JP6322007B2 - Capacitor and manufacturing method thereof - Google Patents

Capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP6322007B2
JP6322007B2 JP2014054109A JP2014054109A JP6322007B2 JP 6322007 B2 JP6322007 B2 JP 6322007B2 JP 2014054109 A JP2014054109 A JP 2014054109A JP 2014054109 A JP2014054109 A JP 2014054109A JP 6322007 B2 JP6322007 B2 JP 6322007B2
Authority
JP
Japan
Prior art keywords
conductive polymer
group
capacitor
compound
polyanion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014054109A
Other languages
Japanese (ja)
Other versions
JP2015177131A (en
Inventor
澤井 俊哉
俊哉 澤井
美智子 真貝
美智子 真貝
長谷部 浩
浩 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2014054109A priority Critical patent/JP6322007B2/en
Publication of JP2015177131A publication Critical patent/JP2015177131A/en
Application granted granted Critical
Publication of JP6322007B2 publication Critical patent/JP6322007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、キャパシタおよびその製造方法に関する。   The present invention relates to a capacitor and a manufacturing method thereof.

近年、電子機器のデジタル化に伴い、電子機器に用いられるキャパシタは高周波領域におけるインピーダンス(等価直列抵抗)を低下させることが要求されている。さらに、これら電子機器の小型化、薄型化、また使用環境の多様化に伴い、キャパシタの長期信頼性に対する要求も厳しくなってきている。従来から、この要求に対応すべく、アルミニウム、タンタル、ニオブなどの弁金属の酸化皮膜を誘電体とした、いわゆる、機能性キャパシタ(以下、キャパシタと略す。)が使用されている。   In recent years, with the digitization of electronic devices, capacitors used in electronic devices are required to reduce impedance (equivalent series resistance) in a high frequency region. Furthermore, with the miniaturization and thinning of these electronic devices and the diversification of usage environments, requirements for long-term reliability of capacitors have become stricter. Conventionally, so-called functional capacitors (hereinafter abbreviated as “capacitors”) in which an oxide film of a valve metal such as aluminum, tantalum, or niobium is used as a dielectric have been used to meet this requirement.

このキャパシタの一般的な構造は、特許文献1に示されるように、弁金属の多孔質体からなる陽極と、陽極の表面を酸化して形成した誘電体層と、導電性の固体電解質層と、カーボン層、銀層などが積層された陰極とを有する。固体電解質層としては、π共役系導電性高分子を含有する導電性膜を用いることがある。   The general structure of this capacitor is, as shown in Patent Document 1, an anode made of a porous body of valve metal, a dielectric layer formed by oxidizing the surface of the anode, a conductive solid electrolyte layer, And a cathode on which a carbon layer, a silver layer, and the like are stacked. As the solid electrolyte layer, a conductive film containing a π-conjugated conductive polymer may be used.

このようなπ共役系導電性高分子を含有する導電性膜を用いた技術としては、前記構成の固体電解質を含むキャパシタにおいて、該固体電解質が窒素含有芳香族環式化合物を添加したπ共役系導電性高分子を必須成分とする組成物から成るものが提案されている(特許文献2を参照)。この固体電解質を構成する組成物は、キャパシタの等価直列抵抗(以下、ESRという。)の低下に寄与し、π共役系導電性高分子を含有する組成物を含浸、乾燥という簡便なプロセスでキャパシタを製造できるという特徴を有する。   As a technique using a conductive film containing such a π-conjugated system conductive polymer, in a capacitor including the solid electrolyte having the above-described configuration, the solid electrolyte is a π-conjugated system in which a nitrogen-containing aromatic cyclic compound is added. A composition comprising a composition containing a conductive polymer as an essential component has been proposed (see Patent Document 2). The composition constituting the solid electrolyte contributes to the reduction of the equivalent series resistance (hereinafter referred to as ESR) of the capacitor, and the capacitor is obtained by a simple process of impregnating and drying the composition containing a π-conjugated conductive polymer. It has the characteristic that can be manufactured.

また、特許文献3には、3,4−エチレンジオキシチオフェンの反復構造単位からなるポリマーとポリスチレンスルホン酸または、その塩を水溶液中に混合、攪拌した後、酸化剤を加えて化学酸化重合した第一の高分子重合溶液Aに、ナフタレンスルホン酸等を溶解させた非水溶媒と純水との混合水溶液Bを添加した、第二の高分子重合溶液Cを、タンタル、ニオブ、アルミニウム等の弁作用金属の陽極酸化皮膜上に形成した内部導電性高分子膜上に塗布し、導電性高分子重合溶液で外部導電性高分子膜を形成する手法が開示されている。   In Patent Document 3, a polymer composed of repeating structural units of 3,4-ethylenedioxythiophene and polystyrene sulfonic acid or a salt thereof are mixed and stirred in an aqueous solution, and then an oxidant is added for chemical oxidative polymerization. A second polymer polymerization solution C obtained by adding a mixed aqueous solution B of non-aqueous solvent and pure water in which naphthalene sulfonic acid or the like is dissolved to the first polymer polymerization solution A is used as tantalum, niobium, aluminum, or the like. A technique is disclosed in which an external conductive polymer film is formed with a conductive polymer polymerization solution by coating on an internal conductive polymer film formed on an anodized film of a valve action metal.

同様に、特許文献4には、その表面にプリコート層および内部導電性高分子層が順に形成された陽極酸化皮膜上に、ナフタレンスルホン酸類、高分子量PSSA、ホウ酸、マンニトール、グリコール類等を含有したPEDOTおよびPSSAを含む水分散体を塗布もしくは含浸して導電性高分子層を設け、加熱して乾燥固化することにより固体電解キャパシタを作製する手法が開示されている。   Similarly, Patent Document 4 contains naphthalene sulfonic acids, high molecular weight PSSA, boric acid, mannitol, glycols and the like on an anodized film having a precoat layer and an internal conductive polymer layer formed in order on the surface thereof. A method for producing a solid electrolytic capacitor by applying or impregnating an aqueous dispersion containing PEDOT and PSSA, providing a conductive polymer layer, and heating to dry solidification is disclosed.

特開2003−37024号公報JP 2003-37024 A 特開2006−100774号公報Japanese Patent Laid-Open No. 2006-100774 特開2008−135509号公報JP 2008-135509 A 特開2008−311582号公報JP 2008-311582 A

しかし、従来のキャパシタには、次のような課題がある。特許文献3に開示されるキャパシタを製造する場合には、長期信頼性に優れるキャパシタを製造できるものの、電解重合で内部の導電性高分子膜を形成した後に、外部の導電性高分子膜を形成するという2段階の処理が必要になる。特許文献4に開示されるキャパシタを製造する場合でも、同様に、2段階の処理が必要になる。このため、外部導電性高分子層形成用処理液の他に、内部導電性高分子層を形成するための設備または処理液が必要になり、キャパシタ製造工程が長く、煩雑になることがあった。   However, the conventional capacitor has the following problems. When manufacturing a capacitor disclosed in Patent Document 3, a capacitor having excellent long-term reliability can be manufactured, but after forming an internal conductive polymer film by electrolytic polymerization, an external conductive polymer film is formed. A two-stage process is required. Even when the capacitor disclosed in Patent Document 4 is manufactured, similarly, a two-step process is required. For this reason, in addition to the treatment liquid for forming the external conductive polymer layer, equipment or treatment liquid for forming the internal conductive polymer layer is required, and the capacitor manufacturing process may be long and complicated. .

以上の課題に鑑みて、本発明の目的は、異なる組成の導電性高分子層形成用処理液を用いることなく、または異なる手法で内部導電性高分子層を形成することなく、静電容量が大きくかつESRが低く、また、長期信頼性に優れるキャパシタ、およびその製造方法を提供することにある。   In view of the above problems, the object of the present invention is to provide a capacitance without using a conductive polymer layer forming treatment liquid having a different composition or without forming an internal conductive polymer layer by a different method. It is an object of the present invention to provide a capacitor having a large size, low ESR, and excellent long-term reliability, and a method for manufacturing the same.

上記目的を達成するための本発明の一実施の形態は、弁金属の多孔質体からなる陽極と、陽極表面が酸化されて形成された誘電体層と、誘電体層における陽極と反対側に設けられた導電物質製の陰極と、誘電体層及び陰極の間に形成された固体電解質層とを備えるキャパシタにおいて、固体電解質層には、π共役系導電性高分子(a)と、π共役系導電性高分子にドープしたポリアニオン(b)と、ポリアニオン中のドープに要した以外のアニオンとオキシラン基またはオキセタン基含有有機化合物(c)との反応物を含み、固体電解質層の形成条件において、未反応のオキシラン基またはオキセタン基含有有機化合物(c)およびその開環化合物の、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計に対する質量比が200%以下であり、ポリアニオン中のドープに要した以外のアニオンの50モル%以上がオキシラン基またはオキセタン基含有有機化合物(c)と反応してなるキャパシタである。   In order to achieve the above object, an embodiment of the present invention includes an anode made of a porous body of a valve metal, a dielectric layer formed by oxidizing the anode surface, and a dielectric layer on a side opposite to the anode. In a capacitor comprising a conductive material cathode provided and a dielectric layer and a solid electrolyte layer formed between the cathode, the solid electrolyte layer includes a π-conjugated conductive polymer (a) and a π-conjugated material. In the formation conditions of the solid electrolyte layer, including a polyanion (b) doped in a conductive polymer and a reaction product of an anion other than that required for doping in the polyanion and an organic compound (c) containing an oxirane group or an oxetane group , An unreacted oxirane group or oxetane group-containing organic compound (c) and a ring-opening compound of the π-conjugated conductive polymer (a) and the polyanion (b) doped in the π-conjugated conductive polymer And a mass ratio of 200% or less relative to total a capacitor 50 mol% or more of anions other than those required to dope in polyanion is reacted with an oxirane group or oxetane group-containing organic compound (c).

本発明の別の実施の形態は、固体電解質層が、さらにヒドロキシ基含有芳香族性化合物を含有してなるキャパシタである。   Another embodiment of the present invention is a capacitor in which the solid electrolyte layer further contains a hydroxy group-containing aromatic compound.

本発明の別の実施の形態は、固体電解質層が、さらに水溶性高分子化合物または水分散性高分子化合物を含有してなるキャパシタである。   Another embodiment of the present invention is a capacitor in which the solid electrolyte layer further contains a water-soluble polymer compound or a water-dispersible polymer compound.

本発明の別の実施の形態は、固体電解質層が、さらにスルホ基含有ジカルボン酸を含有してなるキャパシタである。   Another embodiment of the present invention is a capacitor in which the solid electrolyte layer further contains a sulfo group-containing dicarboxylic acid.

本発明の別の実施の形態は、固体電解質層が、さらに分子内に4個以上の水酸基を有する脂肪族化合物を含有してなるキャパシタである。   Another embodiment of the present invention is a capacitor in which the solid electrolyte layer further contains an aliphatic compound having four or more hydroxyl groups in the molecule.

また、本発明の一実施の形態は、π共役系導電性高分子(a)と、π共役系導電性高分子にドープしたポリアニオン(b)と、ポリアニオン中のドープに要した以外のアニオンとオキシラン基またはオキセタン基含有有機化合物(c)との反応物を含む導電性高分子分散液を調製する工程と、弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、誘電体層に対向する位置に陰極を形成する工程と、誘電体層表面に導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程とを有し、固体電解質層の形成条件において、固体電解質層中の未反応のオキシラン基またはオキセタン基含有有機化合物(c)およびその開環化合物の、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計に対する質量比が200%以下であり、導電性高分子分散液中のポリアニオン中のドープに要した以外のアニオンの50モル%以上がオキシラン基またはオキセタン基含有有機化合物(c)と反応してなるキャパシタの製造方法である。   Moreover, one embodiment of the present invention includes a π-conjugated conductive polymer (a), a polyanion (b) doped in the π-conjugated conductive polymer, and an anion other than that required for doping in the polyanion A step of preparing a conductive polymer dispersion containing a reaction product with an oxirane group or oxetane group-containing organic compound (c), and a surface of an anode made of a porous body of a valve metal are oxidized to form a dielectric layer. A step of forming a cathode at a position opposite to the dielectric layer, and a step of applying a conductive polymer dispersion on the surface of the dielectric layer and drying to form a solid electrolyte layer. The π-conjugated conductive polymer (a) and the π-conjugated conductive polymer of the unreacted oxirane group or oxetane group-containing organic compound (c) and its ring-opening compound in the solid electrolyte layer Doped polyanions The mass ratio with respect to the total with b) is 200% or less, and 50 mol% or more of the anion other than that required for doping in the polyanion in the conductive polymer dispersion is an oxirane group or oxetane group-containing organic compound (c) Is a method for manufacturing a capacitor.

本発明の別の実施の形態は、さらに、オキシラン基またはオキセタン基含有有機化合物(c)をπ共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)の水分散体に添加しポリアニオン(b)とオキシラン基またはオキセタン基含有有機化合物(c)とを反応させる工程を経るキャパシタの製造方法である。   In another embodiment of the present invention, the polyanion (b) further comprises a π-conjugated conductive polymer (a) and a π-conjugated conductive polymer doped with an oxirane group or oxetane group-containing organic compound (c). It is a method for producing a capacitor through a step of adding to a water dispersion and reacting a polyanion (b) with an oxirane group or oxetane group-containing organic compound (c).

本発明の別の実施の形態は、また、導電性高分子分散液が高沸点溶媒を含有してなるキャパシタの製造方法である。   Another embodiment of the present invention is a method for producing a capacitor, wherein the conductive polymer dispersion contains a high boiling point solvent.

本発明によれば、異なる組成の導電性高分子層形成用処理液を用いることなく、または異なる手法で内部導電性高分子層を形成することなく、静電容量が大きくかつESRが低く、また、長期信頼性に優れるキャパシタを得ることができる。   According to the present invention, the electrostatic capacity is high and the ESR is low without using a treatment liquid for forming a conductive polymer layer having a different composition or without forming an internal conductive polymer layer by a different method. A capacitor having excellent long-term reliability can be obtained.

この実施の形態に係るキャパシタは、弁金属の多孔質体からなる陽極と、陽極表面が酸化されて形成された誘電体層と、誘電体層における陽極と反対側に設けられた導電物質製の陰極と、誘電体層及び陰極の間に形成された固体電解質層とを備えるキャパシタである。固体電解質層は、π共役系導電性高分子(a)と、π共役系導電性高分子にドープしたポリアニオン(b)と、ポリアニオン中のドープに要した以外のアニオンとオキシラン基またはオキセタン基含有有機化合物(c)との反応物を含む。また、固体電解質層の形成条件において、未反応のオキシラン基またはオキセタン基含有有機化合物(c)およびその開環化合物の、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計に対する質量比が200%以下である。さらに、ポリアニオン中のドープに要した以外のアニオンの50モル%以上がオキシラン基またはオキセタン基含有有機化合物(c)と反応してなる。   The capacitor according to this embodiment is made of an anode made of a porous body of valve metal, a dielectric layer formed by oxidizing the anode surface, and a conductive material provided on the opposite side of the dielectric layer from the anode. The capacitor includes a cathode, and a solid electrolyte layer formed between the dielectric layer and the cathode. The solid electrolyte layer contains a π-conjugated conductive polymer (a), a polyanion (b) doped in the π-conjugated conductive polymer, and an anion and an oxirane group or oxetane group other than those required for doping in the polyanion. A reaction product with the organic compound (c) is included. In addition, in the formation conditions of the solid electrolyte layer, the π-conjugated conductive polymer (a) and the π-conjugated conductive polymer of the unreacted oxirane group or oxetane group-containing organic compound (c) and the ring-opening compound thereof The mass ratio with respect to the sum total with the doped polyanion (b) is 200% or less. Further, 50 mol% or more of the anion other than that required for doping in the polyanion reacts with the oxirane group or oxetane group-containing organic compound (c).

(a.π共役系導電性高分子)
π共役系導電性高分子は、主鎖がπ共役系で構成されている有機高分子であれば好適に使用できる。π共役系導電性高分子としては、例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体等が挙げられる。重合の容易さ、空気中での安定性の点からは、ポリピロール類、ポリチオフェン類及びポリアニリン類が好ましい。
(A. Π-conjugated conductive polymer)
The π-conjugated conductive polymer can be suitably used as long as it is an organic polymer whose main chain is composed of a π-conjugated system. Examples of the π-conjugated conductive polymer include polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of easy polymerization and stability in air, polypyrroles, polythiophenes and polyanilines are preferred.

