point, and the connection part 52e gradually decreases in thickness or gradually decreases in width as it approaches the tip.

また、本発明による塗布量の制御は、塗布終了過程で塗布量を漸次減少させる。この塗布量の漸次減少は、例えば、モーターの回転数(min-1)を操作することや、移動速度(mm/s)を操作することによって実現できる。これにより、終点の塗布流体52dには接続部52fが形成され、その接続部52fは先端に近づくのに伴って厚さが漸次薄くなったり、幅が漸次細くなったりする。 Also, the control of the coating amount according to the present invention gradually decreases the coating amount in the process of finishing the coating. This gradual decrease in the coating amount can be realized, for example, by manipulating the motor rotation speed (min −1 ) or manipulating the moving speed (mm / s). As a result, a connecting portion 52f is formed in the end-point application fluid 52d, and the connecting portion 52f gradually decreases in thickness or gradually decreases in width as it approaches the tip.

このように本発明による塗布量の制御は、意図的に、始点の塗布流体52cおよび終点の塗布流体52dについて厚さや幅を変動させるので、先端に近づくのに伴って塗布量が漸次減少する。この場合、繋ぎ目部52bでは、定常部52aより塗布量が所望量減少している始点の塗布流体の接続部52eと、定常部52aより塗布量が所望量減少している終点の塗布流体の接続部52fとが重なり合う状態となる。これにより、繋ぎ目部52bの塗布量が、定常部52aの塗布量より多くなったり、少なくなったりするのを防止できる。このため、本発明による塗布量の制御は、繋ぎ目部52bの塗布量と定常部52aの塗布量との差を解消できる。   As described above, the control of the coating amount according to the present invention intentionally changes the thickness and width of the coating fluid 52c at the start point and the coating fluid 52d at the end point, so that the coating amount gradually decreases as it approaches the tip. In this case, in the joint portion 52b, the connection portion 52e of the starting application fluid whose application amount is reduced by a desired amount from the steady portion 52a and the end point of the application fluid whose application amount is reduced by a desired amount from the steady portion 52a. It will be in the state where the connection part 52f overlaps. Thereby, it can prevent that the application quantity of the joint part 52b becomes larger than the application quantity of the stationary part 52a, or decreases. For this reason, the application amount control according to the present invention can eliminate the difference between the application amount of the joint portion 52b and the application amount of the stationary portion 52a.

エアの巻き込みは、前述の通り、始点の塗布流体の下側に残留するエアが終点の塗布流体によって閉じ込められることによって発生する。本発明による塗布量の制御では、先端に近づくのに伴って塗布量が漸次減少することから、始点の塗布流体52cの下側に残留するエアの量が減少する。このため、繋ぎ目部52bのエアの巻き込み53を低減できる。   As described above, the air entrainment occurs when the air remaining below the starting-point application fluid is trapped by the end-point application fluid. In the application amount control according to the present invention, the application amount gradually decreases as it approaches the tip, so the amount of air remaining below the starting application fluid 52c decreases. For this reason, the entrainment 53 of the air of the joint part 52b can be reduced.

塗布開始過程での塗布量の漸次増加および塗布終了過程での塗布量の漸次減少は、特に制限はなく、種々のパターンを採用できる。例えば、前記図8(a)に示すように階段状に増減させるパターンを採用できる。この場合、段差の数や一段あたりの高低差に制限はなく、例えば塗布流体の厚みや幅、要求精度に応じて適宜設定すればよい。   There is no particular limitation on the gradual increase in the coating amount in the coating start process and the gradual decrease in the coating amount in the coating end process, and various patterns can be adopted. For example, as shown in FIG. 8A, it is possible to adopt a pattern that increases or decreases in a staircase pattern. In this case, the number of steps and the height difference per step are not limited, and may be appropriately set according to, for example, the thickness and width of the coating fluid and the required accuracy.

本発明による塗布量の制御は、塗布量を漸次増加させる際に、前記図8(b)に示すように、塗布量を略線形状に増加させ、塗布量を漸次減少させる際に、前記図8(b)に示すように、塗布量を略線形状に減少させるのが好ましい。これにより、繋ぎ目部52bの塗布量と定常部52aの塗布量との差を解消できる効果が顕著となり、繋ぎ目部52bと定常部52aとで塗布量を均一にできる。また、始点の塗布流体52cの下側に存在するエアの量もより減少し、繋ぎ目部52bのエアの巻き込みを大幅に低減できる。   As shown in FIG. 8B, the control of the coating amount according to the present invention increases the coating amount in a substantially linear shape and gradually decreases the coating amount as shown in FIG. 8 (b). As shown in FIG. 8B, it is preferable to reduce the coating amount to a substantially linear shape. Thereby, the effect which can eliminate the difference of the application quantity of the joint part 52b and the application quantity of the stationary part 52a becomes remarkable, and the application quantity can be made uniform by the joint part 52b and the stationary part 52a. Further, the amount of air existing below the starting application fluid 52c is further reduced, and the entrainment of air at the joint portion 52b can be greatly reduced.

塗布開始過程での塗布量の漸次増加および塗布終了過程での塗布量の漸次減少は、前述の通り、モーターの回転数(駆動手段の出力)を操作することや、移動速度を操作することによって実現できる。また、モーターの回転数(駆動手段の出力)の操作と移動速度の操作とを組み合わせることによっても実現できる。以下では、モーターの回転数を操作する実施形態および移動速度を操作する実施形態について、図面を参照しながら、それぞれ説明する。   As described above, the gradual increase of the coating amount in the coating start process and the gradual decrease of the coating amount in the coating end process are performed by operating the motor rotation speed (output of the driving means) or the moving speed as described above. realizable. It can also be realized by combining the operation of the motor speed (output of the driving means) and the operation of the moving speed. Hereinafter, an embodiment for manipulating the rotational speed of the motor and an embodiment for manipulating the moving speed will be described with reference to the drawings.

本発明による塗布量の制御では、従来の塗布方法と同様に、繋ぎ目部で始点の塗布流体の接続部と終点の塗布流体の接続部が重なり合うように、始点Sと終点Fとに距離(例えば10mm程度の距離)を設ける(前記図1参照)。   In the control of the coating amount according to the present invention, as in the conventional coating method, the distance (from the start point S to the end point F is set so that the connection portion of the application fluid at the start point and the connection portion of the application fluid at the end point overlap at the joint portion. For example, a distance of about 10 mm) is provided (see FIG. 1).

図9は、モーターの回転数によって塗布量を増減させる場合の制御パターン例を示す模式図であり、同図(a)は経過時間と移動速度との関係、同図(b)は経過時間とモーターの回転数との関係、同図(c)は経過時間と単位時間当たりの吐出量との関係を示す。同図の制御パターンは、前記図8(b)に示すように略線形状に塗布量を増減させる場合の制御パターンである。また、同図には、塗布装置が前記図1の始点Sおよび終点Fを通過するタイミングをそれぞれ矢印で指し示す。   FIG. 9 is a schematic diagram showing an example of a control pattern in the case where the coating amount is increased / decreased depending on the number of rotations of the motor. FIG. 9 (a) shows the relationship between the elapsed time and the moving speed, and FIG. FIG. 5C shows the relationship between the number of revolutions of the motor and the relationship between the elapsed time and the discharge amount per unit time. The control pattern in the figure is a control pattern in the case where the coating amount is increased or decreased in a substantially linear shape as shown in FIG. 8B. Moreover, in the same figure, the timing at which the coating apparatus passes the start point S and the end point F of FIG. 1 is indicated by arrows.

塗布開始過程で塗布量を漸次増加させる際に、同図(b)に示すようにモーターの回転数を増加させ(駆動手段の出力を調整し)、塗布装置の吐出量が略線形状に漸次増加するように変動させる。その際、同図(a)に示すように、移動速度が一定となるように移動手段を制御する。これにより、ワークへの塗布量を略線形状に漸次増加させる。   When the coating amount is gradually increased in the coating start process, the number of revolutions of the motor is increased (adjusting the output of the driving means) as shown in FIG. Fluctuate to increase. At that time, the moving means is controlled so that the moving speed is constant, as shown in FIG. Thereby, the application amount to the workpiece is gradually increased to a substantially linear shape.

塗布終了過程で塗布量を漸次減少させる際に、同図(b)に示すようにモーターの回転数を減少させ(駆動手段の出力を調整し)、塗布装置の吐出量が略線形状に漸次減少するように変動させる。その際、同図(a)に示すように、移動速度が一定となるように移動手段を制御する。これにより、ワークへの塗布量を略線形状に漸次減少させる。   When the coating amount is gradually reduced in the coating end process, the motor rotation speed is decreased (adjusting the output of the driving means) as shown in FIG. Fluctuate to decrease. At that time, the moving means is controlled so that the moving speed is constant, as shown in FIG. Thereby, the application amount to the workpiece is gradually reduced to a substantially linear shape.

図10は、移動速度によって塗布量を増減させる場合の制御パターン例を示す模式図であり、同図(a)は経過時間と移動速度との関係、同図(b)は経過時間とモーターの回転数との関係、同図(c)は経過時間と単位時間当たりの吐出量との関係を示す。同図の制御パターンは、前記図8(b)に示すように略線形状に塗布量を増減させる場合の制御パターンである。また、同図には、塗布装置が前記図1の始点Sおよび終点Fを通過するタイミングをそれぞれ矢印で指し示す。   FIG. 10 is a schematic diagram showing an example of a control pattern when the coating amount is increased / decreased depending on the moving speed. FIG. 10 (a) shows the relationship between the elapsed time and the moving speed, and FIG. 10 (b) shows the elapsed time and the motor. FIG. 5C shows the relationship between the rotational speed and the relationship between the elapsed time and the discharge amount per unit time. The control pattern in the figure is a control pattern in the case where the coating amount is increased or decreased in a substantially linear shape as shown in FIG. 8B. Moreover, in the same figure, the timing at which the coating apparatus passes the start point S and the end point F of FIG. 1 is indicated by arrows.

塗布開始過程で塗布量を漸次増加させる際に、同図(a)に示すように移動手段を制御して塗布装置とワークとの相対的な移動速度を略線形状に漸次減少させる。その際、同図(b)に示すようにモーターを始動させて塗布装置の吐出量が一定な状態で塗布を開始する。これにより、ワークへの塗布量を略線形状に漸次増加させる。   When the coating amount is gradually increased in the coating start process, the moving means is controlled to gradually decrease the relative moving speed between the coating apparatus and the workpiece into a substantially linear shape as shown in FIG. At that time, as shown in FIG. 5B, the motor is started to start application with the discharge amount of the coating apparatus being constant. Thereby, the application amount to the workpiece is gradually increased to a substantially linear shape.

塗布終了過程で塗布量を漸次減少させる際に、同図(a)に示すように移動手段を制御して塗布装置とワークとの相対的な移動速度を略線形状に漸次増加させる。その際、同図(b)に示すようにモーターを停止させ、塗布装置の吐出量が一定な状態を維持しつつ吐出を終了する。これにより、ワークへの塗布量を略線形状に漸次減少させる。   When the coating amount is gradually decreased in the process of finishing the coating, the moving means is controlled as shown in FIG. 4A to gradually increase the relative moving speed between the coating apparatus and the workpiece into a substantially linear shape. At that time, as shown in FIG. 5B, the motor is stopped, and the discharge is finished while the discharge amount of the coating apparatus is kept constant. Thereby, the application amount to the workpiece is gradually reduced to a substantially linear shape.