π共役系導電性高分子は、無置換のままでも、充分な導電性、バインダへの相溶性を得ることができるが、導電性及びバインダへの分散性又は溶解性をより高めるためには、アルキル基、カルボキシル基、スルホ基、アルコキシル基、ヒドロキシル基、シアノ基等の官能基をπ共役系導電性高分子に導入しても良い。このようなπ共役系導電性高分子の具体例としては、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−n−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリ(チオフェン)、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−ヘプチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−オクタデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−ヨードチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−ヘプチルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3−オクタデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジヘプチルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブテンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)等が挙げられる。これらの中でも、ポリピロール、ポリチオフェン、ポリ(N−メチルピロール)、ポリ(3−メチルチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)から選ばれる1種又は2種以上からなる(共)重合体を、抵抗値、反応性の点から好適に用いることができる。さらには、ポリピロール、ポリ(3,4−エチレンジオキシチオフェン)は、導電性がより高い上に、耐熱性を向上させることができる点で、より好ましい。また、ポリ(N−メチルピロール)、ポリ(3−メチルチオフェン)のようなアルキル置換化合物は、溶媒溶解性、疎水性樹脂を添加した場合の相溶性および分散性を向上させる観点から、より好ましい。また、アルキル基の中では、導電性に悪影響を与えることがないメチル基がより好ましい。   The π-conjugated conductive polymer can obtain sufficient conductivity and compatibility with the binder even if it is not substituted, but in order to further improve conductivity and dispersibility or solubility in the binder, Functional groups such as an alkyl group, a carboxyl group, a sulfo group, an alkoxyl group, a hydroxyl group, and a cyano group may be introduced into the π-conjugated conductive polymer. Specific examples of such π-conjugated conductive polymers include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), and poly (3-n-propylpyrrole). ), Poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4 Dibutylpyrrole), poly (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), Poly (3-hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly 3-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole), poly (thiophene), poly (3-methylthiophene), poly (3- Ethylthiophene), poly (3-propylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene) ), Poly (3-dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene), poly (3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), Poly (3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4-di Butylthiophene), poly (3-hydroxythiophene), poly (3-methoxythiophene), poly (3-ethoxythiophene), poly (3-butoxythiophene), poly (3-hexyloxythiophene), poly (3-heptyl) Oxythiophene), poly (3-octyloxythiophene), poly (3-decyloxythiophene), poly (3-dodecyloxythiophene), poly (3-octadecyloxythiophene), poly (3,4-dihydroxythiophene), Poly (3,4-dimethoxythiophene), poly (3,4-diethoxythiophene), poly (3,4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly (3,4-dihexyl) Oxythiophene), poly (3,4-diheptyloxythiophene), poly 3,4-dioctyloxythiophene), poly (3,4-didecyloxythiophene), poly (3,4-didodecyloxythiophene), poly (3,4-ethylenedioxythiophene), poly (3,4 -Propylene dioxythiophene), poly (3,4-butenedioxythiophene), poly (3-methyl-4-methoxythiophene), poly (3-methyl-4-ethoxythiophene), poly (3-carboxythiophene) , Poly (3-methyl-4-carboxythiophene), poly (3-methyl-4-carboxyethylthiophene), poly (3-methyl-4-carboxybutylthiophene), polyaniline, poly (2-methylaniline), poly (3-isobutylaniline), poly (2-anilinesulfonic acid), poly (3-anilinesulfonic acid) And the like. Among these, one or two selected from polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methylthiophene), poly (3-methoxythiophene), and poly (3,4-ethylenedioxythiophene) A (co) polymer comprising at least species can be suitably used from the viewpoint of resistance and reactivity. Furthermore, polypyrrole and poly (3,4-ethylenedioxythiophene) are more preferable because they have higher conductivity and can improve heat resistance. In addition, alkyl-substituted compounds such as poly (N-methylpyrrole) and poly (3-methylthiophene) are more preferable from the viewpoint of improving solvent solubility and compatibility and dispersibility when a hydrophobic resin is added. . Among the alkyl groups, a methyl group that does not adversely affect the conductivity is more preferable.

(b.ポリアニオン)
本発明で使用される(b)成分としては、アニオン性化合物であれば特に限定されない。アニオン性化合物とは、分子中に(a)成分への化学酸化ドープが起こりうるアニオン基を有する化合物である。アニオン性化合物が有するアニオン基としては、製造の容易さおよび安定性の観点から、硫酸エステル基、リン酸エステル基、リン酸基、カルボキシル基、スルホン基等が好ましい。(a)成分へのドープ効果に優れる点から、これらのアニオン基の内、スルホン基、硫酸エステル基、カルボキシル基がより好ましい。
(B. Polyanion)
The component (b) used in the present invention is not particularly limited as long as it is an anionic compound. An anionic compound is a compound having an anionic group capable of causing chemical oxidation doping to the component (a) in the molecule. The anionic group of the anionic compound is preferably a sulfate ester group, a phosphate ester group, a phosphate group, a carboxyl group, a sulfone group or the like from the viewpoint of ease of production and stability. Of these anionic groups, a sulfone group, a sulfate ester group, and a carboxyl group are more preferable because the doping effect on the component (a) is excellent.

アニオン性基含有ポリマーとしては、例えば、アニオン基を有さないポリマーをスルホ化剤によりスルホ化するなどしてポリマー内にアニオン基が導入されたポリマー、あるいはアニオン基含有重合性モノマーを重合して得られたポリマーなどが挙げられる。一般的に、アニオン性基含有ポリマーは、製造の容易さから、アニオン基含有重合性モノマーを重合して製造されるものの方が好ましい。   Examples of the anionic group-containing polymer include a polymer in which an anionic group is introduced into the polymer by sulfonated a polymer having no anionic group with a sulfonating agent, or an anionic group-containing polymerizable monomer. The obtained polymer etc. are mentioned. In general, an anionic group-containing polymer is preferably produced by polymerizing an anionic group-containing polymerizable monomer in terms of ease of production.

アニオン性基含有ポリマーをアニオン基含有重合性モノマーの重合により製造する方法としては、例えば、溶媒中、アニオン基含有重合性モノマーを、酸化剤及び/又は重合触媒の存在下で、酸化重合又はラジカル重合によって製造する方法が挙げられる。具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に所定量の酸化剤及び/又は重合触媒を溶解した溶液を添加し、所定時間で反応させる。その反応により得られたポリマーは溶媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させてもよい。アニオン基含有重合性モノマーの重合に際して使用する酸化剤及び酸化触媒、溶媒は、(a)成分を形成する前駆体モノマーを重合する際に使用するものと同様である。   Examples of a method for producing an anionic group-containing polymer by polymerization of an anionic group-containing polymerizable monomer include, for example, an anionic group-containing polymerizable monomer in a solvent in the presence of an oxidizing agent and / or a polymerization catalyst. The method of manufacturing by superposition | polymerization is mentioned. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, an anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anionic group. The oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer forming the component (a).

アニオン基含有重合性モノマーは、分子内にアニオン基と重合可能な官能基を有するモノマーであり、具体的には、ビニルスルホン酸及びその塩類、アリルスルホン酸及びその塩類、メタリルスルホン酸及びその塩類、スチレンスルホン酸及びその塩類、メタリルオキシベンゼンスルホン酸及びその塩類、アリルオキシベンゼンスルホン酸及びその塩類、α−メチルスチレンスルホン酸及びその塩類、アクリルアミド−t−ブチルスルホン酸及びその塩類、2−アクリルアミド−2−メチルプロパンスルホン酸及びその塩類、シクロブテン−3−スルホン酸及びその塩類、イソプレンスルホン酸及びその塩類、1,3−ブタジエン−1−スルホン酸及びその塩類、1−メチル−1,3−ブタジエン−2−スルホン酸及びその塩類、1−メチル−1,3−ブタジエン−4−スルホン酸及びその塩類、アクリル酸エチルスルホン酸(CH=CH−COO−(CH−SOH)及びその塩類、アクリル酸プロピルスルホン酸(CH=CH−COO−(CH−SOH)及びその塩類、アクリル酸−t−ブチルスルホン酸(CH=CH−COO−C(CHCH−SOH)及びその塩類、アクリル酸−n−ブチルスルホン酸(CH=CH−COO−(CH−SOH)及びその塩類、アリル酸エチルスルホン酸(CH=CHCH−COO−(CH−SOH)及びその塩類、アリル酸−t−ブチルスルホン酸(CH=CHCH−COO−C(CHCH−SOH)及びその塩類、4−ペンテン酸エチルスルホン酸(CH=CH(CH−COO−(CH−SOH)及びその塩類、4−ペンテン酸プロピルスルホン酸(CH=CH(CH−COO−(CH−SOH)及びその塩類、4−ペンテン酸−n−ブチルスルホン酸(CH=CH(CH−COO−(CH−SOH)及びその塩類、4−ペンテン酸−t−ブチルスルホン酸(CH=CH(CH−COO−C(CHCH−SOH)及びその塩類、4−ペンテン酸フェニレンスルホン酸(CH=CH(CH−COO−C−SOH)及びその塩類、4−ペンテン酸ナフタレンスルホン酸(CH=CH(CH−COO−C10−SOH)及びその塩類、メタクリル酸エチルスルホン酸(CH=C(CH)−COO−(CH−SOH)及びその塩類、メタクリル酸プロピルスルホン酸(CH=C(CH)−COO−(CH−SOH)及びその塩類、メタクリル酸−t−ブチルスルホン酸(CH=C(CH)−COO−C(CHCH−SOH)及びその塩類、メタクリル酸−n−ブチルスルホン酸(CH=C(CH)−COO−(CH−SOH)及びその塩類、メタクリル酸フェニレンスルホン酸(CH=C(CH)−COO−C−SOH)及びその塩類、メタクリル酸ナフタレンスルホン酸(CH=C(CH)−COO−C10−SOH)及びその塩類等が挙げられる。また、これらを2種以上含む共重合体であってもよい。 The anionic group-containing polymerizable monomer is a monomer having a functional group capable of polymerizing with an anionic group in the molecule. Specifically, vinylsulfonic acid and its salts, allylsulfonic acid and its salts, methallylsulfonic acid and its Salts, styrenesulfonic acid and its salts, methallyloxybenzenesulfonic acid and its salts, allyloxybenzenesulfonic acid and its salts, α-methylstyrenesulfonic acid and its salts, acrylamide-t-butylsulfonic acid and its salts, 2 Acrylamide-2-methylpropanesulfonic acid and its salts, cyclobutene-3-sulfonic acid and its salts, isoprenesulfonic acid and its salts, 1,3-butadiene-1-sulfonic acid and its salts, 1-methyl-1, 3-butadiene-2-sulfonic acid and its salts, 1-methyl 1,3-butadiene-4-sulfonic acid and salts thereof, ethyl acrylate sulfonic acid (CH 2 = CH-COO- ( CH 2) 2 -SO 3 H) and its salts, acrylic acid propyl sulfonic acid (CH 2 = CH—COO— (CH 2 ) 3 —SO 3 H) and salts thereof, acrylic acid-t-butylsulfonic acid (CH 2 ═CH—COO—C (CH 3 ) 2 CH 2 —SO 3 H) and salts thereof , Acrylic acid-n-butylsulfonic acid (CH 2 ═CH—COO— (CH 2 ) 4 —SO 3 H) and salts thereof, ethyl allyl sulfonic acid (CH 2 ═CHCH 2 —COO— (CH 2 ) 2 -SO 3 H) and its salts, allyl acid -t- butyl sulfonic acid (CH 2 = CHCH 2 -COO- C (CH 3) 2 CH 2 -SO 3 H) and its salts, 4-pen Phosphate ethyl sulfonic acid (CH 2 = CH (CH 2 ) 2 -COO- (CH 2) 2 -SO 3 H) and salts thereof, 4-pentenoic acid propyl sulfonic acid (CH 2 = CH (CH 2 ) 2 - COO- (CH 2) 3 -SO 3 H) and salts thereof, 4-pentenoic acid -n- butyl sulfonic acid (CH 2 = CH (CH 2 ) 2 -COO- (CH 2) 4 -SO 3 H) and salts thereof, 4-pentenoic acid -t- butyl sulfonic acid (CH 2 = CH (CH 2 ) 2 -COO-C (CH 3) 2 CH 2 -SO 3 H) and salts thereof, 4-pentenoic acid phenylene sulfonic acid (CH 2 = CH (CH 2 ) 2 -COO-C 6 H 4 -SO 3 H) and salts thereof, 4-pentenoic acid naphthalenesulfonic acid (CH 2 = CH (CH 2 ) 2 -COO-C 10 H 8 -S 3 H) and salts thereof, ethyl methacrylate sulfonic acid (CH 2 = C (CH 3 ) -COO- (CH 2) 2 -SO 3 H) and salts thereof, propyl methacrylate sulfonic acid (CH 2 = C (CH 3) -COO- (CH 2) 3 -SO 3 H) and its salts, methacrylic acid -t- butyl sulfonic acid (CH 2 = C (CH 3 ) -COO-C (CH 3) 2 CH 2 -SO 3 H) and its salts, methacrylic acid -n- butyl sulfonic acid (CH 2 = C (CH 3 ) -COO- (CH 2) 4 -SO 3 H) and its salts, methacrylic acid phenylene sulfonic acid (CH 2 = C (CH 3) -COO-C 6 H 4 -SO 3 H) and its salts, methacrylic acid naphthalenesulfonic acid (CH 2 = C (CH 3 ) -COO-C 10 H 8 -SO 3 H) and And the like salts and the like of it. Moreover, the copolymer containing 2 or more types of these may be sufficient.

アニオン基を有さない重合性モノマーとしては、エチレン、プロぺン、1−ブテン、2−ブテン、1−ペンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、スチレン、p−メチルスチレン、p−エチルスチレン、p−ブチルスチレン、2,4,6−トリメチルスチレン、p−メトキシスチレン、α−メチルスチレン、2−ビニルナフタレン、6−メチル−2−ビニルナフタレン、1−ビニルイミダゾール、ビニルピリジン、ビニルアセテート、アクリルアルデヒド、アクリルニトリル、N−ビニル−2−ピロリドン、N−ビニルアセトアミド、N−ビニルホルムアミド、N−ビニルイミダゾ−ル、アクリルアミド、N,N−ジメチルアクリルアミド、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸i−ブチル、アクリル酸t−ブチル、アクリル酸イソオクチル、アクリル酸イソノニルブチル、アクリル酸ラウリル、アクリル酸アリル、アクリル酸ステアリル、アクリル酸イソボルニル、アクリル酸シクロヘキシル、アクリル酸ベンジル、アクリル酸エチルカルビトール、アクリル酸フェノキシエチル、アクリル酸ヒドロキシエチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸メトキシブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸i−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、アクリロイルモルホリン、ビニルアミン、N,N−ジメチルビニルアミン、N,N−ジエチルビニルアミン、N,N−ジブチルビニルアミン、N,N−ジ−t−ブチルビニルアミン、N,N−ジフェニルビニルアミン、N−ビニルカルバゾール、ビニルアルコール、塩化ビニル、フッ化ビニル、メチルビニルエーテル、エチルビニルエーテル、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、2−メチルシクロヘキセン、ビニルフェノール、1,3−ブタジエン、1−メチル−1,3−ブタジエン、2−メチル−1,3−ブタジエン、1,4−ジメチル−1,3−ブタジエン、1,2−ジメチル−1,3−ブタジエン、1,3−ジメチル−1,3−ブタジエン、1−オクチル−1,3−ブタジエン、2−オクチル−1,3−ブタジエン、1−フェニル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1−ヒドロキシ−1,3−ブタジエン、2−ヒドロキシ−1,3−ブタジエン等が挙げられる。   Examples of the polymerizable monomer having no anionic group include ethylene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, styrene, p-methylstyrene, p. -Ethylstyrene, p-butylstyrene, 2,4,6-trimethylstyrene, p-methoxystyrene, α-methylstyrene, 2-vinylnaphthalene, 6-methyl-2-vinylnaphthalene, 1-vinylimidazole, vinylpyridine, Vinyl acetate, acrylaldehyde, acrylonitrile, N-vinyl-2-pyrrolidone, N-vinylacetamide, N-vinylformamide, N-vinylimidazole, acrylamide, N, N-dimethylacrylamide, acrylic acid, methyl acrylate, Ethyl acrylate, propyl acrylate, acrylic acid -Butyl, i-butyl acrylate, t-butyl acrylate, isooctyl acrylate, isononyl butyl acrylate, lauryl acrylate, allyl acrylate, stearyl acrylate, isobornyl acrylate, cyclohexyl acrylate, benzyl acrylate, acrylic Ethyl carbitol, phenoxyethyl acrylate, hydroxyethyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, methoxybutyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, i methacrylate -Butyl, t-butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, cyclohexyl methacrylate, methacryl Benzyl acid, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, acryloylmorpholine, vinylamine, N, N-dimethylvinylamine, N, N-diethylvinylamine, N, N-dibutylvinylamine, N, N- Di-t-butylvinylamine, N, N-diphenylvinylamine, N-vinylcarbazole, vinyl alcohol, vinyl chloride, vinyl fluoride, methyl vinyl ether, ethyl vinyl ether, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene 2-methylcyclohexene, vinylphenol, 1,3-butadiene, 1-methyl-1,3-butadiene, 2-methyl-1,3-butadiene, 1,4-dimethyl-1,3-butadiene, 1,2 -Dimethyl 1,3-butadiene, 1,3-dimethyl-1,3-butadiene, 1-octyl-1,3-butadiene, 2-octyl-1,3-butadiene, 1-phenyl-1,3-butadiene, 2- Examples include phenyl-1,3-butadiene, 1-hydroxy-1,3-butadiene, 2-hydroxy-1,3-butadiene and the like.