なお、塗布開始過程でモーターを始動させて塗布装置から所定の吐出量で流体を吐出する場合、モーターの始動に対して塗布装置の吐出量が応答するのに時間を要する。この応答遅れを抑制するため、同図に示す制御パターンでは、モーターの回転数を所定の吐出量に対応する回転数を超えて増加させた後、所定の吐出量に対応する回転数としている。   Note that when the motor is started in the application start process and fluid is discharged from the coating apparatus at a predetermined discharge amount, it takes time for the discharge amount of the coating apparatus to respond to the start of the motor. In order to suppress this response delay, in the control pattern shown in the figure, the rotation speed of the motor is increased beyond the rotation speed corresponding to the predetermined discharge amount, and then the rotation speed corresponding to the predetermined discharge amount is set.

また、塗布終了過程でモーターを停止させて塗布装置の吐出を終了する場合、モーターの停止に対して塗布装置の吐出量が応答するのに時間を要する。この応答遅れを抑制するため、同図に示す制御パターン例では、モーターを逆転させた後、モーターを停止させている。   Further, when the motor is stopped in the process of finishing the application to finish the discharge of the coating apparatus, it takes time for the discharge amount of the coating apparatus to respond to the stop of the motor. In order to suppress this response delay, in the control pattern example shown in the figure, the motor is stopped after the motor is reversed.

図9および10の制御パターン例では、いずれも、塗布開始過程(塗布量の漸次増加)の開始から終了まで線形状に増加させているが、例えば塗布流体の厚みや幅、要求精度といった諸条件に応じ、部分的に曲線状に増加させてもよい。また、塗布終了過程(塗布量の漸次減少)の開始から終了まで線形状に減少させているが、上記諸条件に応じ、部分的に曲線状に減少させてもよい。さらに、略線形状に塗布量を増減させる際の傾きも上記諸条件に応じて変更できる。その具体例について図面を参照して説明する。   In the control pattern examples shown in FIGS. 9 and 10, both are increased in a linear shape from the start to the end of the coating start process (gradual increase in coating amount). For example, various conditions such as the thickness and width of the coating fluid, and the required accuracy Depending on the above, it may be partially increased in a curved shape. In addition, although it is decreased in a linear shape from the start to the end of the coating end process (gradual decrease in coating amount), it may be partially reduced in a curved shape according to the above conditions. Furthermore, the inclination at the time of increasing / decreasing the coating amount to a substantially linear shape can be changed according to the above conditions. Specific examples thereof will be described with reference to the drawings.

図11は、塗布開始過程の終了時と塗布終了過程の開始時に曲線状に塗布量を増減させる制御パターン例を示す模式図であり、同図(a)は経過時間とモーターの回転数との関係、同図(b)は経過時間と単位時間当たりの吐出量との関係、同図(c)は塗布流体の繋ぎ目部を示す。同図に示す制御パターン例は、前記図9に示すモーターの回転数によって塗布量を増減させる場合の制御パターン例において、塗布開始過程の終了時と塗布終了過程の開始時に円弧状に塗布量が変動するようにしたものである。移動速度と経過時間の関係は、前記図9(a)に示す関係と同じであることから、図示を省略した。また、同図(c)には、ワーク51と、塗布流体52とを示す。   FIG. 11 is a schematic diagram showing an example of a control pattern for increasing and decreasing the coating amount at the end of the application start process and at the start of the application end process. FIG. 11 (a) shows the elapsed time and the number of rotations of the motor. (B) shows the relationship between the elapsed time and the discharge amount per unit time, and (c) shows the joint portion of the applied fluid. The control pattern example shown in the figure is a control pattern example in the case where the coating amount is increased or decreased according to the number of rotations of the motor shown in FIG. It is intended to fluctuate. Since the relationship between the moving speed and the elapsed time is the same as the relationship shown in FIG. 9A, the illustration is omitted. Moreover, the workpiece | work 51 and the application fluid 52 are shown in the figure (c).

具体的には、塗布開始過程の終了時は、吐出量の変動割合(傾きの絶対値)が徐々に小さくなるように円弧状に変動させる。これにより、塗布量をその変動割合を徐々に小さくして円弧状に変動させる。一方、塗布終了過程の開始時は、吐出量の変動割合(傾きの絶対値)が徐々に大きくなるように円弧状に変動させる。これにより、塗布量をその変動割合を徐々に大きくして円弧状に変動させる。このような制御パターン例では、同図(c)に示すような塗布流体の繋ぎ目部52bが形成される。   Specifically, at the end of the application start process, the discharge rate is changed in an arc shape so that the rate of change (absolute value of inclination) gradually decreases. As a result, the coating amount is changed in an arc shape by gradually reducing the change rate. On the other hand, at the start of the application end process, the discharge rate is changed in an arc shape so that the rate of change (absolute value of inclination) gradually increases. As a result, the coating amount is changed in an arc shape by gradually increasing the change rate. In such a control pattern example, a joint portion 52b of the application fluid as shown in FIG.