こうして得られるアニオン性基含有ポリマーの重合度は、特に限定されないが、通常、モノマー単位が10〜100,000程度であり、溶媒可溶化、分散性及び導電性の点からは、50〜10,000程度とすることが好ましい。   The degree of polymerization of the anionic group-containing polymer thus obtained is not particularly limited. Usually, the monomer unit is about 10 to 100,000. From the viewpoint of solvent solubilization, dispersibility, and conductivity, 50 to 10, It is preferably about 000.

アニオン性基含有ポリマーの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸)がより好ましい。   Specific examples of the anionic group-containing polymer include polyvinylsulfonic acid, polystyrenesulfonic acid, polyisoprenesulfonic acid, polyacrylic acid ethylsulfonic acid, polyacrylic acid butylsulfonic acid, poly (2-acrylamido-2-methyl-1- Propanesulfonic acid) is more preferred.

得られたアニオン性化合物がアニオン塩である場合には、それをアニオン酸に変質させるのが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましいが、金属イオン濃度などの低減が必要な場合にはイオン交換法を用いることが多い。   When the obtained anionic compound is an anionic salt, it is preferable to convert it into an anionic acid. Examples of the method for transforming into an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, and an ultrafiltration method. Among these, an ultrafiltration method is preferable from the viewpoint of easy work. When it is necessary to reduce the ion concentration, the ion exchange method is often used.

本発明で使用される(a)成分および(b)成分の組合せとしては、上記に挙げたグループから選択されたものを使用できるが、化学安定性、電気伝導性、保存安定性、入手の容易さ等の点から、(a)成分がポリ(3,4−エチレンジオキシチオフェン)であり、かつ(b)成分がポリスチレンスルホン酸であることが好ましい。これらは、前述の通り導電性高分子のモノマーとドーパントが共存した水溶液または水分散液状態で酸化剤の存在下重合を行って合成しても良く、また、市販の導電性高分子/ドーパント水分散体を使用してもよい。市販の導電性高分子/ドーパント水分散体としては、例えば、「Clevios」(商品名、ヘレウス社製、PEDOT/PSSの水分散体)、「Orgacon」(商品名、アグファ社、PEDOT/PSSの水分散体)等が挙げられる。   As the combination of the component (a) and the component (b) used in the present invention, those selected from the above-mentioned groups can be used, but chemical stability, electrical conductivity, storage stability, easy availability From these points, it is preferable that the component (a) is poly (3,4-ethylenedioxythiophene) and the component (b) is polystyrene sulfonic acid. These may be synthesized by polymerization in the presence of an oxidizing agent in an aqueous solution or aqueous dispersion in which a monomer and a dopant of a conductive polymer coexist as described above, or a commercially available conductive polymer / dopant water. Dispersions may be used. Examples of commercially available conductive polymer / dopant aqueous dispersions include “Clevios” (trade name, manufactured by Heraeus, PEDOT / PSS aqueous dispersion), “Orgacon” (trade name, Agfa, PEDOT / PSS). Water dispersion).

ポリアニオンの含有量は、π共役系導電性高分子1モルに対して0.1〜10モルの範囲であることが好ましく、1〜7モルの範囲であることがより好ましい。ポリアニオンの含有量が0.1モル以上の場合、π共役系導電性高分子へのドーピング効果が強くなる傾向にあり、導電性が不足しない。その上、溶媒への溶解性が高くなり、均一な導電性高分子溶液を得ることが容易になる。また、ポリアニオンの含有量が10モル以下になると、相対的にπ共役系導電性高分子の含有割合が多くなり、充分な導電性が得られやすい。   The content of the polyanion is preferably in the range of 0.1 to 10 mol, and more preferably in the range of 1 to 7 mol, with respect to 1 mol of the π-conjugated conductive polymer. When the polyanion content is 0.1 mol or more, the doping effect on the π-conjugated conductive polymer tends to be strong, and the conductivity is not insufficient. In addition, the solubility in a solvent increases, and it becomes easy to obtain a uniform conductive polymer solution. Further, when the polyanion content is 10 mol or less, the content ratio of the π-conjugated conductive polymer is relatively increased, and sufficient conductivity is easily obtained.

(c.オキシラン基またはオキセタン基含有有機化合物)
オキシラン基またはオキセタン基含有化合物としては、ポリアニオンのアニオン基に配位あるいは結合するものであれば特に限定されないが、一分子中に一個若しくはそれ以下のオキシラン基若しくはオキセタン基を含有する場合には凝集或いはゲル化が生じる恐れが低く、多官能オキシラン基またはオキセタン基含有化合物を用いる場合には、用いる化合物の一部に留めるのが好ましい。オキシラン基若しくはオキセタン基含有化合物の分子量は、水への溶解性や揮発性を考慮すると、50〜1000であることが好ましい。
(C. Organic compound containing oxirane group or oxetane group)
The oxirane group or oxetane group-containing compound is not particularly limited as long as it is coordinated or bonded to the anion group of the polyanion. However, when one or less oxirane group or oxetane group is contained in one molecule, it is aggregated. Alternatively, the possibility of gelation is low, and when a polyfunctional oxirane group- or oxetane group-containing compound is used, it is preferable that only a part of the compound used is used. The molecular weight of the oxirane group or oxetane group-containing compound is preferably 50 to 1000 in consideration of solubility in water and volatility.

ポリアニオン中のドープに要した以外のアニオン基とオキシラン基またはオキセタン基含有有機化合物(c)との反応は、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との複合体溶液とオキシラン基またはオキセタン基含有有機化合物(c)とを混合し、0℃から100℃の温度で攪拌混合することで行うことができる。必要により、メタノール、エタノール等の水溶性溶媒や界面活性剤を加えた混合溶媒中で反応を行っても良い。反応後はエバポレーター等で溶媒や水、用いたオキシラン基またはオキセタン基含有有機化合物(c)を除き、必要な濃度に調整しても良い。従って、反応に用いるオキシラン基またはオキセタン基含有有機化合物(c)は、π共役系導電性高分子のドープに寄与していないポリアニオン中のアニオン基に対して1〜200モル当量であることが好ましく、1.2〜100当量であることがより好ましく、2〜50当量であることが特に好ましい。1モル当量以上の場合には、ポリアニオン中のドープに要した以外のアニオン基とオキシラン基またはオキセタン基含有有機化合物(c)との反応率が高くなり、キャパシタに適用したときにキャパシタが十分な信頼性を得られやすくなる。一方、200モル当量以下の場合には、未反応のオキシラン基またはオキセタン基含有有機化合物(c)およびその開環化合物が、固体電解質中に残存しにくくなる。この実施の形態では、ポリアニオン中のドープに要した以外のアニオンの50モル%以上がオキシラン基またはオキセタン基含有有機化合物(c)と反応する。   The reaction between the anion group other than that required for doping in the polyanion and the oxirane group- or oxetane group-containing organic compound (c) is performed by the polyanion doped in the π-conjugated conductive polymer (a) and the π-conjugated conductive polymer. The complex solution with (b) and the oxirane group or oxetane group-containing organic compound (c) can be mixed and stirred and mixed at a temperature of 0 ° C to 100 ° C. If necessary, the reaction may be carried out in a mixed solvent to which a water-soluble solvent such as methanol or ethanol or a surfactant is added. After the reaction, the solvent or water, and the used oxirane group or oxetane group-containing organic compound (c) may be removed with an evaporator or the like to adjust to a necessary concentration. Therefore, the oxirane group or oxetane group-containing organic compound (c) used in the reaction is preferably 1 to 200 molar equivalents relative to the anion group in the polyanion that does not contribute to the doping of the π-conjugated conductive polymer. 1.2 to 100 equivalents, more preferably 2 to 50 equivalents. In the case of 1 molar equivalent or more, the reaction rate between the anion group other than that required for doping in the polyanion and the organic compound (c) containing the oxirane group or oxetane group is high, and the capacitor is sufficient when applied to the capacitor. It becomes easy to obtain reliability. On the other hand, in the case of 200 molar equivalents or less, the unreacted oxirane group or oxetane group-containing organic compound (c) and the ring-opening compound thereof hardly remain in the solid electrolyte. In this embodiment, 50 mol% or more of the anion other than that required for doping in the polyanion reacts with the oxirane group or oxetane group-containing organic compound (c).

この実施の形態に係るキャパシタは、π共役系導電性高分子(a)と、π共役系導電性高分子にドープしたポリアニオン(b)と、ポリアニオン中のドープに要した以外のアニオンとオキシラン基またはオキセタン基含有有機化合物(c)との反応物を含む導電性高分子分散液を塗布し、それを乾燥させて固体電解質層を形成する工程を経て製造され、この固体電解質形成条件において、未反応のオキシラン基またはオキセタン基含有有機化合物(c)およびその開環化合物の、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計に対する質量比は200%以下が好ましく、110%以下がより好ましく、100%以下がさらに好ましい。未反応のオキシラン基またはオキセタン基含有有機化合物(c)およびその開環化合物の、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計に対する質量比を200%以下とすると、キャパシタに適用したときに低ESRを実現しやすくなる。   The capacitor according to this embodiment includes a π-conjugated conductive polymer (a), a polyanion (b) doped in the π-conjugated conductive polymer, an anion and an oxirane group other than those required for doping in the polyanion. Alternatively, a conductive polymer dispersion containing a reaction product with an oxetane group-containing organic compound (c) is applied and dried to form a solid electrolyte layer. Mass of the oxirane group or oxetane group-containing organic compound (c) and the ring-opening compound of the reaction with respect to the sum of the π-conjugated conductive polymer (a) and the polyanion (b) doped in the π-conjugated conductive polymer The ratio is preferably 200% or less, more preferably 110% or less, and even more preferably 100% or less. Of the unreacted oxirane group or oxetane group-containing organic compound (c) and its ring-opening compound with respect to the sum of the π-conjugated conductive polymer (a) and the polyanion (b) doped in the π-conjugated conductive polymer When the mass ratio is 200% or less, low ESR is easily realized when applied to a capacitor.

この実施の形態にて用いられるオキシラン基またはオキセタン基含有有機化合物(c)としては、プロピレンオキサイド、2,3−ブチレンオキサイド、イソブチレンオキサイド、1,2−ブチレンオキサイド、1,2−エポキシヘキサン、1,2−エポキシヘプタン、1,2−エポキシペンタン、1,2−エポキシオクタン、1,3−ブタジエンモノオキサイド、グリシジルメチルエーテル、エチルグリシジルエーテル、グリシジルイソプロピルエーテル、tert−ブチルグリシジルエーテル、2−(クロロメチル)−1,2−エポキシプロパン、グリシドール、エピクロルヒドリン、エピブロモヒドリン、ブチルグリシジルエーテル、1,2−エポキシヘキサン、2−(クロロメチル)−1,2−エポキシブタン、1,2−エポキシ−1H,1H,2H,2H,3H,3H−トリフルオロブタン、アリルグリシジルエーテル、グリシジルブチレート、グリシジルメタクリレート、1−メチル−1,2−エポキシシクロヘキサン、1,2−エポキシシクロペンタン、1,2−エポキシシクロヘキサン、1,2−エポキシ−1H,1H,2H,2H,3H,3H−ヘプタデカフルオロブタン、3,4−エポキシテトラヒドロフラン、3−エチル−3−ヒドロキシメチルオキセタンなどが挙げられる。   Examples of the oxirane group or oxetane group-containing organic compound (c) used in this embodiment include propylene oxide, 2,3-butylene oxide, isobutylene oxide, 1,2-butylene oxide, 1,2-epoxyhexane, 1 , 2-epoxyheptane, 1,2-epoxypentane, 1,2-epoxyoctane, 1,3-butadiene monooxide, glycidyl methyl ether, ethyl glycidyl ether, glycidyl isopropyl ether, tert-butyl glycidyl ether, 2- (chloro Methyl) -1,2-epoxypropane, glycidol, epichlorohydrin, epibromohydrin, butyl glycidyl ether, 1,2-epoxyhexane, 2- (chloromethyl) -1,2-epoxybutane, 1,2-epoxy- H, 1H, 2H, 2H, 3H, 3H-trifluorobutane, allyl glycidyl ether, glycidyl butyrate, glycidyl methacrylate, 1-methyl-1,2-epoxycyclohexane, 1,2-epoxycyclopentane, 1,2- Examples include epoxycyclohexane, 1,2-epoxy-1H, 1H, 2H, 2H, 3H, 3H-heptadecafluorobutane, 3,4-epoxytetrahydrofuran, 3-ethyl-3-hydroxymethyloxetane.

この実施の形態に係るキャパシタは、上記の材料以外に、ヒドロキシ基含有芳香族性化合物、水溶性高分子化合物または水分散性高分子化合物、スルホ基含有ジカルボン酸、分子内に4個以上の水酸基を有する脂肪族化合物、高沸点溶媒、導電性向上のための添加剤の少なくともいずれか1つを加えて製造したキャパシタであっても良い。
(ヒドロキシ基含有芳香族性化合物)
ヒドロキシ基含有芳香族性化合物は、芳香族環に、ヒドロキシ基が2個以上結合している化合物である。このヒドロキシ基含有芳香族性化合物は、ヒドロキシ基と芳香族環との相互作用が強く、該化合物中の水素を放出しやすいという性質を有する。ヒドロキシ基含有芳香族性化合物としては、例えば、1,4−ジヒドロキシベンゼン、1,3−ジヒドロキシベンゼン、2,3−ジヒドロキシ−1−ペンタデシルベンゼン、2,4−ジヒドロキシアセトフェノン、2,5−ジヒドロキシアセトフェノン、2,4−ジヒドロキシベンゾフェノン、2,6−ジヒドロキシベンゾフェノン、3,4−ジヒドロキシベンゾフェノン、3,5−ジヒドロキシベンゾフェノン、2,4’−ジヒドロキシジフェニルスルフォン、2,2’,5,5’−テトラヒドロキシジフェニルスルフォン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルフォン、ヒドロキシキノンカルボン酸及びその塩類、2,3−ジヒドロキシ安息香酸、2,4−ジヒドロキシ安息香酸、2,5−ジヒドロキシ安息香酸、2,6−ジヒドロキシ安息香酸、3,5−ジヒドロキシ安息香酸、1,4−ヒドロキノンスルホン酸及びその塩類、4,5−ヒドロキシベンゼン−1,3−ジスルホン酸及びその塩類、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン−2,6−ジカルボン酸、1,6−ジヒドロキシナフタレン−2,5−ジカルボン酸、1,5−ジヒドロキシナフトエ酸、1,4−ジヒドロキシ−2−ナフトエ酸フェニルエステル、4,5−ジヒドロキシナフタレン−2,7−ジスルホン酸及びその塩類、1,8−ジヒドロキシ−3,6−ナフタレンジスルホン酸及びその塩類、6,7−ジヒドロキシ−2−ナフタレンスルホン酸及びその塩類、1,2,3−トリヒドロキシベンゼン(ピロガロール)、1,2,4−トリヒドロキシベンゼン、5−メチル−1,2,3−トリヒドロキシベンゼン、5−エチル−1,2,3−トリヒドロキシベンゼン、5−プロピル−1,2,3−トリヒドロキシベンゼン、トリヒドロキシ安息香酸及びそのエステル化合物、トリヒドロキシアセトフェノン、トリヒドロキシベンゾフェノン、トリヒドロキシベンゾアルデヒド、トリヒドロキシアントラキノン、2,4,6−トリヒドロキシベンゼン、テトラヒドロキシ−p−ベンゾキノン、テトラヒドロキシアントラキノン等が挙げられる。
In addition to the above materials, the capacitor according to this embodiment includes a hydroxy group-containing aromatic compound, a water-soluble polymer compound or a water-dispersible polymer compound, a sulfo group-containing dicarboxylic acid, and four or more hydroxyl groups in the molecule. A capacitor produced by adding at least one of an aliphatic compound having a high boiling point solvent, an additive for improving conductivity may be used.
(Hydroxy group-containing aromatic compound)
A hydroxy group-containing aromatic compound is a compound in which two or more hydroxy groups are bonded to an aromatic ring. This hydroxy group-containing aromatic compound has a property that the interaction between the hydroxy group and the aromatic ring is strong and hydrogen in the compound is easily released. Examples of the hydroxy group-containing aromatic compound include 1,4-dihydroxybenzene, 1,3-dihydroxybenzene, 2,3-dihydroxy-1-pentadecylbenzene, 2,4-dihydroxyacetophenone, and 2,5-dihydroxy. Acetophenone, 2,4-dihydroxybenzophenone, 2,6-dihydroxybenzophenone, 3,4-dihydroxybenzophenone, 3,5-dihydroxybenzophenone, 2,4'-dihydroxydiphenylsulfone, 2,2 ', 5,5'-tetra Hydroxydiphenylsulfone, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylsulfone, hydroxyquinonecarboxylic acid and its salts, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxy cheap Perfume acid, 2,6-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 1,4-hydroquinonesulfonic acid and its salts, 4,5-hydroxybenzene-1,3-disulfonic acid and its salts, 1,5 -Dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,5-dihydroxynaphthalene-2,6-dicarboxylic acid, 1,6- Dihydroxynaphthalene-2,5-dicarboxylic acid, 1,5-dihydroxynaphthoic acid, 1,4-dihydroxy-2-naphthoic acid phenyl ester, 4,5-dihydroxynaphthalene-2,7-disulfonic acid and salts thereof, 1, 8-dihydroxy-3,6-naphthalenedisulfonic acid and its salts, 6,7 Dihydroxy-2-naphthalenesulfonic acid and its salts, 1,2,3-trihydroxybenzene (pyrogallol), 1,2,4-trihydroxybenzene, 5-methyl-1,2,3-trihydroxybenzene, 5- Ethyl-1,2,3-trihydroxybenzene, 5-propyl-1,2,3-trihydroxybenzene, trihydroxybenzoic acid and its ester compounds, trihydroxyacetophenone, trihydroxybenzophenone, trihydroxybenzaldehyde, trihydroxy Anthraquinone, 2,4,6-trihydroxybenzene, tetrahydroxy-p-benzoquinone, tetrahydroxyanthraquinone and the like can be mentioned.

ヒドロキシ基含有芳香族性化合物の中でも、導電性の点からは、π共役系導電性高分子にドーピングしうる、アニオン基であるスルホ基及び/又はカルボキシ基を有する化合物がより好ましい。ヒドロキシ基置換芳香族性化合物の含有量は、ポリアニオン1モルに対して0.05〜10モルの範囲であることが好ましく、0.3〜5モルの範囲であることがより好ましい。ヒドロキシ基置換芳香族性化合物の含有量が0.05モル以上の場合には、導電性及び耐熱性を共に高めることができる。また、ヒドロキシ基置換芳香族性化合物の含有量が10モル以下の場合には、固体電解質層中のπ共役系導電性高分子の含有量が多くなり、充分な導電性が得られやすく、固体電解質層の物性が変化しにくくなる。   Among the hydroxy group-containing aromatic compounds, from the viewpoint of conductivity, compounds having a sulfo group and / or a carboxy group, which are anionic groups, can be doped into the π-conjugated conductive polymer. The content of the hydroxy group-substituted aromatic compound is preferably in the range of 0.05 to 10 mol and more preferably in the range of 0.3 to 5 mol with respect to 1 mol of the polyanion. When the content of the hydroxy group-substituted aromatic compound is 0.05 mol or more, both conductivity and heat resistance can be improved. Further, when the content of the hydroxy group-substituted aromatic compound is 10 mol or less, the content of the π-conjugated conductive polymer in the solid electrolyte layer is increased, and sufficient conductivity is easily obtained. The physical properties of the electrolyte layer are difficult to change.

(水溶性高分子化合物または水分散性高分子化合物)
水溶性高分子化合物は、高分子の主鎖又は側鎖に親水基が導入されてなり、水溶性を示す化合物である。水溶性高分子化合物の具体例としては、例えば、ポリオキシアルキレン、水溶性ポリウレタン、水溶性ポリエステル、水溶性ポリアミド、水溶性ポリイミド、水溶性ポリアクリル、水溶性ポリアクリルアミド、ポリビニルアルコール、ポリアクリル酸等が挙げられる。水溶性高分子化合物の中でも、キャパシタの耐電圧がより高くなることから、ポリオキシアルキレンが好ましい。ポリオキシアルキレンの末端は各種置換基で置換されていてもよい。
(Water-soluble polymer compound or water-dispersible polymer compound)
A water-soluble polymer compound is a compound that exhibits water solubility by introducing a hydrophilic group into the main chain or side chain of the polymer. Specific examples of the water-soluble polymer compound include, for example, polyoxyalkylene, water-soluble polyurethane, water-soluble polyester, water-soluble polyamide, water-soluble polyimide, water-soluble polyacryl, water-soluble polyacrylamide, polyvinyl alcohol, polyacrylic acid and the like. Is mentioned. Among the water-soluble polymer compounds, polyoxyalkylene is preferable because the withstand voltage of the capacitor becomes higher. The terminal of polyoxyalkylene may be substituted with various substituents.

ポリオキシアルキレンの具体例としては、トリエチレングリコール、オリゴエチレングリコール、ポリエチレングリコール、トリグリセロール、テトラグリセロール、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジグリセロールポリエチルエーテル、トリプロピレングリコール、ポリプロピレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸アミドなどが挙げられる。水溶性ポリウレタン、水溶性ポリエステル、水溶性ポリアミド、水溶性ポリイミドとしては、各々、置換又は未置換のポリウレタン、置換又は未置換のポリエステル、置換又は未置換のポリアミド、置換又は未置換のポリイミドに、スルホン酸基が導入された高分子が挙げられる。水溶性ポリアクリルとしては、上述したアクリル化合物が(共)重合したものが挙げられる。   Specific examples of polyoxyalkylene include triethylene glycol, oligoethylene glycol, polyethylene glycol, triglycerol, tetraglycerol, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, diglycerol polyethyl ether, tripropylene glycol, polypropylene glycol, polyoxy Examples thereof include ethylene alkyl ether, polyoxyethylene glycerin fatty acid ester, and polyoxyethylene fatty acid amide. Water-soluble polyurethane, water-soluble polyester, water-soluble polyamide, and water-soluble polyimide are each substituted or unsubstituted polyurethane, substituted or unsubstituted polyester, substituted or unsubstituted polyamide, substituted or unsubstituted polyimide, sulfone. Examples thereof include polymers having an acid group introduced therein. Examples of the water-soluble polyacryl include those obtained by (co) polymerizing the above-described acrylic compounds.

水溶性高分子化合物は、単独重合体であってもよく、共重合体であってもよく、2種類以上の水溶性高分子化合物の混合物でもよい。水溶性高分子化合物の質量平均分子量は100〜5,000,000の範囲であることが好ましく、400〜1,000,000の範囲であることがより好ましい。水溶性高分子化合物の質量平均分子量が5,000,000以下の場合には、導電性高分子溶液中での混合性が高まると共に、誘電体層の孔内への浸透性が高まるため、耐電圧向上効果を発揮しやすくなる。質量平均分子量が100以上の場合には、固体電解質層内で水溶性高分子化合物が動きにくくなるため、耐電圧が高くなる傾向にある。   The water-soluble polymer compound may be a homopolymer, a copolymer, or a mixture of two or more types of water-soluble polymer compounds. The mass average molecular weight of the water-soluble polymer compound is preferably in the range of 100 to 5,000,000, and more preferably in the range of 400 to 1,000,000. When the weight average molecular weight of the water-soluble polymer compound is 5,000,000 or less, the mixing property in the conductive polymer solution is increased and the permeability into the pores of the dielectric layer is increased. It becomes easy to demonstrate the voltage improvement effect. When the mass average molecular weight is 100 or more, the water-soluble polymer compound is difficult to move in the solid electrolyte layer, so that the withstand voltage tends to increase.

上述した水溶性化合物は、π共役系導電性高分子と相互作用してπ共役系導電性高分子の電気伝導度を向上させることができるため、固体電解質層の導電性を向上させる効果も発揮する。すなわち、水溶性化合物は高導電化剤としても機能する。水分散性高分子化合物は、親水性の低い化合物の一部が親水性の高い官能基で置換されたもの、あるいは、親水性の低い化合物の周囲に親水性の高い官能基を有する化合物が吸着したもの(例えばエマルジョン等)であって、水中で沈殿せずに分散するものが挙げられる。 具体例としては、ポリエステル、ポリウレタン、アクリル樹脂、シリコーン樹脂、及びこれらポリマーのエマルジョン等が挙げられる。   The above-mentioned water-soluble compounds can interact with the π-conjugated conductive polymer to improve the electrical conductivity of the π-conjugated conductive polymer, so that the conductivity of the solid electrolyte layer is also improved. To do. That is, the water-soluble compound also functions as a highly conductive agent. A water-dispersible polymer compound is a compound in which a part of a low hydrophilic compound is substituted with a highly hydrophilic functional group, or a compound having a highly hydrophilic functional group around a low hydrophilic compound. And those that disperse in water without precipitating. Specific examples include polyester, polyurethane, acrylic resin, silicone resin, and emulsions of these polymers.

エマルジョンの粒子径は、誘電体層内部への浸透性の観点から、誘電体層の孔径より小さいことが好ましく、誘電体層の孔径の1/2以下であることがより好ましい。水溶性高分子化合物および水分散性高分子化合物の量は、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計100質量部に対して1〜10,000質量部であることが好ましく、50〜5,000質量部であることがより好ましい。水溶性高分子化合物および水分散性高分子化合物の含有量が1質量部以上の場合には、キャパシタの耐電圧を高くしやすく、10,000質量部以下の場合には、固体電解質層の導電性が高くなり、キャパシタのESRが低くなる傾向にある。   The particle diameter of the emulsion is preferably smaller than the pore diameter of the dielectric layer and more preferably ½ or less of the pore diameter of the dielectric layer from the viewpoint of permeability into the dielectric layer. The amount of the water-soluble polymer compound and the water-dispersible polymer compound is 100 parts by mass in total of the π-conjugated conductive polymer (a) and the polyanion (b) doped in the π-conjugated conductive polymer. It is preferably 1 to 10,000 parts by mass, and more preferably 50 to 5,000 parts by mass. When the content of the water-soluble polymer compound and the water-dispersible polymer compound is 1 part by mass or more, it is easy to increase the withstand voltage of the capacitor. When the content is 10,000 parts by mass or less, the conductivity of the solid electrolyte layer Tend to increase, and the ESR of the capacitor tends to decrease.

(スルホ基含有ジカルボン酸)
スルホ基含有ジカルボン酸は、分子中に1個以上のスルホ基と2個以上のカルボン酸を含有する化合物で、4−スルホフタル酸、5−スルホイソフタル酸、2−スルホテレフタル酸、4−スルホナフタレン−1,8−ジカルボン酸、4−スルホナフタレン−2,7−ジカルボン酸、5−スルホナフタレン−1,4−ジカルボン酸、スルホコハク酸等が挙げられる。これらのスルホ基含有ジカルボン酸は塩であっても良く、カルボン酸が低級アルコールとエステルを形成していても良い。スルホ基含有ジカルボン酸の含有量は、ポリアニオン1モルに対して0.05〜30モルの範囲であることが好ましく、0.3〜10モルの範囲であることがより好ましい。スルホ基含有ジカルボン酸の含有量が0.05モル以上の場合には、導電性及び耐熱性を高めやすい。また、スルホ基含有ジカルボン酸の含有量が30モル以下の場合には、固体電解質層中のπ共役系導電性高分子の含有量が多くなり、充分な導電性が得られやすく、固体電解質層の物性が変化しにくくなる。
(Sulfo group-containing dicarboxylic acid)
The sulfo group-containing dicarboxylic acid is a compound containing one or more sulfo groups and two or more carboxylic acids in the molecule. 4-sulfophthalic acid, 5-sulfoisophthalic acid, 2-sulfoterephthalic acid, 4-sulfonaphthalene Examples include -1,8-dicarboxylic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5-sulfonaphthalene-1,4-dicarboxylic acid, sulfosuccinic acid, and the like. These sulfo group-containing dicarboxylic acids may be salts, and the carboxylic acid may form an ester with a lower alcohol. The content of the sulfo group-containing dicarboxylic acid is preferably in the range of 0.05 to 30 mol, more preferably in the range of 0.3 to 10 mol, with respect to 1 mol of the polyanion. When the content of the sulfo group-containing dicarboxylic acid is 0.05 mol or more, the conductivity and heat resistance are easily improved. Further, when the content of the sulfo group-containing dicarboxylic acid is 30 mol or less, the content of the π-conjugated conductive polymer in the solid electrolyte layer is increased, and sufficient conductivity can be easily obtained. The physical properties of the are difficult to change.

(分子内に4個以上の水酸基を有する脂肪族化合物)
分子内に4個以上の水酸基を有する脂肪族化合物は、好適には糖類、糖アルコール類、ポリヒドロキシ類等が挙げられる。具体的には、例えば、ショ糖、マルトース、キシロース、グルコース、ポリデキストロース等の糖類及び糖誘導体、ソルビトール、マンニトール、キシリトール、ペンタエリスリトール、ジペンタエリスリトール等の糖アルコール類、ポリビニルアルコール等が挙げられる。固体電解質層の熱安定性の観点からは高い融点を有する化合物が好ましい。より好ましくは170℃以上の融点を有する、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。分子内に4個以上の水酸基を有する脂肪族化合物の含有量は、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計100質量部に対して好ましくは10〜1000質量部であり、より好ましくは5〜500質量部である。この範囲であれば固体電解質層の耐熱性と導電性を両立しやすい。1000質量部以下の場合には、固体電解質の製膜性が良好になる。
(Aliphatic compounds having 4 or more hydroxyl groups in the molecule)
Suitable aliphatic compounds having 4 or more hydroxyl groups in the molecule include saccharides, sugar alcohols, polyhydroxys and the like. Specific examples include sugars and sugar derivatives such as sucrose, maltose, xylose, glucose, and polydextrose, sugar alcohols such as sorbitol, mannitol, xylitol, pentaerythritol, and dipentaerythritol, and polyvinyl alcohol. From the viewpoint of the thermal stability of the solid electrolyte layer, a compound having a high melting point is preferred. More preferable examples include pentaerythritol and dipentaerythritol having a melting point of 170 ° C. or higher. The content of the aliphatic compound having four or more hydroxyl groups in the molecule is 100 parts by mass in total of the π-conjugated conductive polymer (a) and the polyanion (b) doped in the π-conjugated conductive polymer. The amount is preferably 10 to 1000 parts by mass, more preferably 5 to 500 parts by mass. If it is this range, it will be easy to make heat resistance and electroconductivity of a solid electrolyte layer compatible. In the case of 1000 parts by mass or less, the film forming property of the solid electrolyte becomes good.

(高沸点溶媒)
この実施の形態でいう高沸点溶媒は、沸点が100℃以上の液状有機化合物で、導電性を著しく向上させる効果がある。この実施の形態にて用いられる高沸点溶媒としては、N−メチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコールモノアルキルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコール、ジグリセロール、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコール等が挙げられる。高沸点溶媒の含有量は、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計100質量部に対して好ましくは100〜2000質量部であり、より好ましくは150〜1000質量部である。100質量部以上の場合には導電性向上の効果を発現しやすく、2000質量部以下の場合には、溶液の安定性を高めやすく、また焼成を短時間で行うことができる。
(High boiling point solvent)
The high boiling point solvent referred to in this embodiment is a liquid organic compound having a boiling point of 100 ° C. or higher, and has an effect of remarkably improving conductivity. Examples of the high-boiling solvent used in this embodiment include N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ethylene glycol monoalkyl ether, ethylene Examples include glycol dialkyl ether, diethylene glycol, diglycerol, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, and dipropylene glycol. The content of the high boiling point solvent is preferably 100 to 2000 parts by mass with respect to 100 parts by mass in total of the π-conjugated conductive polymer (a) and the polyanion (b) doped in the π-conjugated conductive polymer. Yes, more preferably 150 to 1000 parts by mass. When the amount is 100 parts by mass or more, the effect of improving the conductivity is easily exhibited. When the amount is 2000 parts by mass or less, the stability of the solution is easily improved, and baking can be performed in a short time.