図12は、塗布開始過程の終了時と塗布終了過程の終了時に曲線状に増減させる制御パターン例を示す模式図であり、同図(a)は経過時間とモーターの回転数との関係、同図(b)は経過時間と単位時間当たりの吐出量との関係、同図(c)は塗布流体の繋ぎ目部を示す。同図に示す制御パターン例は、前記図9に示すモーターの回転数によって塗布量を増減させる場合の制御パターン例において、塗布開始過程の終了時と塗布終了過程の終了時に円弧状に塗布量が変動するようにしたものである。移動速度と経過時間の関係は、前記図9(a)に示す関係と同じであることから、図示を省略した。また、同図(c)には、ワーク51と、塗布流体52とを示す。   FIG. 12 is a schematic diagram showing an example of a control pattern that is increased or decreased in a curved line at the end of the application start process and at the end of the application end process. FIG. 12 (a) shows the relationship between the elapsed time and the rotation speed of the motor. FIG. 2B shows the relationship between the elapsed time and the discharge amount per unit time, and FIG. 2C shows the joint portion of the applied fluid. The control pattern example shown in the figure is a control pattern example in the case where the coating amount is increased or decreased according to the number of rotations of the motor shown in FIG. 9. In the control pattern example shown in FIG. It is intended to fluctuate. Since the relationship between the moving speed and the elapsed time is the same as the relationship shown in FIG. 9A, the illustration is omitted. Moreover, the workpiece | work 51 and the application fluid 52 are shown in the figure (c).

具体的には、塗布開始過程の終了時は、吐出量の変動割合(傾きの絶対値)が徐々に小さくなるように円弧状に変動させる。これにより、塗布量をその変動割合を徐々に小さくして円弧状に変動させる。一方、塗布終了過程の終了時は、吐出量の変動割合(傾きの絶対値)が徐々に小さくなるように円弧状に変動させる。これにより、塗布量をその変動割合を徐々に小さくして円弧状に変動させる。このような制御パターン例では、同図(c)に示すような塗布流体の繋ぎ目部52bが形成される。   Specifically, at the end of the application start process, the discharge rate is changed in an arc shape so that the rate of change (absolute value of inclination) gradually decreases. As a result, the coating amount is changed in an arc shape by gradually reducing the change rate. On the other hand, at the end of the application end process, the discharge rate is changed in an arc shape so that the rate of change (absolute value of inclination) gradually decreases. As a result, the coating amount is changed in an arc shape by gradually reducing the change rate. In such a control pattern example, a joint portion 52b of the application fluid as shown in FIG.

図13は、略線形状に塗布量を増減させる際の傾きを変更した制御パターン例を示す模式図であり、同図(a)は経過時間とモーターの回転数との関係、同図(b)は経過時間と単位時間当たりの吐出量との関係、同図(c)は塗布流体の繋ぎ目部を示す。同図に示す制御パターン例は、前記図9に示すモーターの回転数によって塗布量を増減させる場合の制御パターン例において、塗布量を略線形状に漸次増加させる際の傾きおよび塗布量を略線形状に漸次減少させる際の傾きを変更したものである。移動速度と経過時間の関係は、前記図9(a)に示す関係と同じであることから、図示を省略した。また、同図(c)には、ワーク51と、塗布流体52とを示す。   FIG. 13 is a schematic diagram showing an example of a control pattern in which the inclination when increasing / decreasing the coating amount in a substantially linear shape is changed. FIG. 13 (a) shows the relationship between the elapsed time and the rotational speed of the motor, and FIG. ) Shows the relationship between the elapsed time and the discharge amount per unit time, and FIG. 5C shows the joint portion of the applied fluid. The control pattern example shown in the figure is substantially the same as the control pattern in the case where the coating amount is increased or decreased according to the number of rotations of the motor shown in FIG. 9, and the inclination and the coating amount when the coating amount is gradually increased to a substantially linear shape. The inclination when gradually reducing the shape is changed. Since the relationship between the moving speed and the elapsed time is the same as the relationship shown in FIG. 9A, the illustration is omitted. Moreover, the workpiece | work 51 and the application fluid 52 are shown in the figure (c).

具体的には、前記図9に示す制御パターンと比べ、塗布量を略線形状に漸次増加させる際の傾きを大きくし、吐出量の変動割合を大きくした。一方、塗布量を略線形状に漸次減少させる際の傾きの絶対値を大きくし、吐出量の変動割合の絶対値を大きくした。このような制御パターン例では、同図(c)に示すように、始点の塗布流体52cにおいて、接続部52eの傾斜面の角度θが大きくなる。   Specifically, as compared with the control pattern shown in FIG. 9, the gradient when the coating amount is gradually increased to a substantially linear shape is increased, and the variation rate of the discharge amount is increased. On the other hand, the absolute value of the gradient when gradually reducing the coating amount to a substantially linear shape was increased, and the absolute value of the variation rate of the discharge amount was increased. In such a control pattern example, as shown in FIG. 3C, the angle θ of the inclined surface of the connecting portion 52e becomes large in the starting application fluid 52c.

前記図7に示す流体塗布システムでは、流体供給手段として、モーターの回転数に応じて単位時間当たりの吐出量が変化するポンプを用いる。そのポンプとして、回転容積式のポンプを採用でき、回転容積式のポンプは、例えば、一軸偏心ねじポンプやギヤポンプ、ロータリーポンプが該当する。   In the fluid application system shown in FIG. 7, a pump whose discharge amount per unit time changes according to the number of rotations of the motor is used as the fluid supply means. As the pump, a rotary displacement pump can be adopted, and the rotary displacement pump is, for example, a uniaxial eccentric screw pump, a gear pump, or a rotary pump.