(導電性向上のための添加剤)
導電性高分子の導電性を向上させる化合物として、種々の添加剤を用いることができる。例えば、アミド基を含む有機化合物、イミド基を含む有機化合物、ラクタム基を含む有機化合物、ラクトン基を含む化合物、チオジグリコール、チオジカルボン酸、クレゾール類等を例示でき、この実施の形態においても、これら化合物の添加は導電性向上に対して有為に効果を発揮する。したがって、これらの化合物は、適宜選択して使用することが好ましい。
(Additives for improving conductivity)
Various additives can be used as the compound for improving the conductivity of the conductive polymer. Examples include organic compounds containing amide groups, organic compounds containing imide groups, organic compounds containing lactam groups, compounds containing lactone groups, thiodiglycols, thiodicarboxylic acids, cresols, and the like. The addition of these compounds exhibits a significant effect on the improvement of conductivity. Therefore, these compounds are preferably selected and used as appropriate.

次に、本発明のキャパシタ(コンデンサとも称する)の製造方法の一実施の形態について説明する。   Next, an embodiment of a method for manufacturing a capacitor (also referred to as a capacitor) according to the present invention will be described.

この実施の形態に係るキャパシタの製造方法は、π共役系導電性高分子(a)と、π共役系導電性高分子にドープしたポリアニオン(b)と、ポリアニオン中のドープに要した以外のアニオンとオキシラン基またはオキセタン基含有有機化合物(c)との反応物を含む導電性高分子分散液を調製する工程と、
弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、
誘電体層に対向する位置に陰極を形成する工程と、
誘電体層表面に前記導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程と、を有し、
固体電解質層の形成条件において、固体電解質層中の未反応のオキシラン基またはオキセタン基含有有機化合物(c)およびその開環化合物の、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計に対する質量比が200%以下であり、ポリアニオン中のドープに要した以外のアニオンの50モル%以上がオキシラン基またはオキセタン基含有有機化合物(c)と反応してなることを特徴とする。
The method for manufacturing a capacitor according to this embodiment includes a π-conjugated conductive polymer (a), a polyanion (b) doped in the π-conjugated conductive polymer, and an anion other than that required for doping in the polyanion. Preparing a conductive polymer dispersion containing a reaction product of the oxirane group or oxetane group-containing organic compound (c);
Oxidizing the surface of the anode made of a porous body of valve metal to form a dielectric layer;
Forming a cathode at a position facing the dielectric layer;
Applying the conductive polymer dispersion to the surface of the dielectric layer and drying to form a solid electrolyte layer,
Under the conditions for forming the solid electrolyte layer, the unreacted oxirane group or oxetane group-containing organic compound (c) in the solid electrolyte layer and the ring-opening compound thereof are π-conjugated conductive polymer (a) and π-conjugated conductive properties. The mass ratio to the total of the polyanion doped in the polymer (b) is 200% or less, and 50 mol% or more of the anion other than that required for doping in the polyanion is an oxirane group or oxetane group-containing organic compound (c). It is characterized by reacting.

(導電性高分子分散液の調製方法)
π共役系導電性高分子(a)と、π共役系導電性高分子にドープしたポリアニオン(b)と、ポリアニオン中のドープに要した以外のアニオンとオキシラン基またはオキセタン基含有有機化合物(c)との反応物の調製方法は前記したとおりである。こうして得られた反応物に、ヒドロキシ基含有芳香族性化合物、水溶性高分子化合物または水分散性高分子化合物、スルホ基含有ジカルボン酸、分子内に4個以上の水酸基を有する脂肪族化合物、高沸点溶媒、導電性向上のための添加剤、バインダ、シランカップリング剤、水等を混合、攪拌し、必要により加熱溶解し、導電性高分子分散液を調製する。さらに、ビーズミル、高圧分散機、超音波等により分散処理を行うことにより、導電性高分子分散液の安定性を改良することができる。その中でも高圧分散機による分散処理は、簡便に分散安定性を改良することができるため、より好ましい。
(Method for preparing conductive polymer dispersion)
π-conjugated conductive polymer (a), polyanion (b) doped in π-conjugated conductive polymer, anion and oxirane group or oxetane group-containing organic compound (c) other than that required for doping in the polyanion The method for preparing the reaction product is as described above. The reaction product thus obtained includes a hydroxy group-containing aromatic compound, a water-soluble polymer compound or a water-dispersible polymer compound, a sulfo group-containing dicarboxylic acid, an aliphatic compound having four or more hydroxyl groups in the molecule, A conductive polymer dispersion is prepared by mixing and stirring a boiling point solvent, an additive for improving conductivity, a binder, a silane coupling agent, water, and the like, and if necessary, heated and dissolved. Furthermore, the stability of the conductive polymer dispersion can be improved by performing a dispersion treatment with a bead mill, a high-pressure disperser, ultrasonic waves, or the like. Among them, the dispersion treatment using a high-pressure disperser is more preferable because the dispersion stability can be easily improved.

(高圧分散処理工程)
高圧分散処理は、高圧分散機を用いて、分散処理する溶液を高圧で対向衝突させたり、オリフィスやスリットに高圧で通したりして、ポリアニオンや導電性高分子分散液を分散する処理のことである。高圧分散機としては、例えば、高圧ホモジナイザー等の市販の高圧分散機を好適に使用できる。高圧ホモジナイザーは、例えば、分散処理する溶液などを加圧する高圧発生部と、分散を行う対向衝突部やオリフィス部あるいはスリット部とを備える装置である。高圧発生部としては、プランジャーポンプ等の高圧ポンプが好適に用いられる。高圧ポンプには、一連式、二連式、三連式などの各種の形式があるが、いずれの形式も採用できる。
(High pressure dispersion process)
High-pressure dispersion treatment is a treatment in which a polyanion or conductive polymer dispersion is dispersed using a high-pressure disperser by causing the solution to be dispersed to collide oppositely at high pressure or passing it through an orifice or slit at high pressure. is there. As the high pressure disperser, for example, a commercially available high pressure disperser such as a high pressure homogenizer can be suitably used. The high-pressure homogenizer is an apparatus including, for example, a high-pressure generating unit that pressurizes a solution to be dispersed, and an opposing collision unit, an orifice unit, or a slit unit that performs dispersion. As the high-pressure generator, a high-pressure pump such as a plunger pump is preferably used. There are various types of high-pressure pumps such as a series type, a double type, and a triple type, and any type can be adopted.

高圧分散処理において分散処理する溶液を高圧で対向衝突させる場合には、高圧分散処理効果がより発揮されることから、その処理圧力は50MPa以上であることが好ましく、100MPa以上であることがより好ましく、130MPa以上であることがとりわけ好ましい。また、300MPaを超える処理圧力では高圧分散機の耐圧性や耐久性に問題が生じやすいため、処理圧力は300MPa以下であることが好ましい。   In the case of causing the solution to be dispersed to collide with each other at high pressure in the high-pressure dispersion treatment, the effect of the high-pressure dispersion treatment is more exerted, so that the treatment pressure is preferably 50 MPa or more, more preferably 100 MPa or more. , 130 MPa or more is particularly preferable. Moreover, since a problem tends to arise in the pressure resistance and durability of the high-pressure disperser at a processing pressure exceeding 300 MPa, the processing pressure is preferably 300 MPa or less.

上述のオリフィスとは、円形状等の微細な穴を持つ薄板(オリフィス板)が直管内に挿入されて、直管の流路を急激に絞る機構をいう。また、上述のスリットとは、金属やダイヤモンドなど強固な材料製の一対の部材がわずかな隙間を有して配置された機構をいう。高圧分散処理において分散処理する溶液をオリフィスやスリットに通す場合には、高圧分散処理効果がより発揮されることから、上流側と下流側の差圧が50MPa以上であることが好ましく、100MPa以上であることがより好ましく、130MPa以上であることがとりわけ好ましい。また、300MPa以下の差圧では、高圧分散機の耐圧性や耐久性に問題が生じにくいため、差圧は300MPa以下であることが好ましい。高圧ホモジナイザーの具体例としては、吉田機械興業社製の商品名ナノヴェイター、マイクロフルイディクス社製の商品名マイクロフルイダイザー、スギノマシン社製のアルティマイザーなどが挙げられる。   The above-mentioned orifice refers to a mechanism in which a thin plate (orifice plate) having a fine hole having a circular shape or the like is inserted into a straight pipe and the flow path of the straight pipe is rapidly narrowed. The above-mentioned slit refers to a mechanism in which a pair of members made of a strong material such as metal or diamond are arranged with a slight gap. When the solution to be dispersed in the high-pressure dispersion treatment is passed through an orifice or a slit, the effect of the high-pressure dispersion treatment is more exhibited. Therefore, the differential pressure between the upstream side and the downstream side is preferably 50 MPa or more, and 100 MPa or more. More preferably, it is particularly preferably 130 MPa or more. Further, when the pressure difference is 300 MPa or less, it is difficult for the high pressure disperser to have a problem with the pressure resistance and durability. Therefore, the pressure difference is preferably 300 MPa or less. Specific examples of the high-pressure homogenizer include a trade name Nanoviter manufactured by Yoshida Kikai Kogyo Co., a trade name Microfluidizer manufactured by Microfluidics, and an optimizer manufactured by Sugino Machine.

高圧分散処理の処理回数は特に制限されないが、1〜数十回の範囲が好ましい。分散処理回数が多すぎる場合には、処理回数を増やしても処理回数に応じた効果が発揮されないからである。上記高圧分散処理では、対向衝突の際に、または、急激に絞られた流路を通過する際に高い剪断力が生じることにより、分散処理する溶液に含まれるポリアニオンまたは複合体の分散性を高めることができる。高圧分散機により高圧分散処理を施すと、原理上、処理した後の液の温度が高くなる。そのため、分散処理前の分散処理する溶液の温度をあらかじめ低くしておくことが好ましい。しかし、分散処理する溶液が凍結すると特性が変化する場合があるので、凍結しない程度に制御することが好ましい。従って分散処理前の分散処理する溶液の温度は、分散媒が水の場合には0〜60℃、より好ましくは0〜40℃、特に好ましくは0〜30℃とすることが好ましい。分散処理前の分散処理する溶液の温度を60℃以下にすれば、π共役系導電性高分子またはポリアニオンの変性を防止できる。さらに、高圧分散処理後の溶液を、冷媒温度−30〜20℃の熱交換器に通して冷却しても構わない。   The number of high-pressure dispersion treatments is not particularly limited, but is preferably in the range of 1 to several tens of times. This is because if the number of times of distributed processing is too large, an effect corresponding to the number of times of processing is not exhibited even if the number of times of processing is increased. In the high-pressure dispersion treatment, a high shear force is generated in the case of an oncoming collision or when passing through a rapidly narrowed flow path, thereby increasing the dispersibility of the polyanion or complex contained in the solution to be dispersed. be able to. When high-pressure dispersion treatment is performed by a high-pressure disperser, the temperature of the liquid after treatment increases in principle. Therefore, it is preferable to lower the temperature of the solution to be dispersed before the dispersion treatment in advance. However, since the characteristics may change when the solution to be dispersed is frozen, it is preferable to control it so that it does not freeze. Therefore, the temperature of the solution to be dispersed before the dispersion treatment is preferably 0 to 60 ° C., more preferably 0 to 40 ° C., and particularly preferably 0 to 30 ° C. when the dispersion medium is water. If the temperature of the solution to be subjected to the dispersion treatment before the dispersion treatment is set to 60 ° C. or lower, modification of the π-conjugated conductive polymer or polyanion can be prevented. Furthermore, the solution after the high-pressure dispersion treatment may be cooled by passing through a heat exchanger having a refrigerant temperature of −30 to 20 ° C.

(電解酸化工程)
この実施の形態に係るキャパシタの製造方法では、まず、電解酸化工程にて、弁金属からなる陽極の表面を電解酸化し、化成処理して誘電体層を形成する。陽極表面を電解酸化する方法としては、例えば、アジピン酸アンモニウム水溶液などの電解液中にて、電圧を印加して陽極表面を陽極酸化する方法などが挙げられる。
(陰極配置工程)
次に、誘電体層の表面に、セパレータを介して、アルミニウム箔等の導電体から形成された陰極を対向配置させる。
(固体電解質層の形成工程)
次に、固体電解質層の形成工程にて、誘電体層と陰極との間に、固体電解質層を形成する。固体電解質層の形成方法としては、誘電体層及び陰極を有する素子を上記導電性高分子分散液に浸漬させる方法、誘電体層の表面に上記導電性高分子溶液を公知の塗布装置により塗布する方法、誘電体層の表面に上記導電性高分子溶液を公知の噴霧装置により噴霧する方法などが挙げられる。また、浸漬または塗布時、必要に応じて、減圧状態にしてもよい。上記導電性高分子溶液の浸漬または塗布後には、熱風乾燥など公知の乾燥方法により乾燥することが好ましい。
(Electrolytic oxidation process)
In the capacitor manufacturing method according to this embodiment, first, in the electrolytic oxidation step, the surface of the anode made of the valve metal is electrolytically oxidized and subjected to chemical conversion treatment to form a dielectric layer. Examples of the method for electrolytically oxidizing the anode surface include a method in which a voltage is applied in an electrolytic solution such as an ammonium adipate aqueous solution to anodize the anode surface.
(Cathode arrangement process)
Next, a cathode formed of a conductor such as an aluminum foil is disposed opposite to the surface of the dielectric layer via a separator.
(Formation process of solid electrolyte layer)
Next, in the solid electrolyte layer forming step, a solid electrolyte layer is formed between the dielectric layer and the cathode. As a method for forming the solid electrolyte layer, a method in which an element having a dielectric layer and a cathode is immersed in the conductive polymer dispersion, and the conductive polymer solution is applied to the surface of the dielectric layer by a known coating apparatus. And a method of spraying the conductive polymer solution onto the surface of the dielectric layer with a known spraying device. Moreover, you may make it a pressure reduction state as needed at the time of immersion or application | coating. After the immersion or application of the conductive polymer solution, it is preferably dried by a known drying method such as hot air drying.

キャパシタは、必要に応じて、誘電体層と陰極との間に、電解液を充填してもよい。電解液としては電気伝導度が高ければ特に限定されず、周知の電解液用溶媒中に周知の電解質を溶解させたものが挙げられる。電解液用溶媒としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4−ブタンジオール、グリセリン等のアルコール系溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等のラクトン系溶媒、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N−メチルピロリジノン等のアミド系溶媒、アセトニトリル、3−メトキシプロピオニトリル等のニトリル系溶媒、水等が挙げられる。電解質としては、アジピン酸、グルタル酸、コハク酸、安息香酸、イソフタル酸、フタル酸、テレフタル酸、マレイン酸、トルイル酸、エナント酸、マロン酸、蟻酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸等のデカンジカルボン酸、1,7−オクタンジカルボン酸等のオクタンジカルボン酸、アゼライン酸、セバシン酸等の有機酸、あるいは、硼酸、硼酸と多価アルコールより得られる硼酸の多価アルコール錯化合物、りん酸、炭酸、けい酸等の無機酸などをアニオン成分とし、一級アミン(メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン等)、二級アミン(ジメチルアミン、ジエチルアミン、ジプロピルアミン、メチルエチルアミン、ジフェニルアミン等)、三級アミン(トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリフェニルアミン、1,8−ジアザビシクロ(5,4,0)−ウンデセン−7等)、テトラアルキルアンモニウム(テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム等)などをカチオン成分とした電解質が挙げられる。   The capacitor may be filled with an electrolytic solution between the dielectric layer and the cathode as necessary. The electrolytic solution is not particularly limited as long as the electric conductivity is high, and examples thereof include a well-known electrolyte dissolved in a well-known electrolyte solution. Examples of the electrolyte solution solvent include alcohol solvents such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, and glycerin, lactone solvents such as γ-butyrolactone, γ-valerolactone, and δ-valerolactone, Examples thereof include amide solvents such as N-methylformamide, N, N-dimethylformamide, N-methylacetamide and N-methylpyrrolidinone, nitrile solvents such as acetonitrile and 3-methoxypropionitrile, water and the like. Examples of the electrolyte include adipic acid, glutaric acid, succinic acid, benzoic acid, isophthalic acid, phthalic acid, terephthalic acid, maleic acid, toluic acid, enanthic acid, malonic acid, formic acid, 1,6-decanedicarboxylic acid, 5,6 -Decane dicarboxylic acid such as decanedicarboxylic acid, octane dicarboxylic acid such as 1,7-octane dicarboxylic acid, organic acid such as azelaic acid and sebacic acid, or boric acid, polyhydric alcohol of boric acid obtained from boric acid and polyhydric alcohol Complex compounds, inorganic acids such as phosphoric acid, carbonic acid, and silicic acid are used as anionic components, and primary amines (methylamine, ethylamine, propylamine, butylamine, ethylenediamine, etc.), secondary amines (dimethylamine, diethylamine, dipropylamine, Methylethylamine, diphenylamine, etc.), tertiary amine (trimethyl) Amine, triethylamine, tripropylamine, triphenylamine, 1,8-diazabicyclo (5,4,0) -undecene-7, etc.), tetraalkylammonium (tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, Examples thereof include electrolytes containing methyltriethylammonium, dimethyldiethylammonium, etc.) as cationic components.

(印加工程)
次に、印加工程にて、陽極と陰極との間に直流電圧を印加する処理を施して、コンデンサを得る。印加する直流電圧は特に制限されないが、漏れ電流をより小さくするという点では、得られるコンデンサの定格電圧の30%以上であることが好ましく、50%以上であることがより好ましく、80%以上であることが特に好ましい。ここで、定格電圧は、陽極を電解酸化する際の印加電圧(化成電圧)などによって決まる値である。通常、定格電圧は、化成電圧以下とされる。また、印加工程にて印加する電圧は、漏れ電流がより小さくなることから、電解酸化工程における化成電圧の20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることが特に好ましい。
(Applying process)
Next, in the applying step, a process for applying a DC voltage between the anode and the cathode is performed to obtain a capacitor. The DC voltage to be applied is not particularly limited, but in terms of reducing the leakage current, it is preferably 30% or more, more preferably 50% or more, and more preferably 80% or more of the rated voltage of the obtained capacitor. It is particularly preferred. Here, the rated voltage is a value determined by an applied voltage (formation voltage) or the like when electrolytically oxidizing the anode. Usually, the rated voltage is not more than the formation voltage. In addition, the voltage applied in the application step is preferably 20% or more, more preferably 30% or more, and more preferably 40% or more of the formation voltage in the electrolytic oxidation step because the leakage current becomes smaller. It is particularly preferred.

印加工程を行う環境温度は、漏れ電流をより小さくできることから、30℃以上が好ましく、40〜200℃がより好ましく、80〜180℃が特に好ましく、100〜160℃が最も好ましい。印加工程の時間は、印加する直流電圧や環境温度に応じて適宜調整される。例えば、漏れ電流をより小さくするためには、印加する直流電圧が低い程、印加時間を長くすることが好ましい。具体的に、印加する直流電圧がコンデンサの定格電圧の50%未満である場合には、漏れ電流をより小さくするために、印加時間を5分以上にすることが好ましい。印加する直流電圧が高い場合には、印加時間を短くしても構わない。具体的に、印加する直流電圧がコンデンサの定格電圧の50%以上である場合には、印加時間を5分未満にしても、漏れ電流を小さくできる。また、漏れ電流をより小さくするためには、環境温度が低い程、印加時間を長くすることが好ましい。環境温度が高ければ、印加時間を短くしても構わない。   The environmental temperature at which the application step is performed is preferably 30 ° C. or higher, more preferably 40 to 200 ° C., particularly preferably 80 to 180 ° C., and most preferably 100 to 160 ° C., since leakage current can be further reduced. The application process time is appropriately adjusted according to the DC voltage to be applied and the environmental temperature. For example, in order to further reduce the leakage current, it is preferable to extend the application time as the applied DC voltage is lower. Specifically, when the DC voltage to be applied is less than 50% of the rated voltage of the capacitor, it is preferable to set the application time to 5 minutes or more in order to reduce the leakage current. When the DC voltage to be applied is high, the application time may be shortened. Specifically, when the applied DC voltage is 50% or more of the rated voltage of the capacitor, the leakage current can be reduced even if the application time is less than 5 minutes. Further, in order to reduce the leakage current, it is preferable to extend the application time as the environmental temperature is lower. If the environmental temperature is high, the application time may be shortened.

次に、本発明のキャパシタ及びその製造方法の実施例について説明する。ただし、本発明は、以下の実施例に限定されない。   Next, examples of the capacitor and the manufacturing method thereof according to the present invention will be described. However, the present invention is not limited to the following examples.

(1) 製造例1 ポリスチレンスルホン酸の調製
1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間で滴下し、この溶液を2時間攪拌した。こうして得られたポリスチレンスルホン酸ナトリウム含有溶液に、1000mlの10質量%硫酸水溶液、及び10000mlのイオン交換水を添加し、限外ろ過法によりポリスチレンスルホン酸含有溶液の約10000mlを除去し、残液に10000mlのイオン交換水を加え、限外ろ過法により約10000ml溶液を除去した。上記の限外ろ過操作を3回繰り返した。限外ろ過条件は下記の通りとした(他の例でも同様)。
限外ろ過膜の分画分子量:30000
クロスフロー式
供給液流量:3000ml/分
膜分圧:0.12Pa
得られた溶液中の水を減圧除去して、無色の固形状のポリスチレンスルホン酸を得た。このポリスチレンスルホン酸の質量平均分子量は約220000であった。
(1) Production Example 1 Preparation of Polystyrene Sulfonic Acid 1.14 g of ammonium persulfate oxidant solution dissolved in 10 ml of water in advance while dissolving 206 g of sodium styrene sulfonate in 1000 ml of ion exchange water and stirring at 80 ° C. Was added dropwise over 20 minutes and the solution was stirred for 2 hours. To the sodium polystyrene sulfonate-containing solution thus obtained, 1000 ml of a 10% by mass sulfuric acid aqueous solution and 10000 ml of ion-exchanged water are added, and about 10,000 ml of the polystyrene sulfonic acid-containing solution is removed by an ultrafiltration method. 10,000 ml of ion-exchanged water was added, and about 10,000 ml of solution was removed by ultrafiltration. The above ultrafiltration operation was repeated three times. The ultrafiltration conditions were as follows (the same applies to other examples).
Molecular weight cut off of ultrafiltration membrane: 30000
Cross flow type Supply liquid flow rate: 3000 ml / min Membrane partial pressure: 0.12 Pa
Water in the obtained solution was removed under reduced pressure to obtain colorless solid polystyrene sulfonic acid. The polystyrene sulfonic acid had a mass average molecular weight of about 220,000.

(2) 製造例2 PEDOT−PSS水分散液の調製
製造例1で得たポリスチレンスルホン酸36.7gを2000mlのイオン交換水に溶解した。ここに14.2gの3,4−エチレンジオキシチオフェンを加え、20℃で攪拌混合した。こうして得られた混合溶液を20℃に保ち、かき混ぜながら、29.64gの過硫酸アンモニウム及び8.0gの硫酸第二鉄を溶解させた水溶液240mlを1時間かけて滴下し、その後3時間撹拌した。得られた反応液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000ml溶液を除去した。この操作を3回繰り返した。そして、上記ろ過処理が行われた処理液に200mlの10質量%硫酸水溶液と2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの処理液を除去し、これに2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの液を除去した。この操作を3回繰り返した。さらに、得られた処理液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの処理液を除去した。この操作を5回繰り返し、イオン交換水で濃度を調整し、1.6質量%の濃青色のPEDOT−PSS水分散液を得た。
(2) Production Example 2 Preparation of PEDOT-PSS aqueous dispersion 36.7 g of polystyrene sulfonic acid obtained in Production Example 1 was dissolved in 2000 ml of ion-exchanged water. 14.2 g of 3,4-ethylenedioxythiophene was added here, and it stirred and mixed at 20 degreeC. While maintaining the mixed solution thus obtained at 20 ° C., 240 ml of an aqueous solution in which 29.64 g of ammonium persulfate and 8.0 g of ferric sulfate were dissolved was added dropwise over 1 hour, followed by stirring for 3 hours. 2000 ml of ion-exchanged water was added to the resulting reaction solution, and about 2000 ml of solution was removed using an ultrafiltration method. This operation was repeated three times. Then, 200 ml of 10% by mass sulfuric acid aqueous solution and 2000 ml of ion exchange water are added to the treatment liquid subjected to the above filtration treatment, and about 2000 ml of the treatment liquid is removed using an ultrafiltration method. Water was added and about 2000 ml of liquid was removed using ultrafiltration. This operation was repeated three times. Furthermore, 2000 ml of ion-exchanged water was added to the obtained treatment liquid, and about 2000 ml of the treatment liquid was removed using an ultrafiltration method. This operation was repeated 5 times, the concentration was adjusted with ion-exchanged water, and a 1.6% by mass dark blue PEDOT-PSS aqueous dispersion was obtained.

(3−1) 製造例3−1 PEDOT−PSSとオキシラン基含有有機化合物との反応物(C−1)の調製
製造例2で得た1.6質量%のPEDOT−PSS水分散液100gにグリシドール(純正化学工業社製、Mw=74.08)5gを加え、室温で3日間撹拌し、PEDOT−PSSとグリシドールの反応物(以下、C−1とする。)を得た。反応の確認は、FTIRによりスルホン基由来のピークが減少し、スルホン酸エステル基由来のピークが増加したこと、またJIS K 7236に従い、系中のエポキシ基が90%以上消失したことにより行った。また、FTIRによるスルホン基由来のピークの減少率を反応率とした。本製造例における反応率は、74%であった。また、固体電解質層の形成条件における未反応のオキシラン基またはオキセタン基含有有機化合物(c)およびその開環化合物の含有量を確認するため、反応液をアルミニウム製の皿上に敷いたろ紙上で120℃の熱風乾燥機により10分間乾燥し、重量変化を測定した。120℃における不揮発分は、2.3%であった。反応率74%のとき、不揮発分の計算値は1.87%になるので、未反応のまま系中に残存するグリシドールまたはその開環化合物のPEDOT−PSS固形分に対する質量比(以下、残存率という)は20%となる。
(3-1) Production Example 3-1 Preparation of Reaction Product (C-1) of PEDOT-PSS and Oxirane Group-Containing Organic Compound To 100 g of 1.6 mass% PEDOT-PSS aqueous dispersion obtained in Production Example 2 5 g of glycidol (manufactured by Junsei Chemical Industry Co., Ltd., Mw = 74.08) was added and stirred at room temperature for 3 days to obtain a reaction product of PEDOT-PSS and glycidol (hereinafter referred to as C-1). Confirmation of the reaction was performed by the fact that the peak derived from the sulfone group decreased by FTIR, the peak derived from the sulfonate group increased, and the epoxy group in the system disappeared by 90% or more according to JIS K7236. Moreover, the reduction rate of the peak derived from the sulfone group by FTIR was made into the reaction rate. The reaction rate in this production example was 74%. In addition, in order to confirm the contents of the unreacted oxirane group or oxetane group-containing organic compound (c) and the ring-opening compound under the formation conditions of the solid electrolyte layer, the reaction solution was placed on a filter paper laid on an aluminum dish. It dried for 10 minutes with a 120 degreeC hot air dryer, and measured the weight change. The non-volatile content at 120 ° C. was 2.3%. When the reaction rate is 74%, the calculated value of the non-volatile content is 1.87%, so the mass ratio of glycidol remaining in the system or its ring-opening compound to the PEDOT-PSS solid content (hereinafter, residual rate) Is 20%.

(3−2) 製造例3−2 PEDOT−PSSとオキシラン基含有有機化合物との反応物(C−2)の調製
製造例2で得た1.6質量%のPEDOT−PSS水分散液100gにグリシドール(純正化学工業社製、Mw=74.08)10gを加え、製造例3−1と同様の操作を行い、PEDOT−PSSとグリシドールの反応物(以下、C−2とする。)を得た。また、製造例3−1と同様の操作を行い、C−2の反応率及び120℃における残存率を測定したところ、反応率は90%、残存率は37%であった。
(3-2) Production Example 3-2 Preparation of Reaction Product (C-2) of PEDOT-PSS and Oxirane Group-Containing Organic Compound To 100 g of 1.6 mass% PEDOT-PSS aqueous dispersion obtained in Production Example 2 10 g of glycidol (manufactured by Junsei Chemical Industry Co., Ltd., Mw = 74.08) was added, and the same operation as in Production Example 3-1 was performed to obtain a reaction product of PEDOT-PSS and glycidol (hereinafter referred to as C-2). It was. Moreover, operation similar to manufacture example 3-1 was performed, and when the reaction rate of C-2 and the residual rate in 120 degreeC were measured, the reaction rate was 90% and the residual rate was 37%.

(3−3) 製造例3−3 PEDOT−PSSとオキシラン基含有有機化合物との反応物(C−3)の調製
製造例2で得た1.6質量%のPEDOT−PSS水分散液100gにグリシドール(純正化学工業社製、Mw=74.08)15gを加え、製造例3−1と同様の操作を行い、PEDOT−PSSとグリシドールの反応物(以下、C−3とする。)を得た。また、製造例3−1と同様の操作を行い、C−3の反応率及び120℃における残存率を測定したところ、反応率は94%、残存率は105%であった。
(3-3) Production Example 3-3 Preparation of Reaction Product (C-3) of PEDOT-PSS and Oxirane Group-Containing Organic Compound To 100 g of 1.6 mass% PEDOT-PSS aqueous dispersion obtained in Production Example 2 15 g of glycidol (manufactured by Junsei Chemical Industry Co., Ltd., Mw = 74.08) was added, and the same operation as in Production Example 3-1 was performed to obtain a reaction product of PEDOT-PSS and glycidol (hereinafter referred to as C-3). It was. Moreover, operation similar to manufacture example 3-1 was performed, and the reaction rate of C-3 and the residual rate in 120 degreeC were measured, The reaction rate was 94% and the residual rate was 105%.

(3−4) 製造例3−4 PEDOT−PSSとオキシラン基含有有機化合物との反応物(C−4)の調製
製造例2で得た1.6質量%のPEDOT−PSS水分散液100gにグリシジルメチルエーテル(和光純薬工業社製、Mw=88.11)8gを加え、製造例3−1と同様の操作を行い、PEDOT−PSSとグリシジルメチルエーテルの反応物(以下、C−4とする。)を得た。また、製造例3−1と同様の操作を行い、C−4の反応率及び120℃における残存率を測定したところ、反応率は85%、残存率は40%であった。
(3-4) Production Example 3-4 Preparation of Reaction Product (C-4) of PEDOT-PSS and Oxirane Group-Containing Organic Compound To 100 g of 1.6 mass% PEDOT-PSS aqueous dispersion obtained in Production Example 2 8 g of glycidyl methyl ether (manufactured by Wako Pure Chemical Industries, Ltd., Mw = 88.11) was added, and the same operation as in Production Example 3-1 was performed. A reaction product of PEDOT-PSS and glycidyl methyl ether (hereinafter referred to as C-4) ). Moreover, operation similar to manufacture example 3-1 was performed, and when the reaction rate of C-4 and the residual rate in 120 degreeC were measured, the reaction rate was 85% and the residual rate was 40%.

(3−5) 製造例3−5 PEDOT−PSSとオキシラン基含有有機化合物との反応物(C−5)の調製
製造例2で得た1.6質量%のPEDOT−PSS水分散液100gにエチルグリシジルエーテル(東京化成工業社製、Mw=102.13)5gを加え、製造例3−1と同様の操作を行い、PEDOT−PSSとエチルグリシジルエーテルの反応物(以下、C−5とする。)を得た。また、製造例3−1と同様の操作を行い、C−5の反応率及び120℃における残存率を測定したところ、反応率は59%、残存率は76%であった。
(3-5) Production Example 3-5 Preparation of Reaction Product (C-5) of PEDOT-PSS and Oxirane Group-Containing Organic Compound To 100 g of 1.6 mass% PEDOT-PSS aqueous dispersion obtained in Production Example 2 5 g of ethyl glycidyl ether (manufactured by Tokyo Kasei Kogyo Co., Ltd., Mw = 102.13) is added, and the same operation as in Production Example 3-1 is performed, and a reaction product of PEDOT-PSS and ethyl glycidyl ether (hereinafter referred to as C-5) .) Moreover, operation similar to manufacture example 3-1 was performed, and the reaction rate of C-5 and the residual rate in 120 degreeC were measured, The reaction rate was 59% and the residual rate was 76%.

(3−6) 製造例3−6 PEDOT−PSSとオキシラン基含有有機化合物との反応物(C−6)の調製
製造例2で得た1.6質量%のPEDOT−PSS水分散液100gにラウリルアルコール(EO)15グリシジルエーテル(ナガセケムテックス社製 EX−171、Mw=901.34)10gを加え、製造例3−1と同様の操作を行い、PEDOT−PSSとラウリルアルコール(EO)15グリシジルエーテルの反応物(以下、C−6とする。)を得た。また、製造例3−1と同様の操作を行い、C−6の反応率及び120℃における残存率を測定したところ、反応率は58%、残存率は360%であった。
(3-6) Production Example 3-6 Preparation of Reaction Product (C-6) of PEDOT-PSS and Oxirane Group-Containing Organic Compound To 100 g of 1.6 mass% PEDOT-PSS aqueous dispersion obtained in Production Example 2 10 g of lauryl alcohol (EO) 15 glycidyl ether (manufactured by Nagase ChemteX Corporation, EX-171, Mw = 901.34) was added, and the same operation as in Production Example 3-1 was performed. PEDOT-PSS and lauryl alcohol (EO) 15 A reaction product of glycidyl ether (hereinafter referred to as C-6) was obtained. Further, the same operation as in Production Example 3-1 was performed, and the reaction rate of C-6 and the residual rate at 120 ° C. were measured. As a result, the reaction rate was 58% and the residual rate was 360%.