本発明の流体塗布システムおよび流体塗布方法は、流体供給手段が、上述の回転容積式のポンプに限定されない。例えば、ソレノイドの励磁作用により変位する可動子を備えるソレノイド式ポンプを採用することもできる。このソレノイド式ポンプは、駆動手段となるソレノイドの動作周期に応じて吐出量が変化する。また、供給される気体の圧力によって流体を供給する流体供給手段を採用することもでき、この場合、駆動手段によって供給される気体の圧力の増減に応じ、流体供給手段の吐出量が変化する。   In the fluid application system and the fluid application method of the present invention, the fluid supply means is not limited to the rotary displacement pump described above. For example, a solenoid pump having a mover that is displaced by the excitation action of a solenoid can be employed. In this solenoid pump, the discharge amount changes according to the operation cycle of the solenoid serving as the driving means. In addition, a fluid supply unit that supplies a fluid according to the pressure of the supplied gas can be employed. In this case, the discharge amount of the fluid supply unit changes according to an increase or decrease in the pressure of the gas supplied by the driving unit.

本発明の流体塗布システムおよび流体塗布方法は、流体供給手段が、駆動手段の回転数に応じて単位時間当たりの吐出量が変化する回転容積式のポンプであるのが好ましい。回転容積式のポンプであれば、駆動手段の回転数に応じて高精度で吐出量を変化させることができる。このため、繋ぎ目部の塗布量と定常部の塗布量との差をより容易に解消できる。   In the fluid application system and the fluid application method of the present invention, it is preferable that the fluid supply means is a rotary positive displacement pump in which the discharge amount per unit time varies depending on the rotation speed of the drive means. In the case of a rotary displacement pump, the discharge amount can be changed with high accuracy in accordance with the rotational speed of the driving means. For this reason, the difference of the application amount of a joint part and the application amount of a stationary part can be eliminated more easily.

本発明の流体塗布システムおよび流体塗布方法は、回転容積式のポンプが、一軸偏心ねじポンプであるのが好ましい。   In the fluid application system and the fluid application method of the present invention, the rotary displacement pump is preferably a uniaxial eccentric screw pump.

図14は、回転容積式のポンプとして好適な一軸偏心ねじポンプの構成例を模式的に示す断面図である。同図に示す一軸偏心ねじポンプ40は、動力を受けて偏心回転する雄ねじ型のロータ42と、内周面が雌ねじ型に形成されたステータ43とを備える。このようなロータ42およびステータ43は、ケーシング41の内部に収容されている。そのケーシング41は、金属製の筒状部材であり、長手方向一端側に第一開口部41aが設けられている。この第一開口部41aは、一軸偏心ねじポンプ40の吐出口として機能し、その吐出口には、流体をワークに吐出するノズルが装着される。   FIG. 14 is a cross-sectional view schematically showing a configuration example of a uniaxial eccentric screw pump suitable as a rotary displacement pump. The uniaxial eccentric screw pump 40 shown in the figure includes a male screw type rotor 42 that rotates eccentrically upon receiving power, and a stator 43 whose inner peripheral surface is formed into a female screw type. Such a rotor 42 and a stator 43 are accommodated in the casing 41. The casing 41 is a metallic cylindrical member, and a first opening 41a is provided on one end side in the longitudinal direction. The first opening 41a functions as a discharge port of the uniaxial eccentric screw pump 40, and a nozzle that discharges fluid to the workpiece is attached to the discharge port.

また、ケーシング41の外周部分には、第二開口部41bが設けられている。第二開口部41bは、ケーシング41の長手方向の中間部においてケーシング41の内部空間に連通している。このような第二開口部41bは、一軸偏心ねじポンプ40の吸込口として機能し、前述の流体汲み上げ装置と配管を介して接続する。   A second opening 41 b is provided on the outer periphery of the casing 41. The second opening 41 b communicates with the internal space of the casing 41 at the middle portion of the casing 41 in the longitudinal direction. Such a 2nd opening part 41b functions as a suction inlet of the uniaxial eccentric screw pump 40, and is connected with the above-mentioned fluid pumping apparatus via piping.

ステータ43は、ゴム等の弾性体または樹脂等からなる。ステータ43の内孔43aは、n条で単段あるいは多段の雌ネジ形状である。これに対し、ロータ42は、金属製の軸体であり、n−1条で単段あるいは多段の雌ネジ形状である。   The stator 43 is made of an elastic body such as rubber or a resin. The inner hole 43a of the stator 43 has a single-stage or multi-stage female thread shape with n strips. On the other hand, the rotor 42 is a metal shaft, and has a single-stage or multi-stage female screw shape with n-1 strips.

同図に示す一軸偏心ねじポンプ40は、ステータ43が、2条で多段の雌ねじ形状であり、そのステータ43の内孔の断面は、長手方向のいずれの位置でも、略長円形となる。一方、ロータ42は、1条で偏心した雄ねじ形状であり、そのロータ42の断面は、長手方向のいずれの位置でも、略真円形となる。ロータ42は、ステータ43に形成された内孔43aに挿通され、内孔43aの内部において自由に偏心回転可能とされている。   In the uniaxial eccentric screw pump 40 shown in the figure, the stator 43 has a multi-stage female thread shape with two ridges, and the cross section of the inner hole of the stator 43 is substantially oval at any position in the longitudinal direction. On the other hand, the rotor 42 has a male screw shape that is eccentric with a single thread, and the cross section of the rotor 42 is substantially perfectly circular at any position in the longitudinal direction. The rotor 42 is inserted into an inner hole 43a formed in the stator 43, and can be freely eccentrically rotated inside the inner hole 43a.

ロータ42を偏心回転可能とするため、ロータ42は第一自在継手44を介してロッド45と連結され、そのロッド45は第二自在継手46を介してドライブシャフト47と連結されている。ドライブシャフト47は、詳細な説明は省略するが、ケーシング41との隙間をシールした状態でケーシング41に回転可能に保持されている。このようなドライブシャフト47は、モーター22の主軸22aと連結されている。このため、モーター22の動作によって主軸22aが回転するのに伴い、ドライブシャフト47が回転し、自在継手やロッドを介して連結されているロータ42が偏心回転する。   In order to make the rotor 42 eccentrically rotatable, the rotor 42 is connected to a rod 45 via a first universal joint 44, and the rod 45 is connected to a drive shaft 47 via a second universal joint 46. Although a detailed description is omitted, the drive shaft 47 is rotatably held by the casing 41 in a state where a gap with the casing 41 is sealed. Such a drive shaft 47 is connected to the main shaft 22 a of the motor 22. For this reason, as the main shaft 22a rotates by the operation of the motor 22, the drive shaft 47 rotates, and the rotor 42 connected via the universal joint or the rod rotates eccentrically.

ロータ42をステータ43の内孔43a内において回転させると、ロータ42およびステータの内孔43aにより仕切られた空間が、ステータ43内を回転しながらステータ43の長手方向に進む。このため、ロータ42を回転させると、ステータ43の一端側から流体を吸い込むとともに、吸い込んだ流体をステータ43の他端側に向けて移送して吐出させることが可能である。同図に示す一軸偏心ねじポンプ40は、ロータ42を正方向に回転させることにより、第二開口部41bから吸い込んだ流体を圧送し、第一開口部41aから吐出することが可能である。   When the rotor 42 is rotated in the inner hole 43 a of the stator 43, the space partitioned by the rotor 42 and the stator inner hole 43 a advances in the longitudinal direction of the stator 43 while rotating in the stator 43. For this reason, when the rotor 42 is rotated, the fluid can be sucked from one end side of the stator 43, and the sucked fluid can be transferred toward the other end side of the stator 43 and discharged. The uniaxial eccentric screw pump 40 shown in the figure can pump the fluid sucked from the second opening 41b and discharge it from the first opening 41a by rotating the rotor 42 in the forward direction.

このような一軸偏心ねじポンプは、その駆動手段(モーター)の回転制御を行うことにより、吐出量を自在に精度良く変化させることができる。このため、流体供給手段が一軸偏心ねじポンプであれば、繋ぎ目部の塗布量と定常部の塗布量との差をより容易に解消できる。また、一軸偏心ねじポンプは、駆動手段(モーター)の回転制御パターンが同じであれば、同じ吐出量のパターンが再現される。これによっても、繋ぎ目部の塗布量と定常部の塗布量との差をより容易に解消できる。   Such a uniaxial eccentric screw pump can change the discharge amount freely and accurately by controlling the rotation of its driving means (motor). For this reason, if the fluid supply means is a uniaxial eccentric screw pump, the difference between the application amount of the joint portion and the application amount of the steady portion can be more easily eliminated. Further, in the uniaxial eccentric screw pump, if the rotation control pattern of the driving means (motor) is the same, the pattern of the same discharge amount is reproduced. This also makes it easier to eliminate the difference between the application amount at the joint and the application amount at the stationary part.

また、一軸偏心ねじポンプを用いれば、再現性が高いことから、吐出終了時に流体の吸込を行った際には毎回同一量の液がノズル内に引き込まれた状態にできる。このため、ノズル内に残留した流体の先端位置を一定にでき、吐出開始時の応答時間が均一となり、応答性に優れる。したがって、塗布開始過程で始点位置にバラツキが発生することがないので、塗布流体の始点位置を検出し、塗布の終点位置を調整する必要がない。その結果、始点を撮像するカメラや、その画像を解析する解析装置が不要となり、装置構成の煩雑化および設備コストの増大を防止できる。   In addition, if a single-shaft eccentric screw pump is used, the reproducibility is high, so that the same amount of liquid can be drawn into the nozzle every time the fluid is sucked at the end of discharge. For this reason, the tip position of the fluid remaining in the nozzle can be made constant, the response time at the start of discharge becomes uniform, and the response is excellent. Therefore, since there is no variation in the starting point position in the coating start process, it is not necessary to detect the starting point position of the coating fluid and adjust the coating end point position. As a result, a camera that captures the start point and an analysis device that analyzes the image are not required, and it is possible to prevent complication of the apparatus configuration and increase in equipment cost.

本発明の流体塗布システムは、塗布装置とワークとを相対的に移動させる移動手段が、前記図7に示すような塗布装置20を移動させる多関節ロボット30に限定されない。移動手段は、例えば、塗布装置をZ軸方向に送り移動させるZ軸方向搬送装置と、そのZ軸方向搬送装置をY軸方向に送り移動させるY軸方向搬送装置と、そのY軸方向搬送装置をX軸方向に送り移動させるX軸方向搬送装置とで構成できる。   In the fluid coating system of the present invention, the moving means for relatively moving the coating device and the workpiece is not limited to the articulated robot 30 that moves the coating device 20 as shown in FIG. The moving means includes, for example, a Z-axis direction transport device that feeds and moves the coating apparatus in the Z-axis direction, a Y-axis direction transport device that feeds and moves the Z-axis direction transport device in the Y-axis direction, and the Y-axis direction transport device Can be configured with an X-axis direction transport device that feeds and moves the X-axis in the X-axis direction.

また、移動手段は、ワークをZ軸回りに回転可能に保持するチャックと、塗布装置をZ軸方向に送り移動させるZ軸方向搬送装置と、そのZ軸方向搬送装置をX軸方向に送り移動させるX軸方向搬送装置とで構成できる。   Further, the moving means includes a chuck that holds the workpiece rotatably around the Z axis, a Z axis direction conveying device that feeds and moves the coating device in the Z axis direction, and moves the Z axis direction conveying device in the X axis direction. And an X-axis direction transport device.