(3−7) 製造例3−7 PEDOT−PSSとオキシラン基含有有機化合物との反応物(C−7)の調製
製造例2で得た1.6質量%のPEDOT−PSS水分散液100gに2−エチルヘキシルグリシジルエーテル(東京化成工業社製、Mw=186.29)10gを加え、製造例3−1と同様の操作を行い、PEDOT−PSSと2−エチルヘキシルグリシジルエーテルの反応物(以下、C−7とする。)を得た。また、製造例3−1と同様の操作を行い、C−7の反応率及び120℃における残存率を測定したところ、反応率は4%、残存率は530%であった。
(3-7) Production Example 3-7 Preparation of Reaction Product (C-7) of PEDOT-PSS and Oxirane Group-Containing Organic Compound To 100 g of 1.6 mass% PEDOT-PSS aqueous dispersion obtained in Production Example 2 10 g of 2-ethylhexyl glycidyl ether (manufactured by Tokyo Chemical Industry Co., Ltd., Mw = 186.29) was added, the same operation as in Production Example 3-1 was performed, and a reaction product of PEDOT-PSS and 2-ethylhexyl glycidyl ether (hereinafter referred to as C). -7). Moreover, operation similar to manufacture example 3-1 was performed, and the reaction rate of C-7 and the residual rate in 120 degreeC were measured, The reaction rate was 4% and the residual rate was 530%.

(3−8) 製造例3−8 PEDOT−PSSとオキシラン基含有有機化合物との反応物(C−8)の調製
製造例2で得た1.6質量%のPEDOT−PSS水分散液100gにグリシドール1gを加えた他は、製造例3−1と同様の操作を行い、PEDOT−PSSとグリシドールの反応物(以下、C−8とする。)を得た。また、製造例3−1と同様の操作を行い、C−8の反応率及び120℃における残存率を測定したところ、反応率は26%、残存率は12%であった。
(3-8) Production Example 3-8 Preparation of Reaction Product (C-8) of PEDOT-PSS and Oxirane Group-Containing Organic Compound To 100 g of 1.6 mass% PEDOT-PSS aqueous dispersion obtained in Production Example 2 The same operation as in Production Example 3-1 was performed except that 1 g of glycidol was added to obtain a reaction product of PEDOT-PSS and glycidol (hereinafter referred to as C-8). Further, the same operation as in Production Example 3-1 was performed, and the reaction rate of C-8 and the residual rate at 120 ° C. were measured. The reaction rate was 26%, and the residual rate was 12%.

(4) キャパシタ用素子の製造
エッチドアルミニウム箔(陽極箔)に陽極リード端子を接続した後、アジピン酸アンモニウム10質量%水溶液中で130Vの電圧を印加し、化成(酸化処理)して、アルミニウム箔の両面に誘電体層を形成して陽極箔を得た。次に、陽極箔の両面に、陰極リード端子を溶接させた対向アルミニウム陰極箔を、セルロース製のセパレータを介して積層し、これを円筒状に巻き取ってキャパシタ用素子を得た。
(4) Manufacture of capacitor element After connecting an anode lead terminal to an etched aluminum foil (anode foil), a voltage of 130 V was applied in an aqueous solution of 10% by weight of ammonium adipate to form (oxidize) aluminum. A dielectric layer was formed on both sides of the foil to obtain an anode foil. Next, on both surfaces of the anode foil, an opposing aluminum cathode foil with cathode lead terminals welded was laminated via a cellulose separator, and this was wound into a cylindrical shape to obtain a capacitor element.

(5) 駆動用電解液の調製
γ−ブチロラクトン100g、スルホラン10g、及びフタル酸テトラメチルアンモニウム25gを混合溶解して、駆動用電解液を得た。
(5) Preparation of driving electrolyte solution 100 g of γ-butyrolactone, 10 g of sulfolane, and 25 g of tetramethylammonium phthalate were mixed and dissolved to obtain a driving electrolyte solution.

(6) キャパシタの製造
(実施例1)
製造例3−1より得られたPEDOT−PSSとグリシドールの反応物(C−1)100gに、ピロガロール0.5g、ポリエチレングリコール400(和光純薬工業社製)10g、ペンタエリスリトール1.0g、及びジメチルスルホキシド5.0gを加え、室温で攪拌した。次いで、高圧分散機(吉田機械興業社製ナノヴェイター)により、25℃において18mPa・sの液粘度になるように分散して、導電性高分子組成物(1)を得た。上記(4)で得たキャパシタ用素子を導電性高分子組成物(1)に減圧下で浸漬した後、120℃の熱風乾燥機により10分間乾燥した。さらに、導電性高分子組成物(1)への浸漬を2回繰り返して、誘電体層表面上に、導電性高分子複合体を含む固体電解質層を形成させた。さらに上記(5)で得た駆動用電解液に減圧下で浸漬した後、アルミニウム製のケースに、キャパシタ用素子を装填し、封口ゴムで封止し、120℃の雰囲気で75Vの電圧を1時間印加し、キャパシタを作製した。得られたキャパシタについて、LCZメータ2345(エヌエフ回路設計ブロック社製)を用いて、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=19.8、静電容量(μF)=33.3、ESR変化率1(%)=0.3、ESR変化率2(%)=8であった。
なお、キャパシタのESR変化率は下記のように測定した。
・ESR変化率1
得られた電解キャパシタを230℃のオーブンで3分間加熱処理した後に室温で15分間放冷する操作を5回繰り返してから、ESRを測定し、下記式より、ESR変化率1を求めた。
ESR変化率1(%)=(加熱処理後のESR−加熱処理前のESR)/加熱処理前のESR×100
・ESR変化率2
得られた電解キャパシタを135℃のオーブンで500時間加熱処理した後に室温で15分間放冷し、ESRを測定し、下記式より、ESR変化率2を求めた。
ESR変化率2(%)=(加熱処理後のESR−加熱処理前のESR)/加熱処理前のESR×100
(6) Manufacture of capacitors (Example 1)
To 100 g of the reaction product (C-1) of PEDOT-PSS and glycidol obtained from Production Example 3-1, 0.5 g of pyrogallol, 10 g of polyethylene glycol 400 (manufactured by Wako Pure Chemical Industries, Ltd.), 1.0 g of pentaerythritol, and Dimethyl sulfoxide 5.0g was added and it stirred at room temperature. Subsequently, it disperse | distributed so that it might become a liquid viscosity of 18 mPa * s in 25 degreeC with a high voltage | pressure disperser (Yoshida Kikai Kogyo Co., Ltd. nanometer), and the conductive polymer composition (1) was obtained. The capacitor element obtained in (4) above was immersed in the conductive polymer composition (1) under reduced pressure, and then dried for 10 minutes with a 120 ° C. hot air dryer. Furthermore, the immersion in the conductive polymer composition (1) was repeated twice to form a solid electrolyte layer containing the conductive polymer composite on the surface of the dielectric layer. Further, after being immersed in the driving electrolyte obtained in the above (5) under reduced pressure, a capacitor element is loaded in an aluminum case, sealed with a sealing rubber, and a voltage of 75 V is applied in an atmosphere of 120 ° C. The capacitor was produced by applying for a time. About the obtained capacitor, the electrostatic capacity in 120 Hz, the initial value of ESR in 100 kHz, and the rate of change of ESR were measured using LCZ meter 2345 (made by NF circuit design block company). As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 19.8, capacitance (μF) = 33.3, ESR change rate 1 (%) = 0.3, ESR change rate 2 ( %) = 8.
The ESR change rate of the capacitor was measured as follows.
-ESR change rate 1
After the obtained electrolytic capacitor was heat-treated in an oven at 230 ° C. for 3 minutes and then allowed to cool at room temperature for 15 minutes, ESR was measured and ESR change rate 1 was determined from the following formula.
ESR change rate 1 (%) = (ESR after heat treatment−ESR before heat treatment) / ESR × 100 before heat treatment
ESR change rate 2
The obtained electrolytic capacitor was heat-treated in an oven at 135 ° C. for 500 hours, then allowed to cool at room temperature for 15 minutes, ESR was measured, and ESR change rate 2 was determined from the following formula.
ESR change rate 2 (%) = (ESR after heat treatment−ESR before heat treatment) / ESR × 100 before heat treatment

(実施例2)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−2より得られたPEDOT−PSSとグリシドールの反応物(C−2)100gを用い、ポリエチレングリコール400を5gとした他は、実施例1に準じて導電性高分子組成物(2)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=19.4、静電容量(μF)=33.2、ESR変化率1(%)=−1.5、ESR変化率2(%)=5であった。
(Example 2)
The reaction product of PEDOT-PSS and glycidol obtained from Production Example 3-2 (C-2) 100 g was used as a reaction product of PEDOT-PSS and the oxirane group-containing organic compound, and polyethylene glycol 400 was changed to 5 g. A conductive polymer composition (2) was prepared according to Example 1 to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 19.4, capacitance (μF) = 33.2, ESR change rate 1 (%) = − 1.5, ESR change rate 2 (%) = 5.

(実施例3)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−3より得られたPEDOT−PSSとグリシドールの反応物(C−3)100gを用い、実施例2に準じて導電性高分子組成物(3)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=20.5、静電容量(μF)=33.0、ESR変化率1(%)=5.0、ESR変化率2(%)=5であった。
(Example 3)
Using PEDOT-PSS and glycidol reaction product (C-3) 100 g obtained from Production Example 3-3 as a reaction product of PEDOT-PSS and an oxirane group-containing organic compound, a conductive polymer according to Example 2 was used. A composition (3) was prepared to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 20.5, capacitance (μF) = 33.0, ESR change rate 1 (%) = 5.0, ESR change rate 2 ( %) = 5.

(実施例4)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−4より得られたPEDOT−PSSとグリシジルメチルエーテルの反応物(C−4)100gを用い、実施例1に準じて導電性高分子組成物(4)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=19.0、静電容量(μF)=32.5、ESR変化率1(%)=5.1、ESR変化率2(%)=10であった。
Example 4
Conductivity according to Example 1 using 100 g of the reaction product (C-4) of PEDOT-PSS and glycidyl methyl ether obtained from Production Example 3-4 as a reaction product of PEDOT-PSS and the oxirane group-containing organic compound. A polymer composition (4) was prepared to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 19.0, capacitance (μF) = 32.5, ESR change rate 1 (%) = 5.1, ESR change rate 2 ( %) = 10.

(実施例5)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−5より得られたPEDOT−PSSとエチルグリシジルエーテルの反応物(C−5)100gを用い、実施例1に準じて導電性高分子組成物(5)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=20.8、静電容量(μF)=32.9、ESR変化率1(%)=7.4、ESR変化率2(%)=8であった。
(Example 5)
Conductivity according to Example 1 using 100 g of the reaction product (C-5) of PEDOT-PSS and ethyl glycidyl ether obtained from Production Example 3-5 as a reaction product of PEDOT-PSS and the oxirane group-containing organic compound. A polymer composition (5) was prepared to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 20.8, capacitance (μF) = 32.9, ESR change rate 1 (%) = 7.4, ESR change rate 2 ( %) = 8.

(実施例6)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−2より得られたPEDOT−PSSとグリシドールの反応物(C−2)100gを用い、PEG400の代わりにポリグリセロール(阪本薬品工業社製 ポリグリセリン#300)5gを用いた他は、実施例1に準じて導電性高分子組成物(6)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=20.4、静電容量(μF)=33.4、ESR変化率1(%)=7.6、ESR変化率2(%)=8であった。
(Example 6)
100 g of the reaction product (C-2) of PEDOT-PSS and glycidol obtained from Production Example 3-2 was used as a reaction product of PEDOT-PSS and an oxirane group-containing organic compound, and polyglycerol (Sakamoto Pharmaceutical Co., Ltd.) was used instead of PEG400. A conductive polymer composition (6) was prepared in accordance with Example 1 except that 5 g of polyglycerin # 300 (manufactured by the company) was used, and a capacitor was produced. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 20.4, capacitance (μF) = 33.4, ESR change rate 1 (%) = 7.6, ESR change rate 2 ( %) = 8.

(実施例7)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−2より得られたPEDOT−PSSとグリシドールの反応物(C−2)100gを用い、PEG400の代わりにポリグリセロール(阪本薬品工業社製 ポリグリセリン#300)10gを用いた他は、実施例1に準じて導電性高分子組成物(7)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=19.6、静電容量(μF)=32.6、ESR変化率1(%)=0.3、ESR変化率2(%)=10であった。
(Example 7)
100 g of the reaction product (C-2) of PEDOT-PSS and glycidol obtained from Production Example 3-2 was used as a reaction product of PEDOT-PSS and an oxirane group-containing organic compound, and polyglycerol (Sakamoto Pharmaceutical Co., Ltd.) was used instead of PEG400. A conductive polymer composition (7) was prepared in the same manner as in Example 1 except that 10 g of polyglycerin # 300 (manufactured by the company) was used, and a capacitor was produced. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 19.6, capacitance (μF) = 32.6, ESR change rate 1 (%) = 0.3, ESR change rate 2 ( %) = 10.

(実施例8)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−2より得られたPEDOT−PSSとグリシドールの反応物(C−2)100gを用い、ペンタエリスリトールの代わりにエリスリトール5gを用いた他は、実施例1に準じて導電性高分子組成物(8)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=21.2、静電容量(μF)=32.6、ESR変化率1(%)=8.2、ESR変化率2(%)=10であった。
(Example 8)
As a reaction product of PEDOT-PSS and an oxirane group-containing organic compound, 100 g of the reaction product (C-2) of PEDOT-PSS and glycidol obtained in Production Example 3-2 was used, and 5 g of erythritol was used instead of pentaerythritol. Others prepared the conductive polymer composition (8) according to Example 1, and produced the capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 21.2, capacitance (μF) = 32.6, ESR change rate 1 (%) = 8.2, ESR change rate 2 ( %) = 10.

(実施例9)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−2より得られたPEDOT−PSSとグリシドールの反応物(C−2)100gを用い、ペンタエリスリトールを0.2gをとした他は、実施例1に準じて導電性高分子組成物(9)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=19.7、静電容量(μF)=33.0、ESR変化率1(%)=10、ESR変化率2(%)=12であった。
Example 9
Other than using PEDOT-PSS and glycidol reaction product (C-2) 100 g obtained from Production Example 3-2 as a reaction product of PEDOT-PSS and oxirane group-containing organic compound, pentaerythritol was 0.2 g. Prepared a conductive polymer composition (9) according to Example 1 to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 19.7, capacitance (μF) = 33.0, ESR change rate 1 (%) = 10, ESR change rate 2 (%) = 12.

(実施例10)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−2より得られたPEDOT−PSSとグリシドールの反応物(C−2)100gを用い、ペンタエリスリトールを0.8gとした他は、実施例1に準じて導電性高分子組成物(10)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=19.7、静電容量(μF)=33.7、ESR変化率1(%)=0.5、ESR変化率2(%)=8であった。
(Example 10)
A reaction product of PEDOT-PSS and glycidol obtained in Production Example 3-2 (C-2) 100 g was used as a reaction product of PEDOT-PSS and an oxirane group-containing organic compound, and pentaerythritol was changed to 0.8 g. A conductive polymer composition (10) was prepared in accordance with Example 1 to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 19.7, capacitance (μF) = 33.7, ESR change rate 1 (%) = 0.5, ESR change rate 2 ( %) = 8.

(実施例11)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−2より得られたPEDOT−PSSとグリシドールの反応物(C−2)100gを用い、ペンタエリスリトールを3gとした他は、実施例1に準じて導電性高分子組成物(11)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=20.0、静電容量(μF)=32.0、ESR変化率1(%)=0.6、ESR変化率2(%)=10であった。
(Example 11)
The reaction was performed except that 100 g of the reaction product (C-2) of PEDOT-PSS and glycidol obtained in Production Example 3-2 was used as the reaction product of PEDOT-PSS and the oxirane group-containing organic compound, and pentaerythritol was changed to 3 g. A conductive polymer composition (11) was prepared according to Example 1 to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 20.0, capacitance (μF) = 32.0, ESR change rate 1 (%) = 0.6, ESR change rate 2 ( %) = 10.