前記図7に示す流体塗布システムの構成例では、一つの制御手段11によって塗布装置20とともに移動手段30を制御するが、本発明の流体塗布システムは、本構成例に限定されない。例えば、複数の制御手段によって構成でき、より具体的には、塗布装置を制御する第1制御手段と、移動手段を制御する第2制御手段とで構成できる。   In the configuration example of the fluid application system shown in FIG. 7, the moving unit 30 is controlled together with the coating apparatus 20 by one control unit 11, but the fluid application system of the present invention is not limited to this configuration example. For example, it can be constituted by a plurality of control means, and more specifically can be constituted by a first control means for controlling the coating apparatus and a second control means for controlling the moving means.

本発明の流体塗布システムおよび流体塗布方法は、上述の通り、閉ループ状の塗布において、繋ぎ目部の塗布量と定常部の塗布量との差を解消できるとともに、繋ぎ目部のエアの巻き込みを低減できる。このような本発明の流体塗布システムおよび流体塗布方法は、自動車や電子部材、太陽電池等の製造工程で部品に接着剤やシール剤、絶縁剤、放熱剤、焼付き防止剤等の流体を塗布する場合に有効に利用できる。   As described above, the fluid application system and the fluid application method of the present invention can eliminate the difference between the application amount of the joint portion and the application amount of the steady portion in the closed-loop application, and can also entrain the air in the joint portion. Can be reduced. Such a fluid application system and fluid application method of the present invention apply fluids such as adhesives, sealants, insulating agents, heat dissipation agents, and anti-seizure agents to parts in the manufacturing process of automobiles, electronic members, solar cells and the like. You can use it effectively.

10:流体塗布システム、 11:制御手段、 20:塗布装置、
21:ポンプ(流体供給手段)、 22:モーター(駆動手段)、
22a:モーターの主軸、 23:ノズル、 24:流体汲み上げ装置、
25:配管、 26:容器、 30:移動手段(多関節ロボット)、
40:一軸偏心ねじポンプ(流体供給手段)、 41:ケーシング、
41a:第一開口部、 41b:第二開口部、 42:ロータ、 43:ステータ、
43a:内孔、 44:第一自在継手、 45:ロッド、 46:第二自在継手、
47:ドライブシャフト、 51:矩形状のワーク、 52:塗布流体、
52a:定常部、 52b:繋ぎ目部、 52c:始点の塗布流体、
52d:終点の塗布流体、 52e:始点の塗布流体の接続部、
52f:終点の塗布流体の接続部、 53:エアの巻き込み、 54:円柱状のワーク
10: Fluid application system 11: Control means 20: Application device
21: Pump (fluid supply means), 22: Motor (drive means),
22a: main shaft of motor, 23: nozzle, 24: fluid pumping device,
25: piping, 26: container, 30: moving means (articulated robot),
40: Uniaxial eccentric screw pump (fluid supply means), 41: Casing,
41a: 1st opening part, 41b: 2nd opening part, 42: Rotor, 43: Stator,
43a: inner hole, 44: first universal joint, 45: rod, 46: second universal joint,
47: drive shaft, 51: rectangular workpiece, 52: coating fluid,
52a: stationary part, 52b: joint part, 52c: coating fluid at the starting point,
52d: end point application fluid, 52e: start point application fluid connection,
52f: Application fluid connecting portion at the end point 53: Air entrainment 54: Cylindrical workpiece

Claims (6)