(実施例12)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−2より得られたPEDOT−PSSとグリシドールの反応物(C−2)100gを用い、ジメチルスルホキシドをγブチロラクトン5gとした他は、実施例1に準じて導電性高分子組成物(12)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=19.6、静電容量(μF)=33.0、ESR変化率1(%)=5.7、ESR変化率2(%)=5であった。
(Example 12)
A reaction product of PEDOT-PSS and oxirane group-containing organic compound was used as a reaction product of PEDOT-PSS and glycidol (C-2) obtained in Production Example 3-2, and dimethyl sulfoxide was changed to 5 g of γ-butyrolactone. A conductive polymer composition (12) was prepared according to Example 1, and a capacitor was produced. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 19.6, capacitance (μF) = 33.0, ESR change rate 1 (%) = 5.7, ESR change rate 2 ( %) = 5.

(実施例13)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−2より得られたPEDOT−PSSとグリシドールの反応物(C−2)100gを用い、ピロガロールを0.1gとした他は、実施例1に準じて導電性高分子組成物(13)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=20.1、静電容量(μF)=31.9、ESR変化率1(%)=8.0、ESR変化率2(%)=15であった。
(Example 13)
The reaction product of PEDOT-PSS and glycidol obtained from Production Example 3-2 (C-2) 100 g as a reaction product of PEDOT-PSS and the oxirane group-containing organic compound, except that pyrogallol was 0.1 g, A conductive polymer composition (13) was prepared according to Example 1 to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 20.1, capacitance (μF) = 31.9, ESR change rate 1 (%) = 8.0, ESR change rate 2 ( %) = 15.

(実施例14)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−2より得られたPEDOT−PSSとグリシドールの反応物(C−2)100gを用い、ピロガロールを1.2gとした他は、実施例1に準じて導電性高分子組成物(14)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=20.9、静電容量(μF)=33.1、ESR変化率1(%)=0.0、ESR変化率2(%)=5であった。
(Example 14)
The reaction product of PEDOT-PSS and glycidol obtained from Production Example 3-2 (C-2) 100 g as a reaction product of PEDOT-PSS and the oxirane group-containing organic compound, except that pyrogallol was 1.2 g, A conductive polymer composition (14) was prepared according to Example 1 to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 20.9, capacitance (μF) = 33.1, ESR change rate 1 (%) = 0.0, ESR change rate 2 ( %) = 5.

(比較例1)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−6より得られたPEDOT−PSSとラウリルアルコール(EO)15グリシジルエーテルの反応物(C−6)100gを用いた他は、実施例1に準じて導電性高分子組成物(15)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=35.7、静電容量(μF)=30.2、ESR変化率1(%)=46、ESR変化率2(%)=120であった。
(Comparative Example 1)
Other than using 100 g of the reaction product (C-6) of PEDOT-PSS and lauryl alcohol (EO) 15 glycidyl ether obtained from Production Example 3-6 as a reaction product of PEDOT-PSS and the oxirane group-containing organic compound, A conductive polymer composition (15) was prepared according to Example 1 to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 35.7, capacitance (μF) = 30.2, ESR change rate 1 (%) = 46, ESR change rate 2 (%) = 120.

(比較例2)
PEDOT−PSSとオキシラン基含有有機化合物との反応物として製造例3−7より得られたPEDOT−PSSと2−エチルヘキシルグリシジルエーテルの反応物(C−7)100gを用いた他は、実施例1に準じて導電性高分子組成物(16)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=223.0、静電容量(μF)=19.3、ESR変化率1(%)=84、ESR変化率2(%)=55であった。
(Comparative Example 2)
Example 1 except that 100 g of the reaction product (C-7) of PEDOT-PSS and 2-ethylhexyl glycidyl ether obtained from Production Example 3-7 was used as the reaction product of PEDOT-PSS and the oxirane group-containing organic compound. In accordance with the above, a conductive polymer composition (16) was prepared to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 223.0, capacitance (μF) = 19.3, ESR change rate 1 (%) = 84, ESR change rate 2 (%) = 55.

(比較例3)
PEDOT−PSSとオキシラン基含有有機化合物との反応物の代わりとして製造例2で調製した1.6質量%のPEDOT−PSS水分散液を用いた他は、実施例1に準じて導電性高分子組成物(17)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=276.0、静電容量(μF)=15.9、ESR変化率1(%)=90、ESR変化率2(%)=67であった。
(Comparative Example 3)
A conductive polymer according to Example 1 except that the 1.6 mass% PEDOT-PSS aqueous dispersion prepared in Production Example 2 was used instead of the reaction product of PEDOT-PSS and the oxirane group-containing organic compound. A composition (17) was prepared to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 276.0, capacitance (μF) = 15.9, ESR change rate 1 (%) = 90, ESR change rate 2 (%) = 67.

(比較例4)
PEDOT−PSSとオキシラン基含有有機化合物として製造例3−8より得られたPEDOT−PSSとグリシドールの反応物(C−8)を用いた他は、実施例1に準じて導電性高分子組成物(18)を調製し、キャパシタを作製した。得られたキャパシタについて、実施例1と同様に、120Hzでの静電容量、及び100kHzでのESRの初期値、及びESRの変化率を測定した。測定結果は、表1に示すように、ESR初期値(mΩ)=276.0、静電容量(μF)=19.4、ESR変化率1(%)=90、ESR変化率2(%)=67であった。
(Comparative Example 4)
A conductive polymer composition according to Example 1 except that the reaction product (C-8) of PEDOT-PSS and glycidol obtained from Production Example 3-8 was used as the PEDOT-PSS and oxirane group-containing organic compound. (18) was prepared to produce a capacitor. For the obtained capacitor, the capacitance at 120 Hz, the initial value of ESR at 100 kHz, and the rate of change of ESR were measured in the same manner as in Example 1. As shown in Table 1, the measurement results are as follows: ESR initial value (mΩ) = 276.0, capacitance (μF) = 19.4, ESR change rate 1 (%) = 90, ESR change rate 2 (%) = 67.

Figure 0006322007
Figure 0006322007

表1中、各成分の欄における数値の単位はグラムである。また、性能を示す数値の単位は、各項目中の単位である。本発明により、静電容量が大きくかつESRが低くまた、長期信頼性に優れるキャパシタ及びその製造方法が提供された。本発明によるキャパシタは、実施例1から14に示すように、静電容量が大きくかつESRが低く、耐熱試験後のESRの変化率が小さい、つまり長期信頼性に優れることが示された。比較例1のキャパシタの反応率は58%と高いものの残存率が高く、その影響でESRが高くなり、ESRの変化率も大きくなった。また、比較例2のキャパシタは、反応率は4%と低く、さらに残存率が高いため、静電容量が非常に小さく、ESRが高く、ESRの変化率も非常に大きくなった。また、比較例4のキャパシタは、残存率が低いものの、反応率が低いため、静電容量が非常に小さく、ESRが高く、ESRの変化率も非常に大きくなった。

In Table 1, the unit of the numerical value in the column of each component is gram. Moreover, the unit of the numerical value indicating performance is a unit in each item. The present invention provides a capacitor having a large capacitance, low ESR, and excellent long-term reliability, and a method for manufacturing the same. As shown in Examples 1 to 14, the capacitor according to the present invention was shown to have a large capacitance and low ESR, a small change rate of ESR after the heat resistance test, that is, excellent long-term reliability. Although the response rate of the capacitor of Comparative Example 1 was as high as 58%, the residual rate was high, and as a result, the ESR increased and the rate of change of ESR also increased. Further, the capacitor of Comparative Example 2 had a low reaction rate of 4% and a high residual rate, so that the capacitance was very small, the ESR was high, and the rate of change of ESR was also very large. In addition, although the capacitor of Comparative Example 4 had a low residual rate, the reaction rate was low, so the capacitance was very small, the ESR was high, and the rate of change of ESR was also very large.

Claims (8)

弁金属の多孔質体からなる陽極と、陽極表面が酸化されて形成された誘電体層と、誘電体層における陽極と反対側に設けられた導電物質製の陰極と、誘電体層及び陰極の間に形成された固体電解質層とを具備するキャパシタにおいて、
固体電解質層が、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)と、ポリアニオン中のドープに要した以外のアニオンとオキシラン基またはオキセタン基含有有機化合物(c)との反応物を含み、
固体電解質層の形成条件において、未反応のオキシラン基またはオキセタン基含有有機化合物(c)およびその開環化合物の、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計に対する質量比が110%以下であり、
ポリアニオン中のドープに要した以外のアニオンの50モル%以上がオキシラン基またはオキセタン基含有有機化合物(c)と反応してなることを特徴とするキャパシタ。
An anode made of a porous body of valve metal, a dielectric layer formed by oxidizing the anode surface, a cathode made of a conductive material provided on the opposite side of the anode in the dielectric layer, and the dielectric layer and the cathode In a capacitor comprising a solid electrolyte layer formed therebetween,
The solid electrolyte layer includes a π-conjugated conductive polymer (a) and a polyanion (b) doped with the π-conjugated conductive polymer, and an anion and an oxirane group or oxetane group-containing organic other than those required for doping in the polyanion. Comprising a reaction product with compound (c),
In the formation conditions of the solid electrolyte layer, unreacted oxirane group or oxetane group-containing organic compound (c) and its ring-opening compound were doped into π-conjugated conductive polymer (a) and π-conjugated conductive polymer The mass ratio with respect to the total with the polyanion (b) is 110% or less,
A capacitor obtained by reacting 50 mol% or more of an anion other than that required for doping in a polyanion with an organic compound (c) containing an oxirane group or an oxetane group.
前記固体電解質層が、さらにヒドロキシ基含有芳香族性化合物を含有してなる請求項1に記載のキャパシタ。   The capacitor according to claim 1, wherein the solid electrolyte layer further contains a hydroxy group-containing aromatic compound. 前記固体電解質層が、さらに水溶性高分子化合物または水分散性高分子化合物を含有してなる請求項1に記載のキャパシタ。   The capacitor according to claim 1, wherein the solid electrolyte layer further contains a water-soluble polymer compound or a water-dispersible polymer compound. 前記固体電解質層が、さらにスルホ基含有ジカルボン酸を含有してなる請求項1に記載のキャパシタ。   The capacitor according to claim 1, wherein the solid electrolyte layer further contains a sulfo group-containing dicarboxylic acid. 前記固体電解質層が、さらに分子内に4個以上の水酸基を有する脂肪族化合物を含有してなる請求項1に記載のキャパシタ。   The capacitor according to claim 1, wherein the solid electrolyte layer further contains an aliphatic compound having four or more hydroxyl groups in the molecule. π共役系導電性高分子(a)と、π共役系導電性高分子にドープしたポリアニオン(b)と、ポリアニオン中のドープに要した以外のアニオンとオキシラン基またはオキセタン基含有有機化合物(c)との反応物を含む導電性高分子分散液を調製する工程と、
弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、
誘電体層に対向する位置に陰極を形成する工程と、
誘電体層表面に前記導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程と、
を有し、
固体電解質層の形成条件において、固体電解質層中の未反応のオキシラン基またはオキセタン基含有有機化合物(c)およびその開環化合物の、π共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)との合計に対する質量比が110%以下であり、
導電性高分子分散液中のポリアニオン中のドープに要した以外のアニオンの50モル%以上がオキシラン基またはオキセタン基含有有機化合物(c)と反応していることを特徴とするキャパシタの製造方法。
π-conjugated conductive polymer (a), polyanion (b) doped in π-conjugated conductive polymer, anion and oxirane group or oxetane group-containing organic compound (c) other than that required for doping in the polyanion A step of preparing a conductive polymer dispersion containing a reaction product with
Oxidizing the surface of the anode made of a porous body of valve metal to form a dielectric layer;
Forming a cathode at a position facing the dielectric layer;
Applying the conductive polymer dispersion on the surface of the dielectric layer and drying to form a solid electrolyte layer;
Have
Under the conditions for forming the solid electrolyte layer, the unreacted oxirane group or oxetane group-containing organic compound (c) in the solid electrolyte layer and the ring-opening compound thereof are π-conjugated conductive polymer (a) and π-conjugated conductive properties. The mass ratio with respect to the sum total with the polyanion (b) doped in the polymer is 110% or less,
A method for producing a capacitor, wherein 50 mol% or more of anions other than those required for doping in a polyanion in a conductive polymer dispersion are reacted with an oxirane group or oxetane group-containing organic compound (c).
前記オキシラン基またはオキセタン基含有有機化合物(c)をπ共役系導電性高分子(a)とπ共役系導電性高分子にドープしたポリアニオン(b)の水分散体に添加しポリアニオン(b)とオキシラン基またはオキセタン基含有有機化合物(c)とを反応させる工程を経ることを特徴とする請求項6に記載のキャパシタの製造方法。   The oxirane group or oxetane group-containing organic compound (c) is added to an aqueous dispersion of a polyanion (b) doped with a π-conjugated conductive polymer (a) and a π-conjugated conductive polymer, and the polyanion (b) The method for producing a capacitor according to claim 6, wherein the capacitor undergoes a step of reacting with an oxirane group- or oxetane group-containing organic compound (c). 前記導電性高分子分散液が、高沸点溶媒を含有してなる請求項6に記載のキャパシタの製造方法。
The method for producing a capacitor according to claim 6, wherein the conductive polymer dispersion contains a high boiling point solvent.
JP2014054109A 2014-03-17 2014-03-17 Capacitor and manufacturing method thereof Active JP6322007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054109A JP6322007B2 (en) 2014-03-17 2014-03-17 Capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054109A JP6322007B2 (en) 2014-03-17 2014-03-17 Capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015177131A JP2015177131A (en) 2015-10-05
JP6322007B2 true JP6322007B2 (en) 2018-05-09

Family

ID=54255989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054109A Active JP6322007B2 (en) 2014-03-17 2014-03-17 Capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6322007B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946655B2 (en) * 2017-02-09 2021-10-06 株式会社村田製作所 Manufacturing method of solid electrolytic capacitor
JP7116628B2 (en) * 2018-08-20 2022-08-10 信越ポリマー株式会社 Conductive polymer dispersion, method for producing same, and method for producing conductive film
WO2020129854A1 (en) 2018-12-19 2020-06-25 綜研化学株式会社 Conductive polymer composition
JP7462426B2 (en) 2020-01-28 2024-04-05 信越ポリマー株式会社 Method for producing modified conductive composite, method for producing modified conductive composite dispersion, and method for producing conductive film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602128B2 (en) * 2004-12-01 2010-12-22 信越ポリマー株式会社 Capacitor and manufacturing method thereof
JP5323302B2 (en) * 2005-08-10 2013-10-23 信越ポリマー株式会社 Method for producing conductive polymer paint and method for producing conductive coating film
JP2012099868A (en) * 2006-09-27 2012-05-24 Shin Etsu Polymer Co Ltd Capacitor and its manufacturing method
JP5177669B2 (en) * 2008-10-15 2013-04-03 Necトーキン株式会社 Conductive polymer composition and solid electrolytic capacitor using the same

Also Published As

Publication number Publication date
JP2015177131A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP4647297B2 (en) Capacitor and manufacturing method thereof
US8035952B2 (en) Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
JP6854791B2 (en) Conductive polymer solution, capacitor and method for manufacturing the capacitor
JP5891160B2 (en) Capacitor and manufacturing method thereof
JP5444057B2 (en) Solid electrolytic capacitor, manufacturing method thereof, and solution for solid electrolytic capacitor
EP2309523A1 (en) Solid conductive polymer electrolytic capacitor and method for producing same comprising a drying step
JP6322007B2 (en) Capacitor and manufacturing method thereof
US20110080691A1 (en) Solid electrolytic capacitor, method for producing same, and solution for solid electrolytic capacitor
JP2022100374A (en) Solid electrolytic capacitor and method for manufacturing the same
JP4602128B2 (en) Capacitor and manufacturing method thereof
JP2017216317A (en) Conductive polymer fluid dispersion for capacitor, capacitor and method for manufacturing the same
JP6590642B2 (en) Conductive polymer dispersion, capacitor and manufacturing method thereof
JP2014007422A (en) Solid electrolytic capacitor and method for manufacturing the same
JP6722530B2 (en) Capacitor manufacturing method
JP6614927B2 (en) Capacitor and manufacturing method thereof
JP7146620B2 (en) Capacitor, manufacturing method thereof, and conductive polymer dispersion
JP2023101233A (en) Capacitor and manufacturing method thereof
JP2023077583A (en) Capacitor and method for manufacturing the same
JP2024025961A (en) Conductive polymer-containing liquid and its manufacturing method, and capacitor and its manufacturing method
JP2021163863A (en) Solid electrolytic capacitor, and conductive polymer fluid dispersion and production method thereof
JP2023056135A (en) Method for manufacturing conductive polymer dispersion and method for manufacturing solid electrolytic capacitor
JP2018166145A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180406

R150 Certificate of patent or registration of utility model

Ref document number: 6322007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250