ワークに流体を吐出する塗布装置と、その塗布装置と前記ワークとを相対的に移動させる移動手段と、前記塗布装置および前記移動手段を制御する制御手段とを備え、前記流体を前記ワークに閉ループ状に塗布する流体塗布システムであって、
前記塗布装置が、駆動手段と、その駆動手段の出力に応じて単位時間当たりの吐出量が変化する流体供給手段とを備え、
前記制御手段が、塗布開始過程で単位長さ当たりの塗布量を漸次増加させるとともに、塗布終了過程で単位長さ当たりの塗布量を漸次減少させる制御手段であり、
前記制御手段が、前記塗布量を漸次増加させる際に、前記駆動手段の出力を調整して前記吐出量を変動させることによって前記塗布量を漸次増加させるとともに、前記塗布量を漸次減少させる際に、前記駆動手段の出力を調整して前記吐出量を変動させることによって前記塗布量を漸次減少させる、流体塗布システム。
A coating device that discharges fluid to the workpiece; a moving unit that relatively moves the coating device and the workpiece; and a control unit that controls the coating device and the moving unit , wherein the fluid is closed to the workpiece. A fluid application system for applying in a shape ,
The coating apparatus includes a driving unit and a fluid supply unit that changes a discharge amount per unit time according to an output of the driving unit,
Said control means, along with gradually increasing the coating amount per unit length in a coating cloth initiation process, Ri gradually controller der to decrease the coating amount per unit length in the coating end process,
When the control unit gradually increases the coating amount, the control unit gradually increases the coating amount by adjusting the output of the driving unit to change the discharge amount, and gradually decreases the coating amount. A fluid application system that gradually decreases the application amount by adjusting the output of the driving means to vary the discharge amount .
請求項1に記載の流体塗布システムであって、
前記制御手段が、塗布開始過程で前記塗布量を漸次増加させるとともに、塗布終了過程で前記塗布量を漸次減少させることにより、前記ワークに塗布された流体において、繋ぎ目部の単位長さ当たりの塗布量を定常部の単位長さ当たりの塗布量と同等にする、流体塗布システム。
The fluid application system of claim 1,
The control means gradually increases the coating amount in the coating start process and gradually decreases the coating amount in the coating end process, so that the fluid per unit length of the joint portion is applied to the fluid applied to the workpiece. A fluid application system in which the application amount is equivalent to the application amount per unit length of the stationary part.
請求項1または2に記載の流体塗布システムであって、
前記制御手段が、前記塗布量を漸次増加させる際に、前記移動手段を制御して前記塗布装置と前記ワークとの相対的な移動速度を変動させることによって前記塗布量を漸次増加させるとともに、前記塗布量を漸次減少させる際に、前記移動手段を制御して前記移動速度を変動させることによって前記塗布量を漸次減少させる、流体塗布システム。
The fluid application system according to claim 1 or 2,
When the control unit gradually increases the coating amount, the control unit gradually increases the coating amount by controlling the moving unit to change a relative moving speed between the coating apparatus and the workpiece, and A fluid application system that gradually reduces the coating amount by controlling the moving means to vary the moving speed when the coating amount is gradually decreased.
請求項1〜のいずれかに記載の流体塗布システムであって、
前記制御手段が、前記塗布量を漸次増加させる際に、前記塗布量を略線形状に増加させ、前記塗布量を漸次減少させる際に、前記塗布量を略線形状に減少させる、流体塗布システム。
The fluid application system according to any one of claims 1 to 3 ,
A fluid application system in which the control means increases the application amount in a substantially linear shape when gradually increasing the application amount, and decreases the application amount in a substantially linear shape when gradually decreasing the application amount. .
請求項1〜のいずれかに記載の流体塗布システムであって、
前記流体供給手段が、前記駆動手段の回転数に応じて単位時間当たりの吐出量が変化する回転容積式のポンプである、流体塗布システム。
The fluid application system according to any one of claims 1 to 4 ,
The fluid application system, wherein the fluid supply unit is a rotary displacement pump in which a discharge amount per unit time changes according to the number of rotations of the drive unit.
請求項に記載の流体塗布システムであって、
前記回転容積式のポンプが、一軸偏心ねじポンプである、流体塗布システム。
The fluid application system according to claim 5 ,
The fluid application system, wherein the rotary displacement pump is a uniaxial eccentric screw pump.
JP2014012582A 2014-01-27 2014-01-27 Fluid application system and fluid application method Active JP6326598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012582A JP6326598B2 (en) 2014-01-27 2014-01-27 Fluid application system and fluid application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012582A JP6326598B2 (en) 2014-01-27 2014-01-27 Fluid application system and fluid application method

Publications (2)

Publication Number Publication Date
JP2015139725A JP2015139725A (en) 2015-08-03
JP6326598B2 true JP6326598B2 (en) 2018-05-23

Family

ID=53770479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012582A Active JP6326598B2 (en) 2014-01-27 2014-01-27 Fluid application system and fluid application method

Country Status (1)

Country Link
JP (1) JP6326598B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7120119B2 (en) 2019-03-29 2022-08-17 日本電産株式会社 LIQUID APPLICATION METHOD, LIQUID APPLICATOR AND LIQUID GASKET
US11827985B2 (en) 2019-03-29 2023-11-28 Nissan Motor Co., Ltd. Film formation method
JP7255291B2 (en) * 2019-03-29 2023-04-11 日産自動車株式会社 Deposition method
CN112547439B (en) * 2019-09-25 2024-03-22 深圳市腾盛精密装备股份有限公司 Multichannel dispensing device and multichannel dispensing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677710B2 (en) * 1986-05-15 1994-10-05 兵神装備株式会社 Metering device
DE4433749C2 (en) * 1994-09-22 2002-11-21 Lenhardt Maschinenbau Method and device for applying a plastic spacer to a glass sheet
TWI291901B (en) * 2005-04-26 2008-01-01 Shibaura Mechatronics Corp Apparatus for applying paste and method of applying paste
JP2007319822A (en) * 2006-06-02 2007-12-13 Three Bond Co Ltd Device and method for coating material
JP5558743B2 (en) * 2009-06-09 2014-07-23 芝浦メカトロニクス株式会社 Paste coating apparatus and paste coating method
JP5180925B2 (en) * 2009-07-17 2013-04-10 芝浦メカトロニクス株式会社 Paste coating method and paste coating apparatus

Also Published As

Publication number Publication date
JP2015139725A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6326598B2 (en) Fluid application system and fluid application method
JP5786193B2 (en) Discharge width variable device and coating device
JP6304617B2 (en) Fluid application system and fluid application method
US10914345B2 (en) Grease sealing method and sealing device for ball bearing and ball bearing produced using said sealing method
JP5270909B2 (en) Cylinder pump device
US10119608B2 (en) Grease application method, application device, and methods for manufacturing worm-type reducer, electric power steering device, automobile and variety of industrial machines
JP6353252B2 (en) Coating device
JP5251233B2 (en) How to paint the cylinder
JP6898640B2 (en) Sealant material discharge device and sealant material discharge device body
JP6057419B2 (en) High viscosity fluid applicator
JP6441175B2 (en) Sealant coating apparatus and method for producing sealant coated product
JP6233159B2 (en) Coating device
JP5892351B2 (en) Discharge width variable device and coating device
JP5704883B2 (en) Industrial robot speed position analysis system and industrial robot speed position detector
CN103228919B (en) The tunicle formation method of convolute-hydrodynamic mechanics and device
KR20120063206A (en) Resin applying apparatus
JP6618096B1 (en) Pressure control unit
JP2020026783A (en) Roller rotating speed controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6326598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250